Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

TECHNICAL FIELD

[0001] The present invention relates to methods for polypeptide quantification by mass spectrometry wherein combined fragment spectra are acquired. Further, it relates to the use of isotopically labelled peptides in such methods and to methods for their selection.

PRIOR ART

[0002] No admission is made that any reference constitutes prior art. The discussion of the references states what their authors assert, and applicants reserve the right to challenge the accuracy and pertinence of the cited documents. It will be clearly understood that, although a number of prior art publications are referred to herein, this reference does not constitute an admission that any of these documents forms part of the common general knowledge in the art.

[0003] Proteins provide the framework of life. Therefore, protein identification and quantification are essential tools to approach many biological problems. While single proteins have been analyzed for many years, and the corresponding methods are well established, the field of proteomics emerged only over the past decades. This discipline is concerned with studying not only a handful of proteins at a time, but also complete cellular or subcellular proteomes. Over recent years mass spectrometry, especially ESI-LC-MS (electrospray ionization mass spectrometry), has been the main technology used in proteomics and has proven useful for a host of applications ranging from biomarker discovery and validation to analysis of post-translational modifications.

[0004] One standard proteomics workflow for protein analysis includes the following steps: A cellular sample is treated mechanically and with detergents to extract proteins. The extracted proteins are then digested by a protease, most frequently trypsin. The resulting peptide mixture is separated via reversed-phase liquid chromatography (LC) and ionized by electrospray ionization (ESI). The dispersed, charged peptide molecules, so-called precursors, enter the mass spectrometer where each precursor is separately fragmented into shorter amino acid fragments (Steen, H. & Mann, M., 2004. The ABC’s (and XYZ’s) of peptide sequencing. Nature reviews. Molecular cell biology, 5(9), pp.699-711). Finally, the mass-to-charge (m/z) ratios of the fragments of a single precursor are detected and stored in a fragment ion spectrum. Based on the fragment ion spectra the detected peptides and ultimately also the proteins contained in the sample can be identified. Quantification of peptide levels can be done either on the precursor or on the fragment level, depending on the MS method that is used.

[0005] Two of the most frequently used mass spectrometry approaches are data-dependent acquisition (DDA), also called “shotgun”, and targeted acquisition, such as Selected Reaction Monitoring (SRM). Although both approaches can be used for a wide range of applications, they nonetheless have some drawbacks.

[0006] The limitation of DDA is that only a limited number of co-eluting precursors (normally the 5 to 50 most intense) is sequenced during each MS cycle while all other peptides remain unidentified. This leads to an under-sampling of medium- to low-intensity peptides and to missing peptide ID data points as different peptides may be sequenced even in replicate runs of the same sample. Besides, sensitivity is lower compared to target ed mass spectrometry methods. Moreover, DDA has a narrow dynamic range which hampers its suitability for some quantitative studies.

[0007] The targeted SRM technique, on the other hand, has a large dynamic range and a high sensitivity. However, SRM requires prior knowledge of target proteins and the number of peptides that can be identified per run is limited, thus making the method unsuitable for discovery studies. Further drawbacks include labor-intensive optimization of peptide assays and instrument parameters to detect the target peptides. Additionally, the low resolution and mass accuracy of the quadrupole mass analyzers routinely used in SRM experiments can lead to detection of false-positive signals.

[0008] Within the last years, a set of novel MS techniques emerged which improve on the disadvantages of DDA and SRM: These methods are summarized under the term “data-independent acquisition” (DIA) and include techniques such as HRM, SWATH, MSE and AllIon-Fragmentation (Chapman, J.D., Goodlett, D.R. & Masselon, C.D., Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass spectrometry reviews, 33(6), pp.452-70; Law, K.P. & Lim, Y.P., 2013. Recent advances in mass spectrometry: data independent analysis and hyper reaction monitoring. Expert review of proteomics, 10(6), pp.551-66).

