METHOD FOR LINING A CATHODE ASSEMBLY OF AN ELECTROLYSIS TANK FOR PRODUCING PRIMARY ALUMINIUM (VARIANTS)

The invention relates to the field of non-ferrous metallurgy, more particularly to the technological equipment for producing primary aluminium by electrolysis, and even more particularly to methods for lining cathode assemblies of electrolysis tanks. The present method for lining a cathode assembly of an electrolysis tank for producing of aluminium comprises filling a thermal insulation layer into a casing of the cathode assembly, forming a refractory layer and then compacting the layers, mounting hearth blocks and side blocks, followed by sealing the joints between them using a cold-ramming hearth paste. According to the first variant of the present invention, a resilient member made of a dense organic substance is arranged between the thermal insulation layer and the refractory layer. According to a second variant of the present invention, a flexible carbon foil is placed between the thermal insulation layer and the refractory layer, and a resilient member made of a dense organic substance is arranged below the flexible carbon foil. The proposed variants of the methods for lining a cathode assembly of an electrolysis tank for production of primary aluminium make it possible to reduce energy consumption when the electrolysis tank is in operation by virtue of the improved stabilization of the thermal properties of the thermal insulation at the base, and to extend the service life of electrolysis tanks.
The present invention relates to nonferrous metallurgy, in particular to the process equipment for electrolytic production of primary aluminum, namely to methods for lining cathode assemblies of reduction cells.

It is known a method for lining which comprises installing a thermal insulation layer including successive filling and compacting calcined alumina in a cathode assembly shell in two layers of different density: an upper layer density is 1.2-1.8 tonnes/m³, a lower layer density is 0.8-1.1 tonnes/m³; laying a barrier of firebricks; installing bottom and side blocks followed by sealing joints therebetween with a cold ramming paste (A.C. SU No. 1183564, IPC C25C 3/08, published on 07.10.1985).

The drawbacks of this lining method include high costs for deep-calcined alumina which is pre-calcinated at temperatures above 1200°C; increased energy consumption for reduction cell operation due to the instability of temperature fields in a cathode assembly caused by the penetration of electrolyte components across joints between firebricks and the change in thermal and physical characteristics of an underlying thermal insulation layer; high labor costs for laying the fire-resistant layer, as well as higher heat losses due to the high thermal conductivity coefficient of the insulation layer made of α-Al₂O₃.

It is known a method for lining a cathode assembly of a reduction cell for production of primary aluminum which comprises installing a thermal insulation layer of 2 or 3 layers of diatomite and vermiculite plates; installing a barrier material made of a flexible graphite foil in combination with steel sheets; laying firebricks; installing bottom and side blocks followed by sealing joints therebetween with a cold ramming paste (J.C. Chapman and H.J. Wilder Light Metals, Vol.1 (1978) 303).

The drawbacks of this lining method are in that the flexible graphite foil in combination with steel sheets cannot serve as a long-term barrier. In particular, according to the results of the reduction cell autopsy, the steel sheets were intact only on the periphery covering only 10% of the cathode assembly area. On the rest of the zone, they were damaged.

The closest to the claimed method in terms of its technical features is a method for lining a cathode assembly of a reduction cell for production of aluminum which comprises filling a cathode assembly shell with a thermal insulation layer consisting of non-graphitic carbon or an aluminosilicate or aluminous powder and pre-mixed with non-graphitic carbon; forming a fire-resistant layer by filling with an aluminous powder followed by its vibro-compaction to obtain an apparent porosity no more than 17%; installing bottom and side blocks followed by sealing joints therebetween with a cold ramming paste (Patent RU 2385972, IPC C25C 3/08, published on 10.04.2010).

The drawback of such lining method is in that it is accompanied by intensive heat losses through the bottom of the reduction cell due to the high thermal conductivity coefficient of compacted layers of non-graphitic carbon or an aluminosilicate or aluminous powder pre-mixed with non-graphitic carbon leading to increased energy consumption and reduced service life of a reduction cell.

The present invention is based on the idea to provide a lining method which helps to reduce energy consumption for reduction cell operation and increase its service life.

The object of the present invention is to provide a lining of a cathode reduction cell with improved barrier properties, to optimize thermal and physical characteristics of lining materials of a reduction cell base, to decelerate the penetration of components of a cryolite-alumina melt and to reduce wastes of lining materials to be disposed of after disassembling.

Said technical effect according to the first embodiment is achieved by that in the method for lining a cathode assembly of a reduction cell for production of aluminum which comprises filling a cathode assembly shell with a thermal insulation layer, forming a fire-resistant layer followed by the compaction of layers, installing bottom and side blocks followed by sealing joints therebetween with a cold ramming paste, a resilient element made of a dense organic substance is placed between the thermal insulation layer and the fire-resistant layer.

