MULTI-LAYER COMPOSITE ARTICLE INCLUDING POLYURETHANE LAYER AND PC/ABS LAYER

The teachings herein are directed to multi-layered articles, methods for making the multi-layered articles, and polymeric compositions for the multi-layered articles. The multi-layered article includes a substrate layer and a cover layer. The substrate layer is a polymeric composition including a polycarbonate, a styrene containing polymer and wollastonite and the cover layer is made of polyurethane. The substrate forms a durable bond to the cover layer that maintains adhesion even after heat and climate aging.
The teachings herein relate to multi-layered articles including a cover layer (e.g., a polyurethane layer) in direct contact with a substrate layer (e.g., a polycarbonate-containing layer). The substrate layer preferably includes a blend comprising a polycarbonate, an acrylonitrile-butadiene-styrene thermoplastic (preferably a mass ABS), and a filler including wollastonite (preferably acicular wollastonite having an aspect ratio of about 3 or more). The multi-layered articles may be used for interior and/or automotive trim parts and preferably have improved adhesion of the polyurethane cover layer (e.g., polyurethane foam layer, polyurethane lacquer layer) to the substrate layer before and/or after humid climate aging.

Various polymeric compositions including polycarbonate (i.e., PC) and acrylonitrile-butadiene-styrene thermoplastic (i.e., ABS) have been used for automotive interior components and/or automotive exterior components. These PC/ABS containing compositions may be formulated to have performance properties such as high ductility and/or impact resistance, good heat resistance, and dimensional stability required by these applications. In some applications, such as applications requiring durable surface properties (e.g., scratch and mar resistance) and/or specific aesthetic properties, the PC/ABS containing compositions are covered with a polyurethane layer. However, adhesion between the substrate (e.g., PC/ABS containing composition) and the polyurethane layer can easily deteriorate after climate aging requirements for automotive exterior components.

Various articles that include a polyurethane layer and/or a substrate layer including polycarbonate and ABS are described in US Patent Application Publications 2005/0218547A1 (Roche et al., published on October 6, 2005), 2013/0196130A1 (Hufen et al., published on August 1, 2013), 2011/0027575A1 (Drube et al., published on February 3, 2011), and US Patent 6,461,732 B1 (Wittmann et al., issued October 8, 2002), and European Patent Application Publication EP 1736293 A1 (Heinl et al., published December 27, 2006), the contents of which are each incorporated herein by reference in their entirety.

US Patent Application Publication 2013/0196130 A1 describes adhesion of polyurethane to polycarbonate / ABS blend compositions, requiring a polybutylene terephthalate or polyethylene terephthalate to achieve acceptable adhesion.

European Patent Application Publication EP 1736293A1 describes the difficulty of adhering PC / ABS compositions to polycarbonate (see e.g., paragraph 003), and employs polyamide blend (e.g., with ABS) to improve the adhesion.

US Patent 6,461,732 B1 describes compositions that employ AlO(OH) particles (believed to be generally spherical particles having a median particle size of about 40 \( \mu \)m) for adhering to a thick polyurethane foam.

US Patent Application Publication US2011/0027575 A1 describes articles including a polyurethane layer and a substrate layer where the substrate layer is molded using a nitrogen foaming agent to improve the adhesion. The substrate layer includes high concentrations of polycarbonate and either has no filler (see e.g., PCS-2 in Table 1) or consisting substantially of a polycarbonate, an SAN copolymer, and glass fibers (see e.g., PCS-1 in Table 1).

US Patent Application Publication US 2005/0218547 A1 describes a variety of composite parts including a polyurethane layer, but is silent on the need for adhesion after aging (e.g., at elevated temperatures and/or humidity) and having low coefficient of linear thermal expansion.

There continues to exist a need for polymeric compositions (e.g., a blend including PC and ABS) for a substrate having improved (e.g., low) coefficient of linear thermal expansion and/or improved (e.g., high) stiffness. Such polymeric compositions would be particularly advantageous in larger automotive parts. There is also a need for such compositions that also have good durability and/or high impact resistance. There is also a need for composite articles including a substrate layer formed of a polymeric composition (e.g., an PC / ABS containing blend) and durably attached to a polyurethane cover layer. For example, there is a need for such articles in which the adhesion between the layers is strong even after aging (e.g., at elevated temperatures, exposure to light and/or exposure to humidity). Preferred compositions for the substrate layer are substantially or entirely free of polyesters (e.g., substantially or entirely free of polybutylene terephthalate and polyethylene terephthalate) and/or substantially or entirely free of polyamides.

The teachings herein are directed at polymeric composition having good adhesion to polyurethane and/or articles including a substrate including such a polymeric composition adhered to a cover layer of a polyurethane. The polymeric composition preferably has a low coefficient of linear thermal expansion and adheres to the polyurethane even after aging at elevated temperature, humidity and/or exposure to light, and most preferably adheres to the poly-
urethane after climate aging test. Preferred polymeric compositions include a polycarbonate, an acrylonitrile-butadiene-styrene thermoplastic and an acicular filler (e.g., a wollastonite having an aspect ratio of about 3 or more, more preferably from about 8 to 18 weight percent of a wollastonite having an aspect ratio of about 5 or more). Existing PC/ABS formulations having low CLTE either suffer from loss in adhesion of a polyurethane top layer and/or require additional polymers that may affect various performance properties. It is now found that a substrate formed of an ABS in combination with a specified maximum amount of polycarbonate together with a wollastonite filler results in improved adhesion performance (initial adhesion and adhesion after climate ageing) when overmoulded or painted with a polyurethane layer.

One aspect of the teachings is directed at a multi-layer article comprising: a substrate layer including a polymeric composition and a cover layer of a polyurethane bonded directly to the substrate layer. The polymeric composition preferably is a blend comprising: a polycarbonate polymer, one or more styrene-containing copolymers, and a filler including a wollastonite. The amount of polyester in the polymeric composition preferably is less than about 5 weight percent, and more preferably about zero.

This aspect of the invention may be further characterized by one or any combinations of the following features: the polycarbonate is present in an amount from about 20 weigh percent to about 70 weight percent (preferably from about 20 to about 60 weight percent, more preferably from about 30 weight percent to about 59 weight percent, and most preferably from about 35 to about 55 weight percent), based on the total weight of the polymeric composition; the polymeric composition includes an ABS thermoplastic (i.e., an acrylonitrile-butadiene-styrene thermoplastic) including the styrene-containing copolymer and a butadiene containing phase dispersed in the styrene-containing copolymer; the styrene-containing copolymer is a copolymer of acrylonitrile and styrene; the ABS thermoplastic is present in an amount from about 12 weight percent to about 70 weight percent, based on the total weight of the polymeric composition; the styrene-containing copolymer is a random copolymer including (preferably consisting essentially of, or consisting entirely of) acrylonitrile and styrene; the wollastonite is present in an amount from about 3 weight percent to about 35 weight percent (preferably from about 8 weight percent to about 23 weight percent, and most preferably from about 11 weight percent to about 19 weight percent), based on the total weight of the polymeric composition; the weight ratio of the polycarbonate to the ABS thermoplastic is about 70:30 or less (preferably about 68:32 or less, more preferably about 65:35 or less) and/or is about 20:80 or more (preferably about 30:70 or more, and more preferably about 35:65 or more); the weight ratio of the polycarbonate to the ABS is in a range of about 20:80 to 70:30, about 30:70 to 68:32, or about 35:65 to 65:35; the substrate layer has a thickness from about 0.5 mm to about 10 mm; the cover layer has a thickness from about 0.01 mm to about 1.5 mm (in one preferred aspect, from about 0.01 mm to about 0.20 mm; in another preferred aspect, from about 0.5 mm to about 1.5 mm); the polyurethane layer includes a polyurethane lacquer applied directly over a surface of the substrate layer (e.g., directly on the substrate layer, so that the polyurethane lacquer contacts the substrate layer); the multi-layer article is an automotive interior trim part; adhesion between the substrate layer and the base layer is maintained through an automotive interior accelerated lifetime aging test; the multi-layer article is an automotive exterior trim part; the adhesion between the substrate layer and the base layer is maintained through an automotive exterior accelerated lifetime aging test (e.g., a climate aging test, such as BMW GS 94007); the ABS block copolymer is a mass ABS block copolymer; the ABS thermoplastic includes rubber particles having an average size of about 1 μm or less (e.g., from about 0.01 μm to about 1.00 μm); the polycarbonate polymer is characterized by a weight average molecular weight (i.e., Mw) of about 20000 atomic mass units or more (preferably about 22,000 atomic mass units or more); the substrate layer is colored by a pigment or other colorant; the cover layer is substantially clear and/or substantially transparent; the substrate layer includes one or more additives selected from the group consisting of an antioxidant, a process aid, a light stabilizer, a heat stabilizer, a mould release agent and a flow modifier; the polymeric composition optionally includes from about 0.2 to about 7 weight percent of one or more ethylene copolymers, wherein the ethylene copolymer includes a functionalized monomer; or the wollastonite includes a sizing.

Another aspect of the teachings herein is directed at a method for preparing a multi-layer article, such as a multi-layer article according to the teachings herein. The method preferably includes a step of forming a substrate layer (e.g., molding a substrate layer). The method preferably includes a step of forming a cover layer over the substrate layer (e.g., molding a cover layer, spraying a cover layer, coating the substrate layer with a cover layer, applying a cover layer over the substrate layer, or polymerizing and/or crosslinking a cover layer over the substrate layer).

**BRIEF DESCRIPTION OF DRAWINGS**

FIG. 1A is an illustrative cross-sectional view of a composite article 10 including a substrate layer 20 and a cover layer 30. The interface between the substrate layer and the cover layer may be generally planar, such as shown in FIG. 1A.

FIG. 1B is an illustrative cross-sectional view of a composite article 10' including a substrate layer 20' and a cover layer 30'. The interface between the substrate layer and the cover layer may be curved, such as shown in FIG. 1 B.
DETAILED DESCRIPTION

[0015] The explanations and illustrations presented herein are intended to acquaint others skilled in the art with the invention, its principles, and its practical application. Those skilled in the art may adapt and apply the invention in its numerous forms, as may be best suited to the requirements of a particular use. Accordingly, the specific embodiments of the present invention as set forth are not intended as being exhaustive or limiting of the teachings. The scope of the teachings should, therefore, be determined not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for all purposes. Other combinations are also possible as will be gleaned from the following claims, which are also hereby incorporated by reference into this written description.

[0016] The needs for a substrate layer having good adhesion (including durable adhesion) to a cover layer and having one or more characteristics described herein for a substrate layer is achieved using a polymeric composition including a polycarbonate, rubber-modified monovinylidene aromatic thermoplastic, and an acicular filler. Such compositions may preferably provide high stiffness, low coefficient of linear thermal expansion (i.e., CLTE) and retain good adhesion to polyurethane after climate aging. The polymeric composition may be employed in a composite material including a substrate layer that is in direct contact and bonds to a polyurethane cover layer. The polymeric composition of the substrate layer preferably includes a specified amount of a polycarbonate, a rubber modified SAN matrix, and a wollastonite filler.

SUBSTRATE LAYER

[0017] The substrate layer includes, consists essentially of, or consists entirely of a polymeric composition according to the teachings herein. Preferably, some or all of a surface of the substrate layer that contacts a cover layer is formed from the polymeric composition.

Polymeric Composition

[0018] The substrate layer is formed and/or includes a polymeric composition including a plurality of polymers and one or more fillers. The combination of materials is selected so that the substrate layer provides the necessary bulk properties to an article (preferably a large article requiring low coefficient of linear thermal expansion), while maintaining adhesion to a cover layer, even after repeated climate testing.

Polycarbonate

[0019] The polycarbonate preferably is an aromatic polycarbonate. Such aromatic polycarbonates may include or consist essentially of an aromatic polycarbonate described in US Patent Application Publications 2013/0196130 A1 (by Hufen et al., published August 1, 2013, see e.g., paragraphs 0025 through 0053), and 2011/0129631 A1 (Van Nuffel, published June 2, 2011, see e.g., paragraphs 0035 through 0058); and International Patent Application Publication WO2011/107273 (Van Nuffel et al., see e.g., page 5, lines 21 through page 9, line 23), each incorporated herein by reference in its entirety.