The common feature of most DIA methods is that instead of selecting and sequencing a single precursor peak, larger mass windows, or swaths, are fragmented resulting in complex spectra containing fragment ions of several precursors. This avoids the missing peptide ID data points typical for shotgun methods and potentially allows sequencing whole proteomes within one run, which offers a clear advantage over the small number of peptides that can be monitored per run by SRM. Furthermore, DIA techniques such as SWATH have excellent sensitivity and a large dynamic range. To identify the peptides present in a sample, the fragment ion spectra can be searched against theoretical spectra or can be mined using SRM-like transitions. The detected fragments are subsequently arranged in SRM-like peak groups.

[0009] In addition to the DIA methods mentioned above, a novel targeted proteomics technique was developed which can be considered a successor of SRM. This method, called parallel reaction monitoring (PRM), relies on a quadrupole mass filter which is combined with...
a high resolution mass analyzer, such as e.g. in a quadrupole-equipped bench-top orbitrap MS instrument. Replacing the last quadrupole of a triple quadrupole with a high resolution mass analyzer allows the parallel detection of all fragment ions at once. In principle it would also be possible to combine a linear ion trap with the orbitrap instead of the quadrupole. The advantage of PRM over SRM is that less prior knowledge about the target molecules is required. In terms of dynamic range PRM performs even better than SRM under some conditions due to its high selectivity.

A further development of this technique is multiplexed parallel reaction monitoring (mPRM) wherein not only single precursors are fragmented. In this method fragment ion spectra containing fragment ions from several precursors are created by either fragmenting larger m/z ranges or by multiplexing, which is sequentially fragmenting several precursors, and storing their fragment ions together for later measurement. In a further development internal standard triggered-parallel reaction monitoring (IS-PRM) has been proposed. In this method internal standard peptides are added to the sample. Based on their detection in a fast, low-resolution "watch" mode the acquisition parameters are switched to "quantitation" mode to ensure acquisition of endogenous peptides. This dynamic data acquisition minimizes the number of uninformative scans and can be applied to a variety of biological samples.

In proteomics experiments peptide levels in a sample are often determined relative to a labelled standard. Especially, isotopic labelling in combination with DDA and SRM mass spectrometry has proven useful to address a wide range of biological questions. In one exemplary setup, a sample containing endogenous, unlabelled, "light" peptides in unknown amounts is mixed with known quantities of synthetic, isotopically labelled, "heavy" peptides. During mass spectrometry analysis of the mixture, the mass difference introduced by the isotopic labels allows to distinguish the light endogenous from the heavy synthetic peptides in the sample and allows for their separate quantification.

Such experiments have proven so successful that pools of heavy-labelled synthetic peptides are now readily available from several commercial vendors. Alternatively, heavy-labelled peptide pools can also be produced via metabolically labelling proteins with heavy amino acids, or directly with heavy elemental isotopes, during in vitro or in vivo expression, and digesting said protein to peptides. The advantage of synthesizing peptides is that it is much faster and purification as well as absolute quantification of synthesized peptides is easier. Furthermore, incorporating only one heavy-labelled amino acid, rather than heavy elemental isotopes such as 15N for the whole peptide, has the advantage of producing a constant mass shift.

US2014248603 provides methods and mass-labeled peptides for use in said methods for quantifying the presence of a one or more viral proteins in a sample of a preparation containing agents which bind to said viral protein, using mass-spectroscopic analyses of the sample and standards containing known amounts of labeled and unlabeled signature peptides, in particular wherein said viral proteins are antigens in a vaccine for porcine circovirus.