The inventive method according to the first embodiment is completed with specific features helping to achieve the claimed technical effect.

The porosity of a fire-resistant layer can be varied in the range of 15 to 22%, and the porosity of a thermal insulation layer can be varied in the range of 60 to 80%.

Said technical effect according to the second embodiment is achieved by that in the method for lining a cathode assembly of a reduction cell for production of aluminum which comprises filling a cathode assembly shell with a thermal insulation layer, forming a fire-resistant layer followed by the compaction of layers, installing bottom and side blocks followed by sealing joints therebetween with a cold ramming paste, a flexible graphite foil is placed between the thermal insulation layer and the fire-resistant layer, and under the flexible graphite foil a resilient element made of a dense organic substance is placed.

The inventive method according to the second embodiment is completed with specific features helping to achieve the desired claimed technical effect.

A foil having the density of 1g/cm² and gas-permeability no more than 10⁻⁶ cm³cm/cm²s•atm which is manufactured by rolling of the enriched crystalline graphite can be used as a flexible graphite foil. Additionally, a resilient.
element made of a dense organic substance can be installed on top of the flexible graphite foil.

[0016] The inventive method according to first and second embodiments complements a particularly distinctive feature which helps to achieve the claimed technical effect.

[0017] As a resilient element made of a dense organic substance a dense fibreboard having a thickness of \(2.5 \times 4 \times 10^{-4}\) of the width of a cathode can be used.

[0018] A comparative analysis of the features of the claimed solution and the features of the analog and prototype has shown that the solution meets the "novelty" requirement.

[0019] The essence of the invention will be better understood upon studying following figures, where Figure 1 shows results of researches assessing the impact of a resilient element placed between a thermal insulation layer and a fire-resistant layer on thermal conductivity coefficients of materials in the height of an element of a reduction cell base. Figure 2 shows results of researches assessing the impact of the density of the fire-resistant layer on cryolite resistance. Figure 3 shows the outcome of the evaluation of the resistance of a flexible graphite foil to aggressive components in a laboratory setting, and Figure 4 shows the state of a flexible graphite foil which has been used in a cathode assembly of a reduction cell for production of primary aluminum for six years. Figure 5 shows a piece of a flexible graphite foil which has prevented aluminum penetration into the thermal insulation layer. As can be seen from the represented data, since the wetting angle is small, aluminum has "spread" over the foil as a flat plate.

[0020] If reduction cell bases are lined by means of either shaped or non-shaped lining materials it is necessary to satisfy all conflicting requirements to their structure. Lower layers must have the highest possible porosity (constrained by limiting conditions of the 10% shrinkage), and top, fire-resistant, layers arranged directly under bottom blocks, on the contrary, must have the minimum porosity (in the range of 15-17%). When using non-shaped materials, simultaneous compaction of the thermal insulation layer and the fire-resistant layer inevitably leads to compaction of the entire mass, thus, negatively affecting thermal and physical properties of the lower thermal insulation layer - its thermal conductivity coefficient becomes higher. The installation of a resilient element made of a dense organic substance helps to redistribute the relative shrinkage of these layers and, consequently, to change the density as desired: the density of upper layers increases and the density of lower layers decreases.

[0021] Suggested parameters of layer density are optimal. As the result of compaction of the fire-resistant material to obtain the layer porosity more than 22%, a permeable macrostructure is achieved and the interaction reaction goes throughout the entire material leading to poorer thermal and physical properties and reducing the service life of the reduction cell. It is impossible to obtain a layer having the porosity lower than 15% applying only the compaction operation.

[0022] If the porosity of the thermal insulation layer is lower than 60%, it reduces the thermal resistance of a base, increases thermal losses, on the bottom surface incrustations are formed which create obstacles for processes of aluminum production, thus, increasing energy consumption and reducing the service life of reduction cells. The porosity of more than 80% increases the risk of shrinkage of the thermal insulation layer and all the structural elements arranged above, as well as a reduction cell failure.

[0023] Experiments with the compaction process and the behavior of a compacted material were carried out using a laboratory bench consisted of a rectangular container for a material and a vibration device for compaction thereof. For the purpose of the experiments, a thermal insulation material, in particular partially carbonized lignite (PCL), was filled and horizontally leveled in the rectangular container on the bench. On top of a thermal insulation layer, a fire-resistant layer of a dry barrier mix (DBM) was filled and leveled, wherein a resilient element made of a dense organic substance was placed between the thermal insulation layer and the fire-resistant layer. In order to prevent extrusion of the mix, on top of the leveled DBM layer was laid a polyethylene film, whereon a 2.5 mm steel plate and a rubber conveyor belt with the thickness of 14 mm were placed. Further, on top of the steel plate, a local unit of a vibration device VPU was installed and the entire mass was compacted. The compaction process was followed by bench disassembling and changing the degree of compaction of the thermal insulation layer and the fire-resistant layer. The table below shows the results of compaction of a non-shaped material at the VPU rate 0.44 m/s.

