EUROPEAN PATENT APPLICATION

(43) Date of publication: 16.05.2018 Bulletin 2018/20

(21) Application number: 17204116.2

(22) Date of filing: 19.06.2015

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
MA

(30) Priority: 20.06.2014 US 201462015245 P

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
15739063.4 / 3 157 932

(71) Applicant: Gilead Sciences, Inc.
Foster City, CA 94404 (US)

(72) Inventors:
• CARRA, Ernest, A.
 Foster City, CA California 94404 (US)
• CHEN, Irene
 Foster City, CA California 94404 (US)
• ZIA, Vahid
 Foster City, CA California 94404 (US)

(74) Representative: Carpmaels & Ransford LLP
One Southampton Row
London WC1B 5HA (GB)

Remarks:
This application was filed on 28.11.2017 as a divisional application to the application mentioned under INID code 62.

(57) The present Invention relates to sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5] pyrazino[2,1-b][1,3]oxazepin-8-olate Form I.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to and the benefit under 35 U.S.C. 119(e) of U.S. Provisional Patent Application Serial No. 62/015,245, filed June 20, 2014, the disclosure of which is hereby incorporated by reference in its entirety.

FIELD

The present invention relates to sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate, the crystalline forms, the pharmaceutical formulations, and the therapeutic uses thereof.

BACKGROUND

Human immunodeficiency virus infection and related diseases are a major public health problem worldwide. Human immunodeficiency virus type 1 (HIV-1) encodes three enzymes which are required for viral replication: reverse transcriptase, protease, and integrase. Although drugs targeting reverse transcriptase and protease are in wide use and have shown effectiveness, particularly when employed in combination, toxicity and development of resistant strains have limited their usefulness (Palella, et al. N. Engl. J Med. (1998) 338:853-860; Richman, D. D. Nature (2001) 410:995-1001).

A goal of antiretroviral therapy is to achieve viral suppression in the HIV infected patient. Treatment guidelines published by the United States Department of Health and Human Services provide that achievement of viral suppression requires the use of combination therapies, i.e., several drugs from at least two or more drug classes. In addition, decisions regarding the treatment of HIV infected patients are complicated when the patient requires treatment for other medical conditions. Because the standard of care requires the use of multiple different drugs to suppress HIV, as well as to treat other conditions the patient may be experiencing, the potential for drug interaction is a criterion for selection of a drug regimen. As such, there is a need for antiretroviral therapies having a decreased potential for drug interactions.

(2R,5S,13aR)-8-hydroxy-7,9-dioxo-N-(2,4,6-trifluorobenzyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepine-10-carboxamide, (Formula I), has the following structure:

It is desired to have physically stable forms of the compound that are suitable for the therapeutic use and the manufacturing process.

BRIEF SUMMARY

In certain embodiments, the present invention is directed to sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate, having the following structure (Formula II):
In a still further embodiment, the present invention is directed to crystalline sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1’,2’:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate.

In a still further embodiment, the present invention is directed to sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1’,2’:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate Form L.

In a certain embodiment, the present invention is directed to pharmaceutical formulations comprising sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1’,2’:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate.

In another embodiment, the present invention is directed to methods of treating or prophylactically preventing an HIV infection by administering sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1’,2’:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate.

In another embodiment, the present invention is directed to pharmaceutical formulations comprising sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1’,2’:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate for use in methods of treating or prophylactically preventing an HIV infection.

In another embodiment, the present invention is directed to the use of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1’,2’:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate in the manufacture of a medicament for treating or prophylactically preventing an HIV infection.

DESCRIPTION OF THE FIGURES

Figure 1: XRPD pattern for sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1’,2’:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate Form I.

Figure 2: DSC for sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1’,2’:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate Form I.

Figure 3: TGA for sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1’,2’:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate Form I.

Figure 4: DVS for sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1’,2’:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate Form I.

Figure 5: Dissolution profiles of Formula I Form I, Formula I Form III, and Formula II Form I.

Figure 6: Solubility profiles of Formula I Form III and Formula II Form I in Fasted-State Simulated Gastric Fluid (FaSSGF).

Figure 7: Solubility profiles of Formula I Form III and Formula II Form I in Fed-State Simulated Intestinal Fluid (FeSSIF) and Fasted-State Simulated Intestinal Fluid (FaSSIF).

Figure 8: Calculated and Experimental XRPD pattern for sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1’,2’:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate Form I.

DETAILED DESCRIPTION

In the following description, certain specific details are set forth in order to provide a thorough understanding...
of various embodiments of the invention. However, one skilled in the art will understand that the invention may be
practiced without these details. The description below of several embodiments is made with the understanding that the
present disclosure is to be considered as an exemplification of the claimed subject matter, and is not intended to limit the
appended claims to the specific embodiments illustrated. The headings used throughout this disclosure are provided
for convenience only and are not to be construed to limit the claims in any way. Embodiments illustrated under any
heading may be combined with embodiments illustrated under any other heading.

Definitions

[0017] Unless the context requires otherwise, throughout the present specification and claims, the word "comprise"
and variations thereof, such as, "comprising" and "comprised" are to be construed in an open, inclusive sense, that is
as "including, but not limited to".

[0018] Reference throughout this specification to a "one embodiment" or "an embodiment" means that a particular
feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment
of the present invention. Thus, the appearances of the phrases "in one embodiment" or "in an embodiment" in various
places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular
features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.

[0019] The invention disclosed herein is also meant to encompass all pharmaceutically acceptable compounds of
Formulas (I) and (II) being isotopically-labeled by having one or more atoms replaced by an atom having a different
atomic mass or mass number. Examples of isotopes that can be incorporated into the disclosed compounds include
isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, chlorine, and iodine, such as 2H, 3H, 11C, 13C,
14C, 15N, 15O, 17O, 18O, 31P, 32P, 35S, 18F, 36Cl, 123I, and 125I, respectively. These radiolabeled compounds could
be useful to help determine or measure the effectiveness of the compounds, by characterizing, for example, the site or
mode of action, or binding affinity to pharmacologically important site of action. Certain isotopically-labeled compounds
of Formulas (I) and (II), for example, those incorporating a radioactive isotope, are useful in drug and/or substrate tissue
distribution studies. The radioactive isotopes tritium, i.e. 3H, and carbon-14, i.e. 14C, are particularly useful for this purpose
in view of their ease of incorporation and ready means of detection.

[0020] Substitution with heavier isotopes such as deuterium, i.e. 2H, may afford certain therapeutic advantages resulting
from greater metabolic stability. For example, in vivo half-life may increase or dosage requirements may be reduced.
Thus, heavier isotopes may be preferred in some circumstances.

[0021] Substitution with positron emitting isotopes, such as 11C, 18F, 15O and 13N, can be useful in Positron Emission
Topography (PET) studies for examining substrate receptor occupancy. Isotopically-labeled compounds of Formulas (I)
and (II) can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous
to those described in the Examples as set out below using an appropriate isotopically-labeled reagent in place of the
non-labeled reagent previously employed.

[0022] "Stable compound" and "stable structure" are meant to indicate a compound that is sufficiently robust to survive
isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent

[0023] "Optional" or "optionally" means that the subsequently described event or circumstances may or may not occur,
and that the description includes instances where said event or circumstance occurs and instances in which it does not.
For example, "optionally substituted aryl" means that the aryl radical may or may not be substituted and that the description
includes both substituted aryl radicals and aryl radicals having no substitution.

[0024] "Pharmaceutically acceptable carrier, diluent or excipient" includes without limitation any adjuvant, carrier,
excipient, gildant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent,
dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the
United States Food and Drug Administration as being acceptable for use in humans or domestic animals.

[0025] A "pharmaceutical composition" refers to a formulation of a compound of the invention and a medium generally
accepted in the art for the delivery of the biologically active compound to mammals, e.g., humans. Such a medium
includes all pharmaceutically acceptable carriers, diluents or excipients therefor.

[0026] "Effective amount" or "therapeutically effective amount" refers to an amount of a compound according to the
invention, which when administered to a patient in need thereof, is sufficient to effect treatment for disease-states,
conditions, or disorders for which the compounds have utility. Such an amount would be sufficient to elicit the biological
or medical response of a tissue system, or patient that is sought by a researcher or clinician. The amount of a compound
according to the invention which constitutes a therapeutically effective amount will vary depending on such factors as
the compound and its biological activity, the composition used for administration, the time of administration, the route
of administration, the rate of excretion of the compound, the duration of the treatment, the type of disease-state or
disorder being treated and its severity, drugs used in combination with or coincidentally with the compounds of the
invention, and the age, body weight, general health, sex and diet of the patient. Such a therapeutically effective amount
can be determined routinely by one of ordinary skill in the art having regard to their own knowledge, the state of the art,
The term "treatment" as used herein is intended to mean the administration of a compound or composition according to the present invention to alleviate or eliminate symptoms of HIV infection and/or to reduce viral load in a patient. The term "treatment" also encompasses the administration of a compound or composition according to the present invention post-exposure of the individual to the virus but before the appearance of symptoms of the disease, and/or prior to the detection of the virus in the blood, to prevent the appearance of symptoms of the disease and/or to prevent the virus from reaching detectible levels in the blood, and the administration of a compound or composition according to the present invention to prevent perinatal transmission of HIV from mother to baby, by administration to the mother before giving birth and to the child within the first days of life. In certain embodiments, the term "treatment" as used herein is intended to mean the administration of a compound or composition according to the present invention to alleviate or eliminate symptoms of HIV infection and/or to reduce viral load in a patient. In certain embodiments, the term "treatment" as used herein is further or alternatively intended to mean the administration of a compound or composition according to the present invention to maintain a reduced viral load in a patient. The term "treatment" also encompasses the administration of a compound or composition according to the present invention post-exposure of the individual to the virus but before the appearance of symptoms of the disease; and/or prior to the detection of the virus in the blood, to prevent the appearance of symptoms of the disease and/or to prevent the virus from reaching detectible levels in the blood, and the administration of a compound or composition according to the present invention to prevent perinatal transmission of HIV from mother to baby, by administration to the mother before giving birth and to the child within the first days of life. In certain embodiments, the term "treatment" as used herein is further or alternatively intended to mean the administration of a compound or composition according to the present invention to alleviate or eliminate symptoms of HIV infection and/or to reduce viral load in a patient. In certain embodiments, the term "treatment" as used herein is intended to mean the administration of a compound or composition according to the present invention to alleviate or eliminate symptoms of HIV infection and/or to reduce viral load in a patient. In certain embodiments, the term "treatment" as used herein is intended to mean the administration of a compound or composition according to the present invention to alleviate or eliminate symptoms of HIV infection and/or to reduce viral load in a patient.

"Prevention" or "preventing" means any treatment of a disease or condition that causes the clinical symptoms of the disease or condition not to develop. The term "prevention" also encompasses the administration of a compound or composition according to the present invention pre-exposure of the individual to the virus (e.g., pre-exposure prophylaxis), to prevent the appearance of symptoms of the disease and/or to prevent the virus from reaching detectible levels in the blood.