SUMMARY OF THE INVENTION

The invention is defined in the claims. In proteomics often the protein levels in an endogenous sample and in a reference standard need to be compared. To achieve this, the sample (containing unlabeled proteins and/or peptides) and the reference standard (containing labelled proteins and/or peptides) are combined and the mixture is measured by mass spectrometry. Usually, the reference peptides are labelled at their C-terminus with a single amino acid containing heavy elemental isotopes. Preferably, the labelled amino acids are arginine or lysine containing at least one, usually 6-10 atoms of 13C and/or 15N. When these labelled reference peptides are fragmented during MS analysis, all C-terminal fragment ions, such as y-ions, will contain the heavy labelled amino acid and will have masses that are distinct from their unlabelled counterparts. However, N-terminal fragment ions, such as b-ions, will not contain the C-terminal amino acid label. Thus, they have masses identical to the masses of b-ions resulting from unlabelled peptides. We call this "fragment overlap". Obviously, fragment overlap might not only occur between labelled and unlabelled peptides but also between two variants of peptides differing in a single label, i.e. in the label’s properties and/or in its position.

Fragment overlap does not affect the experiment if the mixture of labelled and differently labelled peptide variants is analyzed by DDA or SRM since both methods only fragment one precursor at a time and collect fragment ions of different precursors in different spectra. The mass difference introduced is typically large enough that the two precursors can be separately selected by the mass spectrometer. However, it becomes an issue whenever mass spectrometry methods are used wherein the fragment data for the two variants of each peptide are combined, i.e. whenever a combined fragment ion spectrum of the labelled and the unlabelled peptide variants together is acquired and/or stored. This is the case for all DIA MS methods as well as mPRM. Since the stored fragment ion spectra contain fragments from heavy and light precursors, and since N-terminal fragment ions cannot be assigned to either peptide variant based on their mass alone, the N-terminal fragment ions (such as b-ions) cannot be used for quantification. This is a problem that occurs not only for a handful of peptides, but for all labelled peptides in such experiments. Thus, for all peptides in a sample, all N-terminal fragments are eliminated for data analysis. To further aggravate the problem, the presence of shared fragments between two peptide variants further complicates data analysis and
hampers peptide identification for instance when the known relative fragment ion intensity is used for scoring.

[0017] Thus, DIA and multiplexed PRM quantification methods relying on isotopic labelling have not yet reached their full potential and could be further improved. A modified approach is desired to reconcile the DIA and mPRM technologies with isotopic labelling and to reduce fragment overlap. Despite the many technological advances in the proteomics field in recent years, a solution has not yet been proposed for this problem.

[0018] The present invention was made in view of these problems and of the prior art described above. The object of the present invention is to provide a way to reduce fragment overlap between fragments of unlabeled and labelled peptides in quantification experiments wherein data entities contain combined fragment data from both variants. Especially, the present invention relates to reducing the fragment overlap between N-terminal fragment ions of isotopically unlabeled and labelled peptides.

[0019] The way to achieve this is by selectively introducing a second label into the labelled peptides, such that the majority of the fragments of interest resulting from the unlabelled and the labelled variants differ in a label i.e. in the labels' properties and/or position. For example one can selectively introduce an isotopically labelled amino acid towards the N-terminus of synthetic peptides in addition to a label located towards the C-terminus.

[0020] The difference in multiple labels results in distinct fragment series for unlabeled and labelled peptides. Thus, the fragments stemming from the different peptide variants will be distinguishable even if they are combined in one data storage unit, e.g. when they are acquired together, or are acquired separately and then combined. The absence of fragment overlap not only allows the separate quantification of the fragments from unlabelled and the labelled peptides. It also facilitates data analysis and increases the number of fragments that can be used for quantification compared to mixtures where the unlabelled and the labelled peptides differ only in a single, terminal label.

[0021] Generally speaking, the present invention therefore proposes a method for the absolute or relative quantitative analysis of proteins and/or peptides with or without post translational modification(s) using a mass spectrometry method. In this method in a first step unlabelled proteins from an endogenous mixture are digested and subsequently digestion products thereof selected, in a second step said digestion products are fragmented, and in a third step a combined fragment spectrum is acquired comprising b-ions as well as y-ions of said digestion products.

[0022] According to the proposed method, at least one reference peptide is added to said mixture before and/or after digestion in either a known concentration in case of absolute quantification or in always the same concentration in a series of experiments for relative quantitative analysis.