[0020] Suitable aromatic polycarbonates according to the teachings herein are known from the literature or can be produced by methods known from the literature (for example, for the production of aromatic polycarbonates, see Schnell, "Chemistry and Physics of Polycarbonates", Interscience Publishers, 1964, as well as U.S. Pat. Nos. 3,028,365; 4,529,791; and 4,677,162; which are hereby incorporated by reference in their entirety.

[0021] The production of aromatic polycarbonates is effected, for example, by the reaction of diphenols with carbonic acid halides, preferably phosgene, and/or with aromatic dicarboxylic acid dihalides, preferably benzenedicarboxylic acid dihalides, by the phase boundary method, optionally with the use of chain terminators, e.g., monophenols, and optionally with the use of trifunctional branching agents or branching agents with a functionality higher than three, for example triphenols or tetraphenols.

[0022] Diphenols for the production of the aromatic polycarbonates and/or aromatic polyester carbonates are preferably those of formula I:
wherein A denotes a single bond, a C$_1$-C$_5$ alkylene, a C$_2$-C$_6$ alkylidene, a C$_5$-C$_6$ cycloalkylidene, -O-, -SO-, -CO-, S, -SO$_2$- or a C$_6$-C$_{12}$ arylene, on to which other aromatic rings, which optionally contain hetero atoms, can be condensed, or a radical of formula II or III

$$
\begin{align*}
\text{B in each case is independently hydrogen, a C$_{1-12}$ alkyl, preferably methyl, or a halogen, preferably chlorine and/or bromine;} \\
x in each case is mutually independently 0, 1, or 2; \\
p is 0 or 1; \\
R^c$ and $R^d$ are mutually independent of each other and are individually selectable for each $X^1$ and are hydrogen or a C$_1$-C$_6$ alkyl, preferably hydrogen, methyl or ethyl; \\
$X^1$ denotes carbon; and \\
m denotes an integer from 4 to 7, preferably 4 or 5, with the proviso that $R^c$ and $R^d$ simultaneously denote an alkyl on at least one $X^1$ atom.
\end{align*}
$$

[0023] The preferred diphenols are hydroquinone, resorcinol, dihydroxybiphenyls, bis(hydroxyphenyl)-C$_1$-C$_5$ alkanes, bis(hydroxyphenyl)-C$_5$-C$_6$ cycloalkanes, bis(hydroxyphenyl)ethers, bis(hydroxyphenyl)sulfoxides, bis(hydroxyphenyl)ketones, bis(hydroxyphenyl)sulfones and alpha, alpha'-bis(hydroxyphenyl)diisopropylbenzenes, as well as derivatives thereof which have brominated and/or chlorinated nuclei.

[0024] Diphenols which are particularly preferred are 4,4'-dihydroxybiphenyl, bisphenol A, 2,4-bis(4-hydroxyphenyl)-2-methylbutane, 1,1-bis(4-hydroxyphenyl)-cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 4,4-dihydroxydiphenyl sulfide and 4,4-dihydroxydiphenyl sulfone, as well as di- and tetrabrominated or chlorinated derivatives thereof, such as 2,2-bis(3-chloro-4-hydroxyphenyl)propane, 2,2-bis(3,5-dichloro-4-hydroxyphenyl)propane or 2,2-bis(3,5-dibromo-4-hydroxyphenyl)propane. 2,2-bis(4-hydroxyphenyl)propane (bisphenol A) is particularly preferred. The diphenols can be used individually or as arbitrary mixtures. The diphenols are known from the literature or can be obtained by methods known from the literature.

[0025] Examples of suitable chain terminators for the production of the aromatic polycarbonates include phenol, p-chlorophenol, p-tert-butylphenol or 2,4,6-tribromophenol, as well as long chain alkylphenols such as 4-(1,3-dimethylbutyl)-phenol or monoalkylphenols or dialkylphenols which contain a total of 8 to 20 C atoms in their alkyl substituents, such as 3,5-di-tert-butyl-phenol, p-iso-octylphenol, p-tert-octylphenol, p-dodecylphenol, 2-(3,5-dimethylheptyl)-phenol and 4-(3,5-dimethylheptyl)-phenol. The amount of chain terminators used is generally between 0.1 mole percent and 10 mole percent with respect to the molar sum of the diphenols used in each case.

[0026] The aromatic polycarbonate preferably has a weight average molecular weights of about 10,000 or more, more preferably about 15,000 or more, even more preferably about 20,000 or more, and most preferably about 22,000 or more. The aromatic polycarbonate preferably has a weight average molecular weight of about 200,000 or less, more preferably about 100,000 or less, and most preferably about 50,000 or less. For example, the weight average molecular...
weight may be from about 10,000 to about 200,000, or from about 20,000 to about 80,000. Unless otherwise indicated, the references to aromatic polycarbonate and/or aromatic polyester carbonate "molecular weight" herein refer to weight average molecular weights (Mw) determined by gel permeation chromatography (GPC) using laser scattering techniques with a bisphenol A polycarbonate standard and is given in units of grams per mole (g/mole).

[0027] The aromatic polycarbonates may be linear or may be branched. Branched polycarbonates may be branched in the known manner, for example by the incorporation of 0.05 to 2.0 mole percent, with respect to the sum of the diphenols used, of trifunctional compounds or of compounds with a functionality higher than three, for example those which contain three or more phenolic groups. Branched polycarbonates suitable for the present invention may be prepared by known techniques, for example several suitable methods are disclosed in U.S. Pat. Nos. 3,028,365; 4,529,791; and 4,677,162; which are hereby incorporated by reference in their entirety.

[0028] Suitable branching agents that may be used are tri- or multi-functional carboxylic acid chlorides, such as trimesic acid trichloride, cyanuric acid trichloride, 3,3’, 4,4’, benzophenonetetracarboxylic acid tetrachloride, 1,4,5,8-naphthalenetetracarboxylic acid tetrachloride or pyromellitic acid tetrachloride for example, in amounts of 0.01 to 1.0 mole percent (with respect to the dicarboxylic acid dichlorides used) or tri- or multi-functional phenols such as phloroglucinol, 4,6-dimethyl-2,4,6-tris(4-hydroxyphenyl)-2-heptene, 4,4-dimethyl-2,4,6-tris(4-hydroxyphenyl)-heptane, 1,3,5-tris(4-hydroxyphenyl)benzene, 1,1,1-tris(4-hydroxyphenyl)ethane, tris(4-hydroxyphenyl)-phenyl-methane, 2,2-bis[4,4-bis(4-hydroxyphenyl)cyclohexyl]-propane, 2,4-bis[1-(4-hydroxyphenyl)-1-methylethyl]phenol, tetrakis(4-hydroxyphenyl)-methylene, 2,6-bis[2-hydroxy-5-methyl-benzyl]-4-methyl-phenol, 2-(4-hydroxyphenyl)-2-(2,4-dihydroxyphenyl)propane, or tetramis[4-[1-(4-hydroxyphenyl)-1-methylethyl]-phenoxy]-methylene in amounts of 0.01 to 1.0 mole percent with respect to the diphenols used. Phenolic branching agents can be placed in the reaction vessel with the diphenols. Acid chloride branching agents can be introduced together with the acid chlorides.

[0029] Both homopolycarbonates and copolycarbonates are suitable. For the production of copolycarbonates according to component (i) in accordance with the invention, 1 to 25 parts by weight, preferably 2.5 to 25 parts by weight (with respect to the total amount of diphenols to be used) of polydiorganosiloxanes comprising hydroxy-aryloxy terminal groups can also be used. These are known (see, for example, U.S. Pat. No. 3,419,634) or can be produced by methods known from the literature.

[0030] Apart from bisphenol A homopolycarbonates, the preferred polycarbonates are the copolycarbonates of bisphenol A with up to 15 mole percent, with respect to the molar sums of the diphenols, of other diphenols which are cited as preferred or particularly preferred, in particular 2,2-bis(3,5-dibromo-4-hydroxyphenyl)-propane.

[0031] The relative solution viscosity (ηsp) of the aromatic polycarbonates preferably is within the range of 1.18 to 1.4, preferably 1.22 to 1.3 (as measured on solutions of 0.5 g of polycarbonate and polyester carbonate, respectively, in 100 mL of methylene chloride at 25° C.).

[0032] Monovinylidene aromatic copolymer (e.g., styrene-containing copolymer) / Rubber modified monovinylidene aromatic thermoplastic (e.g. ABS thermoplastic)

[0033] The polymeric composition for the substrate generally includes one or more monovinylidene aromatic copolymers. The monovinylidene aromatic copolymer may be any such copolymer described herein, and preferably includes a first monomer of styrene and a second monomer of acrylonitrile. Preferably some or all of the monovinylidene aromatic copolymer is included in one or more rubber-modified monovinylidene aromatic thermoplastics. The substrate composition includes one or more rubber modified monovinylidene aromatic thermoplastics.

[0034] Examples of rubber modified monovinylidene aromatic thermoplastics include those described in US Patent Application Publications 2011/0040035 A1 (Shields et al., published February 17, 2011, see e.g., paragraphs 0048 to 0087), US 2007/106028 A1 (Maes et al., published on May 10, 2007, see for example paragraphs 0010 to 0064), and International Patent Application Publication WO 2011/107273 (see e.g., page 10, line 5 to page 14, line 30, Van Nuffel et al., published on September 9, 2011 and claiming priority to US 61/309,634), each incorporated herein by reference in its entirety.

[0035] Suitable rubber-modified monovinylidene aromatic thermoplastics employed in the polymeric composition comprise a monovinylidene aromatic and ethylenically unsaturated nitrile copolymer in a matrix or continuous phase and rubber particles dispersed in the matrix. The matrix or continuous phase of the present invention is a copolymer comprising polymerized therein a monovinylidene aromatic monomer and an ethylenically unsaturated nitrile monomer or a copolymer comprising polymerized therein a monovinylidene aromatic monomer, an ethylenically unsaturated nitrile monomer and one or more vinyl monomer that can be copolymerized with them. Copolymer, as used herein, is defined as a polymer having two or more monomers interpolymerized. These compositions are generally known as SAN-type or SAN since poly (styrene-acrylonitrile) is the most common example.

[0036] Various techniques suitable for producing rubber-modified monovinylidene aromatic thermoplastic are well known in the art. Examples of these known polymerization processes include bulk, mass-solution, or mass-suspension polymerization, generally known as mass polymerization processes. For a good discussion of how to make rubber-modified monovinylidene aromatic thermoplastic see "Modern Styrenic Polymers" of Series In Polymer Science (Wiley), Ed. John Scheirs and Duane Priddy, ISBN 0 471 497525. Also, for example, U.S. Pat. Nos. 3,660,535; 3,243,481; and
In general, continuous mass polymerization techniques are advantageously employed in preparing the rubber-modified monovinylidene aromatic thermoplastic of the present invention. Preferably, the polymerization is conducted in one or more substantially linear, stratified flow or so-called "plug-flow" type reactor such as described in U.S. Pat. No. 2,727,884, sometimes referred to as multizone plug flow bulk process, which may or may not comprise recirculation of a portion of the partially polymerized product or, alternatively, in a stirred tank reactor wherein the contents of the reactor are essentially uniform throughout, which stirred tank reactor is generally employed in combination with one or more plug-flow type reactors. Alternatively, a parallel reactor set-up, as taught in EP 412801, may also be suitable for preparing the rubber-modified monovinylidene aromatic thermoplastic of the present invention.

