HEAT EXCHANGER TANK STRUCTURE AND PRODUCTION METHOD THEREFOR

To provide a tank structure that heightens an amount of heat exchange overall when a unit 5 including a small tank 4 at both ends of a core 3 is stacked in a thickness direction of the core and oil is supplied to a tube 2 of the unit 5 via a header tank 8, even if flow speed distribution of the oil differs in each of the tubes 2. Positions of each of openings 7 of the small tanks 4 of the unit 5 are arranged to be different from each other in an axial line direction of the small tank 4.
The present invention relates to a heat exchanger tank structure and production method therefor to overall improve performance of heat exchange in a plurality of heat exchangers placed in parallel in a thickness direction.

Background Art

[0002] Patent Literature 1 described below describes a unit-assembly-type heat exchanger. Fins and tubes are alternately placed in parallel to form a core. At an upper portion and a lower portion of the core, a pair of tanks are arranged, and a flow-in opening for a heat exchange medium is provided at a center of each tank.

[0003] Fig. 6 is an exploded perspective view illustrating the unit-assembly-type heat exchanger according to the Patent Literature 1. Both ends of a tube 2 are each inserted and fixed into a pair of small tanks 4 arranged at the upper portion and the lower portion, and a connection bracket 13 is arranged at a center of the small tank 4 in a longitudinal direction. Each of the connection brackets 13 is fastened with each other via an O-ring 15 and a bolt 17 to be integrated. Then, as the heat exchange medium, oil is supplied from a pipe 16 provided for the connection bracket 13 in the front row, and the oil is supplied into each tube 2 of each of units.

[0004] Next, the inventor of the present invention has already applied an oil cooler of high resistance pressure for construction machines of Japanese Patent Application No. 2014-009616. According to the invention, a pair of cores are placed in parallel in the thickness direction thereof. In addition, flat tubes of each of the cores are inserted into a tank main body in a U-letter groove shape, an opening portion of the flat tube is closed with a cap member, and further both end portions thereof are closed with an end cap. Then, an opening portion is formed at a center of each tank in a longitudinal direction to bond the opening portion of the tank with that of the header by welding.

Solution to Problem

Summary of Invention

Technical Problem

[0006] According to the invention described in the Patent Literature 1, an inlet of the heat exchange medium exists at a center position of a small tank 4 of each of units, and oil is supplied into each of the tubes from the inlet. Then, more oil flows into the tube placed at a position closer to an opening of the small tank 4, and flow speed of the oil in the tube near the opening is faster than the tube farther from the opening. Therefore, imbalance of flow speed density of the oil is caused in the flat tubes of each of units.

[0007] On an outer circumference of the each flat tube, an air flow for cooling is circulated. At this time, if the air is supplied to a portion where the flow speed of the oil is fast, the heat is exchanged the most, and thus the temperature of cooling air becomes high. The cooling air at high temperature is supplied to a position where the flow speed of the oil is fast in the unit placed at a downstream side of the air. Therefore, between an amount of exchanged heat at a center portion of the core and an amount thereof at both end portions of the core, variation is caused to deteriorate heat exchange efficiency overall.

[0008] Accordingly, it is an object of the present invention to increase the amount of the heat exchange overall by comprehensively uniforming the heat exchange in each portion of the each unit. In addition, the object is to distribute the heat exchange medium in the small tank 4 of each of units via a header tank to facilitate connection between the units.

Citation List

Patent Literature

[0009] The present invention according to claim 1 is a heat exchanger tank structure in which each of fins 1 and each of tubes 2 are alternately placed in parallel to form a core 3, small tanks 4 are arranged at both ends of the core 3 so that both ends of each of the tubes 2 are inserted to structure a unit 5, the plurality of units 5 in a same shape is stacked in parallel in a thickness direction of the unit 5, a heat exchange medium is supplied to each of the tubes 2 of each of the cores 3 via each of the small tanks 4, and an air flow is led in such a manner to cross a flat surface of each of the cores 3, wherein each of the small tanks 4 and a header tank 8 connecting to each of the small tanks 4 are configured from a pipe member, each of the small tanks 4 is formed with an opening 7 at a position on an opposite side of the core 3, an opening 7 of a first small tank 4 and an opening 7 of a second small tank 4 that are adjacent to each other are arranged at different positions in a longitudinal direction of each of the small tanks 4, and a plurality of connection openings 9 is formed in the header tank 8 to match each of the openings 7, and each of the connection openings 9 of the header tank 8 and the opening 7 of each of the small tanks 4 are connected with each other via a short pipe 6.