[0023] Said at least one reference peptide is selectively isotopically labeled by having incorporated one isotopically labeled amino acid forming its very C-terminus or being one of the four terminal amino acids at the C-terminus and additionally one further isotopically labeled amino acid forming its very N-terminus, or being one of the four terminal amino acids at the N-terminus.

[0024] The said at least one reference peptide, which is added to said mixture in a known concentration in case of absolute quantification or in always the same concentration in a series of experiments for relative quantitative analysis, is fragmented, acquired, and stored in said combined fragment spectrum comprising also b-ions and y-ions of said digestion products, preferably of the endogenous peptide corresponding to the labelled reference. Within the present application a (reference) peptide comprises or consists of 5-100, preferably 7-30, most preferably 10-20 amino acids.

[0025] The solution of introducing multiple labels has not been considered in the past inter alia since labels are challenging to provide and thus expensive, and the costs and time investments for introducing multiple labels are normally high. This is especially true for the complex synthesis of quantified heavy-labelled peptides. Even synthesizing a pool of single-labelled peptides is typically at a level of complexity, which lies outside the time and resources that most research groups have available for one experiment. This is emphasized by the fact that many quantification experiments can still be completed despite the occurrence of fragment overlap although they do not reach their full potential. For example DIA experiments using single-labelled peptides can be executed by relying only on y-ions for quantification and without using the b-ions for all peptides for quantification. However, a big part of the available fragment information will remain unused. The covert need for improvement in combination with the high label costs lead the skilled person away from the solution provided by the present invention.

[0026] As opposed to its usefulness for DIA and mPRM studies, multiple-labelling of peptides does not add any benefit for most proteomics applications and therefore has not been adopted in the field. WO2002083923 mentions on a side note that peptides can carry more than one label in connection with de-novo peptide-sequencing, but fails to relate to the fragment overlap problem occurring in DIA or mPRM experiments, and fails to address where the labels shall be placed to solve the problem occurring in DIA or mPRM experiments.

[0027] The set of labelled peptides used in the current
invention can be used for relative quantification of unlabelled peptides in a sample relative to the amount of their labelled variants. Furthermore, if the amount of the labelled peptides in the set used in the current invention is known, the set can be used for absolute quantification of their unlabelled variant.

To distinguish N- and C-terminal fragment ions from labelled and unlabelled peptides, the labelled peptides can contain two labels at two different positions in the peptide. In one embodiment, the unlabelled peptides differ from their labelled peptide variants in two labels, i.e. in the labels' properties and/or in their position, where-in the labels were introduced selectively. Preferably, the labelled peptide contains two labels not present at the same position in the differently labelled peptide variant. In either case, the labels can be located at the termini of a peptide, or at any other position.

Preferably in said reference peptide, apart from the one single isotopically labeled amino acid at or close to the C-terminus and the one single isotopically labeled amino acid at or close to the N-terminus, not more than one additional amino acid is isotopically labeled, preferably no additional amino acid is isotopically labeled, so there is only one label at or close to the C-terminus, and one additional label at or close to the N-terminus.

Close to the C-terminus, and close to the N-terminus in this application is to be understood as follows: close to the C-terminus means the isotopically labeled amino acid is one of the four terminal amino acids at the C-terminus, preferably it is one of the three or two most terminal amino acids at the C-terminus. Close to the N-terminus means the further isotopically labeled amino acid is one of the four terminal amino acids at the N-terminus preferably it is one of the three or two most terminal amino acids at the N-terminus. Preferably, in said reference peptide one (preferably single) isotopically labeled amino acid is forming its very C-terminus and one further (preferably single) isotopically labeled amino acid is forming its very N-terminus.

Preferably the one isotopically labeled amino acid is one of the three or two most terminal amino acids at the C-terminus and additionally the one further isotopically labeled amino acid is one of the three or two most terminal amino acids at the N-terminus. Said post translational modification can be one or more selected from phosphorylation, acetylation, methylation, sulfation, hydroxylation, lipidation, ubiquitylation, sumoylation, and glycosylation.