Multizone plug flow bulk processes include a series of polymerization vessels (or towers), consecutively connected to each other, providing multiple reaction zones. A rubber, for example butadiene rubber (stereospecific) is dissolved in a mixture of monovinylidene aromatic comonomers, for example styrene (ST) and acrylonitrile (AN), and the rubber solution is then fed into the reaction system. The polymerization can be thermally or chemically initiated, and viscosity of the reaction mixture will gradually increase. During the reaction course, the rubber will be grafted with ST/AN polymer (grafted SAN) and, in the rubber solution, bulk SAN (referred to also as free SAN or matrix SAN or non-grafted SAN) is also being formed. At a point where the free SAN (that is, non-grafted SAN) cannot be "held" in one single, continuous "phase" of rubber solution, it begins to form domains of SAN phase. The polymerization mixture now is a two-phase system. As polymerization proceeds, more and more free SAN is formed, and the rubber phase starts to disperse itself as particles (rubber domains) in the matrix of the ever-growing free SAN. Eventually, the free SAN becomes a continuous phase. This is actually a formation of an oil-in-oil emulsion system. Some matrix SAN is occluded inside the rubber particles as well. This stage is usually given a name of phase inversion. Pre-phase inversion means that the rubber is a continuous phase and that no rubber particles are formed, and post phase inversion means that substantially all of the rubber phase has converted to rubber particles and there is a continuous SAN phase. Following the phase inversion, more matrix SAN (free SAN) is formed and, possibly, the rubber particles gain more grafted SAN.

Monovinylidene aromatic monomers include but are not limited to those described in U.S. Pat. Nos. 4,666,987; 4,572,819 and 4,585,825, which are herein incorporated by reference. Preferably, the monomer is of the formula:

\[
\text{Ar} - \text{C} \equiv \text{CH}_2
\]

wherein R' is hydrogen or methyl, Ar is an aromatic ring structure having from 1 to 3 aromatic rings with or without alkyl, halo, or haloalkyl substitution, wherein any alkyl group contains 1 to 6 carbon atoms and haloalkyl refers to a halo substituted alkyl group. Preferably, Ar is phenyl or alkylphenyl, wherein alkylphenyl refers to an alkyl substituted phenyl group, with phenyl being most preferred. Preferred monovinylidene aromatic monomers include: styrene, alphamethylstyrene, all isomers of vinyl toluene, especially para-vinyltoluene, all isomers of ethyl styrene, propyl styrene, vinyl biphenyl, vinyl naphthalene, vinyl anthracene and the like, and mixtures thereof.

Typically, such monovinylidene aromatic monomer will constitute from an amount equal to or greater than about 50 weight percent, preferably from an amount equal to or greater than about 60 weight percent, more preferably from an amount equal to or greater than about 65 weight percent, and most preferably from an amount equal to or greater than about 70 weight percent based on the total weight of the matrix copolymer. Typically, such monovinylidene aromatic monomer will constitute less than or equal to about 95 weight percent, preferably less than or equal to about 85 weight percent, more preferably less than or equal to about 80 weight percent, and most preferably less than or equal to about 75 weight percent based on the total weight of the matrix copolymer.

Unsaturated nitriles include, but are not limited to, acrylonitrile, methacrylonitrile, ethacrylonitrile, fumaronitrile and mixtures thereof. The unsaturated nitrile is generally employed in the matrix copolymer in an amount equal to or greater than about 5 weight percent, preferably in an amount equal to or greater than about 10 weight percent, more preferably in an amount equal to or greater than about 15 weight percent, and most preferably in an amount equal to or greater than about 20 weight percent based on the total weight of the matrix copolymer. The unsaturated nitrile is generally employed in the matrix copolymer in an amount less than or equal to about 50 weight percent, preferably equal to or less than about 45 weight percent, more preferably less than or equal to about 40 weight percent, and most preferably less than or equal to about 35 weight percent based on the total weight of the matrix copolymer.

Other vinyl monomers may also be included in polymerized form in the matrix copolymer, including conjugated 1,3 dienes (for example, butadiene, isoprene, etc.); alpha- or beta-unsaturated monobasic acids and derivatives thereof (for example, acrylic acid, methacrylic acid, etc., and the corresponding esters thereof such as methylacrylate, ethylacrylate, n-butyl acrylate, iso-butyl acrylate, methyl methacrylate, etc.); vinyl halides such as vinyl chloride, vinyl bromide,
etc.; vinylidene chloride, vinylidene bromide, etc.; vinyl esters such as vinyl acetate, vinyl propionate, etc.; ethylenically unsaturated dicarboxylic acids and anhydrides and derivatives thereof, such as maleic acid, fumaric acid, maleic anhydride, dialkyl maleates or fumarates, such as dimethyl maleate, diethyl maleate, dibutyl maleate, the corresponding fumarates, N-phenyl maleimide (NPMI), etc.; and the like. These additional comonomers can be incorporated in to the composition in several ways including, interpolymerization with the monovinylidene aromatic and ethylenically unsaturated nitrile matrix copolymer and/or polymerization into polymeric components which can be combined, for example, blended in to the matrix. If present, the amount of such comonomers will generally be equal to or less than about 20 weight percent, more preferably equal to or less than about 10 weight percent and most preferably less than or equal to about 5 weight percent based on the total weight of the matrix copolymer.  

[0043] The matrix copolymer is present in an amount equal to or greater than about 60 weight percent, preferably equal to or greater than about 70 weight percent, more preferably equal to or greater than about 75 weight percent, even more preferably equal to or greater than about 80 weight percent and most preferably equal to or greater than about 82 weight percent based on the weight of the rubber-modified monovinylidene aromatic thermoplastic. The matrix copolymer is present in an amount equal to or less than about 90.5 weight percent, preferably equal to or less than about 90 weight percent, more preferably equal to or less than about 89 weight percent, and most preferably equal to or less than about 88 weight percent based on the weight of the rubber-modified monovinylidene aromatic thermoplastic.  

[0044] Various rubbers are suitable for use in the present invention. The rubbers include diene rubbers, ethylene propylene rubbers, ethylene propylene diene (EPDM) rubbers, ethylene copolymer rubbers, acrylate rubbers, polyisoprene rubbers, halogen containing rubbers, and mixtures thereof. Also suitable are interpolymers of rubber-forming monomers with other copolymerizable monomers.  

[0045] Preferred rubbers are diene rubbers such as polybutadiene, polyisoprene, polyisoprene, polychloroprene, and the like or mixtures of diene rubbers, that is, any rubbery polymers of one or more conjugated 1,3-dienes, with 1,3-butadiene being especially preferred. Such rubbers include homopolymers and copolymers of 1,3-butadiene with one or more copolymerizable monomers, such as monovinylidene aromatic monomers as described hereinabove, styrene being preferred. Preferred copolymers of 1,3-butadiene are block or tapered block rubbers of at least about 30 weight percent 1,3-butadiene rubber, more preferably from about 50 weight percent, even more preferably from about 70 weight percent, and most preferably from about 90 weight percent 1,3-butadiene rubber and up to about 70 weight percent monovinylidene aromatic monomer, more preferably up to about 50 weight percent, even more preferably up to about 30 weight percent, and most preferably up to about 10 weight percent monovinylidene aromatic monomer, weights based on the weight of the 1,3-butadiene copolymer.  

### Filler  

[0046] The polymeric composition preferably includes one or more acicular fillers. Preferred fillers are elongated particles having an aspect ratio (e.g., ratio of length to diameter) of about 2 or more, more preferably about 3 or more, and even more preferably about 4 or more, and most preferably about 6 or more. The aspect ratio of the filler may be about 1000 or less, about 40 or less, about 30 or less, or about 20 or less, or about 15 or less. A particularly preferred acicular filler is an acicular wollastonite. Wollastonite is a calcium metasilicate (i.e., CaSiO₃). Preferred wollastonites consist substantially of CaSiO₃. The amount of any impurity (e.g., the total amount of oxides other those of calcium and silicon) preferably is about 10 weight percent or less, more preferably about 7 weight percent or less, even more preferably about 5 weight percent or less, and most preferably about 3 weight percent or less.  

[0047] The amount of any Mg in the filler preferably is about 1 weight percent or less, more preferably about 0.5 weight percent or less, and most preferably about 0.2 weight percent or less, based on the total weight of the filler.  

[0048] The filler may be treated or untreated. For example, the filler may include a sizing for improving the adhesion of the filler to one or more of the polymers of the thermoplastic composition. Preferred wollastonites include a sizing.  

[0049] The acicular filler preferably has a hardness of about 3 Mohs or more, more preferably about 3.5 Mohs or more, and most preferably about 4 Mohs or more. The filler preferably has a hardness of about 8 Mohs or less, more preferably about 6 Mohs or less, and most preferably about 5 Mohs or less. The acicular filler (e.g., the wollastonite may have one or any combination of the following features: a specific gravity from about 2.7 to about 3.1, more preferably about 2.90 g/cm³; a median length of about 25 μm to about 150 μm, (e.g., about 40 μm to about 75 μm, preferably about 50 μm or about 63 μm); a median diameter of about 1 to about 20 μm, preferably about 2 to about 10 μm, and more preferably about 4 μm to about 8 μm); a percentage of particles having a diameter from about 2.0 μm to about 20 μm of about 50% or more (e.g., about 70% or more, or about 80% to about 100%); a specific surface area from about 0.5 m²/g to about 10 m²/g (e.g., about 2.9 m²/g, as measured by BET); a pH from about 7 to about 13 (e.g., about 9.9) in a 10% slurry; or any combination thereof. Preferred wollastonites Include (e.g., about 80% or more, or about 90% or more, or about 95% or more) calcium metasilicate (i.e., CaSiO₃).  

[0050] Examples of fillers which may be employed include NYGLOS® 4W and NYGLOS® 4W 10992 wollastonite commercially available from NYCO MINERALS. NYGLOS® 4W has a specific gravity of about 2.90 g/cm³; a median
length of about 63 µm; a median diameter of about 4 µm to about 8 µm; a percentage of particles having a diameter from about 2.0 µm to about 20 µm of about 80% to about 100%; a specific surface area of about 2.9 m²/g, as measured by BET; a pH of about 9.9 in a 10% slurry; and a hardness (Mohs) of about 4.5. These wollastonites include about 95% or more calcium metasilicate (i.e., CaSiO₃). NYGLOS® 4W has an aspect ratio of about 11:1. The amount of Mg is about 0.2 weight percent or less, based on the total weight of the wollastonite.

[0051] The polymeric composition includes a plurality of polymers. As discussed hereinbefore, the plurality of polymers includes the polycarbonate, the acrylonitrile-butadiene-styrene thermoplastic (e.g., the mass ABS), and optionally acrylonitrile-styrene copolymer. Although the polymeric composition may include additional polymers, these are typically present as minor components in the polymeric composition. Preferably, the total amount of the polycarbonate, the acrylonitrile-butadiene-styrene thermoplastic and any acrylonitrile-styrene copolymer is about 70 weight percent or more, more preferably about 80 weight percent or more, even more preferably about 90 weight percent or more, and most preferably about 95 weight percent or more, based on the total weight of the plurality of polymers in the polymeric composition.

[0052] The polycarbonate (e.g., the aromatic polycarbonate) preferably is present in an amount of about 20 weight percent or more, more preferably about 25 weight percent or more, even more preferably about 30 weight percent or more, and most preferably about 35 weight percent or more, based on the total weight of the polymeric composition. The polycarbonate preferably is present in an amount of about 70 weight percent or less, more preferably about 60 weight percent or less, even more preferably about 59 weight percent or less, even more preferably about 58 weight percent or less, and most preferably about 57 weight percent or less, based on the total weight of the polymeric composition. For example, the amount of the polycarbonate may be from about 20 weight percent to about 70 weight percent, from about 20 to about 60 weight percent, from about 30 weight percent to about 59 weight percent, from about 20 to about 50 weight percent, or from about 35 to about 55 weight percent, based on the total weight of the polymeric composition.

