MOBILE ELECTRONIC DEVICE AND CONTROL METHOD THEREOF

A mobile electronic device includes a connector, an audio generator, a biological signal processor, a switch element, and a controller. The switch element has a first terminal and a second terminal. The first terminal of the switch element is coupled to the connector, and the second terminal of the switch element is selectively coupled to either the audio generator or the biological signal processor according to a control signal. The controller is coupled to the audio generator and the biological signal processor, and is configured to generate the control signal.

FIG. 1
Description

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Pro-
visional Application No. 62/394,287, filed on September
14, 2016, the entirety of which is incorporated by refer-
ence herein.

BACKGROUND OF THE INVENTION

Field of the Invention

[0002] The disclosure generally relates to a mobile
electronic device, and more specifically, to a mobile elec-
tronic device for receiving and processing a biological
signal, particularly an electric signal indicating biological
or physiologic information from a user's body.

Description of the Related Art

[0003] As technology advances, mobile electronic de-
vices are playing an increasingly important role in peo-
ple's lives. Some mobile electronic devices, such as
smart sports bracelets, can automatically collect biologi-

cal information in the form of electric signals from users
and transmit such electric signals to other devices for
further processing. However, the biological information
may become distorted because of a bad transmission path.
Accordingly, there is a need to design a novel so-
lution for solving the aforementioned problem.

BRIEF SUMMARY OF THE INVENTION

[0004] It is an object of the present invention to provide
enhanced measures for enabling collecting an electrical
biological signal indicating a biological or physiologic in-
formation from a user's body and transmitting the elec-
trical biological signal to another electronic device for fur-
ther processing.

[0005] This problem is solved by a mobile electronic
device as claimed by claim 1, by a method for collecting
an electrical biological signal indicating a biological or
physiologic information from a user's body, particularly
for use in such a mobile electronic device, as claimed by
claim 11 and by the use as claimed by claim 15. Further
advantageous embodiments are the subject-matter of the
dependent claims.

[0006] In the sense of the present application the elec-
trical biological signal is an electric signal indicating a
characteristic of or appropriate to an organism's healthy
or normal functioning, such as a heart beat signal, a res-
piratory signal, a brain wave signal, or blood pressure
signal. The electrical biological signal is thus an electric
signal derived from a user's body using appropriate sen-
sors, indicating a biological or physiologic information
from the user's body. A mobile (electronic) device in the
sense of the present application is a smartphone, a tablet
computer, or a notebook computer.

[0007] According to the present invention there is pro-
vided a mobile electronic device comprising a connector
configured to be coupled to an external sensor for col-
lecting an electrical biological signal indicating biological
or physiologic information from a user's body, an audio
generator, a biological signal processor configured for
processing the electrical biological signal, a switch ele-
ment, and a controller. The switch element has a first
terminal and a second terminal. The first terminal of the
switch element is coupled to the connector, and the sec-
ond terminal of the switch element is selectively coupled
to either the audio generator or the biological signal proc-
essor according to a control signal. The controller is cou-
pled to the audio generator and the biological signal proc-
essor, and is configured to generate the control signal,
for controlling a switching operation of the switch ele-
ment.

[0008] In some embodiments, when an external device
is coupled to the connector, the switch element initially
couples the connector to the biological signal processor,
when an external device is coupled to the connector.

[0009] In some embodiments, the controller is config-
ured to control a switching operation of the switch ele-
ment according to information from the external device.

[0010] In some embodiments, the external device is
an external earphone or an external sensor.

[0011] In some embodiments, the external sensor is
an external electrode, preferably having one or more sub-
electrodes for retrieving the electrical biological signal.

[0012] In some embodiments, if the connector receives
a first electrical biological signal from the external device,
the first electrical biological signal is transmitted through
the switch element to the biological signal processor,
such that the biological signal processor processes the
first electrical biological signal.