[0010] The present invention according to claim 2 is the heat exchanger tank structure according to claim 1, wherein two or more of the units 5 are placed in parallel, and the openings 7 of each of the small tanks 4 of the units 5 that are adjacent to each other are arranged in a
different manner in a longitudinal direction of each of the small tanks 4.

[0011] The present invention according to claim 3 is the heat exchanger tank structure according to claim 2, wherein, on a straight line obliquely crossing an axial line of each of the small tanks 4, the openings 7 of each of the small tanks 4 are arranged and the connection holes 9 matching each of the openings 7 are provided in an outer surface of the header tank 8, lying on a straight line parallel to an axial line.

[0012] The present invention according to claim 4 is the heat exchanger tank structure according to claim 2, wherein each of the openings 7 of each of the small tanks 4 is arranged in a zigzag manner in a plan view.

[0013] The present invention according to claim 5 is a production method for a heat exchanger tank according to any of claims 1 to 4 comprising the steps of:

producing each of units 5 by brazing each of cores 3 with a small tank 4; and
connecting an opening 7 of the small tank 4 of each of the units 5 with each of the connection openings 9 of a header tank 8 via a short pipe 6 by welding.

[0014] The present invention according to claim 6 is the production method for a heat exchanger tank according to claim 5 comprising the steps of:

structuring the header tank 8 with a tank main body 8a and a top cap 8b each having a half-split shape, the heat exchanger tank structure can be produced further easily.

Advantageous Effects of Invention

[0015] According to the tank structure of the present invention, an opening 7 of a first small tank 4 and an opening 7 of a second small tank 4 that are adjacent to each other are arranged at different positions in a longitudinal direction of the small tanks. In addition, a plurality of connection openings 9 is formed in a header tank 8 so as to match each of the openings 7, and each of the connection openings 9 of the header tank 8 is connected with the opening 7 of each of the small tanks 4 via a short pipe 6.

[0016] Therefore, the small tanks 4 of the units 5 have different inlets and outlets, respectively, and accordingly flow speed distributions of the heat exchange medium that flows in the respective tubes 2 of the respective units 5 are different. That is, the flow speed of the heat exchange medium in the respective tubes 2 near the outlet and inlet of the small tank 4 becomes faster, and the farther from the outlet and inlet of the small tank 4 the
Figs. 1 to 3 illustrate Example 1 of the present invention, Fig. 1 is an exploded perspective view of essential portions, Fig. 2 is a vertical cross sectional view of the essential portions illustrating an assembly state, and Fig. 3 is a perspective view of the essential portions. In these figures, only upper portion of each tank structure is illustrated. The tank structure of the lower portion that is not illustrated preferably has the same structure as that of the upper portion.

In this Example, three units 5 having the same shape are stacked in a thickness direction of a core 3. The number of the units 5 may be two or four or more. In the each unit 5, fins 1 and tubes 2 are alternately placed in parallel to form the core 3. At both an upper end and a lower end, a pair of small tanks 4 are arranged. Then, both ends of the each tube 2 are inserted into the small tank 4. In this example, the small tank 4 includes a pipe member, and an end cap 10 arranged at both ends of the small tank 4.

Further, a number of flat tube insertion holes are drilled in the pipe member, and the flat tubes 2 are inserted into the tube insertion holes. In addition, at both ends of the each small tank 4 in an axial line direction, a slit (not illustrated) into which an end portion of a side member 14 is inserted is formed.

Furthermore, with a state where the end portions of the pair of side members 14 are inserted into the respective small tanks 4, respective parts are brazed and fixed integrally. Note that, in this example, the pair of side members 14 are inserted into three small tanks 4, but in place of the method, each independent side member 14 may be arranged at the both ends of the each core 3.

An assembled body of each of the cores 3 with the side member 14 structured in this way is conveyed into a furnace at high temperature, to be brazed and fixed integrally. Note that, in the small tank 4, the opening 7 is formed in advance. As illustrated in Figs. 1 and 3, the openings 7 of the small tanks 4 of the respective units 5 that are adjacent to each other are arranged at the different positions in the axial line direction. In this example, the openings 7 are arranged on one straight line that is inclined relative to the respective small tanks 4.