Various mass spectrometry setups suitable for the analysis of proteins and/or peptides can be used for the quantitative analysis in the present invention. In a preferred embodiment the mass spectrometry setup is liquid chromatography MS (LC-MS).

Various ionization techniques suitable for the ionization of proteins and/or peptides can be coupled to the MS setup, e.g. matrix-assisted laser desorption/ionization (MALDI) or electrospray ionization (ESI).

Various fragmentation techniques suitable for fragmenting proteins and/or peptides can be employed during experiments with the current invention. Examples include collision-induced dissociation (CID), electron-capture dissociation (ECD), electron-transfer dissociation (ETD), negative electron-transfer dissociation (NETD), Pulsed Q Collision Induced Dissociation (POD), and Higher-energy C-trap dissociation (HCD). Moreover, fragmentation levels can be MS2, MS3, MS4.

The invention is especially useful for peptide quantification studies by DIA or mPRM methods. However, various mass spectrometry methods can be employed where combined fragment ion spectra containing fragment data of both labelled peptides and differently labelled peptide variants are stored. This includes but is not limited to data-independent acquisition (DIA) methods. The literature describes numerous DIA methods and new ones are continuously becoming known. Methods which can be used in the present invention include but are not limited to HRM, SWATH, MS3, PACIFIC, and All-Ion Fragmentation. Moreover, also multiplexed parallel reaction monitoring (mPRM) can be used as mass spectrometry acquisition method.

The use of a specific mass spectrometry instrument is not critical for the present invention. For example, a mass spectrometer capable of performing DIA with a sufficient resolution can be employed such as a Quadrupole-Orbitrap, Quadrupole-TOF, IMS-TOF, Quadrupole-IMS-TOF, IMS-Quadrupole-TOF, IMS-Orbitrap, Quadrupole-IMS-Orbitrap or IMS-Quadrupole-Orbitrap instrument. Furthermore, a mass spectrometer capable of performing multiplexed PRM can be employed as long as it has a means to select precursor ions for fragmentation and store fragment ions before measuring the multiplexed spectrum. Examples are Quadrupole-Orbitrap, IMS-Orbitrap, Quadrupole-IMS-Orbitrap, IMS-Quadrupole-Orbitrap instrument or Linear Ion Trap-Orbitrap instruments. Moreover, also another mass spectrometer or device capable of fragment-based analysis can be used if combined fragment ion spectra containing fragment data of both labelled peptides and their differently labelled peptide variant are produced from its data during acquisition.

Comparing labelled peptides which differ in at least two labels from the unlabeled variant they are compared with, reduces fragment overlap. This has the advantage that more fragments are available for quantification, e.g. N-terminal fragment ions, such as b-ions. Since b-ions make an important contribution to the total ion intensity in HCD peptide spectra and to the amino acid coverage, especially for longer peptides, the quantification is more robust. Furthermore, the increased number of available ions makes more peak groups amenable to quantification and the fragment ion spectra contain less shared ions between heavy and light peptide variants. This contributes to an increase in the number and quality of peptide identifications. Moreover, it remains to note that such labelled peptides which differ in at least two labels from the differently labelled variant
they are compared with, are also suitable for applications for which traditionally labelled peptides which differ in only a single label are used.

[0039] Preferably said combined fragment spectrum is acquired using a full-range mass isolation window, or a mass isolation window having a width in the range of 2 · 1000 Thomson (with 1 Thomson = 1.036426 · 10⁻⁸ kg/C; this is (2 · 1.036426 · 10⁻⁸ kg/C) - (1000 · 1.036426 · 10⁻⁶ kg/C)) or 5 · 100 Thomson ((5 · 1.036426 · 10⁻⁸ kg/C) - (100 · 1.036426 · 10⁻⁶ kg/C)), preferably of 5 · 30 Thomson ((5 · 1.036426 · 10⁻⁸ kg/C) - (100 · 1.036426 · 10⁻⁶ kg/C)), most preferably of 10 · 25 Thomson ((10 · 1.036426 · 10⁻⁸ kg/C) - (25 · 1.036426 · 10⁻⁸ kg/C)).