[0013] In some embodiments, if the connector does
not receive any electrical biological signal from the ex-
ternal device, particularly from the external sensor, the
switch element changes its switching operation and cou-
plies the connector to the audio generator, instead of the
biological signal processor.

[0014] In some embodiments, the mobile electronic
device further includes a housing and a plurality of sen-
sors. The sensors are embedded in the housing, and are
coupled to the biological signal processor.

[0015] In some embodiments, the sensors are elec-
trodes.

[0016] In some embodiments, if no external device is
coupled to the connector or if the connector does not
receive any electrical biological signal from the external
device, the biological signal processor tries to receive
and process a second electrical biological signal from the
sensors.

[0017] A further related aspect of the present invention
is directed to a method for collecting an electrical biolog-
ical signal indicating a biological or physiologic informa-
tion from a user's body, particularly for operating the mo-
bile electronic device as disclosed hereinunder, including the steps of: providing a mobile electronic device as disclosed hereinunder, for collecting the electrical biological signal, and wherein the controller is coupled to the audio generator and the biological signal processor; generating a control signal by the controller; and selectively coupling the connector to either the audio generator or the biological signal processor by the switch element according to the control signal.

[0018] In some embodiments, the method further includes: when an external device is coupled to the connector, initially coupling the connector to the biological signal processor by the switch element.

[0019] In some embodiments, the method further includes: controlling a switching operation of the switch element by the controller according to information from the external device.

[0020] In some embodiments, the method further includes: if the connector receives a first electrical biological signal from the external device, transmitting the first electrical biological signal through the switch element to the biological signal processor, and processing the first electrical biological signal by the biological signal processor.

[0021] In some embodiments, the method further includes: if no external device is coupled to the connector or if the connector does not receive any electrical biological signal from the external device, trying to receive and process a second electrical biological signal from the sensors by the biological signal processor.

[0022] In some embodiments, the method further includes: if no external device is coupled to the connector or if the connector does not receive any electrical biological signal from the external device, trying to receive and process a second electrical biological signal from the sensors by the biological signal processor.

[0023] A further related aspect of the present invention is directed to the use of a mobile electronic device as disclosed hereinunder or of a method as disclosed hereinunder for collecting an electrical biological signal indicating a biological information from a user’s body and transmitting the electrical biological signal to another electronic device for further processing, wherein the mobile electronic device is a smartphone, a tablet computer, or a notebook computer, and an external electrode, preferably having one or more sub-electrodes, is connected to the connector of the mobile electronic device for retrieving the electrical biological signal from the user’s body.

DETAILED DESCRIPTION OF DRAWINGS

[0024] The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:

FIG. 1 is a diagram of a mobile electronic device according to an embodiment of the invention;

FIG. 2 is a diagram of a mobile electronic device coupled to an external sensor according to an embodiment of the invention;

FIG. 3 is a perspective view of an external electrode according to an embodiment of the invention;

FIG. 4 is a diagram of a mobile electronic device coupled to an external earphone according to an embodiment of the invention;

FIG. 5 is a diagram of a mobile electronic device according to an embodiment of the invention;

FIG. 6A is a top view of a mobile electronic device according to an embodiment of the invention;

FIG. 6B is a perspective view of a mobile electronic device according to an embodiment of the invention;

FIG. 7 is a flowchart of an operation method for operating a mobile electronic device according to an embodiment of the invention; and

FIG. 8 is a flowchart of a control method according to an embodiment of the invention.

INVENTION

[0025] In order to illustrate the purposes, features and advantages of the invention, the embodiments and figures of the invention will be described in detail as follows.

[0026] Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms "include" and "comprise" are used in an open-ended fashion, and thus should be interpreted to mean "include, but not limited to..." The term "substantially" means the value is within an acceptable error range. One skilled in the art can solve the technical problem within a predetermined error range and achieve the proposed technical performance. Also, the term "couple" is intended to mean either an indirect or direct electrical connection. Accordingly, if one device is coupled to another device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.