Next, one end of a short pipe 6 is inserted into the each opening 7, and welding is performed between the short pipe 6 and the opening 7 of the small tank 4 to form a welding portion 12. Then, another end of the each short pipe 6 is welded to a connection opening 9 of the header tank 8.

In this example, the header tank 8 includes a flange 11 at its one end and an end cap 10 at another end. Further, the header tank 8 includes a tank main body 8a and a top cap 8b each having a half-split shape of the pipe member, being split on a line of a diameter of the pipe member, and the connection opening 9 is drilled in the tank main body 8a. A position of the connection opening 9 matches a position of the each opening 7 of the short pipe 6.

Then, after each of the short pipes 6 is welded to the connection opening 9 of the tank main body 8a, the top cap 8b is fitted into the opening of the tank main body 8a to fit the end cap 10 into the end portion of the tank main body 8a. Further, the welding portion 12 is formed on each seam by welding to complete a heat exchanger.

In this example, the header tank 8 includes a combined body of a straight-line pipe member and a curved pipe member. The straight-line pipe member is welded to an end portion of the curved pipe.

In some direction of piping, the curved pipe member can be omitted.

(Structure according to Example 2 of the Present Invention)

Next, Fig. 4 illustrates Example 2 of the present invention. In this example, the short pipe 6 is welded to the each connection opening 9 of the header tank 8 in advance, and subsequently the opening 7 of the small tank 4 and the each short pipe 6 are welded with each other. Note that welding in an inverse order may also be performed.

(Structure according to Example 3 of the Present Invention)

Next, Fig. 5 illustrates Example 3 of the present invention. In this example, the openings 7 of the respective small tanks 4 are arranged in a zigzag shape in a plan view. Then, via the short pipe 6 in an elbow shape connected to the header tank 8, the respective connection openings 9 of the header tank 8 and the openings 7 of the respective small tanks 4 are welded to be connected to each other.

The point common to each Example is that the respective openings 7 of the small tanks 4 that are adjacent to each other are arranged at the different positions in the axial line direction of the small tank 4. Note that the opening 7 is opened on an opposite side of the core 3 also in the each small tank 4. As described above, the openings 7 of the small tanks 4 that are adjacent to each other are placed differently in the axial line direction. Therefore, when the short pipe 6 and the small tank 4 are welded, since the short pipe 6 and the small tank 4 are separated away from each other, the short pipe 6 can be welded without being disturbed by the adjacent short pipe 6.

(Operation)

In these Examples, oil at high temperature flows into the tube 2 of the each unit 5 via the header tank 8, and the air flow flows in a direction orthogonal to a plane surface of the each core 3. Then, the heat exchange is performed between the air and the oil.

At this time, the flow speed of the oil in the each tube 2 becomes faster at positions closer to the opening
7, and the flow speed becomes relatively slower at positions farther away from the opening 7. The amount of the heat exchange between the cooling air that has passed through the tube near the opening 7 and the oil becomes larger than that at other positions.

[0036] Then, the opening 7 of the small tank 4 of the unit 5 positioned on the downstream side is shifted in the axial line direction with respect to the opening 7 of the small tank 4 of the unit 5 positioned on the upstream side of the cooling air. Therefore, on the downstream side, the cooling air at higher temperature passes through the tube 2 in which the flow speed is slow.

[0037] Further, the air flow at comparatively low temperature that has passed through the tube 2 in which the flow speed of the oil is slow and the small tube in which the amount of the heat exchange of the air flow is small, on the upstream side, passes through the tube 2 in which the flow speed is fast, on the downstream side.

[0038] Therefore, the final air flow that has passed through the plurality of units 5 has substantially the same temperature in each portion, thereby increasing the overall amount of the heat exchange.

Industrial Applicability

[0039] With the heat exchanger of the above-described Examples, the oil cooler has been described, but the present invention is not limited thereto, and can be also used for a radiator for cooling engine cooling water or an intercooler.