The terms "Subject" or "patient" refer to an animal, such as a mammal (including a human), that has been or will be the object of treatment, observation or experiment. The methods described herein may be useful in human therapy and/or veterinary applications. In some embodiments, the subject is a mammal (or the patient). In some embodiments the subject (or the patient) is human, domestic animals (e.g., dogs and cats), farm animals (e.g., cattle, horses, sheep, goats and pigs), and/or laboratory animals (e.g., mice, rats, hamsters, guinea pigs, pigs, rabbits, dogs, and monkeys). In one embodiment, the subject (or the patient) is a human. "Human (or patient) in need thereof" refers to a human who may have or is suspect to have diseases or conditions that would benefit from certain treatment; for example, being treated with the compounds disclosed herein according to the present application.

The term "antiviral agent" as used herein is intended to mean an agent (compound or biological) that is effective to inhibit the formation and/or replication of a virus in a human being, including but not limited to agents that interfere with either host or viral mechanisms necessary for the formation and/or replication of a virus in a human being.

The term "inhibitor of HIV replication" as used herein is intended to mean an agent capable of reducing or eliminating the ability of HIV to replicate in a host cell, whether in vitro, ex vivo or in vivo.

A "tautomer" refers to a proton shift from one atom of a molecule to another atom of the same molecule. The present invention includes tautomers of any said compounds.

Reference to "about" a value or parameter herein includes (and describes) embodiments that are directed to that value or parameter per se. For example, description referring to "about X" includes description of "X". Also, the singular forms "a" and "the" include plural references unless the context clearly dictates otherwise. Thus, e.g., reference to "the compound" includes a plurality of such compounds and reference to "the assay" includes reference to one or more assays and equivalents thereof known to those skilled in the art.

"Pharmaceutically acceptable" or "physiologically acceptable" refer to compounds, salts, compositions, dosage forms and other materials which are useful in preparing a pharmaceutical composition that is suitable for veterinary or human pharmaceutical use.

"Unit dosage forms" are physically discrete units suitable as unitary dosages for subjects (e.g., human subjects and other mammals), each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical carrier.

Crystalline Form

Formula II

It is desirable to develop a crystalline form of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)car-
The use of certain solvents has been found to produce different polymorphic forms of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate. The compounds described in this section may provide advantages such as: improving the manufacturing process of an active agent or the stability or storability of a drug product form of the compound or an active ingredient, and/or suitable bioavailability and/or stability as an active agent.

In particular embodiments, crystalline forms of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate may be the final product in the synthesis of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate. A polymorphic form or polymorph or cocrystal may have properties such as bioavailability and stability at certain conditions that may be suitable for medical or pharmaceutical uses.

A crystalline form of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate provides an advantage of improved bioavailability (Table 3) and/or stability (Table 4). Variations in the crystal structure of a pharmaceutical drug substance or active ingredient may affect the dissolution rate (which may affect bioavailability, etc.), manufacturability (e.g., ease of handling, ability to consistently prepare doses of known strength and stability (e.g., thermal stability, shelf life, etc.) of a pharmaceutical drug product or active ingredient. Such variations may affect the preparation or formulation of pharmaceutical compositions in different dosage or delivery forms, such as solid oral dosage form including tablets and capsules. Compared to other forms such as non-crystalline or amorpha forms, crystalline forms may provide desired or suitable hygroscopicity, particle size controls, dissolution rate, solubility, purity, physical and chemical stability, manufacturability, yield, and/or process control. Thus, crystalline forms of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate provide advantages such as: improving the manufacturing process of an active agent or the stability or storability of a drug product form of the compound or an active ingredient, and/or suitable bioavailability and/or stability as an active agent.

In certain embodiments, Form I of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate provides an advantage of improved bioavailability (Table 3) and/or stability (Table 4). The processes for the preparation of the polymorphs described herein and characterization of these polymorphs are described in greater detail below.
In a further embodiment, crystalline forms of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate are disclosed.

In a certain embodiment, sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate Form I is disclosed.

In one embodiment, provided is polymorphic Form I of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate, where-in the polymorph exhibits an X-ray powder diffraction (XRPD) pattern substantially as shown in FIG. 1 and/or FIG. 8.

Polymorphic sodium Form I may exhibit a differential scanning calorimetry (DSC) thermogram substantially as shown in FIG. 2. Polymorphic sodium Form I may exhibit a thermographic analysis (TGA) graph substantially as shown in FIG 3. Polymorphic sodium Form I may exhibit dynamic vapour sorption (DVS) graphs substantially as shown in FIG. 4.

The term "substantially as shown" when referring, for example, to an XRPD pattern, a DSC thermogram, or a TGA graph includes a pattern, thermogram or graph that is not necessarily identical to those depicted herein, but that falls within the limits of experimental error or deviations when considered by one of ordinary skill in the art.

Polymorphic sodium Form I may have a unit cell as determined by crystal X-ray crystallography of the following dimensions: a = 8.9561 (10) Å; b = 13.9202 (14) Å; c = 31.115 (3) Å; α = 90 °; β = 90 °; and γ = 90 °.

In some embodiments of polymorphic sodium Form I, at least one, at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, or all of the following (a)-(j) apply: (a) polymorphic Form I has an XRPD pattern substantially as shown in FIG. 1 and/or FIG. 8; (b) polymorphic sodium Form I has a DSC thermogram substantially as shown in FIG 2; (c) polymorphic sodium Form I has a TGA graph substantially as shown in FIG 3; (d) polymorphic sodium Form I has DVS graphs substantially as shown in FIG 4; (e) polymorphic sodium Form I has a unit cell, as determined by crystal X-ray crystallography, of the following dimensions: a = 8.9561 (10) Å; b = 13.9202 (14) Å; c = 31.115 (3) Å; α = 90 °; β = 90 °; and γ = 90 °; (f) polymorphic sodium Form I has an orthorhombic crystal system; (g) polymorphic sodium Form I has a P212121 space group; (h) polymorphic sodium Form I has a volume of 3879.2(7) Å³; (i) polymorphic Form I has a Z value of 4; and (j) polymorphic Form I has a density of 1.614 Mg/m³.

In some embodiments, polymorphic sodium Form I has at least one, at least two, at least three, at least four, or all of the following properties:

a. an XRPD pattern substantially as shown in FIG 1 and/or FIG 8;

b. a DSC thermogram substantially as shown in FIG 2;

c. TGA graphs substantially as shown in FIG. 3;

d. DVS graphs substantially as shown in FIG. 4; and

e. a unit cell, as determined by crystal X-ray crystallography, of the following dimensions a = 8.9561 (10) Å; b = 13.9202 (14) Å; c = 31.115 (3) Å; α = 90 °; β = 90 °; and γ = 90 °;

In some embodiments, polymorphic sodium Form I has an XRPD pattern displaying at least two, at least three, at least four, at least five, or at least six of the degree 2θ-reflections with the greatest intensity as the XRPD pattern substantially as shown in FIG. 1 and/or FIG. 8.

In certain embodiments, polymorphic sodium Form I has an XRPD pattern comprising degree 2θ-reflections (+/- 0.2 degrees 2θ) at 5.5, 16.1, and 23.3. In one embodiment, polymorphic sodium Form I has an XRPD pattern comprising degree 2θ-reflections (+/- 0.2 degrees 2θ) at 5.5, 16.1, and 23.3 and one or more of the degree 2θ-reflections (+/- 0.2 degrees 2θ) at 22.1, 28.5, and 22.5. In one embodiment, polymorphic sodium Form I has an XRPD pattern comprising degree 2θ-reflections (+/- 0.2 degrees 2θ) at 5.5, 16.1, and 23.3 and two of the degree 2θ-reflections (+/- 0.2 degrees 2θ) at 22.1, 28.5, and 22.5. In one embodiment, polymorphic sodium Form I has an XRPD pattern comprising degree 2θ-reflections (+/- 0.2 degrees 2θ) at 5.5, 16.1, and 23.3 and three of the degree 2θ-reflections (+/- 0.2 degrees 2θ) at 22.1, 28.5, and 22.5. In one embodiment, polymorphic sodium Form I has an XRPD pattern comprising degree 2θ-reflections (+/- 0.2 degrees 2θ) at 5.5, 16.1, and 23.3 and four of the degree 2θ-reflections (+/- 0.2 degrees 2θ) at 22.1, 28.5, and 22.5. In one embodiment, polymorphic sodium Form I has an XRPD pattern comprising degree 2θ-reflections (+/- 0.2 degrees 2θ) at 5.5, 16.1, and 23.3 and five of the degree 2θ-reflections (+/- 0.2 degrees 2θ) at 22.1, 28.5, and 22.5. In one embodiment, polymorphic sodium Form I has an XRPD pattern comprising degree 2θ-reflections (+/- 0.2 degrees 2θ) at 5.5, 16.1, and 23.3 and six of the degree 2θ-reflections (+/- 0.2 degrees 2θ) at 22.1, 28.5, and 22.5. In one embodiment, polymorphic sodium Form I has an XRPD pattern comprising any three degree 2θ-reflections (+/- 0.2 degrees 2θ) selected from the group consisting of 5.5, 16.1, 23.3, 22.1, 28.5, 22.5, 19.5, 26.6, and 17.9.
For the purposes of administration, in certain embodiments, the compounds described herein are administered as a raw chemical or are formulated as pharmaceutical compositions. Pharmaceutical compositions of the present invention comprise a compound of Formula (II), including forms and co-crystals thereof, and a pharmaceutically acceptable carrier, diluent or excipient. The compound of Formula (II) is present in the composition in an amount which is effective to treat a particular disease or condition of interest. The activity of compounds of Formula (II) can be determined by one skilled in the art, for example, as described in co-pending application Serial No. 14/133,855, filed December 19, 2013 entitled "POLYCYCLIC-CARBAMOYL-PYRIDONE COMPOUNDS AND THEIR PHARMACEUTICAL USE." The activity of compounds of Formula (II) can also be determined by one skilled in the art, for example, as described in co-pending PCT Serial No. US2013/076367, filed December 19, 2013 entitled, "POLYCYCLIC-CARBAMOYL-PYRIDONE COMPOUNDS AND THEIR PHARMACEUTICAL USE." Appropriate concentrations and dosages can be readily determined by one skilled in the art. In certain embodiments, a compound of Formula (II) is present in the pharmaceutical composition in an amount from about 25 mg to about 500 mg. In certain embodiments, a compound of Formula (II) is present in the pharmaceutical composition in an amount of about 100 mg to about 300 mg. In certain embodiments, a compound of Formula (II) is present in the pharmaceutical composition in an amount of about 5 mg to about 100 mg. In certain embodiments, a compound of Formula (II) is present in the pharmaceutical composition in an amount of about 50 mg to about 100 mg. In certain embodiments, a compound of Formula (II) is present in the pharmaceutical composition in an amount of about 100 mg to about 300 mg. In certain embodiments, a compound of Formula (II) is present in the pharmaceutical composition in an amount from about 25 mg to about 500 mg.