[0027] FIG. 1 is a diagram of a mobile electronic device 100 according to an embodiment of the invention. For example, the mobile electronic device 100 may be a smartphone, a tablet computer, or a notebook computer. As shown in FIG. 1, examples of the mobile electronic device 100 include a connector 110, an audio generator 120, a biological signal processor 130, a switch element 140, and a controller 150. The connector 110 may be selectively coupled to an external device 170. For example, the controller 110 may be an audio generator 120 configured to generate and output an audio
The biological signal processor 130 is configured to receive and process an electrical biological signal. The switch element 140 may be an SPDT (Single Port Double Throw) switch. The switch element 140 has a first terminal and a second terminal. The first terminal of the switch element 140 is coupled to the connector 110, and the second terminal of the switch element 140 is selectively coupled to either the audio generator 120 or the electrical biological signal processor 130 according to a control signal SC. The controller 150 may be a control circuit, and it may be integrated with the audio generator 120 so as to form a single control chip. The controller 150 is coupled to the audio generator 120 and the biological signal processor 130, and is configured to generate the control signal SC for controlling the switch element 140. For example, the controller 150 may include any custom-made or commercially available processor, a central processing unit (CPU) or an auxiliary processor among several processors associated with the mobile electronic device 100, a semiconductor based microprocessor (in the form of a microchip), a macro-processor, one or more application-specific integrated circuits (ASICs), a plurality of suitably configured digital logic gates, and other well-known electrical configurations comprising discrete elements both individually and in various combinations to coordinate the overall operation of the computing system.

In some embodiments, when the external device 170 is coupled to the connector 110, the switch element 140 can initially couple the connector 110 to the biological signal processor 130. Then, the controller 150 can maintain or change the switching operation of the switch element 140 according to information from the external device 170. For example, the aforementioned information may include the type of the external device 170, or signals output from the external device 170. The following embodiments describe the detailed operation of the mobile electronic device 100. It should be noted these embodiments and figures are just exemplary, rather than the restricted limitations of the invention.

FIG. 2 is a diagram of the mobile electronic device 100 coupled to an external earphone 190 according to an embodiment of the invention. In the embodiment of FIG. 2, the aforementioned external device 170 is an external earphone 190, and the external earphone 190 is coupled to the connector 110 of the mobile electronic device 100. The external earphone 190 includes an earphone plug 310, one or more connection lines 320, and one or more sub-electrodes 330. The connection lines 320 are configured to respectively couple the sub-electrodes 330 to the earphone plug 310. For example, each of the sub-electrodes 330 may be a wet electrode with gel. The sub-electrodes 330 may be put on a human body (e.g., the user’s chest) and be used to retrieve biological information therefrom. The retrieved biological information from the sub-electrodes 330 may be converted into the first electrical biological signal SB1, and the first electrical biological signal SB1 may be transmitted through the connector 110 and the switch element 140 to the biological signal processor 130. Since the external electrode 380 directly touches the human body and retrieves the biological information with little distortion, it can significantly increase the accuracy and sensitivity of the electrical biological signal measurement and process.

FIG. 3 is a perspective view of an external electrode 380 according to an embodiment of the invention. In the embodiment of FIG. 3, the aforementioned external sensor 180 is an external electrode 380. The external electrode 380 includes an earphone plug 310, one or more connection lines 320, and one or more sub-electrodes 330. The connection lines 320 are configured to respectively couple the sub-electrodes 330 to the earphone plug 310. For example, each of the sub-electrodes 330 may be a wet electrode with gel. The sub-electrodes 330 may be put on a human body (e.g., the user’s chest) and be used to retrieve biological information therefrom. The retrieved biological information from the sub-electrodes 330 may be converted into the first electrical biological signal SB1, and the first electrical biological signal SB1 may be transmitted through the connector 110 and the switch element 140 to the biological signal processor 130. Since the external electrode 380 directly touches the human body and retrieves the biological information with little distortion, it can significantly increase the accuracy and sensitivity of the electrical biological signal measurement and process.