[0053] The amount of the rubber-modified monovinylidene aromatic thermoplastic (e.g., the amount of the ABS thermoplastic) may be about 12 weight percent or more, preferably about 15 weight percent or more, and most preferably about 20 weight percent or more, based on the total weight of the polymeric composition. In some aspects, it may be advantageous to employ about 30 weight percent or more or about 45 weight percent or more of the rubber-modified monovinylidene aromatic thermoplastic, based on the total weight of the polymeric composition. The amount of the rubber-modified monovinylidene aromatic thermoplastic may be about 70 weight percent or less, preferably about 65 weight percent or less, and most preferably about 60 weight percent or less, based on the total weight of the thermoplastic composition.

[0054] If employed, any additional styrene-acrylonitrile copolymer (i.e., other than the copolymer in the rubber-modified monovinylidene aromatic thermoplastic) preferably is about 25 weight percent or less, more preferably about 20 weight percent or less, and most preferably about 15 weight percent or less, based on the total weight of the thermoplastic composition. Such additional styrene-acrylonitrile copolymer may be present in an amount of about 0 weight percent or more. The ratio of the weight of such additional styrene-acrylonitrile copolymer to the weight of the rubber-modified monovinylidene aromatic thermoplastic preferably is about 1.0 or less, more preferably about 0.8 or less, even more preferably about 0.6 or less, and most preferably about 0.45 or less.

[0055] In one aspect of the invention, some or all of the rubber-modified monovinylidene aromatic thermoplastic may be replaced with the combination of i) a styrene-acrylonitrile copolymer (such as described herein), and ii) a rubber modifier. Preferably, the amount of the rubber modifier is from about 2 weight percent to about 30 weight percent, more preferably from about 3 weight percent to about 20 weight percent, and most preferably from about 3 weight percent to about 15 weight percent, based on the total weight of the styrene-acrylonitrile copolymer and the rubber modifier. The rubber modifier may include any polymer having a glass transition temperature of about 0 °C or less. The rubber modifier preferably imparts ductility to the styrene-acrylonitrile copolymer. A particularly preferred rubber modifier includes butadiene monomer, styrene monomer, or both. The rubber modifier may include a sufficient amount of styrene for improving the compatibility of the rubber modifier with the styrene-acrylonitrile copolymer. The rubber modifier preferably is a copolymer including butadiene and styrene. The rubber modifier may be a core shell polymer. For example, the rubber modifier may include a core including or consisting essentially of a polymer including butadiene and styrene. The rubber modifier may have a shell including an acrylate monomer. The rubber modifier may have a shell including polymethyl methacrylate. The rubber modifier may be a core shell MBS modifier including a poly (butadiene/styrene) core and a polymethyl methacrylate shell. Examples of core-shell impact modifiers that may be employed as the rubber modifier include PARALOID™ impact modifiers commercially available from THE DOW CHEMICAL COMPANY. The rubber modifier may be provided as an emulsion ABS and/or a grafted rubber concentrate. The amount of elastomer in the grafted rubber concentrates preferably is about 20 weight percent or more, more preferably about 30 weight percent or more, even more preferably about 45 weight percent or more, and most preferably about 55 weight percent or more, based on the total weight of the grafted rubber concentrate. The grafted rubber concentrate may be grafted on an SAN copolymer (e.g., produced by an emulsion process). The grafted rubber concentrate may consist essentially of (i.e.,
about 95 weight percent or more), or entirely of one or more elastomers (e.g., butadiene) and one or more styrene containing polymers (e.g., SAN). The grafted rubber concentrate may be added separately to the polymeric composition, e.g., with additional SAN. The grafted rubber concentrate may be mixed with additional styrene containing polymer (e.g., SAN) prior to adding to the polymeric composition.

The amount of the filler (e.g., the amount of the wollastonite) preferably is about 3 weight percent or more, more preferably about 5 weight percent or more, even more preferably about 8 weight percent or more and most preferably about 11 weight percent or more, based on the total weight of the polymeric composition. The amount of the filler (e.g., the amount of the wollastonite) preferably is about 50 weight percent or less, more preferably about 35 weight percent or less, even more preferably about 23 weight percent or less, even more preferably about 19 weight percent or less, and most preferably about 18 weight percent or less, based on the total weight of the polymeric composition. For example, the wollastonite may be present in an amount from about 3 weight percent to about 35 weight percent, about 8 weight percent to about 23 weight percent, about 11 weight percent to about 19 weight percent, or about 10 weight percent to about 30 weight percent, based on the total weight of the polymeric composition.

The weight ratio of the concentration of the polycarbonate to the concentration of the rubber-modified monovinylidene aromatic thermoplastic (e.g., the ABS thermoplastic) preferably is about 70:30 or less, more preferably about 68:32 or less, and even more preferably about 65:35 or less. The weight ratio of the concentration of the polycarbonate to the concentration of the rubber-modified monovinylidene aromatic thermoplastic (e.g., the ABS thermoplastic) preferably is about 20:80 or more, more preferably about 30:70 or more, and most preferably about 35:65 or more. For example, the weight ratio may range from about 20:80 to 70:30, about 30:70 to 68:32, or about 35:65 to 60:40.

The total amount of rubber-modified monovinylidene aromatic thermoplastic, polycarbonate and any additional styrene-acrylonitrile copolymer in the polymeric composition preferably is about 70 weight percent or more, more preferably about 80 weight percent or more, even more preferably about 90 weight percent or more, and most preferably about 95 weight percent or more, based on the total weight of the polymeric composition. The total amount of rubber-modified monovinylidene aromatic thermoplastic, polycarbonate and any additional styrene-acrylonitrile copolymer in the polymeric composition may be about 100 weight percent or less, based on the total weight of polymers in the polymeric composition. Preferably, the total amount of rubber-modified monovinylidene aromatic thermoplastic, polycarbonate and any additional styrene-acrylonitrile copolymer in the polymeric composition is about 50 weight percent or more, more preferably about 65 weight percent or more, more preferably about 77 weight percent or more, and most preferably about 85 weight percent or more, and most preferably about 82 weight percent or more, based on the total weight of the polymeric composition. Preferably, the total amount of rubber-modified monovinylidene aromatic thermoplastic, polycarbonate and any additional styrene-acrylonitrile copolymer in the polymeric composition is about 97 weight percent or less, more preferably about 95 weight percent or less, even more preferably about 92 weight percent or less, and most preferably about 89 weight percent or less, based on the total weight of the polymeric composition.

The total amount of the wollastonite, the rubber-modified monovinylidene aromatic thermoplastic, the polycarbonate and any additional styrene-acrylonitrile copolymer in the polymeric composition preferably is about 80 weight percent or more, more preferably about 90 weight percent or more, even more preferably about 95 weight percent or more, and most preferably about 97 weight percent or more, based on the total weight of the polymeric composition. The total amount of the wollastonite, the rubber-modified monovinylidene aromatic thermoplastic, the polycarbonate and any additional styrene-acrylonitrile copolymer in the polymeric composition may be about 100 weight percent or less, based on the total weight of the polymeric composition.

The polymeric composition may optionally include one or more additional polymers, such as described herein. Examples of additional polymers include olefinic copolymers (e.g., including 50 weight percent or more ethylene and/or propylene), polyesters, and polyamides.

Olefinic copolymer

Olefinic copolymers that may be employed include polyolefin copolymers having one or more functional group including an oxygen atom and/or a nitrogen atom. Preferred olefinic copolymers include one or more alpha-olefins in an amount of about 50 weight or more of one, more preferably about 60 weight or more, and most preferably about 65 weight percent or more. The olefinic copolymer preferably includes one or more comonomers having at least one oxygen atom. Preferred comonomers include acrylates, acetates. For example the olefinic copolymer may be an ethylene-acrylate copolymer. A particularly preferred olefinic copolymer is Amplify AE ethylene acrylate copolymer. If employed, the amount of the olefinic copolymer preferably is about 25 weight percent or less, more preferably about 20 weight percent or less, even more preferably about 12 weight percent or less, and most preferably about 8 weight percent or less, based on the total weight of the polymeric composition. The amount of the olefinic copolymer may be about 0 weight percent or more.
The polymeric composition (e.g., of the substrate layer) may include one or more polyesters. Examples of polyesters that may be used include aromatic polyesters, such as polyalkylene terephthalates. The polymeric composition preferably is substantially or entirely free of polyester. If present, the total amount of polyester preferably is about 10 weight percent or less, more preferably about 5 weight percent or less, even more preferably about 2 weight percent or less, even more preferably about 1.9 weight percent or less, even more preferably about 1.0 weight percent or less, and most preferably about 0.4 weight percent or less, based on the total weight of the polymeric composition. For example, the total amount of polyester may be from about 0 weight percent to about 10 weight percent, from about 0 weight percent to about 1.9 weight percent, or from about 0 weight percent to about 0.4 weight percent, based on the total weight of the polymeric composition.

The polymeric composition (e.g., of the substrate layer) may optionally include one or more polyamides. The polyamide may be of any type. Suitable polyamides include reaction products of a diamine and a diacid, and monadic polyamides. Polyamides which are formed from a diamine and a diacid may include polyamides (e.g., nylons) containing reaction products of either adipic acid or terephthalic acid with a diamine. Examples of monadic polyamides include nylon 6, and poly(p-benzamide). Nylons which may be used in the present invention include nylon 3, nylon 4, nylon 5, nylon 6, nylon 6T, nylon 66, nylon 6/6, nylon 6/6/6/10, nylon 610, nylon 612, nylon 69, nylon 7, nylon 77, nylon 8, nylon 9, nylon 10, nylon 11, nylon 12, and nylon 91. Copolymers containing any of the above mentioned polyamides may also be used. Polyamide copolymers may include a polyether. Polyamide copolymers may be random copolymers, block copolymers, a combination thereof. The polymeric composition preferably is substantially or entirely free of polyamides. If present, the total amount of polyamide preferably is about 3 weight percent or less, more preferably about 2 weight percent or less, even more preferably about 1.9 weight percent or less, even more preferably about 1.0 weight percent or less, and most preferably about 0.4 weight percent or less, based on the total weight of the polymeric composition. For example, the total amount of polyamide may be from about 0 weight percent to about 3 weight percent, from about 0 weight percent to about 1.9 weight percent, or from about 0 weight percent to about 0.4 weight percent, based on the total weight of the polymeric composition.

The polymeric composition may include one or more additives. For example, the polymeric composition may include one or more stabilizers (e.g., heat stabilizer, light stabilizer, antioxidant, or UV stabilizers), one or more colorants, one or more process aids, one or more flame retardants, one or more mold release agents, one or more antistatic agents, one or more conductivity additives, one or more additives for improving scratch resistance, or one or more anti-dripping agents. Examples of additives that may be employed include the additives described in US Patent Application Publication 2013/0196130 A1 (by Hufen et al., published August 1, 2013, see e.g., paragraphs 0144 through 0147), incorporated herein by reference.

Preferred additives include additives commonly employed in polycarbonate compositions and/or additives commonly employed in polystyrene and/or ABS compositions.

Preferred antioxidants include sterically hindered phenolic antioxidant. A particularly preferred antioxidant is octadecyl-3-(3,5-di-tert.butyl-4-hydroxyphenyl)-propionate, such as IRGANOX® 1076 (CAS # 2082-79-3) commercially available from BASF.

Preferred mold release agents include polyol ester type mold release agents. A particular preferred mold release agent is LOXIOL® P 861 / 3.5 commercially available from SAFICALCAN NECARBO BV. Another particularly preferred mold release agent is LOXIOL® VPG 861 commercially available from EMERY OLEOCHEMICALS LLC (CINCINNATI, OH).

If present, the total amount of the one or more additives preferably is about 10 weight percent or less, more preferably about 5 weight percent or less, and most preferably about 2.5 weight percent or less, based on the total weight of the polymeric composition. The total amount of the one or more additive may be about 0 weight percent or more, about 0.1 weight percent or more, or about 0.3 weight percent or more.