Formula II

Provided are also compositions comprising at least one polymorph (e.g., any one or more of Formula II polymorphic Forms I) as described herein. In a particular embodiment, a composition comprising Formula II polymorphic Form I, described herein is provided. In other embodiments, the compositions described herein may comprise substantially pure polymorphic forms, or may be substantially free of other polymorphs and/or impurities.

In some embodiments, the composition comprises a polymorphic form of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate. In certain embodiments are provided compositions comprising a polymorphic form as described herein, wherein the sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate within the composition is substantially pure (i.e., substantially pure Form I). In particular compositions comprising a polymorphic form of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate present in the composition is substantially pure (i.e., substantially pure Form I). In particular embodiments of compositions comprising a polymorphic form of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate present in the composition is substantially pure (i.e., substantially pure Form I). In particular embodiments of compositions comprising a polymorphic form of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate within the composition is substantially pure (i.e., substantially pure Form I).

In other embodiments of compositions comprising a polymorphic form disclosed herein, less than about 50%, less than about 40%, less than about 30%, less than about 20%, less than about 10%, less than about 5%, less than about 4%, less than about 3%, less than about 2% or less than about 1% of the total mass relative to the mass of the polymorphic forms present. Impurities may, for example, include by-products from synthesizing sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate, contaminants, degradation products, other polymorphic forms, amorphous form, water, and solvents. In certain embodiments, impurities include by-products from the process of synthesizing sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-
The compounds disclosed herein are administered in a therapeutically effective amount, which will vary depending on the specific condition being treated and the characteristics of the patient. The active ingredients contained therein are free of other substances, including other polymorphic forms and/or impurities. In certain embodiments, “substantially pure” or “substantially free of” refers to a substance free of other substances, including other polymorphic forms and/or impurities. Impurities may, for example, include by-products or left over reagents from chemical reactions, contaminants, degradation products, other polymorphic forms, water, solvents and combinations thereof.

In yet other embodiments, the composition comprising Formula II, Form I disclosed herein has less than about 5%, less than about 4%, less than about 3%, less than about 2%, or less than about 1% by weight of amorphous or non-crystalline sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate.
Combination Therapy

In one embodiment, a method for treating or preventing an HIV infection in a human having or at risk of having the infection is provided, comprising administering to the human a therapeutically effective amount of a compound disclosed herein in combination with a therapeutically effective amount of one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents. In one embodiment, a method for treating an HIV infection in a human having or at risk of having the infection is provided, comprising administering to the human a therapeutically effective amount of a compound disclosed herein in combination with a therapeutically effective amount of one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents.

In certain embodiments, the present invention provides a method for treating an HIV infection, comprising administering to a patient in need thereof a therapeutically effective amount of a compound or composition disclosed herein in combination with a therapeutically effective amount of one or more additional therapeutic agents which are suitable for treating an HIV infection.

One embodiment provides a compound disclosed herein in combination with one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents for use in a method for treating or preventing an HIV infection in a human having or at risk of having the infection. One embodiment provides a compound disclosed herein in combination with one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents for use in a method for treating an HIV infection in a human having or at risk of having the infection. One embodiment provides a compound disclosed herein for use in a method for treating or preventing an HIV infection in a human having or at risk of having the infection, wherein the compound is administered in combination with one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents. One embodiment provides a compound disclosed herein for use in a method for treating an HIV infection in a human having or at risk of having the infection, wherein the compound is administered in combination with one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents. One embodiment provides a compound disclosed herein in combination with one or more additional therapeutic agents which are suitable for treating an HIV infection, for use in a method for treating an HIV infection. In certain embodiments, the present invention provides a compound disclosed herein in combination with one or more additional therapeutic agents which are suitable for treating an HIV infection, for use in a method for treating an HIV infection. In certain embodiments, the present invention provides a compound disclosed herein in combination with one or more additional therapeutic agents which are suitable for treating an HIV infection, for use in a method for treating an HIV infection. In certain embodiments, the present invention provides a compound disclosed herein in combination with one or more additional therapeutic agents which are suitable for treating an HIV infection, for use in a method for treating an HIV infection. In certain embodiments, the present invention provides a compound disclosed herein in combination with one or more additional therapeutic agents which are suitable for treating an HIV infection, for use in a method for treating an HIV infection. In certain embodiments, the present invention provides a compound disclosed herein in combination with one or more additional therapeutic agents which are suitable for treating an HIV infection, for use in a method for treating an HIV infection. In certain embodiments, the present invention provides a compound disclosed herein in combination with one or more additional therapeutic agents which are suitable for treating an HIV infection.

A compound as disclosed herein (e.g., any compound of Formula (II)) may be combined with one or more additional therapeutic agents in any dosage amount of the compound of Formula II (e.g., from 50 mg to 1000 mg of compound).
In one embodiment, pharmaceutical compositions comprising a compound disclosed herein in combination with one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents, and a pharmaceutically acceptable carrier, diluent or excipient are provided.

In one embodiment, combination pharmaceutical agents comprising a compound disclosed herein in combination with one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents are provided.

In one embodiment, kits comprising a compound disclosed herein in combination with one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents are provided.

In the above embodiments, the additional therapeutic agent may be an anti-HIV agent. For example, in some embodiments, the additional therapeutic agent is selected from the group consisting of HIV protease inhibitors, HIV non-nucleoside inhibitors of reverse transcriptase, HIV nucleoside or nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, HIV non-catalytic site (or allosteric) integrase inhibitors, entry inhibitors (e.g., CCR5 inhibitors, gp41 inhibitors (i.e., fusion inhibitors) and CD4 attachment inhibitors), CXCR4 inhibitors, gp120 inhibitors, G6PD and NADH-oxidase inhibitors, compounds that target the HIV capsid ("capsid inhibitors"; e.g., capsid polymerization inhibitors or capsid disrupting compounds such as those disclosed in WO/2013/006738 (Gilead Sciences), US/2013/0165489 (University of Pennsylvania), and WO/2013/006792 (Pharma Resources), pharmacokinetic enhancers, and other drugs for treating HIV, and combinations thereof.

In other embodiments, the additional therapeutic agent may be an anti-IIIV agent. For example, in some embodiments, the additional therapeutic agent is selected from the group consisting of HIV protease inhibitors, HIV non-nucleoside or non-nucleotide inhibitors of reverse transcriptase, HIV nucleoside or nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, HEV non-catalytic site (or allosteric) integrase inhibitors, HIV entry inhibitors (e.g., CCR5 inhibitors, gp41 inhibitors (i.e., fusion inhibitors) and CD4 attachment inhibitors), CXCR4 inhibitors, gp120 inhibitors, G6PD and NADH-oxidase inhibitors, HIV vaccines, HIV maturation inhibitors, latency reversing agents (e.g., histone deacetylase inhibitors, proteasome inhibitors, protein kinase C (PKC) activators, and BRD4 inhibitors), compounds that target the HIV capsid ("capsid inhibitors"; e.g., capsid polymerization inhibitors or capsid disrupting compounds, HIV nucleocapsid p7 (NCp7) inhibitors, HIV p24 capsid protein inhibitors), pharmacokinetic enhancers, immune-based therapies (e.g., Pd-1 modulators, Pd-L1 modulators, toll like receptors modulators,, IL-15 agonists), HIV antibodies, bispecific antibodies and "antibody-like" therapeutic proteins (e.g., DAR-Ts®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives) including those targeting HIV gp120 or gp41, combination drugs for HIV, HIV p17 matrix protein inhibitors, IL-13 antagonists, Peptidyl-prolyl cis-trans isomerase A modulators, Protein disulfide isomerase inhibitors, Complement C5a receptor antagonists, DNA methyltransferase inhibitor, HIV vif gene modulators, Vif dimerization antagonists, HIV-1 viral infectivity factor inhibitors, TAT protein inhibitors, HIV-1 Nef modulators, Hck tyrosine kinase modulators, mixed lineage kinase-3 (MLK-3) inhibitors, HIV-1 splicing inhibitors, Rev protein inhibitors, Integrin antagonists, Nucleoprotein inhibitors, Splicing factor modulators, COMM domain containing protein 1 modulators, HIV Ribonuclease H inhibitors, Retrocyclin modulators, CDK-9 inhibitors, Dendritic ICAM-3 grabbing nonintegrin 1 inhibitors, HIV GAG protein inhibitors, HIV POL protein inhibitors, Complement Factor H modulators, Ubiquitin ligase inhibitors, Deoxyxycytidine kinase inhibitors, Cyclin dependent kinase inhibitors Pr0tein convertase PC9 stimulators, ATP dependent RNA helicase DDX3X inhibitors, reverse transcriptase priming complex inhibitors, HIV gene therapy, P13K inhibitors, compounds such as those disclosed in WO/2013/006738 (Gilead Sciences), US/2013/0165489 (University of Pennsylvania), WO/2013/09106A1 (Boehringer Ingelheim), WO/2009/062285 (Boehringer Ingelheim), US/2014/0221380 (Japan Tobacco), US/2014/0221378 (Japan Tobacco), WO/2010/130030 (Boehringer Ingelheim), WO/2013/159064 (Gilead Sciences), WO/2012/145728 (Gilead Sciences), WO/2012/1003497 (Gilead Sciences), WO/2014/100323 (Gilead Sciences), WO/2012/145728 (Gilead Sciences), WO/2013/159064 (Gilead Sciences) and WO/2012/003498 (Gilead Sciences) and WO/2013/006792 (Pharma Resources), and other drugs for treating HIV, and combinations thereof.

In certain embodiments, the additional therapeutic is selected from the group consisting of HIV protease inhibitors, HIV non-nucleoside or non-nucleotide inhibitors of reverse transcriptase, HIV nucleoside or nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, HIV non-catalytic site (or allosteric) integrase inhibitors, HIV gene therapy, P13K inhibitors, compounds such as those disclosed in WO/2013/006738 (Gilead Sciences), US/2013/0165489 (University of Pennsylvania), WO/2013/09106A1 (Boehringer Ingelheim), WO/2009/062285 (Boehringer Ingelheim), US/2014/0221380 (Japan Tobacco), US/2014/0221378 (Japan Tobacco), WO/2010/130030 (Boehringer Ingelheim), WO/2013/159064 (Gilead Sciences), WO/2012/145728 (Gilead Sciences), WO/2012/1003497 (Gilead Sciences), WO/2014/100323 (Gilead Sciences), WO/2012/145728 (Gilead Sciences), WO/2013/159064 (Gilead Sciences) and WO/2012/003498 (Gilead Sciences) and WO/2013/006792 (Pharma Resources), and other drugs for treating HIV, and combinations thereof.

In certain embodiments, a compound of Formula (II) is formulated as a tablet, which may optionally contain one or more other compounds useful for treating HIV. In certain embodiments, the tablet may contain another active ingredient for treating HIV, such as HIV protease inhibitors, HIV non-nucleoside or non-nucleotide inhibitors of reverse transcriptase, HIV nucleoside or nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, HIV non-catalytic site (or allosteric) integrase inhibitors, pharmacokinetic enhancers, and combinations thereof. In certain embodiments, the tablet can contain one or more active ingredients for treating HIV, such as HIV nucleoside or nucleotide inhibitors of reverse transcriptase. In certain embodiments, such tablets are suitable for once daily dosing.