FIG. 4 is a diagram of the mobile electronic device 100 coupled to an external earphone 190 according to an embodiment of the invention. In the embodiment of FIG. 4, the aforementioned external device 170 is an external earphone 190, and the external earphone 190 is coupled to the connector 110 of the mobile electronic device 100. In the situation, no electrical biological signal is transmitted to the connector 110. If the connector 110 does not receive any electrical biological signal from the external earphone 190, the switch element 140 will change its switching operation and couple the connector 110 to the audio generator 120, instead of the electrical signal processor 130. Then, the audio generator 120 may output an audio signal SA, and the audio signal SA may be transmitted through the switch element 140 and the connector 110 to the external earphone 190.

FIG. 5 is a diagram of a mobile electronic device 500 according to an embodiment of the invention. FIG. 5 is similar to FIG. 1. In the embodiment of FIG. 5, the mobile electronic device 500 further includes at least two sensors 561 and 562, and a housing 570. The sensors 561 and 562 are embedded in the housing 570. For example, the sensors 561 and 562 may be made of a conductive material, and the housing 570 may be made of a nonconductive material. The sensors 561 and 562 are
coupled to the biological signal processor 130. If no external device is coupled to the connector 110 or if the connector 110 does not receive any electrical biological signal from the external device 170 (e.g., the external device 170 may be the external earphone 190), the biological signal processor 130 will try to receive and process a second electrical biological signal SB2 from the sensors 561 and 562. Such a design provides an alternative sensing path, by which the mobile electronic device 500 can retrieve biological information quickly and easily without using any external sensor. In some embodiments, the biological signal processor 130 has two input terminals, and it can selectively receive the first electrical biological signal SB1 from the external device 170, or the second electrical biological signal SB2 from the sensors 561 and 562. In alternative embodiments, the biological signal processor 130 has one input terminal, and an auxiliary switch element (not shown) is added and used to selectively transmit either the first electrical biological signal SB1 from the external device 170, or the second electrical biological signal SB2 from the sensors 561 and 562, to the biological signal processor 130. The auxiliary switch element may be controlled by the controller 150. It should be noted that the mobile electronic device 500 may include three or more sensors in other embodiments although there are only two sensors 561 and 562 displayed in FIG. 5.

[0034] FIG. 7 is a flowchart of an operation method for operating the mobile electronic device 500 according to an embodiment of the invention. FIG. 7 is a flowchart of an operation method for operating the mobile electronic device 500 according to an embodiment of the invention. Please refer to FIG. 5 and FIG. 7 together. To begin, in step S710, the controller 150 checks whether the external device 190 is coupled to the connector 110. If not, in step S720, the biological signal processor 130 will try to receive and process the second electrical biological signal SB2 from the sensors 561 and 562, and then the procedure will end. If so, in step S730, the switch element 140 will initially couple the connector 110 to the biological signal processor 130. In step S740, the controller 150 checks whether the connector 110 receives the first electrical biological signal SB1 from the external device 190. If so, in step S750, the biological signal processor 130 will process the first electrical biological signal SB1, and then the procedure will end. If not, in step S760, the switch element 140 will couple the connector 110 to the audio generator 120, instead of the biological signal processor 130. Next, the procedure may go back to step S720. The biological signal processor 130 will try to receive and process the second electrical biological signal SB2 from the sensors 561 and 562, and then the procedure will end. In other embodiments, the operation method of FIG. 7 can be applied to the embodiments of FIGS. 1 to 6 with appropriate adjustments. For example, if the operation method of FIG. 7 is applied to the mobile electronic device 100 of FIG. 1 (the sensors 561 and 562 are removed), only steps S730, S740, S750, and S760 may be performed.