[0040] Typically, but not necessarily, wide mass isolation windows (for example > 100 Thomson, i.e. > 1.036426 · 10⁻⁶ kg/C) are used if other or additional means of separation apart from liquid chromatography are used, such as IMS.

[0041] The present disclosure further proposes a method for selecting the label and label position of at least one suitable reference peptide for use in a method as described above, wherein the position of the label at the C-terminus, or within the four terminal amino acids at the C-terminus, and/or the position of the label at the N-terminus, or within the four terminal amino acids at the C-terminus, is selected in a way that the majority of the relevant fragment ions from a selectively double-labelled peptide differ from the corresponding fragment ions from the unlabelled peptide, preferably using a procedure which, inter alia, takes into account of at least one of the following parameters or a combination thereof: the availability and/or cost of the labelled version of the corresponding amino acid at the respective position; the complexity of the incorporation of the labelled version of the corresponding amino acid at the respective position, the occurrence of the corresponding amino acid at the respective position, the occurrence of the corresponding amino acid in the corresponding reference peptide and positions thereof, wherein the label is preferably selected so as to be optimized with respect to these parameters.

[0042] One crucial factor for the present invention is the positioning of the labels within each selectively labelled peptide. Ideally, the labels are placed in a way that the majority of the relevant fragment ions from a selectively double-labelled peptide differ from the corresponding fragment ions from the unlabelled peptide by at least one label, i.e. in the spectrum by the mass difference between the respective labelled amino acid and the corresponding unlabeled amino acid at the respective (terminal) position.

[0043] Following the peptide fragmentation pattern a first label must be located at or close to the C-terminus and a second label at or close to the N-terminus of each peptide in order for all N- and C-terminal fragments to carry a label.

[0044] The availability of a label and/or the complexity of its incorporation is reflected in the synthesis cost. Labelling the N- and C-terminal amino acids in many cases may and will not be the simplest and as a consequence not the most economic choice. Other amino acids more distant from the termini may be easier to obtain or incorporate and therefore priced at a lower rate. Therefore, also financial aspects need to be taken into consideration when choosing labels and label positions. Additionally, the very small terminal ions (e.g. b1, b2, y1, y2) of each ion series convey only little information and oftentimes it is not essential to detect these fragment ions. Therefore, it makes sense to balance the necessity of having also these terminal fragment ions labelled with other considerations, such as facility of obtaining and incorporating an amino acid. With price being a good indicator for the accessibility of an amino acid, one way to do this is to select the amino acid with the lowest label cost within a stretch of amino acids from the termini wherein the length of the stretch is selected such that most of the fragment information content is retained. Using such a procedure, the total label costs for synthesizing a set of several thousand peptides can be reduced substantially with only a small loss of information.

[0045] Labels can be expensive and the costs and time investments, as well as the technical resources, for introducing one or more labels into one or more peptides can be high. Furthermore, not all types of labels may be readily available or suitable for a certain proteomics application. Therefore, a prior analysis of the set of peptides helps to select optimal labels or label positions, to estimate the expected total label costs, and to optimize the experimental setup in order to minimize said costs. Furthermore, other factors have to be taken into account, such as the information content provided by different label positions, and the availability of the different labels. However, the large numbers of peptides analyzed in proteomics studies complicate any prior analysis of the set of peptides. Therefore, a method which is capable to do any or several of the following among other operations offers a considerable advantage: to estimate total label costs, to select the optimal labels and/or label positions, and/or to determine the most cost-efficient way of labelling the peptides. Furthermore, in the course of such an analysis one may also determine other parameters which are helpful for planning experiments using multiply-labelled peptides, e.g. they might simulate fragment collissons.