In further embodiments, the additional therapeutic agent is selected from one or more of:

(1) HIV protease inhibitors selected from the group consisting of amprenavir, atazanavir, fosamprenavir, indinavir, lopinavir, ritonavir, nelfinavir, saquinavir, tipranavir, brecanavir, dannavir, TMC-126, TMC-114, mozenavir (DMP-
(2) HIV non-nucleoside or non-nucleotide inhibitors of reverse transcriptase selected from the group consisting of capravirine, emivirine, delavirdine, efavirenz, nevirapine, (+) calanolide A, etravirine, GW5634, DPC-083, DPC-961, DFC-963, MV-150, TMC-120, rilpivirine, BILR 355 BS, VRX 840773, lersivirine (UK-453061), RDEA806, KM023 and MK-1439;

(3) HIV nucleoside or nucleotide inhibitors of reverse transcriptase selected from the group consisting of zidovudine, emtricitabine, didanosine, stavudine, zalcitabine, lamivudine, abacavir, abacavir sulfate, amdoxovir, elvucitabine, alovudine, MIV-210, zFTC, D-4FC, emtricitabine, phosphatidyl, fozivudine tidoxil, apricitabine (AVX754), KP-1461, GS-9131 (Gilead Sciences), fosalvudine tidoxil (formerly HDP 99.0003), tenofovir, tenofovir disoproxil fumarate, tenofovir alafenamide, tenofovir alafenamide fumarate, tenofovir alafenamide fumarate (Gilead Sciences), GS-7340 (Gilead Sciences), GS-9148 (Gilead Sciences), adeovir, adeovir dipivoxil, CMX-001 (Chimerix) and CMX-157 (Chimerix);

(4) HIV integrase inhibitors selected from the group consisting of curcumin, derivatives of curcumin, choric acid, derivatives of choric acid, 3,5-dicaffeyloyquinic acid, derivatives of 3,5-dicaffeoylquinic acid, auriuntricarboxylic acid, derivatives of auriunicarboxylic acid, caffeic acid phenethyl ester, derivatives of caffeic acid phenethyl ester, tyrphostin, derivatives of tyrphostin, quercetin, derivatives of quercetin, S-1360, AR-177, L-870812, and L-870810, raltegravir, BMS-538158, GS364735C, BMS-707035, MK-2048, BA 011, elvtegravir, dolutegravir, dolutegravir sodium, and GSK-744;

(6) HIV non-catalytic site, or allosteric, integrase inhibitors (NCINI) including, but not limited to, BI-224436, CX0516, CX05045, CX14442, compounds disclosed in WO 2009/062285 (Boehringer Ingelheim), WO 2010/130034 (Boehringer Ingelheim), WO 2013/159064 (Gilead Sciences), WO 2012/145728 (Gilead Sciences), WO 2012/003497 (Gilead Sciences), WO 2012/003498 (Gilead Sciences) each of which is incorporated by references in its entirety herein;

(7) gp41 inhibitors selected from the group consisting of enfuvirtide, sifuvirtide, albuviride, FB006M, and TRI-1144;

(8) the CXCR4 inhibitor AMD-070;

(9) the entry inhibitor SP01A;

(10) the gp120 inhibitor BMS-488043;

(11) the G6PD and NADH-oxidase inhibitor immunitin;

(12) CCR5 inhibitors selected from the group consisting of aplaviroc, vicriviroc, maraviroc, cenicriviroc, PRO-140, INCB15050, PF-232798 (Pfizer), and CCR5mAb004;

(13) CD4 attachment inhibitors selected from the group consisting of ibalizumab (TMB-35S) and BMS-068 (B-MS-663068);

(14) pharmaokinetic enhancers selected from the group consisting of cobicistat and SPI-452; and

(15) other drugs for treating HIV selected from the group consisting of BAS-100, SPI-452, REP 9, SP-01A, TNX-355, DES6, ODN-93, ODN-112, VGV-1, PA-457 (bevirimat), HRG214, VGX-410, KD-247, AMZ 0026, CYT 99007A-221 HIV, DEBIO-025, BAY 50-4798, MDX010 (iplimumab), PBS 119, ALG 889, and PA-1050040 (PA-040), and combinations thereof.

In certain embodiments, the additional therapeutic agent is selected from one or more of:

(1) Combination drugs selected from the group consisting of ATRIFLA® (efavirenz+tenofovir disoproxil fumarate +emtricitabine), COMPLERA® or EVIPLERA® (rilpivirine+tenofovir disoproxil fumarate +emtricitabine), STRIBLD® (elvtegravir+cobicistat+tenofovir disoproxil fumarate +emtricitabine), dolutegravir + abacavir sulfate +lamivudine, TRIUMEQ® (dolutegravir + abacavir + lamivudine), lamivudine + nevirapine + zidovudine, dolutegravir+rilpivirine,
(2) HIV protease inhibitors selected from the group consisting of amprenavir, atazanavir, fosamprenavir, fosamprenavir calcium, indinavir, indinavir sulfate, lopinavir, ritonavir, nelfinavir, nelfinavir mesylate, saquinavir, saquinavir mesylate, tipranavir, brecanavir, darunavir, DG-17, TMB-657 (PPL-100) and TMC-310911;

(3) HIV non-nucleoside or non-nucleotide inhibitors of reverse transcriptase selected from the group consisting of delavirdine, delavirdine mesylate, nevirapine, etravirine, dapivirine, doravirine, rilpivirine, efavirenz, KM-023, VM-1500, lentinan and AIC-292;

(4) HIV nucleoside or nucleotide inhibitors of reverse transcriptase selected from the group consisting of VIDEX® and VIDEX® EC (didanosine, ddl), zidovudine; emtricitabine, didanosine, stavudine, zalcitabine, lamivudine, censavudine, abacavir, abacavir sulfate, amdoxovir, elvucitabine, alvudovine, phosphazid, fozivudine tidoxil, apricitabine, amdoxovir, KP-1461, fosalvudine tideil, tenofovir, tenofovir disopropoxil, tenofovir disopropoxil fumarate, tenofovir disopropxil hemifumarate, tenofovir alafenamide, tenofovir alafenamide fumarate, adefovir, adefovir dipivoxil, and festinavir;

(5) HIV integrase inhibitors selected from the group consisting of curcumin, derivatives of curcumin, chicoric acid, derivatives of chicoric acid, 3,5-dicafeoylquinic acid, derivatives of 3,5-dicafeoylquinic acid, auroincarboxylic acid, derivatives of auroincarboxylic acid, caffeic acid phenethyl ester, derivatives of caffeic acid phenethyl ester, lyprophostin, derivatives of tyrphostin, quercetin, derivatives of quercetin, raltegravir, elvitegravir, dolutegravir and cabotegravir;

(6) HIV non-catalytic site, or allosteric, integrase inhibitors (NCINI) selected from the group consisting of CX-05168, CX-05045 and CX-14442;

(7) HIV gp41 inhibitors selected from the group consisting of enfuvirtide, sifuvirtide and albuvirtide;

(8) HIV entry inhibitors selected from the group consisting of cenicriviroc;

(9) HIV gp120 inhibitors selected from the group consisting of Radha-108 (Receptol) and BMS-663068;

(10) CCR5 inhibitors selected from the group consisting of aplaviroc, vicriviroc, maraviroc, cenicriviroc, PRO-140, Adaptavir (RAP-101), nifeviroc (TD-0232), TD-0880, and vMIP (Haimipu):

(11) CD4 attachment inhibitors selected from the group consisting of ibalizumab;

(12) CXCR4 inhibitors selected from the group consisting of plerixafor, ALT-1188, vMIP and Haimipu;

(13) Pharmacokinetic enhancers selected from the group consisting of cobicistat and ritonavir;

(14) Immune-based therapies selected from the group consisting of dermaVir, interleukin-7, plaquenil (hydroxychloroquine), proleukin (aldesleukin, IL-2), interferon alia, interferon alfa-2b, interferon alfa-n3, pegylated interferon alfa, interferon gamma, hydroxyurea, mycophenolate mofetil (MMF) and its ester derivative mycophenolate mofetil (MMF), WF-10, ribavirin, IL-2, IL-12, polymer polyethyleneimine (PEI), Gepon, VGV-1, MOR-22, BMS-936559, toll-like receptors modulators (tlr1, tlr2, tlr3, tlr4, tlr5, tlr6, tlr7, tlr8, tlr9, tlr10, tlr11, tlr12 and tlr13), rintatolimod and IR-103;

(15) HIV vaccines selected from the group consisting of peptide vaccines, recombinant subunit protein vaccines, live vector vaccines, DNA vaccines, virus-like particle vaccines (pseudovirion vaccine), CD4-derived peptide vac-
cines, vaccine combinations, rgp120 (AIDSVAX), ALVAC HIV (vCP1521)/AIDSVAX B/E (gp120) (RV144), mono-
meric gp120 HIV-1 subtype C vaccine (Novartis), Remune, ITV-1, Contre Vir, Ad5-ENVA-48, DCVax-001 (CDX-
2401), PEP-6409, Vacc-4x, Vacc-C5, VAC-3S, multiclade DNA recombinant adenovirus-5 (rAd5), Pennvax-G, VRC-
HIV MAB060-00-AB, AVX-101, Tat Oyi vaccine, AVX-201, HIV-LAMP-vax, Ad35, Ad35-GRIN, NAcGM3/VSSP ISA-
51, poly-ICL adjuvanted vaccines, TatImmune, GTU-multiHIV (FIT-06), AGS-004, gp140[delta]V2.TV1+ MF-S9,
rSVSIN HIV-1 gag vaccine, SeV-Gag vaccine, AT-20, DNLK-4, Ad35-GRIN/ENV, TBC-M4, HIVAX, HIV AX-2, NYVAC-
HIV-P1, NYVAC-HIV-PT1, DNA-HIV-PT123, rAAV1-P9GDP, GOX-B11, GOX-B21, Thv-01, TUT-1/1-6, VGX-
3300, TV1-IRV-1, Ad-4 (Ad4-env Clade C + Ad4-mGag), EN41-UGR7C, EN41-FPA2, PreVaxTat, TL-01, Sav-001,
AE-H, MYM-V101, CombiHIVVax, ADVAX, MYM-V201, MVA-CMDR, ETV-01, CDX-1401, rcAd26.MOS1.HIV-Env
and DNA-Ad5 gag/pol/nef/nev (HVTN505);

(16) HIV antibodies, bispecific antibodies and "antibody-like" therapeutic proteins (such as DARTs®, Duobodies®,
Bites®, XmAbs®, TandAbs®, Fab derivatives) including BMS-936559, TMB-360 and those targeting HIV gp120
or gp41 selected from the group consisting of bavituximab, UB-421, C2F5, C2G12, C4E10, C2F2+C4E10, 3-BNC-
117, PGT145, PGT121, MDX010 (ipilimumab), VRC01, A32, 7B2, 10E8, VRC-07-523 and VRC07;