[0035] FIG. 8 is a flowchart of a control method according to an embodiment of the invention. To begin, in step S810, a mobile electronic device is provided. The mobile electronic device includes a connector, an audio generator, a biological signal processor, a switch element, and a controller. The controller is coupled to the audio generator and the biological signal processor. In step S820, a control signal is generated by the controller. Finally, in step S830, the connector is coupled to either the audio generator or the biological signal processor by the switch element according to the control signal. It should be noted that these steps may not be performed in order, and every feature of the embodiments of FIGS. 1 to 7 may be applied to the control method of FIG. 8.

[0036] The invention proposes a mobile electronic device and a control method thereof. Because the mobile electronic device selectively uses an external sensor, it can quickly and precisely retrieve biological information from a user. The external sensor can be coupled to a built-in connector of the mobile electronic device, such as an earphone socket, so that no extra cost is required. An electrical biological signal from the external sensor may be further processed and analyzed by a biological signal processor of the mobile electronic device. Therefore, it becomes more convenient for the user to continuously and accurately monitor his/her state of health using the proposed mobile electronic device and control method.

[0037] Note that the above voltages, currents, resistances, inductances, capacitances and other element parameters are not limitations of the invention. A designer can adjust these parameters according to different requirements. The mobile electronic device and control method of the invention are not limited to the configurations of FIGS. 1-8. The invention may merely include any one or more features of any one or more embodiments of FIGS. 1-8. In other words, not all of the features displayed in the figures should be implemented in the mobile electronic device and control method of the invention.

[0038] Use of ordinal terms such as "first", "second", "third", etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used
merely as labels to distinguish one claim element having a certain name from another element having the same name (but for use of the ordinal term) to distinguish the claim elements.

While the invention has been described by way of example and in terms of the preferred embodiments, it should be understood that the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims

1. A mobile electronic device, comprising:
 a connector (110) configured to be coupled to an external sensor (180) for collecting an electrical biological signal indicating biological or physiologic information from a user's body;
 an audio generator (120);
 a biological signal processor (130) configured for processing the electrical biological signal;
 a switch element (140), having a first terminal and a second terminal, wherein the first terminal of the switch element is coupled to the connector (110), and the second terminal of the switch element is selectively coupled to either the audio generator (120) or the biological signal processor (130) according to a control signal; and
 a controller (150), coupled to the audio generator (120) and the biological signal processor (130), and generating the control signal for controlling a switching operation of the switch element (140).

2. The mobile electronic device as claimed in claim 1, wherein when an external device (170) is coupled to the connector (110), the switch element (140) initially couples the connector (110) to the biological signal processor (130).

3. The mobile electronic device as claimed in claim 1 or 2, wherein the controller is configured to control the switching operation of the switch element according to information from the external device.

4. The mobile electronic device as claimed in any of the preceding claims, wherein the external device is an external earphone or an external sensor.

5. The mobile electronic device as claimed in claim 4, wherein the external sensor is an external electrode (380), preferably having one or more sub-electrodes (330) for retrieving the electrical biological signal.

6. The mobile electronic device as claimed in any of the preceding claims, wherein if the connector receives a first electrical biological signal from the external sensor (180), the first electrical biological signal is transmitted through the switch element to the biological signal processor, such that the biological signal processor processes the first electrical biological signal.

7. The mobile electronic device as claimed in any of the preceding claims, wherein if the connector does not receive any electrical biological signal from the external sensor (180), the switch element changes its switching operation and couples the connector to the audio generator, instead of the biological signal processor.

8. The mobile electronic device as claimed in any of the preceding claims, wherein the controller is configured to control the switching operation of the switch element according to information from the external device.

9. The mobile electronic device as claimed in claim 8, wherein the sensors are electrodes.

10. The mobile electronic device as claimed in any of the preceding claims, wherein if no external device is coupled to the connector or if the connector does not receive any electrical biological signal from the external sensor (180), the biological signal processor tries to receive and process a second electrical biological signal from the sensors.

11. A method for collecting an electrical biological signal indicating a biological or physiologic information from a user's body, comprising the steps of:
 providing a mobile electronic device as claimed in any of the preceding claims for collecting the electrical biological signal;
 generating a control signal by the controller; and
 selectively coupling the connector to either the audio generator or the biological signal processor by the switch element according to the control signal.