The polymeric composition may be formed into a substrate layer by any means. For example, the substrate layer may be formed by molding (e.g., injection molding, compression molding, overmolding, or co-injection molding), extrusion (e.g., profile extrusion, or sheet extrusion, or blown film extrusion), calendaring, a 3-D printing method, or any other method known in the processing of polymeric materials. The substrate layer may have any thickness. The thickness
of the substrate typically depends on the requirements of the particular application. Preferably, the substrate layer has a thickness of about 0.2 mm or more, more preferably about 0.5 mm or more, even more preferably about 1.0 mm or more, and most preferably about 2.0 mm or more. The thickness of the substrate layer preferably is about 30 mm or less, more preferably about 20 mm or less, even more preferably about 20 mm or less, even more preferably about 10 mm or less, and most preferably about 8 mm or less. It will be appreciated that the thickness of the substrate may be uniform or may vary. If the thickness of the substrate varies, the above thickness values refer to the average thickness of the substrate in the regions to be adhered to a cover layer.

[0070] The substrate layer may be a dense material (e.g., having a porosity of 10 volume percent or less, preferably about 3 volume percent or less, and most preferably about 0.8 volume percent or less) or a foamed material (e.g., having a porosity of greater than 10 volume percent, preferably about 20 volume percent or more, and most preferably about 40 volume percent or more). Preferred substrate layers are dense materials.

[0071] The substrate layer may be colored, clear, or transparent. For example, the substrate layer may include one or more colorants to provide a predetermined color to the substrate. The use of a colored substrate layer may be particularly advantageous in articles having a transparent or clear cover layer.

Properties

[0072] The polymeric compositions according to the teachings herein preferably have a coefficient of linear thermal expansion of about 75 x 10^{-6} \text{cm/cm/°C} or less, more preferably 65 x 10^{-6} \text{cm/cm/°C} or less, even more preferably about 60 x 10^{-6} \text{cm/cm/°C} or less, even more preferably about 50 x 10^{-6} \text{cm/cm/°C} or less, and most preferably about 40 x 10^{-6} \text{cm/cm/°C} or less, as measured from -30 °C to 30 °C. The polymeric composition may have a coefficient of linear thermal expansion of about 5 x 10^{-6} \text{cm/cm/°C} or more, or about 20 x 10^{-6} \text{cm/cm/°C} or more.

[0073] The polymeric composition preferably has one or more, or all of the following features: a Notched Charpy impact strength from about 8 to about 40 kJ/m2, as measured according to ISO179-1eA; a tensile modulus from about 3000 to about 6000 MPa, as measured according to ISO527; or an elongation at break from about 5 to about 40 percent, as measured according to ISO527.

COVER LAYER

[0074] The articles according to the teachings herein include a cover layer over the substrate layer. The cover layer covers some or all of a surface of the substrate layer. Preferably the cover layer directly contacts the substrate layer and bonds to the substrate layer in the regions of contact.

[0075] The cover layer may have any thickness, but preferably has a thickness that is less than the thickness of the substrate layer. As such, the substrate layer may provide one or more advantageous properties to the "bulk" of the article, whereas the cover layer may provide one or more properties to a surface of the article. Preferably, the cover layer has a thickness of about 0.01 mm or more, more preferably about 0.10 mm or more, even more preferably about 0.3 mm or more, and most preferably about 0.5 mm or more. The cover layer preferably has a thickness of about 3 mm or less, more preferably about 1.5 mm or less, and most preferably about 1.0 mm or less. In one preferred aspect, the cover layer has a thickness from about 0.01 mm to about 0.20 mm; and in another preferred aspect, the cover layer has a thickness from about 0.5 mm to about 1.5 mm.

[0076] The cover layer may be applied to the substrate layer according to any known method. The cover layer may be formed from a material that includes a polymer, a prepolymer, a monomer, or any combination thereof. Preferably, the cover layer is formed from a composition that is polymerized and/or cross-linked after being applied to a surface of the substrate layer. Preferred methods for applying the cover layer include a molding step (e.g., overmolding), a painting step, a 2K molding step, a rolling step, a spraying step, a dipping step, a different coating step, or any combination thereof. The cover layer may be applied as a room temperature liquid (e.g., being applied at room temperature or at an elevated temperature), applied in a melt state (e.g., at an elevated temperature above the melting temperature), or as a solid. In one preferred aspect, the cover layer is applied directly on the substrate layer as a lacquer. In another preferred aspect, the cover layer is overmolded directly over the substrate layer. The cover layer may be a compact material or may be a foamed material. Preferred cover layers are compact, (i.e., a dense material having a porosity of about 20 volume percent or less, preferably about 10 volume percent or less, and more preferably about 5 volume percent or less).

[0077] The cover layer preferably includes, or consists essentially of a polyurethane that contacts and bonds to the substrate layer.

[0078] The cover layer may include a polyurethane including one or any combination of the features described in US Patent Application Publication 2013/0196130 A1 (by Hufen et al., published August 1, 2013, see e.g., paragraphs 0173 through 0240), incorporated herein by reference.

[0079] The polyurethanes employed according to the invention are obtained by reaction of polisocyanates with H-active polyfunctional compounds, preferably polyols. In this context, the term "polyurethane" is understood in the context...
suitable polyisocyanates are the aromatic, aliphatic, aliphatic or cycloaliphatic polyisocyanates known per se to the person skilled in the art having an NCO functionality of preferably ≥2, which can also contain iminooxadiazinedione, isocyanurate, uretidione, urethane, aliphonate, biuret, urea, oxadiazinetrione, oxazolidinone, acylurea and/or carbodiimide structures. These can be employed individually or in any desired mixtures with one another.

In this context, the abovementioned polyisocyanates are based on di- and trisocyanates which are known per se to the person skilled in the art and have aliphatically, cycloaliphatically, araliphatically and/or aromatically bonded isocyanate groups, it being irrelevant whether these have been prepared using phosgene or by phosgene-free processes. Examples of such di- and trisocyanates are 1,4-diisocyanatobutane, 1,5-diisocyanatopentane, 1,6-diisocyanatohexane (HDI), 2,4- and 2,6-diisocyanatotoluene (TDI), in particular the 2,4 and the 2,6 isomer and technical grade mixtures of the two isomers, 2,4'- and 4,4'-diisocyanatodiphenylmethane (MDI), polymeric MDI (pMDI), 1,5-diisocyanatonovalene, 1,3- and 1,4-bis-(2-isocyanatoprop-2-yl)-benzene (TMXDI), 2,4- and 2,6-diisocyanatotoluene (TDL), in particular the 2,4 and the 2,6 isomer and technical grade mixtures of the two isomers, 2,4'- and 4,4'-diisocyanatodiphenylmethane (MDI), polymeric MDI (pMDI), 1,5-diisocyanatonaphthalene, 1,3-bis(isocyanatomethyl)benzene (XDI) and any desired mixtures of the compounds mentioned.

In this context, the polyisocyanates preferably have an average NCO functionality of from 2.0 to 5.0, preferably from 2.2 to 4.5, particularly preferably from 2.2 to 2.7, and a content of isocyanate groups of from 5.0 to 37.0 wt. %, preferably from 14.0 to 34.0 wt. %.

In a preferred aspect, polyisocyanates or polyisocyanate mixtures of the abovementioned type with exclusively aliphatically and/or cycloaliphatically bonded isocyanate groups are employed.

More preferably, the polyisocyanates of the abovementioned type are based on hexamethylene-diisocyanate, isophorone-diisocyanate, the isomeric bis-(4,4'-isocyanatocyclohexyl)-methanes and mixtures thereof.

Among the higher molecular weight, modified polyisocyanates, the prepolymers known from polyurethane chemistry having terminal isocyanate groups of the molecular weight range of 400 to 15,000, preferably 600 to 12,000, are of interest in particular. These compounds are prepared in a manner known per se by reaction of excess amounts of simple polyisocyanates of the type mentioned by way of example with organic compounds having at least two groups which are reactive towards isocyanate groups, in particular organic polyhydroxy compounds. Suitable such polyhydroxy compounds are both simple multifunctional alcohols of the molecular weight range of 62 to 599, preferably 62 to 200, such as e.g. ethylene glycol, trimethylopropanol, propane-1,2-diol or butane-1,4-diol or butane-2,3-diol, but in particular higher molecular weight weight polyether polyols and/or polyester polyols of the type known per se from polyurethane chemistry with molecular weights of from 600 to 12,000, preferably 800 to 4,000, which have at least two, as a rule 2 to 8, but preferably 2 to 6 primary and/or secondary hydroxy groups. Those NCO prepolymers which have been obtained, for example, from low molecular weight polyisocyanates of the type mentioned by way of example and less preferred compounds having groups which are reactive towards isocyanate groups, such as e.g. polythioether polyols, polyacetals containing hydroxyl groups, polyhydroxy-polycarbonates, polyester-amides containing hydroxyl groups or copolymers, containing hydroxyl groups, of olefinically unsaturated compounds, can of course also be employed.

Compounds which have groups which are reactive towards isocyanate groups, in particular hydroxyl, and are suitable for the preparation of the NCO prepolymers are, for example, the compounds disclosed in U.S. Pat. No. 4,218,543. In the preparation of the NCO prepolymers, these compounds having groups which are reactive towards isocyanate groups are reacted with simple polyisocyanates of the type mentioned above by way of example, while maintaining an NCO excess. The NCO prepolymers prepared in general have an NCO content of from 10 to 26, preferably 15 to 26 wt. %. It already emerges from this that in the context of the present invention, "NCO prepolymers" or "prepolymers having terminal isocyanate groups" are to be understood as meaning both the reaction products as such and the mixtures with excess amounts of unreacted starting polyisocyanates, which are often also called "semi-prepolymers".

Possible aliphatic diols having an OH number of >500 mg of KOH/g are the chain lengtheners conventionally used in polyurethane chemistry, such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butane-1,4-diol, butane-1,3-diol, diols, such as e.g. butane-1,4-diol, butane-1,3-diol, butane-2,3-diol and/or 2-methylpropane-1,3-diol, are preferred. It is of course also possible to employ the aliphatic diols in a mixture with one another.

Suitable H-active components are polyols having an average OH number of from 5 to 600 mg of KOH/g and an average functionality of from 2 to 6. Polyols having an average OH number of from 10 to 50 mg of KOH/g are preferred. Polyols which are suitable according to the invention are, for example, polyhydroxy-polyethers, which are accessible by alkoxylation of suitable starter molecules, such as ethylene glycol, diethylene glycol, 1,4-dihydroxybutane, 1,6-dihydroxyhexane, dimethylolpropane, glycerol, pentaerythritol, sorbitol or sucrose Ammonia or amines, such as ethylenediamine,
hexamethylenediamine, 2,4-diaminotoluene, aniline or amino alcohols, or phenols, such as bisphenol A, can likewise function as starters. The alkoxylation is carried out using propylene oxide and/or ethylene oxide in any desired sequence or as a mixture.

[0089] In addition to polyols, at least one further crosslinking agent and/or chain lengthener chosen from the group which contains amines and amino alcohols, for example ethanolamine, diethanolamine, disopropanolamine, ethylenediamine, triethanolamine, isophoronediamine, N,N'-dimethyl(diyethyl)-ethylenediamine, 2-amino-2-methyl(or ethyl)-1-propanol, 2-amino-1-butanol, 3-amino-1,2-propanediol, 2-amino-2-methyl(ethyl)-1,3-propanediol, and alcohols, for example ethylene glycol, diethylene glycol, 1,4-dihydroxybutane, dimethylolpropane, glycerol and pentaerythritol, and sorbitol and sucrose, or mixtures of these compounds, can additionally be present.

[0090] Polyester polyols such as are accessible in a manner known per se by reaction of low molecular weight alcohols with polyfunctional carboxylic acids, such as adipic acid, phthalic acid, hexahydrophthalic acid, tetrahydrophthalic acid or the anhydrides of these acids are furthermore suitable as long as the viscosity of the H-active component does not become too high. A preferred polyl which contains ester groups is castor oil. In addition, formulations with castor oil such as can be obtained by dissolving resins, e.g. aldehyde-ketone resins, and modifications of castor oil and polyols based on other natural oils are also suitable.