(17) latency reversing agents selected from the group consisting of Histone deacetylase inhibitors such as Romidep-
sin, vorinostat, panobinostat; Proteasome inhibitors such as Velcade; protein kinase C (PKC) activators such as
Indolactam, Prostralin, Ingenol B and DAG-lactones, lonomycin, GSK-343, PMA, SAHA, BRD4 inhibitors, IL-15,
JQ1, disulfiram, and amphotericin B;

(18) HIV nucleocapsid p7 (NCp7) inhibitors selected from the group consisting of azidocarbamide;

(19) HIV maturation inhibitors selected from the group consisting of BMS-955176 and GSK-2838232;

(20) PI3K inhibitors selected from the group consisting of ide Milaisib, AZD-8186, buparlisib, CLR-457, piclitisib, ner-
atinib, rigosertib, rigosertib sodium, EN-3342, TGR-1202, alpelisib, duvelisib, UCB-SSST, taselisib, XL-765, geda-
tolisib, VS-5584, copanlisib, CAI orotate, perifosine, RG-7666, GSK-2636771, DS-7423, panulisib, GSK-2269557,
GSK-2126458, CUDC-907, PQR-309, INC-004093, pilaralisib, BAY-1082439, quinutilib mesylate, SAR-245409,
AMG-319, RP-6530, ZSTK-474, MLN-1117, SF-1126, RV-1729, sonolisib, LY-3023414, SAR-260301 and CLR-
1401;

(21) the compounds disclosed in WO 2004/096286 (Gilead Sciences), WO 2006/110157 (Gilead Sciences), WO
2006/015261 (Gilead Sciences), WO 2013/006738 (Gilead Sciences), US 2013/0165489 (University of Pennsylva-
nia), US20140221380 (Japan Tobacco), US20140221378 (Japan Tobacco), US2013/006792 (Pharma Resources),
WO 2009/062285 (Boehringer Ingelheim), WO 2010/130034 (Boehringer Ingelheim), WO 2013/091096A1 (Boe-
hringer Ingelheim), WO 2013/159064 (Gilead Sciences), WO 2012/145728 (Gilead Sciences), WO2012/003497
(Gilead Sciences), WO2014/100323 (Gilead Sciences), WO2012/145728 (Gilead Sciences), WO2013/159064 (Gile-
ad Sciences) and WO 2012/003498 (Gilead Sciences); and

(22) other drugs for treating HIV selected from the group consisting of BanLec, MK-8507, AG-1105, TR-452, MK-
8591, REP 9, CYT-107, alisporivit, NOV-205, IND-02, metenkefatin, PGN-007, Acemannan, Gamimune, Prolastin,
1,5-dicaffeoylquinic acid, BIT-225, RPI-MN, VSSP, HIVal, IMO-3100, SB-728-T, RH-MN, VIR-576, HGT4-43, MK-
1376, HIV7-shi-TAR-CCRSRZ, MazF gene therapy, BlockAide, ABX-464, SCY-635, naltrexone, AAV-eCD4-lg gene
therapy and PA-1050040 (PA-040); and combinations thereof.

[0077] In certain embodiments, a compound disclosed herein is combined with two, three, four or more additional
therapeutic agents. In certain embodiments, a compound disclosed herein is combined with two additional therapeutic
agents. In other embodiments, a compound disclosed herein is combined with three additional therapeutic agents.
In further embodiments, a compound disclosed herein is combined with four additional therapeutic agents. The two, three
four or more additional therapeutic agents can be different therapeutic agents selected from the same class of therapeutic
agents, or they can be selected from different classes of therapeutic agents. In a specific embodiment, a compound
disclosed herein is combined with an HIV nucleoside or nucleotide inhibitor of reverse transcriptase and an HIV non-
nucleoside inhibitor of reverse transcriptase. In another specific embodiment, a compound disclosed herein is combined
with an FUV nucleoside or nucleotide inhibitor of reverse transcriptase, and an HIV protease inhibiting compound. In a
further embodiment, a compound disclosed herein is combined with an HIV nucleoside or nucleotide inhibitor of reverse
transcriptase, an HIV non-nucleoside inhibitor of reverse transcriptase, and an HIV protease inhibiting compound. In an
additional embodiment, a compound disclosed herein is combined with an HIV nucleoside or nucleotide inhibitor of reverse transcriptase, an HIV non-nucleoside inhibitor of reverse transcriptase, and a pharmacokinetic enhancer. In another embodiment, a compound disclosed herein is combined with two HIV nucleoside or nucleotide inhibitors of reverse transcriptase.

[0078] In certain embodiments, a compound disclosed herein, is combined with one, two, three, four or more additional therapeutic agents. In certain embodiments, a compound disclosed herein is combined with one additional therapeutic agent. In certain embodiments, a compound disclosed herein is combined with two additional therapeutic agents. In other embodiments, a compound disclosed herein is combined with three additional therapeutic agents. In further embodiments, a compound disclosed herein is combined with four additional therapeutic agents. The one, two, three, four or more additional therapeutic agents can be different therapeutic agents selected from the same class of therapeutic agents, and/or they can be selected from different classes of therapeutic agents. In a specific embodiment, a compound disclosed herein is combined with an HIV nucleoside or nucleotide inhibitor of reverse transcriptase and an HIV non-nucleoside inhibitor of reverse transcriptase. In another specific embodiment, a compound disclosed herein is combined with an HIV nucleoside or nucleotide inhibitor of reverse transcriptase, and an HIV protease inhibiting compound. In a further embodiment, a compound disclosed herein is combined with an HIV nucleoside or nucleotide inhibitor of reverse transcriptase, an HIV non-nucleoside inhibitor of reverse transcriptase, and a pharmacokinetic enhancer. In certain embodiments, a compound disclosed herein is combined with at least one HIV nucleoside inhibitor of reverse transcriptase, an integrase inhibitor, and a pharmacokinetic enhancer. In another embodiment, a compound disclosed herein is combined with two HIV nucleoside or nucleotide inhibitors of reverse transcriptase.

[0079] In certain embodiments, a compound disclosed herein is combined with at least one HIV nucleoside inhibitor of reverse transcriptase, an integrase inhibitor, and a pharmacokinetic enhancer.

[0080] In a particular embodiment, a compound disclosed herein is combined with abacavir, abacavir sulfate, tenofovir, tenofovir disoproxil fumarate, tenofovir alafenamide, or tenofovir alafenamide hemifumarate.

[0081] In a particular embodiment, a compound disclosed herein is combined with tenofovir, tenofovir disoproxil fumarate, tenofovir alafenamide, or tenofovir alafenamide hemifumarate.

[0082] In a particular embodiment, a compound disclosed herein is combined with a first additional therapeutic agent selected from the group consisting of: abacavir, abacavir sulfate, tenofovir, tenofovir disoproxil fumarate, tenofovir alafenamide, or tenofovir alafenamide hemifumarate and a second additional therapeutic agent selected from the group consisting of emtricitbine and lamivudine.

[0083] In a particular embodiment, a compound disclosed herein is combined with a first additional therapeutic agent selected from the group consisting of: tenofovir, tenofovir disoproxil fumarate, tenofovir alafenamide, and tenofovir alafenamide hemifumarate and a second additional therapeutic agent, wherein the second additional therapeutic agent is emtricitbine.

[0084] In a particular embodiment, a compound disclosed herein is combined with one, two, three, four or more additional therapeutic agents selected from Triumeq® (dolutegravir+abacavir+lamivudine), dolutegravir + abacavir sulfate + lamivudine, Truvada® (tenofovir disoproxil fumarate + emtricitabine, TDF+FTC), maraviroc, enfuvirtide, Epzicom® (Livexa®, abacavir sulfate + lamivudine, ABC+3TC), Trizivir® (abacavir sulfite+zidovudine+lamivudine, ABC+AZT+3TC), adeefovir, adeefovir dipivoxil, Striibad® (elvitegravir+cobicistat+tenofovir disoproxil fumarate + emtricitabine), rilpivirine, rilpivirine hydrochloride, Complera® (Eviplera®, rilpivirine+tenofovir disoproxil fumarate+emtricitabine), Cobicistat, atazanavir sulfate + cobicistat, atazanavir + cobicistat, darunavir + cobicistat, Ahipla® (cflavirenz+tenofovir disoproxil fumarate + emtricitabine), atazanavir, atazanavir sulfate, dolutegravir, elvitra- vir, Aluvia® (Kaletra®, lopinavir+ritonavir), ritonavir, emtricitbine, atazanavir sulfate + ritonavir, darunavir, lamivudine, Prolastin, fosamprenavir, fosamprenavir calcium, efavirenz, Combivir® (zidovudine+lamivudine, AZT+3TC), etravirine, neflinfavir, neflinavir mesylate, interferon, didanosine, stavudine, indinavir, indinavir sulfate, tenofovir + lamivudine, zidovudine, nevirapine, saquinavir, saquinavir mesylate, aldesleukin, zalcitabine, tipranavir, amrenproavir, delavirdine, delavirdine mesylate, Radha-108 (Receptol), Hlirial, lamivudine + tenofovir disoproxil fumarate, efavirenz + lamivudine + tenofovir disoproxil fumarate , phosphates, lamivudine + nevirapine + zidovudine, abacavir, abacavir sulfate; tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, darunavir + cobicistat, atazanavir sulfate + cobicistat, atazanavir + cobicistat, tenofovir alafenamide and tenofovir alafenamide hemifumarate.

[0085] In a particular embodiment, a compound disclosed herein is combined with abacavir, abacavir sulfate, tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, tenofovir alafenamide or tenofovir alafenamide hemifumarate.

[0086] In a particular embodiment, a compound disclosed herein is combined with tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir alafenamide, or tenofovir alafenamide hemifumarate.

[0087] In a particular embodiment, a compound disclosed herein is combined with a first additional therapeutic agent selected from the group consisting of: abacavir, tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate,
tenofovir alafenamide, and tenofovir alafenamide hemifumarate and a second additional therapeutic agent selected from the group consisting of emtricitabine and lamivudine.

[0088] In a particular embodiment, a compound disclosed herein is combined with a first additional therapeutic agent selected from the group consisting of: tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir alafenamide, and tenofovir alafenamide hemifumarate and a second additional therapeutic agent, wherein the second additional therapeutic agent is emtricitabine.

[0089] In certain embodiments, a compound disclosed herein is combined with 5-30 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide and 200 mg emtricitabine. In certain embodiments, a compound disclosed herein is combined with 5-10; 5-15; 5-20; 5-25; 25-30; 20-30; 15-30; or 10-30 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide and 200 mg emtricitabine. In certain embodiments, a compound disclosed herein is combined with 10 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide and 200 mg emtricitabine. In certain embodiments, a compound disclosed herein is combined with 25 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide and 200 mg emtricitabine. A compound as disclosed herein (e.g., a compound of formula (II)) may be combined with the agents provided herein in any dosage amount of the compound (e.g., from 50 mg to 500 mg of compound) the same as if each combination of dosages were specifically and individually listed.