[0046] The present specification further discloses a reference peptide or set of reference peptides for use in a method as described above and/or determined as described above, wherein said reference peptide, and/or at least one or a plurality or all of the reference peptides in the set of reference peptides, is selectively isotopically labeled by having incorporated one (single) isotopically labeled amino acid forming its very C-terminus or being one of the four terminal amino acids at the C-terminus and one (single) further isotopically labeled amino acid forming its very N-terminus, or being one of the four terminal amino acids at the N-terminus.

[0047] The post translational modification(s) can be any modification occurring on peptides and/or proteins.
The present invention can be used to analyze peptide mixtures of a wide range of complexities. This includes the analysis of single proteins and/or peptides, as well as for large numbers thereof. However, the present invention is particularly suited for the analysis of whole or partial proteomes and of mixtures comprising peptides from 100 or more proteins or comprising at least 100 peptides.

The set of labelled peptides for use in the present invention and its methods comprises a number of peptides of interest. The peptide sequences in said set can for example be selected from a peptide spectral library. This peptide spectral library can e.g. result from a previous acquisition of a sample of the same cell type or organism or even of the same sample.

The set of labelled peptides can be obtained with an appropriate method capable of introducing labels at the desired positions. One preferred way is to synthesize the labelled peptides. During synthesis labels, such as amino acids containing heavy elemental isotopes, can be readily incorporated. An advantage of synthesizing peptides is its speed and that the synthetic peptides can be easily purified and their amounts quantified. Another route for obtaining sets of labelled peptides is by in vitro translation of peptides in the presence of labels. Yet another route for obtaining labelled peptides is by in vitro translation of proteins, followed by an enzymatic or chemical digestion or in-source fragmentation if necessary. Yet another route for obtaining labelled peptides is by in vitro translation of proteins, adding them to the unlabelled proteins, followed by an enzymatic digestion together with the sample. Yet another route is to enzymatically or chemically cleave proteins or polypeptides in the presence of labels, e.g. in 18O-containing water, in a way that labels are incorporated at the cleavage site. Yet another route to introduce a label during the production of the labelled peptides of the present disclosure is by enzymatic reaction. For example, N-terminal arginylation by the yeast arginyl-tRNA protein transferase (ATE) enzyme has been described. This enzyme recognizes acidic amino acids or oxidized cysteine residues at N-termini of peptides and adds an N-terminal arginine residue. Any similar enzymatic reaction that adds terminal labels could in theory be used for introducing labels which potentially results in suitable labelled peptides. It remains to note that some of the above-mentioned methods could potentially produce peptides which do not have any isotope envelope but only show a limited number or even only a single isotopic peak, e.g. by adding only monoisotopic versions of amino acids during peptide synthesis. In one case peptides can be doubly labelled with a chemical tag containing a heavy label and corresponding light versions including the chemical tag but no heavy isotopes can be synthesized. This can be an advantage for example in mPRM studies since the two precursor variants (labelled, and differently labelled or unlabeled) can be selected together without having to widen the precursor window very much, thus avoiding many interferences that would otherwise be captured in a wider window. Naturally, several of the above-mentioned procedures can be combined.

The set of labelled reference peptides for use in a method of the present invention can be comprised in an appropriate kit wherein the composition of the elements of the kit can be chosen as needed. They are especially suited to be contained in a kit in lyophilized form. The kit may comprise further components including but not limited to, buffers to dissolve and/or dilute the compounds.

The present invention can be used for analyzing a variety of peptides and/or proteins from a variety of sources. The peptides and/or proteins can be extracted from samples selected from but not limited to whole organisms, tissues, cells, body fluids, and compound mixtures. For example, the present invention can be used in peptide abundance measurements in samples from a variety of organisms, tissues, bodily fluids, and peptide mixtures. The present invention is especially suitable for any sample amenable to proteomics applications. For such proteomics applications the only requirements for the sample are that peptides can be obtained from the sample, that a peptide spectral library, either theoretical or experimental, covering the expected peptide content is available or can be created, and that the desired multiply-labelled labelled peptides can be produced. The present invention is particularly suited for the analysis of organisms, cells, and tissues types whose proteomes have been fully or partially annotated. These include but are not limited to whole organisms, parts, tissues, or cells of Homo sapiens, Mus musculus, Arabidopsis thaliana, Saccharomyces cerevisiae, Escherichia coli, Caenorhabditis elegans, Bacillus subtilis and Drosophila melanogaster, rat, tobacco, and maize.