[0091] Those higher molecular weight polyhydroxy-polyethers in which high molecular weight polyadducts or polycondensates or polymers are present in finely disperse, dissolved or grafted-on form are likewise suitable. Such modified polyhydroxy compounds are obtained in a manner known per se, e.g. when polyaddition reactions (e.g. reactions between polyisocyanates and amino-functional compounds) or polycondensation reactions (e.g. between formaldehyde and phenols and/or amines) are allowed to proceed in situ in the compounds containing hydroxyl groups. However, it is also possible to mix a ready-made aqueous polymer dispersion with polyhydroxy compound and then to remove the water from the mixture.

[0092] Polyhydroxy compounds modified by vinyl polymers, such as are obtained e.g. by polymerization of styrene and acrylonitrile in the presence of polyethers or polycarbonate polyols, are also suitable for the preparation of polyurethanes. If polyether polyols which have been modified in accordance with DE-A 2 442 101, DE-A 2 844 922 and DE-A 2 646 141 by grafting polymerization with vinylphosphonic acid esters and optionally (meth)acrylonitrile, (meth)acrylamide or OH-functional (meth)acrylic acid esters are used, plastics of particular flame resistance are obtained.

[0093] Representatives of the compounds mentioned which are to be used as H-active compounds are described e.g. in High Polymers, vol. XVI, "Polyurethanes Chemistry and Technology", Saunders-Frisch (ed.) Interscience Publishers, New York, London, vol. 1, p. 32-42, 44, 54 and vol. II, 1984, p. 5-6 and p. 198-199.

[0094] Mixtures of the compounds listed can also be employed.

[0095] The limit to the average OH number and average functionality of the H-active component results in particular from the increasing embrittlement of the resulting polyurethane. However, the possibilities of influencing the physical polymer properties of the polyurethane are known in principle to the person skilled in the art, so that the NCO component, aliphatic diol and polyl can be coordinated to one another in a favourable manner.

[0096] The polyurethane layer (b) can be foamed or solid, such as e.g. as a lacquer or coating.

[0097] All auxiliary substances and additives known per se, such as e.g. release agents, blowing agents, fillers, catalysts and flameproofing agents, can be employed for the production thereof.

[0098] In this context, auxiliary substances and additives which are optionally to be used are:

- a) Water and/or Readily Volatile Inorganic or Organic Substances as Blowing Agents
- b) Catalysts
- c) Surface Active Additives, Such as Emulsifiers and Foam Stabilizers.
- d) Reaction Retardants
- e) Additives

[0099] Lacquers to be used according to the invention include 1-C and 2-C lacquer systems, preferably water-based lacquers. A two-component lacquer (2-C) in the context of the invention also contains a hardener in addition to the water-based lacquer according to the invention.

[0100] According to one embodiment, water-based lacquer according to the invention is a one-component lacquer.

[0101] In an alternative embodiment, the coating on at least one side is a water-based 2-component polyurethane lacquer.

[0102] 2-Component polyurethane lacquers to be used according to the invention are characterized in that they preferably essentially contain in one embodiment:

- (a) polyisocyanates, which are optionally hydrophilized, optionally in the presence of organic solvents or solvent mixtures,
- (b) compounds which have groups which are reactive towards isocyanates and are optionally hydrophilized, in water
and optionally in the presence of organic solvents or solvent mixtures, 

(c) optionally further additives and auxiliary substances,

wherein the amounts of (a) + (b) are from 20 to 100 parts by wt., the amount of (c) is from 0 to 80 parts by wt., with the proviso that the sum of the parts by weight of the individual components (a) to (c) is 100.

[0103] Two-component systems in the context of the present invention are understood as meaning lacquers in which components (a) and (b) must or should be stored in separate vessels because of their reactivity. The two components are mixed only shortly before application and then in general react without additional activation.

[0104] The (poly)isocyanate component (a) preferably is any desired organic polyisocyanates which have aliphatically, cycloaliphatically, araphically and/or aromatically bonded, free isocyanate groups and are liquid at room temperature or are dissolved with solvents for this purpose. The polyisocyanate component (a) advantageously has a viscosity at 23° C. of from 10 to 15,000, preferably 10 to 5,000 mPas. The polyisocyanate component (a) is particularly preferably polyisocyanates or polyisocyanate mixtures with exclusively aliphatically and/or cycloaliphatically bonded isocyanate groups having an (average) NCO functionality of between 2.0 and 5.0 and a viscosity at 23° C. of from 10 to 2,000 mPas.

[0105] Preferably, polyisocyanates having free NCO groups are employed as crosslinking agents, in order to obtain a particularly high level of lacquer technology from the water-based two-component polyurethane lacquers. Suitable such crosslinker resins are, for example, polyisocyanates based on isophorone-diisocyanate (IPDI), hexamethylene-diisocyanate (HDI), 1,4-diisocyanatocyclohexane, bis-(4-isocyanatocyclohexyl)-methane, 1,3-diisocyanatobenzene, 2,4- and/or 2,6-diisocyanatotoluene (TDI), diisocyanatodiphenylmethane (MDI) and \(o_o\)-disocyanato-1,3-dimethylcyclohexane (H6XDI). Polyisocyanates based on isophorone-diisocyanate, hexamethylene-diisocyanate, bis-(4-isocyanato-cyclohexyl)-methane and \(o_o\)-disocyanato-1,3-dimethylcyclohexane (H6XDI) are preferred.

[0106] The disiocyanates mentioned may optionally be used as such, but as a rule derivatives of the diisocyanates are used. Suitable derivatives are polyisocyanates containing biuret, isocyanurate, uretdione, urethane, iminoxadiazinedione, oxadiazinetione, carbodiimide, acylurea and allophanate groups.

[0107] Preferred derivatives are those with isocyanurate, iminoxadiazinedione and uretdione structures. Low-monomer lacquer polyisocyanates with these structural elements from isophorone-diisocyanate (IPDI), hexamethylene-diisocyanate (HDI), 1,4-diisocyanatocyclohexane, bis-(4-isocyanatocyclohexyl)-methane are particularly preferred.

[0108] Trisocyanates, such as e.g. TIN (trisocyanatononanone) are also suitable.

[0109] The (poly)isocyanate component (a) can optionally be hydrophilically modified. Watersoluble or -dispersible polysisocyanates are obtainable e.g. by modification with carboxylate, sulfonate and/or polyethylene oxide groups and/or polyethylene oxide/polypropylene oxide groups.

[0110] Hydrophilization of the polyisocyanates is possible e.g. by reaction with deficient amounts of monofunctional, hydrophilic polyether alcohols. The preparation of such hydrophilized polysisocyanates is described, for example, in EP-A 0 540 985, p.3, I. 55-p. 4, I. 5. The polyisocyanates described in EP-A-0 959 087, p. 3, I. 39-51 which contain allophanate groups and are prepared by reaction of low-monomer polyisocyanates with polyethylene oxide polyether alcohols under allophanation conditions are also particularly suitable. The water-dispersible polyisocyanate mixtures based on triisocyanatononanone which are described in DE-A 10 007 821, p. 2, I. 66-p. 3, I. 5, are also suitable, as well as polysisocyanates hydrophilized with ionic groups (sulfonate, phosphonate groups), such as are described e.g. in DE-A 10 024 624, p. 3, I. 13-33 or also in WO 01/88006. External hydrophilization by addition of emulsifiers is likewise possible.

[0111] The NCO content of the polyisocyanate component (a) used, e.g. in the case of so-called polyether allophanates (hydrophilization by means of a polyether), can range from 5-25 wt. %. In the case of a hydrophilization with sulfonic acid groups, NCO contents of 4-26 wt. % can be achieved, where these figures are to be understood as being only by way of example.

[0112] The isocyanate components employed can also be partially blocked, e.g. by up to one third of the isocyanate groups present, by components which are reactive towards isocyanates. In this case, reaction of the blocked isocyanate component with further polyl can occur in a later step, in order to bring about a further crosslinking.

[0113] Suitable blocking agents for these polyisocyanates are, for example, monofunctional alcohols, such as oximes, such as acetoxyamine, methyl ethyl ketoxime, cyclohexanone oxime, lactams, such as \(\varepsilon\)-caprolactam, phenols, amines, such as diisopropylamine or dibutylamine, dimethylpyrazole or triazole, and malonic acid dimethyl ester, malonic acid diethyl ester or malonic acid dibutyl ester.

[0114] The use of low-viscosity, hydrophobic or hydrophilized polyisocyanates having free isocyanate groups based on aliphatic, cycloaliphatic, aliphatic and/or aromatic isocyanates, particularly preferably aliphatic or cycloaliphatic isocyanates, is preferred, since a particularly high level of properties of the lacquer film can be achieved in this way. The advantages of the binder dispersions according to the invention emerge most clearly in combination with these crosslinking agents. These polyisocyanates in general have a viscosity of from 10 to 3,500 mPas at 23° C. If necessary, the polysisocyanates can be employed in a mixture with small amounts of inert solvents in order to lower the viscosity to a value within the range stated. Triisocyanatononanone can also be employed as the crosslinker component alone or in mixtures.
The use of mixtures of various polyisocyanates is of course also possible in principle.

Suitable compounds (b) having groups which are reactive towards isocyanates are, for example, polymers, containing hydroxyl groups, sulfonate and/or carboxylate groups, preferably carboxylate groups and optionally sulfonic acid and/or carboxyl groups, of olefinically unsaturated monomers (so-called polyacrylate polyls), of combinations of diols and dicarboxylic acids (so-called polyester polyls), of combinations of diols, dicarboxylic acids and disiocyanates (so-called polyurethane polyls) and/or of hybrid systems of the polyol classes mentioned, for example polyacrylate-polyester polyls, polyacrylate-polyurethane polyls, polyester-polyurethane polyls or polyester-polyurethane polyls, which preferably have a molecular weight Mn (number-average), which can be determined by gel permeation chromatography, of from 500 to 50,000, in particular 1,000 to 10,000, a hydroxyl number of from 16.5 to 264, preferably 33 to 165 mg of KOH/g of solid resin, an acid number (based on the non-neutralized sulfonic acid and/or carboxyl groups) of from 0 to 150, preferably 0 to 100 mg of KOH/g of solid resin, and a content of sulfonate and/or carboxyl groups of from 5 to 417, preferably 24 to 278 milliequivalents per 100 g of solid.

These anionic groups are particularly preferably carboxylate groups. An overview of various binders is given e.g. in EP-A 0 959 115, p. 3, l. 25-54. However, simple diol components can also be used. All binders which are dissolved or dispersed in water and have groups which are reactive towards isocyanates are suitable in principle as the binder component (b). These also include, for example, polyurethanes or polyureas which are dispersed in water and can be crosslinked with polyisocyanates due to the active hydrogen atoms present in the urethane or urea groups. However, polyls, that is to say compounds with free OH groups, are preferred. The binder components (b) are in general employed in the preparation of the coating compositions in the form of 10 to 60, preferably 20 to 50 wt. % strength aqueous solutions and/or dispersions, which in general have a viscosity of from 10 to 105, preferably 10 to 10,000 mPa·s/23°C. and pH values of from 5 to 10, preferably 6 to 9. Auxiliary solvents can optionally be used. Depending on the molecular weight of the binder component (b) and its content of anionic groups or of free acid groups, in particular carboxyl groups, the aqueous systems containing the polymers are true dispersions, colloidally disperse or molecularly disperse dispersions, but in general so-called "partial dispersions", i.e. aqueous systems which are partly molecularly disperse and partly colloidally disperse.

The ratio of isocyanate groups from component (a) to isocyanate-reactive groups, such as hydroxyl groups (NCO-OH ratio) from component (b) can span a wide range. A ratio of from 0.2:1.0 to 4.0:1.0 can thus be used for lacquer technology uses. A range of from 0.35:1 to 2.0:1.0 is preferred, particularly preferably 1.0:1.0 to 1.5:1.0.

1 to 10,000 ppm of commercially available catalysts can optionally be added to the composition.