12. The method as claimed in claim 11, further comprising:
 when an external device is coupled to the connector, initially coupling the connector to the biological signal processor by the switch element, and
 controlling a switching operation of the switch element by the controller according to information from the external device.
13. The method as claimed in claim 11 or 12, further comprising:

if the connector receives a first electrical biological signal from the external device, transmitting the first electrical biological signal through the switch element to the biological signal processor, and processing the first electrical biological signal by the biological signal processor, and/or if the connector does not receive any electrical biological signal from the external device, coupling the connector to the audio generator, instead of the biological signal processor, by the switch element.

14. The method as claimed in any of claims 11 to 13, further comprising:

if no external device is coupled to the connector or if the connector does not receive any electrical biological signal from the external device, trying to receive and process a second electrical biological signal from the sensors by the biological signal processor.

15. Use of a mobile electronic device as claimed in any of the preceding claims or of a method as claimed in any of claims 11 to 14 for collecting an electrical biological signal indicating a biological information from a user’s body and transmitting the electrical biological signal to another electronic device for further processing, wherein the mobile electronic device is a smartphone, a tablet computer, or a notebook computer, and an external electrode (380), preferably having one or more sub-electrodes (330), is connected to the connector of the mobile electronic device for retrieving the electrical biological signal from the user’s body.
FIG. 1
FIG. 2
FIG. 4
Start

Check whether an external device is coupled to a connector

Yes

S730
Initially couple the connector to a biological signal processor

Check whether the connector receives a first biological signal from the external device

Yes

S750
Process the first biological signal

End

No

S710

S720
Try to receive and process a second biological signal from sensors

S740

No

S760
Couple the connector to an audio generator, instead of the biological signal processor

FIG. 7
Provide a mobile device, wherein the mobile device includes a connector, an audio generator, a biological signal processor, a switch element, and a controller, and wherein the controller is coupled to the audio generator and the biological signal processor

Generate a control signal by the controller

Couple the connector to either the audio generator or the biological signal processor by the switch element according to the control signal

FIG. 8
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
</table>

The present search report has been drawn up for all claims

Place of search: The Hague
Date of completion of the search: 12 January 2018
Examiner: Lommen, André

CATEGORY OF CITED DOCUMENTS
X: particularly relevant if taken alone
Y: particularly relevant if combined with another document of the same category
A: technological background
O: non-written disclosure
P: intermediate document
T: theory or principle underlying the invention
E: earlier patent document, but published on, or after the filing date
D: document cited in the application
L: document cited for other reasons
G: member of the same patent family, corresponding document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

12-01-2018

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2016029633 A1</td>
<td>03-03-2016</td>
<td>CN 104202691 A</td>
<td>10-12-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 3188496 A1</td>
<td>05-07-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2016286297 A1</td>
<td>29-09-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2016029633 A1</td>
<td>03-03-2016</td>
</tr>
<tr>
<td>US 2014368355 A1</td>
<td>18-12-2014</td>
<td>CN 104239260 A</td>
<td>24-12-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2813951 A2</td>
<td>17-12-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201447593 A</td>
<td>16-12-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014368355 A1</td>
<td>18-12-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2873242 A1</td>
<td>21-11-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104427928 A</td>
<td>18-03-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1208331 A1</td>
<td>04-03-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015521064 A</td>
<td>27-07-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20150013801 A</td>
<td>05-02-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014155708 A1</td>
<td>05-06-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013170378 A1</td>
<td>21-11-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2836324 A1</td>
<td>22-11-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103648381 A</td>
<td>19-03-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2709528 A1</td>
<td>26-03-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014516678 A</td>
<td>17-07-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140067976 A</td>
<td>05-06-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014073887 A1</td>
<td>13-03-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012155245 A1</td>
<td>22-11-2012</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 62394287 A [0001]