[0090] In certain embodiments, a compound disclosed herein is combined with 200-400 mg tenofovir disoproxil, tenofovir disoproxil fumarate, or tenofovir disoproxil hemifumarate and 200 mg emtricitabine. In certain embodiments, a compound disclosed herein is combined with 200-250; 200-300; 200-350; 250-350; 250-400; 350-400; 300-400; or 250-400 mg tenofovir disoproxil, tenofovir disoproxil fumarate, or tenofovir disoproxil hemifumarate and 200 mg emtricitabine. In certain embodiments, a compound disclosed herein is combined with 300 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil and 200 mg emtricitabine. A compound as disclosed herein (e.g., a compound of formula (II)) may be combined with the agents provided herein in any dosage amount of the compound (e.g., from 50 mg to 500 mg of compound) the same as if each combination of dosages were specifically and individually listed.

[0091] In certain embodiments, when a compound disclosed herein is combined with one or more additional therapeutic agents as described above, the components of the composition are administered as a simultaneous or sequential regimen. When administered sequentially, the combination may be administered in two or more administrations.

[0092] In certain embodiments, a compound disclosed herein is combined with one or more additional therapeutic agents in a unitary dosage form for simultaneous administration to a patient, for example as a solid dosage form for oral administration.

[0093] In certain embodiments, a compound disclosed herein is administered with one or more additional therapeutic agents. Co-administration of a compound disclosed herein with one or more additional therapeutic agents generally refers to simultaneous or sequential administration of a compound disclosed herein and one or more additional therapeutic agents, such that therapeutically effective amounts of the compound disclosed herein and one or more additional therapeutic agents are both present in the body of the patient.

[0094] Co-administration includes administration of unit dosages of the compounds disclosed herein before or after administration of unit dosages of one or more additional therapeutic agents, for example, administration of the compound disclosed herein within seconds, minutes, or hours of the administration of one or more additional therapeutic agents. For example, in some embodiments, a unit dose of a compound disclosed herein is administered first, followed within seconds or minutes by administration of a unit dose of one or more additional therapeutic agents. Alternatively, in other embodiments, a unit dose of one or more additional therapeutic agents is administered first, followed by administration of a unit dose of a compound disclosed herein within seconds or minutes. In some embodiments, a unit dose of a compound disclosed herein is administered first, followed, after a period of hours (e.g., 1-12 hours), by administration of a unit dose of one or more additional therapeutic agents. In other embodiments, a unit dose of one or more additional therapeutic agents is administered first, followed, after a period of hours (e.g., 1-12 hours), by administration of a unit dose of a compound disclosed herein.

XRPD Data

[0095] In certain embodiments, the crystalline forms are characterized by the interlattice plane intervals determined by an X-ray powder diffraction pattern (XRPD). The diffractogram of XRPD is typically represented by a diagram plotting the intensity of the peaks versus the location of the peaks, i.e., diffraction angle 2θ (two-theta) in degrees. The intensities are often given in parenthesis with the following abbreviations: very strong = vst; strong = st; medium = m; weak = w; and very weak = vw. The characteristic peaks of a given XRPD can be selected according to the peak locations and their relative intensity to conveniently distinguish this crystalline structure from others.

[0096] Those skilled in the art recognize that the measurements of the XRPD peak locations and/or intensity for a given crystalline form of the same compound will vary within a margin of error. The values of degree 2θ allow appropriate
error margins. Typically, the error margins are represented by "±". For example, the degree 2θ of about 8.7±0.3 denotes a range from about 8.7+0.3, i.e., about 9.0, to about 8.7-0.3, i.e., about 8.4. Depending on the sample preparation techniques, the calibration techniques applied to the instruments, human operational variation, and etc, those skilled in the art recognize that the appropriate error of margins for a XRPD can be ±0.5; ±0.4; ±0.3; ±0.2; ±0.1; ±0.05; or less. In certain embodiments of the invention, the XRPD margin of error is ±0.2.

[0097] Additional details of the methods and equipment used for the XRPD analysis are described in the Examples section.

[0098] The XRPD peaks for the crystalline forms of sodium (2R,5S, 13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate (Formula II) of the present invention can be found below in Table 1

[0099] Table 1: XRPD peaks for crystalline forms of Formula II Form I

<table>
<thead>
<tr>
<th>Peak Position [° 2θ]</th>
<th>Relative Intensity [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>100.0</td>
</tr>
<tr>
<td>16.1</td>
<td>87.3</td>
</tr>
<tr>
<td>17.9</td>
<td>22.4</td>
</tr>
<tr>
<td>19.5</td>
<td>38.0</td>
</tr>
<tr>
<td>22.1</td>
<td>61.8</td>
</tr>
<tr>
<td>22.5</td>
<td>42.2</td>
</tr>
<tr>
<td>23.3</td>
<td>60.4</td>
</tr>
<tr>
<td>26.6</td>
<td>27.3</td>
</tr>
<tr>
<td>28.5</td>
<td>42.9</td>
</tr>
</tbody>
</table>

Preparation of the Polymorphs

[0100] One method of synthesizing (2R,5S,13aR)-8-hydroxy-7,9-dioxo-N-(2,4,6-trifluorobenzyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-10-carboxamide (e.g. a compound of Formula (I)) has been previously described in PCT Publication No. WO2014/100323. This reference is hereby incorporated herein by reference in its entirety, and specifically with respect to the synthesis of (2R,5S,13aR)-8-hydroxy-7,9-dioxo-N-(2,4,6-trifluorobenzyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-10-carboxamide. One method of synthesizing sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate (e.g. a compound of Formula (II)) is described herein.

[0101] For example, in one aspect, provided is a method of producing a composition comprising one or more polymorphs of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate, wherein the method comprises combining a compound of Formula (II) with a suitable solvent or a mixture of suitable solvents to produce a composition comprising one or more polymorphs of the compound of Formula (II). In another aspect, provided is another method of producing a composition comprising one or more polymorphs of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate, wherein the method comprises combining sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate with a suitable solvent or a mixture of suitable solvents.

[0102] The choice of a particular solvent or combination of solvents affects the formation favoring one polymorphic form of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate over another. Solvents suitable for polymorph formation may include, for example, methanol, ethanol, water, isopropyl acetate, acetonitrile, tetrahydrofuran, methyl isobutyl ketone, and any mixtures thereof.

[0103] In another aspect, provided is also one or more polymorphs of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate produced according to any of the methods described herein.
It should be understood that the methods for preparing the polymorphs described herein (including any polymorphic Form I) may yield quantity and quality differences compared to the methods for preparing sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate produced on laboratory scale.

Formula II, Form I

In one embodiment, provided is a method of producing a composition comprising polymorphic Form I of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate, wherein the method comprises combining (2R,5S,13aR)-8-Hydroxy-7,9-dioxo-N-(2,4,6-trifluorobenzyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepine-10-carboxamide with a sodium base (e.g., sodium hydroxide) in a solvent to produce a composition comprising polymorphic Form I of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate, wherein the solvent is selected from the group consisting of ethanol, dimethylformamide, and any mixture thereof. In an embodiment, the solvent is a mixture of ethanol and dimethylformamide.

Formula II

Provided are also a use of the polymorphs described herein in the manufacture of a drug product. The one or more of the polymorphic forms described herein (e.g., polymorphic Form I) may be used as an intermediate in the manufacturing process to produce the drug product.

Articles of Manufacture and Kits

Compositions comprising one or more of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate and formulated in one or more pharmaceutically acceptable carriers, excipients or other ingredients can be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition. Accordingly, there also is contemplated an article of manufacture, such as a container comprising a dosage form of one or more of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepine-10-carboxamide with a sodium base (e.g., sodium hydroxide) in a solvent, wherein the solvent is selected from the group consisting of ethanol, dimethylformamide, and any mixture thereof. In an embodiment, the solvent is a mixture of ethanol and dimethylformamide.

Uses in Manufacturing of Drug Product

Compositions comprising one or more of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate and formulated in one or more pharmaceutically acceptable carriers, excipients or other ingredients can be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition. Accordingly, there also is contemplated an article of manufacture, such as a container comprising a dosage form of one or more of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate, and a label containing instructions for use of the compound(s).

In some embodiments, the article of manufacture is a container comprising a dosage form of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate, and a label containing instructions for use of the compound(s).

Kits also are contemplated. For example, a kit can comprise a dosage form of a pharmaceutical composition and a package insert containing instructions for the composition in treatment of a medical condition. The instructions for use in the kit may be for treating HIV. In certain embodiments, the instructions for use in the kit may be for treating HIV.

In certain embodiments, the polymorphic and solvate forms described herein may also exhibit improved properties. For example, in certain embodiments, the polymorphic and solvate forms described herein may potentially exhibit improved stability. Such improved stability could have a potentially beneficial impact on the manufacture of the Compound of Formula I, such as for example offering the ability to store process intermediate for extended periods of time. Improved stability could also potentially benefit a composition or pharmaceutical composition of the Compound of Formula II. In certain embodiments, the polymorphic and solvate forms described herein may also potentially result in improved yield of the Compound of Formula II, or potentially result in an improvement of the quality of the Compound of Formula II.
pharmacokinetic properties and/or potentially improved bioavailability.

Methods

Synthesis

Sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1'2',4',5']pyrazino[2,1-b][1,3]oxazepin-8-olate (Formula II)

[0113] (2R,5S,13aR)-8-hydroxy-7,9-dioxo-N-(2,4,6-trifluorobenzyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2',4',5']pyrazino[2,1-b][1,3]oxazepine-10-carboxamide (20 g) and ethanol (80 mL) were added to a reaction vessel and warmed to about 75 °C. Aqueous sodium hydroxide (22 mL 2 M solution) was added over approximately 30 minutes, after which the slurry was cooled to approximately 20 °C over approximately one hour. Sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2',4',5']pyrazino[2,1-b][1,3]oxazepin-8-olate Form I was collected by filtration, washed with EtOH (50 mL) and dried under vacuum.

Characterization

[0115] Sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2',4',5']pyrazino[2,1-b][1,3]oxazepin-8-olate Form I was characterized by various analytical techniques, including X-ray powder diffraction pattern (XPPD), differential scanning calorimetry (DSC), thermographic analysis (TGA), and dynamic vapor sorption (DVS) using the procedures described below.

[0116] X-Ray Powder Diffraction: XRPD analysis was conducted on a diffractometer (PANalytical XPERT-PRO, PANAnalytical B.V., Almelo, Netherlands) using copper radiation (Cu Kα, λ = 1.5418 Å). Samples were prepared for analysis by depositing the powdered sample in the center of an aluminum holder equipped with a zero background plate. The generator was operated at a voltage of 45 kV and amperage of 40 mA. Slits used were Soller 0.02 rad., antiscatter 1.0°, and divergence. The sample rotation speed was 2 sec. Scans were performed from 2 to 40° 2θ during 5-15 min with a step size of 0.0167° 2θ. Data analysis was performed by X'Pert Highscore version 2.2c (PANalytical B.V., Almelo, Netherlands) and X'Pert data viewer version 1.2d (PANalytical B.V., Almelo, Netherlands).