The conventional auxiliary substances and additives (d) of lacquer technology, such as e.g. defoaming agents, thickening agents, pigments, dispersing auxiliaries, further catalysts which differ from (c), skin prevention agents, anti-settling agents or emulsifiers, can be added before, during or after the preparation of the aqueous binder dispersion according to the invention and also in the case of preparation of the coating compositions by addition of at least one crosslinking agent.

The two-component polyurethane systems may contain water and/or organic solvents or mixtures thereof as solvents.

**TEST METHODS**

**Coefficient of linear thermal expansion**

The coefficient of linear thermal expansion (CLTE) is measured according to ISO 1359-2 in the temperature interval from -30 °C to 30 °C on an ISO tensile bar (as used for ISO 527-1).

**Stiffness / modulus**

The tensile modulus is measured according to ISO 527-1, -2, at about 23 °C.

**Flexural Modulus**

The flexural modulus is measured according to ISO 178.

**Molecular weight**

The weight average molecular weight, number average molecular weight, and polydispersity index are measured by gel permeation chromatography (GPC).

**Melt Flow Rate**

Unless otherwise stated, the melt flow rate is measured according to ISO 1133, and is expressed in units of g/10 min. For polycarbonate polymers, the melt flow rate is measured at a temperature of about 300 °C and a load of about 1.2 kg. For acrylonitrile-butadiene-styrene thermoplastics (e.g., ABS thermoplastics), the melt flow rate is measured
at a temperature of about 220 °C and a load of about 10.0 kg. For styrene-acrylonitrile copolymers, the melt flow rate is measured at a temperature of about 230 °C and a load of about 3.8 kg.

Any numerical values recited herein include all values from the lower value to the upper value in increments of one unit provided that there is a separation of at least 2 units between any lower value and any higher value. As an example, if it is stated that the amount of a component or a value of a process variable such as, for example, temperature, pressure, time and the like, is, for example, from 1 to 90, preferably from 20 to 80, more preferably from 30 to 70, it is intended that values such as 15 to 85, 22 to 68, 43 to 51, 30 to 32 etc. are expressly enumerated in this specification. For values which are less than one, one unit is considered to be 0.0001, 0.001, 0.01 or 0.1 as appropriate. These are only examples of what is specifically intended and all possible combinations of numerical values between the lowest value and the highest value enumerated are to be considered to be expressly stated in this application in a similar manner. As can be seen, the teaching of amounts expressed as "parts by weight" herein also contemplates the same ranges expressed in terms of percent by weight. Thus, an expression in the Detailed Description of the Invention of a range in terms of at "x" parts by weight of the resulting polymeric blend composition" also contemplates a teaching of ranges of same recited amount of "x" in percent by weight of the resulting polymeric blend composition.

Unless otherwise stated, all ranges include both endpoints and all numbers between the endpoints. The use of "about" or "approximately" in connection with a range applies to both ends of the range. Thus, "about 20 to 30" is intended to cover "about 20 to about 30", inclusive of at least the specified endpoints.

The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for all purposes. The term "consisting essentially of" to describe a combination shall include the elements, ingredients, components or steps identified, and such other elements, ingredients, components or steps that do not materially affect the basic and novel characteristics of the combination. The use of the terms "comprising" or "including" to describe combinations of elements, ingredients, components or steps herein also contemplates embodiments that consist essentially of the elements, ingredients, components or steps.

Plural elements, ingredients, components or steps can be provided by a single integrated element, ingredient, component or step. Alternatively, a single integrated element, ingredient, component or step might be divided into separate plural elements, ingredients, components or steps. The disclosure of "a" or "one" to describe an element, ingredient, component or step is not intended to foreclose additional elements, ingredients, components or steps.

It is understood that the above description is intended to be illustrative and not restrictive. Many embodiments as well as many applications besides the examples provided will be apparent to those of skill in the art upon reading the above description. The scope of the invention should, therefore, be determined not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for all purposes. The omission in the following claims of any aspect of subject matter which such claims are entitled. The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for all purposes. The omission in the following claims of any aspect of subject matter that is disclosed herein is not a disclaimer of such subject matter, nor should it be regarded that the inventors did not consider such subject matter to be part of the disclosed inventive subject matter.

Materials

ABS-A is MAGNUM® 8434 acrylonitrile-butadiene-styrene thermoplastic (commercially available from TRIN-SEO) having a density of about 1.05 g/cm3 (as measured according to ISO 1183) and a melt flow rate of about 13 g/10 min (as measured according to ISO 1133 at 220 °C/10 kg). Magnum® 6434 is a mass ABS.

ABS-B is MAGNUM® 8391 acrylonitrile-butadiene-styrene thermoplastic (commercially available from TRIN-SEO) having a density of about 1.05 g/cm3 (as measured according to ISO 1183) and a melt flow rate of about 28 g/10 min (as measured according to ISO 1133 at 220 °C/10 kg). Magnum® 6434 is a mass ABS. The flexural modulus is about 2480 MPa (as measured according to ASTM D790). The tensile elongation at break is about 8.7% (as measured according to ASTM D638).

Filler A is NYGLOS® 4W 10992 wollastonite commercially available from NYCO MINERALS. Filler A has a chemical composition of CaSiO3, including about 46.15 weight percent CaO, about 51.60 weight percent SiO2, about 0.77 weight percent Fe2O3, about 0.34 weight percent Al2O3, about 0.16 weight percent MnO, about 0.38 weight percent MgO, about 0.05 weight percent TiO2, and about 0.05 weight percent K2O. Filler A has an acicular structure with an aspect ratio of about 11:1, such as illustrated in FIG. 2. Filler A has a Mohs hardness of about 4.5, a median particle size of about 4.5 μm (Cilas Granulometer), a minus 325 U.S. mesh screen of about 99.9 percent (Apline Jet Sieve), a G.E. Brightness of about 92 as measured according to ASTM E07, a bulk density (loose) of about 0.2 g/cm3 as measured according to ASTM C87, a bulk density (tapped) of about 0.35 as measured according to ASTM C87, an oil absorption of about 75 lbs. / 100 lbs. as measured according to ASTM D281, and a specific gravity of about 2.9.

PC-A is a linear polycarbonate of bisphenol A having a melt flow rate (i.e., a melt mass-flow rate) of about 10 g/10 min, measured according to ISO 1133 at 300 °C/1.2 kg. PC-A has a tensile modulus of about 2300 MPa, a tensile strength of about 60.0 MPa at yield, a tensile strength of about 71.0 MPa at break, a tensile elongation at yield of about
6%, and a tensile elongation at break of about 150%, all measured according to ISO 527-2/50. PC-A has a refractive index of about 1.586 as measured according to ISO 489, optical transmittance of about 89.0 % and haze of about 1.0 % both measured according to ASTM D1003. PC-A has a flexural modulus of about 2400 MPa as measured according to ISO 178, Charpy Notched Impact Strength of 35 kJ/m² as measured according to ISO 179/e1A at 23 °C, a Notched Izod Impact of 90 kJ/m² as measured according to ISO 180/A at 23 °C, and an unnotched Izod Impact of "No Break" as measured according to ISO 180 at 23 °C. PC-A has a coefficient of linear thermal expansion of about 6.8 x 10⁻⁵ cm/cm/°C from -40°C to 82 °C as measured according to ASTM D696. PC-A is commercially available from TRINSEO as CALIBRE™ 300-10 polycarbonate resin.

**EXAMPLES**

Comparative Example 1 is prepared by melt blending the composition as shown in Table 1. Example 2 is prepared by melt blending the composition as shown in Table 1. Each polymeric composition is then molded into a plate having a thickness of about 3 mm.

<table>
<thead>
<tr>
<th></th>
<th>Comparative Example 1</th>
<th>Example 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-A</td>
<td>Weight percent</td>
<td>61.6</td>
</tr>
<tr>
<td>ABS-A</td>
<td>Weight percent</td>
<td>24.3</td>
</tr>
<tr>
<td>ABS-B</td>
<td>Weight percent</td>
<td>22.8</td>
</tr>
<tr>
<td>SAN-A</td>
<td>Weight percent</td>
<td>10.0</td>
</tr>
<tr>
<td>Filler-A</td>
<td>Weight percent</td>
<td>15.0</td>
</tr>
<tr>
<td>Additive / Colorant package</td>
<td>Weight percent</td>
<td>0.6</td>
</tr>
<tr>
<td>Total</td>
<td>Weight percent</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Properties of Composition

<table>
<thead>
<tr>
<th></th>
<th>Comp. Ex. 1</th>
<th>Ex. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLTE</td>
<td></td>
<td>35</td>
</tr>
</tbody>
</table>

Comparative Examples 1A, 1B, and 1C are multi-layer composite samples prepared by cutting the 3 mm thick plate of Comparative Example 1 into 150 mm x 150 mm x 3 mm specimens. The specimens are coated with a primer layer of 121477 water based primer. The 121477 water based primer is a dispersion of polyurethane and is commercially available from Karl Wörwag Lack- und Farbenfabrik GmbH & Co.KG. The primer layer is dried at about 80 °C for about 15 minutes. The targeted thickness of the primer layer is 8 - 15 μm. The actual thickness is about 9 - 15 μm. The primer layer is then coated with a water based basecoat layer and dried at about 80 °C for about 10 minutes. In comparative example 1A, the base coat is U668 polyurethane base coat (black colored) commercially available from BASF with a target thickness of about 8-11 μm and an actual thickness of about 9 μm. In comparative example 1 B, the base coat is B&K WA83 polyurethane base coat (glacier silver colored) with a target thickness of about 10-12 μm and an actual thickness of about 8-13 μm. Comparative example 1C, the base coat is U300 base coat (alpine white colored) commercially available from BASF and having a target thickness of about 22-27 μm and an actual thickness of about 18-24 μm. The base coat is then covered with a layer of a 2-component polyurethane 118173 clear coat commercially available from Karl Worwag Lack- und Farbenfabrik GmbH & Co.KG. The clear coat layer is dried for about 30 minutes at about 80 °C and has a target thickness of about 25-35 μm and an actual thickness of about 28-40 μm. The layer thicknesses are measured according to DIN EN ISO 2808.

Comparative Examples 1A, 1B, and 1C are prepared as described above for Comparative Examples 1A, 1B, and 1C respectively, except the Comparative Example 1 substrate is replaced with the Example 2 substrate. The results of testing of Examples 2A, 2B, and 2C are shown in Table 3. Examples 2A, 2B, and 2C have improved performance when tested according to the climate test for trim parts (TP 303.5).
### TABLE 2. Properties of Composite Samples

<table>
<thead>
<tr>
<th>Substrate Layer</th>
<th>Comparative Example 1A</th>
<th>Comparative Example 1B</th>
<th>Comparative Example 1C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Comparative Example 1</td>
<td>Comparative Example 1</td>
<td>Comparative Example 1</td>
</tr>
<tr>
<td>Foamed</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Thickness</td>
<td>mm</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cover Layer(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer Layer</td>
<td>Woerwag</td>
<td>121477</td>
<td>121477</td>
</tr>
<tr>
<td>Primer Layer Thickness</td>
<td>µm</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Base Coat Layer</td>
<td>BASF U668</td>
<td>B&amp;K WA83</td>
<td>BASF U300</td>
</tr>
<tr>
<td>Base Coat Color</td>
<td>Black</td>
<td>Glacier Silver</td>
<td>Alpine White</td>
</tr>
<tr>
<td>Base Coat Thickness</td>
<td>µm</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>Clear Coat Layer</td>
<td>Woerwag</td>
<td>118173</td>
<td>118173</td>
</tr>
<tr>
<td>Clear Coat Thickness</td>
<td>µm</td>
<td>35</td>
<td>30</td>
</tr>
</tbody>
</table>

- **Cross Hatch Test (initial) - DIN EN ISO 2409-2 mm** (requirement: ≤ Gt 1)
  - Gt 1: Gt 1, Gt 0, Gt 0, Gt 0
  - Gt 2: Gt 0, Gt 0, Gt 0, Gt 0
  - Gt 3: Gt 0, Gt 0, Gt 0, Gt 0

- **Multi impact stone chip resistance test (initial) - DIN EN ISO 20567-1** (requirement: ≤ 2.5)
  - Result: 1.0, 1.0, 1.0

### TABLE 3. Properties of Composite Samples

<table>
<thead>
<tr>
<th>Substrate Layer</th>
<th>Example 2A</th>
<th>Example 2B</th>
<th>Example 2C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Example 2</td>
<td>Example 2</td>
<td>Example 2</td>
</tr>
<tr>
<td>Foamed</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Thickness</td>
<td>mm</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cover Layer(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer Layer</td>
<td>Woerwag</td>
<td>121477</td>
<td>121477</td>
</tr>
<tr>
<td>Primer Layer Thickness</td>
<td>µm</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Base Coat Layer</td>
<td>BASF U668</td>
<td>B&amp;K WA83</td>
<td>BASF U300</td>
</tr>
<tr>
<td>Base Coat Color</td>
<td>Black</td>
<td>Glacier Silver</td>
<td>Alpine White</td>
</tr>
</tbody>
</table>
 Claims

1. A multi-layer article comprising:
   i) a substrate layer including a polymeric composition, wherein the polymeric composition is a blend comprising:
      a polycarbonate polymer, one or more styrene-containing copolymers, and a filler including a wollastonite; and
   ii) a cover layer of a polyurethane bonded directly to the substrate layer;

   wherein the amount of polyester in the polymeric composition is about zero or less than about 5 weight percent.