<table>
<thead>
<tr>
<th>Compaction stages</th>
<th>W/o resilient element</th>
<th>W/ resilient element</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/O DBM</td>
<td>PCL</td>
<td>Total</td>
</tr>
<tr>
<td>Initial</td>
<td>130</td>
<td>320</td>
</tr>
<tr>
<td>Final</td>
<td>108</td>
<td>272</td>
</tr>
<tr>
<td>Shrinkage</td>
<td>22</td>
<td>48</td>
</tr>
</tbody>
</table>

[0024] As can be seen from the shown results, when using an intermediate resilient element between a thermal insulation layer and a fire-resistant layer the total shrinkage of non-shaped materials decreases from 70 to 65 mm.
The method according to claim 1, characterized in that a resilient element made of a dense organic substance is placed between the thermal insulation layer and the fire-resistant layer.

2. The method according to claim 1, characterized in that the porosity of the fire-resistant layer is changed in the range of 15 to 22%.

3. The method according to claim 1, characterized in that the porosity of the thermal insulation layer is changed in the range of 60 to 80%.
4. The method according to claim 1, characterized in that as the resilient element made of the dense organic substance a dense fibreboard having a thickness of $(2.5 \div 4) \times 10^{-4}$ of the width of a cathode is used.

5. The method for lining a cathode assembly of a reduction cell for production of aluminum which comprises filling a cathode assembly shell with a thermal insulation layer, forming a fire-resistant layer followed by the compaction of layers, installing bottom and side blocks followed by sealing joints therebetween with a cold ramming paste, characterized in that a flexible graphite foil is placed between the thermal insulation layer and the fire-resistant layer, and under the flexible graphite foil a resilient element made of a dense organic substance is placed.

6. The method according to claim 5, characterized in that a foil with the density of 1g/cm^3 and the gas-permeability no more than $10^{-6} \text{cm}^3\cdot\text{cm/cm}^2\cdot\text{s-atm}$ manufactured by rolling of the enriched crystalline graphite is used as the flexible graphite foil.

7. The method according to claim 5, characterized in that the resilient element made of the dense organic substance is additionally installed on top of the flexible graphite foil.

8. The method according to claim 5, characterized in that as the resilient element made of the dense organic substance a dense fibreboard having a thickness of $(2.5 \div 4) \times 10^{-4}$ of the width of a cathode is used.
Replacement Sheet (Rule 26)
Replacement Sheet (Rule 26)
Replacement Sheet (Rule 26)
INTERNATIONAL SEARCH REPORT

International application No. PCT/RU 2016/000422

A. CLASSIFICATION OF SUBJECT MATTER

C25C 3/08 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C25C 3/00, 3/06, 3/08

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

DEPATISnet, EAPATIS, Espace, Espacenet, PAJ, PatSearch (RUPTO internal), RUPTO, ScienceDirect, USPTO, Patentscope

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>RU 2385972 C1 ([UNAITED KOMPAJNI RUSAL AIPI LIMITED) 10.04.2010</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>RU 2266983 C1 ([OSCHESTVO S OGRANICHENNO OTVETSTVENNOSTIU "INZHENERNNO-TEKHOLOGICHENSKY TSENTR") 27.12.2005]</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>RU 2113550 C1 ([TOVARISCHESTVO S OGRANICHENNO OTVETSTVENNOSTIU - ALIUMINIEVAIA KOMPANIJA "ALKORUS") 20.06.1998</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>CN 1136600 A ([BAOTOU ALUMINIUM FACTORY) 27.11.1996</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>CN 102146568 A ([DEJIN GAO) 10.08.2011</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>CN 101665955 A ([HEN AN ZHONGFU IND CO LTD) 10.03.2010</td>
<td>1-7</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search 08 November 2016 (08.11.2016)

Date of mailing of the international search report 24 November 2016 (24.11.2016)

Name and mailing address of the ISA/ RU Authorized officer

Facsimile No. Telephone No.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• RU 2385972 [0006]

Non-patent literature cited in the description

• J.C. CHAPMAN ; H.J. WILDER. Light Metals, 1978, vol. 1, 303 [0004]