[0117] The XRPD pattern for sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2',4',5']pyrazino[2,1-b][1,3]oxazepin-8-olate Form I is represented in Figure 1. The calculated XRPD pattern for sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2',4',5']pyrazino[2,1-b][1,3]oxazepin-8-olate Form I was calculated by using Mercury 3.1 Development (Build RC5). Single crystal data for sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2',4',5']pyrazino[2,1-b][1,3]oxazepin-8-olate Form L Bulk material, such as stoichiometrymetry rate between the temperature was obtained on a Rigaku Miniflex II XRD using power settings of 40kV, 15mA, scan speed of 2.0000 degrees per minute, a Miniflex 300/600 goniometer and an ASC-6 attachment, a scan range of 3.000 to 40.000 degrees, an incident slit of 1.250 degrees, a length limiting slit of 10.0 mm, and SC-70 detector, a receiving slt #1 of
1,250 degrees, continuous scan mode, and a receiving slit #2 of 0.3 mm. The sample was prepared by smoothing about 20 mg of solids on a silicon disk mounted in a metal holder. Acquisition temperature was ∼21°C.

[0119] Figure 8 compares the calculated XRPD pattern of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1′,2′:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate Form I to the experimental XRPD pattern of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1′,2′:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate Form I. The comparison shows the degree to which the calculated XRPD and experimental XRPD agree. Strong agreement indicates the solved crystal structure is also the crystal structure of the material analyzed directly by XRPD. This determination can support orthogonal data about the composition of the bulk material, such as stoichiometry.

[0120] XRPD peaks are found in Table 1 above.

[0121] Differential scanning calorimetry: Thermal properties of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1′,2′:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate Form I were evaluated using a Differential Scanning Calorimetry (DSC) instrument (TA Q100, TA Instruments, New Castle, DE, USA). Approximately 1 to 10 mg of solid sample was placed in a standard aluminum pan vented with a pinhole for each experiment and heated at a rate of 10 °C/min under a 50 mL/min nitrogen purge. Data analysis was conducted using Universal Analysis 2000 Version 4.7A (TA Instruments, New Castle, DE, USA). Heat of fusion analysis was conducted by sigmoidal integration of the endothermic melting peak.

[0122] The DSC for sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1′,2′:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate Form I is represented in Figure 2.

[0123] Thermogravimetric analysis: Thermogravimetric analysis (TGA) of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1′,2′:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate Form I was performed on a TGA instrument (TA Q500, TA Instruments, New Castle, DE, USA). Approximately 1 to 10 mg of solid sample was placed in an open aluminum pan vented with a pinhole for each experiment and heated at a rate of 10 °C/min under a 60 mL/min nitrogen purge using. Data analysis was conducted using Universal Analysis 2000 Version 4.7A (TA Instruments, New Castle, DE, USA). Heat of fusion analysis was conducted by sigmoidal integration of the endothermic melting peak.

[0124] The TGA for sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1′,2′:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate Form I is represented in Figure 3.

[0125] Dynamic vapor sorption: The hygroscopicity of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1′,2′:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate Form I was evaluated at about 25 °C using a dynamic vapor sorption (DVS) instrument (TGA Q5000 TA Instruments, New Castle, DE). Water adsorption and desorption were studied as a function of relative humidity (RH) over the range of 0 to 90% at room temperature. The humidity in the chamber was increased from the initial level 50% RH to 60% RH and held until the solid and atmosphere reached equilibrium. The equilibrium test was continued until passed or expired after 10 hours. At this point, RH was raised 10% higher and the process was repeated until 90% RH was reached and equilibrated. During this period, the water sorption was monitored. For desorption, the relative humidity was decreased in a similar manner to measure a full sorption/desorption cycle. The cycle was optionally repeated. All experiments were operated in dm/dt mode (mass variation over time) to determine the equilibrium endpoint. Approximately 3 mg of solid sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1′,2′:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate was used. Data analysis was conducted using Universal Analysis 2000 Version 4.7A (TA Instruments, New Castle, DE, USA).

[0126] The DVS for sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1′,2′:4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate Form I is represented in Figure 4.

[0127] The indexing data for Formula II Form I is summarized in Table 2 below.

<table>
<thead>
<tr>
<th>Table 2: Indexing Data for Formula II Form I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form and Identification</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Formula II Form I</td>
</tr>
</tbody>
</table>

[0128] The single crystal X-ray diffraction studies were carried out on a Bruker APEX II Ultra diffractometer equipped with Mo Kα radiation (λ = 0.71073 Å). Crystals of the subject compound were cut into a 0.22 x 0.18 x 0.04 mm section and mounted on a Cryoloop with Paratone-N oil. Data were collected in a nitrogen gas stream at 100 (2) K. A total of 15725 reflections were collected covering the indices, -9<h<10, -13<k<16, -37<l<36. 7163 reflections were found to be symmetry independent, with a Rmerge of 0.0682. Indexing and unit-cell refinement indicated an orthorhombic
lattice. The space group, which was uniquely defined by the systematic absences in the data, was found to be $P2_12_12_1$. The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model compatible with the proposed structure.

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014. Crystallographic data are summarized in Table 2A. The absolute stereochemistry was set to conform to previously studied samples of the same compound.

The single crystal X-ray crystallography data for Formula II Form I is summarized in Table 2A below.

Table 2A: Single Crystal Data for Formula II, Form I

<table>
<thead>
<tr>
<th>Formula II Form I</th>
<th>Ethanol/DMF</th>
<th>none</th>
<th>1.614</th>
<th>8.9561 (10)</th>
<th>13.9202 (14)</th>
<th>31.7115 (3)</th>
<th>90</th>
<th>90</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>C42 H34 F6 N6 Na2 O10</td>
<td>Acquisition Temp.</td>
<td>Space Group</td>
<td>Z</td>
<td>Unit Cell Dimensions</td>
<td>α</td>
<td>β</td>
<td>γ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100(2) K</td>
<td>P212121</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dissolution Profile

The intrinsic dissolution profile of sodium $(2R,5S,13aR)-7,9$-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate (Formula II) Form I of the present invention and the intrinsic dissolution profiles of Form I and Form III of Formula I, the free acid, $(2R,5S,13aR)$-8-hydroxy-7,9-dioxo-N-(2,4,6-trifluorobenzyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazin[2,1-b][1,3]oxazepine-10-carboxamide (disclosed in the co-pending United States Provisional Application 62/015,238 filed on June 20, 2014 titled CRYSTALLINE FORMS OF $(2R,5S,13aR)$-8-HYDROXY-7,9-DIOXO-N-(2,4,6-TRIFLUOROBENZYL)-2,3,4,5,7,9,13,13A-OCTAHYDRO-2,5-METHANOPYRIDO[1',2':4,5]PYRAZINO[2,1-B][1,3]OXAZEPINE-10-CARBOXAMIDE), were measured by characterizing API dissolution from a constant surface area. Approximately 150 mg of the drug substance was compressed at 1500 psi for approximately 3 seconds using a hydraulic press (Carver Press, Fred Carver, NJ, USA). The compressed drug substance formed a flat disk (surface area ~0.49 cm²), which was mounted onto a dissolution apparatus (VanKel Industries Inc., Edison, NJ, VK7000, W1120A-0288). The rotating disk (100 rpm) was then lowered into the dissolution medium (500 mL of 0.01N HCl) which was equilibrated to 37.1°C. Samples were pulled at predetermined time points and drug concentrations were measured using an appropriate UPLC-UV method. The intrinsic dissolution rate constant (K) was calculated using the following equation:

$$C = \frac{KA}{V} t$$

Where C is the concentration of the active at time t, A is the surface area of the tablet (~0.49 cm²) and V is the volume of the media (500 mL). Note that the term active as used herein refers to the parent molecule, whose structure is shared by both Formula I and Formula II.

The dissolution profiles can be found in Figure 5.

Solubility

The solubility of the sodium form of the present invention and the free acid, $(2R,5S,13aR)$-8-hydroxy-7,9-dioxo-N-(2,4,6-trifluorobenzyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepine-10-carboxamide Form III in biorelevant media was determined at room temperature as a function of time. Solubility was determined in the following biorelevant media: 0.1 mM Fasted-State Simulated Gastric Fluid (FaSSGF) pH 1.6 (0.08 mM taurocholate, 0.02 mM lecithin, 34.2 mM NaCl); 18.75 mM Fed-State Simulated Intestinal Fluid (FeSSIF) pH 5 (15 mM taurocholate, 3.75 mM lecithin, 0.12 M NaCl); and 3.75mM Fasted-State Simulated Intestinal Fluid (FeSSIF) pH 5 (3 mM taurocholate, 0.75 mM lecithin, 0.10 M NaCl). Approximately 20 mg of the drug substance was mixed on a magnetic stir-plate in 50 mL of biorelevant media. Samples (~1 mL) were pulled every 5-10 min for 2 hours. The samples were immediately filtered/centrifuged for 10 min in a Spin-X tube equipped with a 0.45 μm nylon filter. The resulting
filtrate was analyzed using an appropriate UPLC-UV method.

Bioavailability

The bioavailability of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate (Formula II) Form I was compared to the bioavailability of (2R,5S,13aR)-8-hydroxy-7,9-dioxo-N-(2,4,6-trifluorobenzyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepine-10-carboxamide (Formula III).

Each dosing group consisted of 6 male, non-naïve purebred beagle dogs. At dosing, the animals weighed between 10 to 13 kg. The animals were fasted overnight prior to dose administration and up to 4 hr after dosing. Each subject was pre-treated with pentagastrin (6 μg/kg) and dosed 30 minutes later with a single 25 mg strength tablet of Formula II Form I or Formula I Form III. Each subject was given 10 mL of water to aid in swallowing.

Serial venous blood samples (approximately 1 mL each) were taken from each animal at 0, 0.250, 0.483, 0.583, 0.750, 1.00, 1.50, 2.00, 4.00, 8.00, 12.0, and 24.0 hours after dosing. The blood samples were collected into Vacutainer™ tubes containing EDTA-K2 as the anti-coagulant and were immediately placed on wet ice pending centrifugation for plasma. An LC/MS/MS method was used to measure the concentration of the test compound in plasma. An aliquot of 100 μL of each plasma sample was added to a clean 96 well plate, and 400 μL of cold acetonitrile/internal standard solution (ACN)/(ISTD) was added. After protein precipitation, an aliquot of 110 μL of the supernatant was transferred to a clean 96-well plate and diluted with 300 μL of water. An aliquot of 25 μL of the above solution was injected into a TSQ Quantum Ultra LC/MS/MS system utilizing a Hypersil Gold C18 HPLC column (50 X 3.0 mm, 5 μm; Thermo-Hypersil Part # 25105-05300). An Agilent 1200 series binary pump (P/N G1312A Bin Pump) was used for elution and separation, and an HTS Pal autosampler (LEAP Technologies, Carrboro, NC) was used for sample injection. A TSQ Quantum Ultra triple quadrupole mass spectrometer was utilized in selective reaction monitoring mode (Thermo Finnigan, San Jose, CA). Liquid chromatography was performed using two mobile phases: mobile phase A contained 1% acetonitrile in 2.5 mM ammonium formate aqueous solution with pH of 3.0, and mobile phase B contained 90% acetonitrile in 10 mM ammonium formate with pH of 4.6. Non-compartmental pharmacokinetic analysis was performed on the plasma concentration-time data. The resulting data are shown in Table 3: F (%) refers to oral bioavailability; AUC refers to area under the curve and is a measure of total plasma exposure of the indicated compound; Cmax refers to the peak plasma concentration of the compound after administration.