2. The multi-layer article of claim 1, wherein the polycarbonate is present in an amount from about 20 weight percent to about 70 weight percent (preferably from about 20 to about 60 weight percent, more preferably from about 30 weight percent to about 59 weight percent, and most preferably from about 35 to about 55 weight percent) based on the total weight of the polymeric composition.

3. The multi-layer article of claim 1 or 2, wherein the polymeric composition includes an ABS thermoplastic (i.e., an acrylonitrile-butadiene-styrene thermoplastic) including the styrene-containing copolymer and a butadiene containing phase dispersed in the styrene-containing copolymer, wherein the styrene-containing copolymer is a copolymer of acrylonitrile and styrene; and wherein the ABS thermoplastic is present in an amount from about 12 weight percent to about 70 weight percent based on the total weight of the polymeric composition.

4. The multi-layer article of any of claims 1 through 3, wherein the styrene-containing copolymer is a random copolymer including (preferably consisting essentially of, or consisting entirely of) acrylonitrile and styrene.

5. The multi-layer article of any of claims 1 through 4, wherein the wollastonite is present in an amount from about 3 weight percent to about 35 weight percent (preferably from about 8 weight percent to about 23 weight percent, and most preferably from about 11 weight percent to about 19 weight percent), based on the total weight of the polymeric composition.

6. The multi-layer article of any of claims through 5, wherein the ratio of the concentration of the polycarbonate to the concentration of the ABS thermoplastic is about 70:30 or less (preferably about 68:32 or less, more preferably about 65:35 or less) and/or is about 20:80 or more (preferably about 30:70 or more, and more preferably about 35:65 or

---

TABLE 3. Properties of Composite Samples

<table>
<thead>
<tr>
<th>Example 2A</th>
<th>Example 2B</th>
<th>Example 2C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Coat Thickness µm</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Clear Coat Layer Woenwag</td>
<td>118173</td>
<td>118173</td>
</tr>
<tr>
<td>Clear Coat Thickness µm</td>
<td>41</td>
<td>37</td>
</tr>
</tbody>
</table>

| Cross Hatch Test (initial) - DIN EN ISO 2409, 2 mm (requirement: ≤ Gt 1) |
|---------------------------|-------------------|-------------------|-------------------|
| Gt 1                      | Gt 0               | Gt 0               | Gt 0               |
| Gt 2                      | Gt 0               | Gt 0               | Gt 0               |
| Gt 3                      | Gt 0               | Gt 0               | Gt 0               |

<table>
<thead>
<tr>
<th>Multi impact stone chip resistance test (initial) - DIN EN ISO 20567-1 (requirement: ≤ 2.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
</tr>
<tr>
<td>(≤ Gt 1)</td>
</tr>
<tr>
<td>Gt 0</td>
</tr>
<tr>
<td>Gt 0</td>
</tr>
<tr>
<td>Gt 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Climate test for trim parts - TP 303.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Hatch Test</td>
</tr>
<tr>
<td>(≤ Gt 1)</td>
</tr>
<tr>
<td>Gt 0</td>
</tr>
<tr>
<td>Gt 0</td>
</tr>
<tr>
<td>Gt 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multi impact stone chip resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(≤ 2.5)</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
</tbody>
</table>
7. The multi-layer article of any of claims 1 through 6, wherein the substrate layer has a thickness from about 0.5 mm to about 10 mm and/or the cover layer has a thickness from about 0.01 mm to about 1.5 mm (in one preferred aspect, from about 0.01 mm to about 0.20 mm; in another preferred aspect, from about 0.5 mm to about 1.5 mm).

8. The multi-layer article of any of claims 1 through 7, wherein the polyurethane includes a polyurethane lacquer applied directly over a surface of the substrate layer (e.g., directly on the substrate layer, so that the polyurethane lacquer contacts the substrate layer).

9. The multi-layer article of any of claims 1 through 8, wherein the multi-layer article is an automotive interior trim part or an automotive exterior trim part.

10. The multi-layer article of any of claims 1 through 9, wherein the polyurethane includes a polyurethane lacquer applied directly over a surface of the substrate layer (e.g., directly on the substrate layer, so that the polyurethane lacquer contacts the substrate layer).

11. The multi-layer article of any of claims 1 through 10, wherein the ABS thermoplastic (preferably mass ABS) includes rubber particles having an average size of about 1 µm or less (e.g., from about 0.01 µm to about 1.00 µm).

12. The multi-layer article of any of claims 1 through 11, wherein the polycarbonate polymer is characterized by a weight average molecular weight (i.e., Mw) of about 20000 atomic mass units or more (preferably about 22,000 atomic mass units or more) and/or the wollastonite includes a sizing.

13. The multi-layer article of any of claims 1 through 12, wherein the substrate layer is colored by a pigment or other colorant, and the cover layer is substantially clear and/or substantially transparent; and the substrate layer includes one or more additives selected from the group consisting of an antioxidant, a process aid, a light stabilizer, a heat stabilizer, a mod release agent and a flow modifier.

14. The multi-layer article of any of claims 1 through 13, wherein the polymeric composition includes from about 0.2 to about 7 weight percent of one or more ethylene copolymers, wherein the ethylene copolymer includes a functionalized monomer.

15. The multi-layer article of any of claims 1 through 14, wherein the styrene-containing copolymer is an acrylonitrile-styrene copolymer and the composition includes about 3 to about 15 weight percent of an impact modifier, wherein the impact modifier is a core-shell polymer, based on the total weight of the core-shell polymer and the acrylonitrile-styrene copolymer.
## DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2002/160177 A1 (WARNTH HOLGER [DE] ET AL) 31 October 2002 (2002-10-31)  * paragraphs [0006], [0015], [0036], [0051], [0055], [0061], [0065], [0078], [0082], [0083], [0091], [0102], [0104], [0113], [0165]; claims 1-4,7-12,14,15,19-22</td>
<td>1-15</td>
<td>INV. C08J7/04 B32B27/08 B32B27/28 B32B27/40</td>
</tr>
<tr>
<td>X,D</td>
<td>US 2011/027575 A1 (DRUBE WOLFGANG [DE] ET AL) 3 February 2011 (2011-02-03)  * paragraphs [0003], [0009], [0015], [0020], [0039], [0062], [0078], [0108]; claims 1,2,6,7,12</td>
<td>1-15</td>
<td></td>
</tr>
<tr>
<td>A,D</td>
<td>US 2013/196130 A1 (HUFEN RALF [DE] ET AL) 1 August 2013 (2013-08-01)  * paragraphs [0009] - [0111], [0133], [0148], [0149]; claims 1,2,9; examples 1,13</td>
<td>1-15</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

Place of search | Date of completion of the search | Examiner
---|---|---
Munich | 6 March 2017 | Pamies Olle, Silvia

### CATEGORY OF CITED DOCUMENTS

- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **A**: technological background
- **P**: intermediate document
- **O**: non-written disclosure
- **&**: member of the same patent family, corresponding document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AT 316550 T</td>
<td>15-02-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2002308279 A1</td>
<td>03-10-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0207616 A</td>
<td>09-03-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1520443 A</td>
<td>11-08-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10109226 A</td>
<td>05-09-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1414905 A2</td>
<td>06-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2256507 T3</td>
<td>16-07-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1068641 A1</td>
<td>12-01-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004528434 A</td>
<td>16-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20030078082 A</td>
<td>04-10-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA03007594 A</td>
<td>11-12-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 1318227 B</td>
<td>11-12-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002160177 A1</td>
<td>31-10-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 02074860 A2</td>
<td>26-09-2002</td>
</tr>
<tr>
<td>US 2011027575 A1</td>
<td>03-02-2011</td>
<td>CN 102575036 A</td>
<td>11-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102009035807 A1</td>
<td>03-02-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2459625 A1</td>
<td>06-06-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20120052952 A</td>
<td>24-05-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201121755 A</td>
<td>01-07-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011027575 A1</td>
<td>03-02-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011015286 A1</td>
<td>10-02-2011</td>
</tr>
<tr>
<td>US 2013196130 A1</td>
<td>01-08-2013</td>
<td>CA 2861700 A1</td>
<td>04-07-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104066792 A</td>
<td>24-09-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2798007 A1</td>
<td>05-11-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015510524 A</td>
<td>09-04-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140117445 A</td>
<td>07-10-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013196130 A1</td>
<td>01-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013098176 A1</td>
<td>04-07-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9812957 A</td>
<td>08-08-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2307629 A1</td>
<td>29-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1276757 A</td>
<td>13-12-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 19746265 A1</td>
<td>22-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1024955 A1</td>
<td>09-08-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4458663 B2</td>
<td>28-04-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001520136 A</td>
<td>30-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2205756 C2</td>
<td>10-06-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 530074 B</td>
<td>01-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002058716 A1</td>
<td>16-05-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9920464 A1</td>
<td>29-04-1999</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 20050218547 A1, Roche [0003] [0008]
• US 20130196130 A1, Hufen [0003] [0004] [0019] [0062] [0064] [0078]
• US 20110027575 A1, Drube [0003] [0007]
• US 6461732 B1, Wittmann [0003] [0006]
• EP 1736293 A1, Heinl [0003] [0005]
• US 20110129631 A1, Van Nuffel [0019]
• WO 201107273 A, Van Nuffel [0019] [0034]
• US 3028365 A [0020] [0027]
• US 4529791 A [0020] [0027]
• US 4677162 A [0020] [0027]
• US 3419634 A [0029]
• US 20110040035 A1, Shields [0034]
• US 2007106028 A1, Maes [0034]
• US 61309634 B [0034]
• US 3660535 A [0036]
• US 3243481 A [0036]
• US 4239863 A [0036]
• US 2727884 A [0037]
• EP 412801 A [0037]
• US 4666987 A [0039]
• US 4572819 A [0039]
• US 4585825 A [0039]
• US 4218543 A [0086]
• DE 2442101 A [0092]
• DE 2844922 A [0092]
• DE 2646141 A [0092]
• EP 0540985 A [0110]
• EP 0959087 A [0110]
• DE 10007821 A [0110]
• DE 10024624 A [0110]
• WO 0188006 A [0110]
• EP 0959115 A [0117]

Non-patent literature cited in the description

• SCHNELL. Chemistry and Physics of Polycarbonates. Interscience Publishers, 1964 [0020]
• Modern Styrenic Polymers. Series In Polymer Science. Wiley [0036]
• CHEMICAL ABSTRACTS, 2082-79-3 [0066]
• HIGH POLYMERS. 1984, vol. II, 5-6, 198-199 [0093]