Reference Signs List

[0040] 1 fin
2 tube
3 core
4 small tank
5 unit
6 short pipe
7 opening
8 header tank
8a tank main body
8b top cap
9 connection opening
10 end cap
11 flange
12 welding portion
13 connection bracket
14 side member
15 O-ring
16 pipe
17 bolt

Claims

1. A heat exchanger tank structure in which each of fins (1) and each of tubes (2) are alternately placed in parallel to form a core (3), small tanks (4) are arranged at both ends of the core (3) so that both ends of each of the tubes (2) are inserted to structure a unit (5), the plurality of units (5) in a same shape is stacked in parallel in a thickness direction of the unit (5), a heat exchange medium is supplied to each of the tubes (2) of each of the cores (3) via each of the small tanks (4), and an air flow is led in such a manner to cross a flat surface of each of the cores (3), wherein:

 - each of the small tanks (4) and a header tank (8) connecting to each of the small tanks (4) are configured from a pipe member,
 - each of the small tanks (4) is formed with an opening (7) at a position on an opposite side of the core (3), an opening (7) of a first small tank (4) and an opening (7) of a second small tank (4) that are adjacent to each other are arranged at different positions in a longitudinal direction of each of the small tanks (4), and a plurality of connection openings (9) is formed in the header tank (8) to match each of the openings (7), and each of the connection openings (9) of the header tank (8) and the opening (7) of each of the small tanks (4) are connected with each other via a short pipe (6).

2. The heat exchanger tank structure according to claim 1, wherein two or more of the units (5) are placed in parallel, and the openings (7) of each of the small tanks (4) of the units (5) that are adjacent to each other are arranged in a different manner in a longitudinal direction of each of the small tanks (4).

3. The heat exchanger tank structure according to claim 2, wherein, on a straight line obliquely crossing an axial line of each of the small tanks (4), the openings (7) of each of the small tanks (4) are arranged and the connection holes (9) matching each of the openings (7) are provided in an outer surface of the header tank (8), lying on a straight line parallel to an axial line.

4. The heat exchanger tank structure according to claim 2, wherein each of the openings (7) of each of the small tanks (4) is arranged in a zigzag manner in a plan view.

5. A production method for a heat exchanger tank according to any of claims 1 to 4 comprising the steps of:

 - producing each of units (5) by brazing each of cores (3) with a small tank (4); and
connecting an opening (7) of the small tank (4) of each of the units (5) with each of connection openings (9) of a header tank (8) via a short pipe (6) by welding.

6. The production method for a heat exchanger tank according to claim 5 comprising the steps of:

 structuring the header tank (8) with a tank main body (8a) and a top cap (8b) each having a half-split shape, and forming a plurality of the connection openings (9) in the tank main body (8a); welding and fixing the connection opening (9) of the tank main body (8a) with the opening (7) of each of the small tanks (4) via the short pipe (6); and welding between the tank main body (8a) and the top cap (8b).
Fig. 2
INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2016/066319

A. CLASSIFICATION OF SUBJECT MATTER

F28F9/02(2006.01)i, F28D1/053(2006.01)i, F28F9/26(2006.01)i, F28F27/02(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

F28F9/02, F28D1/053, F28F9/26, F28F27/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1996
Jitsuyo Shinan Toroku Koho 1996-2016
Kokai Jitsuyo Shinan Koho 1971-2016
Toroku Jitsuyo Shinan Koho 1994-2016

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2014/181550 A1 (Denso Corp.), 13 November 2014 (13.11.2014), 1</td>
<td>1</td>
</tr>
<tr>
<td>Y</td>
<td>paragraphs [0098] to [0147]; fig. 9 to 14 & US 2016/0084548 A 4</td>
<td>2-3,5-6</td>
</tr>
<tr>
<td>A</td>
<td>paragraphs [0123] to [0172]; fig. 9 to 14 & CN 105190201 A & KR 10-2015-0143717 A</td>
<td>4</td>
</tr>
<tr>
<td>Y</td>
<td>JP 55-500061 A (Caterpillar Tractor Co.), 07 February 1980 (07.02.1980), 1 to 6</td>
<td>2-3,5-6</td>
</tr>
<tr>
<td>A</td>
<td>fig. 1 to 6 & US 4191244 A & GB 2036285 A 4</td>
<td></td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

 * A* document defining the general state of the art which is not considered to be of particular relevance
 * E* earlier application or patent but published on or after the international filing date
 * L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * O* document referring to an oral disclosure, use, exhibition or other means
 * P* document published prior to the international filing date but later than the priority date claimed

 * T* later document published after the international filing date or priority date but not in conflict with the application but cited to understand the principle or theory underlying the invention

 * X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

 * Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

 * W* document member of the same patent family

Date of the actual completion of the international search

29 August 2016 (29.08.16)

Date of mailing of the international search report

06 September 2016 (06.09.16)

Name and mailing address of the ISA/ISA Office

Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Authorized officer

Telephone No.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2014009616 A [0004]
• JP 2003075092 A [0005]