Stability

The stability of sodium (2R,5S,13aR)-7,9-dioxo-10-((2,4,6-trifluorobenzyl)carbamoyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepin-8-olate Form I was tested. As seen in Table 4, below, the compound is stable after four weeks of storage under accelerated conditions. In Table 5, AN refers to area normalization and is the relative peak area of the active with respect to other impurities and components contained in the sample. LS refers to labile strength and is the amount of active present relative to the theoretical amount.
Each of the references including all patents, patent applications and publications cited in the present application is incorporated herein by reference in its entirety, as if each of them is individually incorporated. Further, it would be appreciated that, in the above teaching of invention, the skilled in the art could make certain changes or modifications to the invention, and these equivalents would still be within the scope of the invention defined by the appended claims of the application. Each of the references including all patents, patent applications and publications cited in the present application is incorporated herein by reference in its entirety, as if each of them is individually incorporated. Further, it would be appreciated that, in the above teaching of invention, the skilled in the art could make certain changes or modifications to the invention, and these equivalents would still be within the scope of the invention defined by the appended claims of the application.

The application also provides the following numbered embodiments:

1. A compound of Formula II:

![Formula II](image)

2. The compound of embodiment 1, characterized by being crystalline.

3. The compound of embodiment 2, characterized by an x-ray powder diffraction (XRPD) pattern having peaks at about 5.5°, 16.1°, and 23.3° 2θ ± 0.2° 2θ.

4. The compound of embodiment 3, wherein the x-ray powder diffraction (XRPD) pattern has further peaks at about 22.1°, and 28.5° 2θ ± 0.2° 2θ.

5. The compound of embodiment 4, wherein the x-ray powder diffraction (XRPD) pattern has further peaks at about 22.5° and 19.5° 2θ ± 0.2° 2θ.

6. The compound of embodiment 5, wherein the x-ray powder diffraction (XRPD) pattern has further peaks at about 26.6° and 17.9° 2θ ± 0.2° 2θ.

7. The compound of embodiment 2, characterized by an x-ray powder diffraction (XRPD) pattern substantially as set forth in Figure 1.

8. The compound of embodiment 2, characterized by differential scanning calorimetry (DSC) pattern substantially as set forth in Figure 2.
9. The compound of embodiment 2, characterized by a dynamic vapor sorption (DVS) pattern substantially as set forth in Figure 4.

10. The compound of any one of embodiments 1 to 9, characterized in being partially or fully hydrated.

11. The compound of any one of embodiments 1 to 9, characterized in being anhydrous or essentially anhydrous.

12. A pharmaceutical composition comprising a therapeutically effective amount of a compound of any one of embodiments 1 to 11, and a pharmaceutically acceptable carrier or excipient.

13. The pharmaceutical composition of embodiment 12, further comprising one to three additional therapeutic agents.

14. The pharmaceutical composition of embodiment 13, wherein the additional therapeutic agents are each anti-HIV drugs.

15. The pharmaceutical composition of embodiment 13 or embodiment 14, wherein the additional therapeutic agents are each independently selected from the group consisting of HIV protease inhibitors, HIV non-nucleoside inhibitors of reverse transcriptase, HIV nucleoside inhibitors of reverse transcriptase, HIV nucleotide inhibitors of reverse transcriptase, and other drugs for treating HIV.

16. The pharmaceutical composition of any one of embodiments 12 to 14, wherein at least two of the additional therapeutic agents are each HIV nucleoside inhibitors of reverse transcriptase.

17. The pharmaceutical composition of embodiment 12, further comprising tenofovir disoproxil fumarate and emtricitabine.

18. The pharmaceutical composition of embodiment 12, further comprising tenofovir alafenamide and emtricitabine.

19. The pharmaceutical composition of embodiment 12, further comprising tenofovir alafenamide hemifumarate and emtricitabine.

20. The pharmaceutical composition of any one of embodiments 12 to 18, wherein the pharmaceutical composition is in a unit dosage form.

21. The pharmaceutical composition of embodiment 20, wherein the unit dosage form is a tablet.

22. Use of a compound of any one of embodiments 1 to 11 for treating or prophylactically preventing an HIV infection.

23. Use of a compound of any one of embodiments 1 to 11 for the manufacture of a medicament for treating or prophylactically preventing an HIV infection.

24. A compound of any one of embodiments 1 to 11 for use in a method for treating or prophylactically preventing an HIV infection.

25. A method for treating or prophylactically preventing an HIV infection in a human in need thereof, comprising administering to the human a therapeutically effective amount of a compound of any one of embodiments 1 to 11.

Claims

1. A crystalline compound of Formula II:
characterized by

(i) an x-ray powder diffraction (XRPD) pattern substantially as set forth in Figure 1, or
(ii) a differential scanning calorimetry (DSC) pattern substantially as set forth in Figure 2; or
(iii) a dynamic vapor sorption (DVS) pattern substantially as set forth in Figure 4.

2. The compound of claim 1, characterized by an x-ray powder diffraction (XRPD) pattern substantially as set forth in Figure 1.

3. The compound of claim 1, characterized by differential scanning calorimetry (DSC) pattern substantially as set forth in Figure 2.

4. The compound of claim 1, characterized by a dynamic vapor sorption (DVS) pattern substantially as set forth in Figure 4.
Figure 5

Figure 6
Figure 7
EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
</table>

The present search report has been drawn up for all claims.
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 29-01-2018. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 2013361401 A1</td>
<td>27-08-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2016262722 A1</td>
<td>08-12-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 11201501471 A2</td>
<td>05-01-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 122015029881 A2</td>
<td>22-03-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2893843 A1</td>
<td>26-06-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL 2015001756 A1</td>
<td>07-08-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104995198 A</td>
<td>21-10-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CR 20150380 A</td>
<td>21-08-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CR 20170279 A</td>
<td>19-10-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CY 11117570 T1</td>
<td>26-04-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 2822954 T3</td>
<td>30-05-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201591027 T3 A</td>
<td>31-05-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 201409054 T1</td>
<td>15-07-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0282824 A1</td>
<td>28-12-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6028105 B2</td>
<td>29-09-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 20150380 A</td>
<td>16-11-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016508134 A</td>
<td>10-10-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 2015096504 A</td>
<td>24-08-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 2015007373 A</td>
<td>28-06-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MD 20150064 A2</td>
<td>30-11-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 344879 B</td>
<td>11-01-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 709260 A</td>
<td>29-07-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE 05282017 A1</td>
<td>28-05-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE 14992015 A1</td>
<td>29-10-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PH 1201501445 A1</td>
<td>14-09-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 2822954 T3</td>
<td>30-09-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 2822954 E</td>
<td>16-06-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 1201504857 A</td>
<td>30-07-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM 201600157 B</td>
<td>31-06-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 20141224 A</td>
<td>01-11-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014221356 A1</td>
<td>07-08-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2016176885 A1</td>
<td>23-06-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2017057976 A1</td>
<td>02-03-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2017260204 A1</td>
<td>14-09-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UY 35213 A</td>
<td>30-06-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014100323 A1</td>
<td>26-06-2014</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

29-01-2018

<table>
<thead>
<tr>
<th>Patent document oiled in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA 2606282 A1</td>
<td>02-11-2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CY 1115151 T1</td>
<td>09-12-2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CY 1116331 T1</td>
<td>08-02-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK 1874117 T3</td>
<td>23-09-2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK 2465580 T3</td>
<td>10-03-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA 200762080 A1</td>
<td>28-04-2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1874117 A1</td>
<td>09-01-2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 3187225 A1</td>
<td>05-07-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 3187226 A1</td>
<td>05-07-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 3284519 A1</td>
<td>21-02-2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 3284520 A1</td>
<td>21-02-2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES 2437268 A1</td>
<td>09-01-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES 2446324 A1</td>
<td>07-03-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES 2567197 T3</td>
<td>20-04-2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HK 1107227 A1</td>
<td>03-01-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HK 1172282 A1</td>
<td>08-06-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HU S1400039 I1</td>
<td>29-08-2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL 186555 A</td>
<td>31-10-2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2008540343 A</td>
<td>20-11-2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2009079058 A</td>
<td>16-04-2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 2008009733 A</td>
<td>29-01-2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 20130133061 A</td>
<td>05-12-2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 20140097438 A</td>
<td>06-08-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 20160003889 A</td>
<td>11-01-2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LU 92446 I2</td>
<td>29-10-2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA 29450 B1</td>
<td>02-05-2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MX 307218 B</td>
<td>27-08-2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MX 312216 B</td>
<td>12-06-2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO 339525 B1</td>
<td>27-12-2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO 2017010 I1</td>
<td>27-03-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZ 562339 A</td>
<td>28-01-2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT 1874117 E</td>
<td>17-10-2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT 2465580 E</td>
<td>25-02-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI 1874117 T1</td>
<td>31-01-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI 2465580 T1</td>
<td>30-04-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 1378931 B</td>
<td>11-12-2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2009318421 A1</td>
<td>24-12-2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2012115875 A1</td>
<td>10-05-2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2013172559 A1</td>
<td>04-07-2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2014200209 A1</td>
<td>17-07-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2015232479 A1</td>
<td>20-08-2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2016137666 A1</td>
<td>19-05-2016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 29-01-2018. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2016207939 A1</td>
<td>21-07-2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2016304535 A1</td>
<td>20-10-2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2017029438 A1</td>
<td>02-02-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2017209454 A1</td>
<td>27-07-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2017224694 A1</td>
<td>10-08-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2017224695 A1</td>
<td>10-08-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2017253616 A1</td>
<td>07-09-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2017260263 A1</td>
<td>14-09-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2017267693 A1</td>
<td>21-09-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2017369509 A1</td>
<td>28-12-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VN 34404 A1</td>
<td>25-07-2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2006116764 A1</td>
<td>02-11-2006</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 62015245 A [0001]
- US 14133855 B [0005] [0051]
- US 2013076367 W [0005] [0051]
- WO 2013006738 A [0071] [0072] [0076]
- US 20130165489 A [0071] [0072] [0076]
- WO 2013006792 A [0071] [0072] [0076]
- WO 2013091096 A1 [0072] [0076]
- WO 2009062285 A [0072] [0075] [0076]
- US 20140221380 A [0072] [0076]
- US 20140221378 A [0072] [0076]
- WO 2010130034 A [0072] [0075] [0076]
- WO 2013159064 A [0072] [0075] [0076]
- WO 2012145728 A [0072] [0075] [0076]
- WO 2012003497 A [0072] [0075] [0076]
- WO 2014100323 A [0072] [0076] [0100]
- WO 2012003498 A [0072] [0075] [0076]
- WO 2004096286 A [0076]
- WO 2006110157 A [0076]
- WO 2006015261 A [0076]
- US 62015238 B [0131]

Non-patent literature cited in the description