The present invention is especially suited for the analysis of human blood, as well as human blood plasma, human urine and human CSF.

The present invention provides a solution to the above mentioned problems. Furthermore, it takes into account the latest technological developments in proteomics, which made the previously unaddressed fragment overlap problem especially and unexpectedly relevant for this field.

DEFINITIONS:

Amino acid: embraces naturally occurring amino acids, as well as non-natural amino acids, amino acid analogs, and amino acid derivatives.

Combined fragment spectrum: defines a mass spectrometry spectrum which was acquired using DIA or mPRM or another suitable mass spectrometry method and which contains fragment ions from multiple precursors.
the isotopes are one or more of 13C, 2H, 18O, 15N, 32S. In a more preferred embodiment, the isotopes are derived from any of the following elements: C, H, N, O, S. In a more preferred embodiment, the isotopes are one or more of 13C, 2H, 18O, 15N, 32S. Preferably the isotopically labelled amino acid is at least partly or fully labelled in 13C, 15N, and/or deuterium.

[0057] Data-independent acquisition or DIA: defines mass spectrometry methods where the stored fragment ion spectra contain fragment ions from multiple precursors. The term includes but is not limited to methods such as HRM, SWATH, all-ion-fragmentation, MS², PACIFIC, or any other method not mentioned here by name but employing similar principles as the aforementioned methods.

[0058] Fragment collisions: defines the phenomenon that some non-corresponding fragment ions of differently labelled peptide variants have the same masses. For example a fragment collision occurs if b5 from a heavy-labelled peptide has the same mass as y4 of a light peptide.

[0059] Fragment overlap: defines the phenomenon that corresponding fragment ions of differently labelled protein and/or peptide variants, e.g. light and a heavy-labelled variants, have identical masses due to the absence of any differing label in said fragments. For example a fragment overlap occurs if y5 from a heavy-labelled peptide has the same mass as y5 of a light peptide.

[0060] Human blood: refers to whole blood, blood plasma, blood serum, derivatives or a subfraction of any of the preceding.

[0061] Ion mobility separation, or IMS: refers to an analytical technique used to separate ionized molecules in the gas phase. IMS can be combined with mass spectrometry analysis (IMS-MS). It is assumed that normally unlabelled and labelled peptides have identical or very similar drift times.

[0062] Label: defines an artificial isotopic label that can be introduced into a peptide, thereby increasing the mass of the peptide and/or of a corresponding fragment. Labels can be selected from heavy or light elemental isotopes, or amino acids containing heavy or light elemental isotopes.

[0063] Isotopically labelled amino acid: is an amino acid in which at least one atom, preferably all atoms of one kind, is replaced by a different, stable, naturally not occurring or rarely occurring isotope. In a preferred embodiment, the isotopes are derived from any of the following elements: C, H, N, O, S. In a more preferred embodiment, the isotopes are one or more of 13C, 2H, 18O, 15N, 32S. Preferably the isotopically labelled amino acid is at least partly or fully labelled in 13C, 15N, and/or deuterium.

[0064] Label cost: defines the price of a label, e.g. the price per mmol or mg or microliter of a heavy elemental isotope containing amino acid.

[0065] Multiplexed PRM or mPRM: defines a mass spectrometry method wherein PRM is multiplexed such that the fragment ions of several target proteins and/or peptides are stored together. In this method fragment ion spectra containing fragment ions from several precursors are created by either fragmenting larger m/z ranges or by multiplexing, which is sequentially fragmenting several precursors, and storing their fragment ions together for later measurement.

[0066] Multiply-labelled: refers to a variant of a peptide containing three or two selectively placed labels.

[0067] Peptide spectral library: defines an electronic assembly comprising at least one peptide spectrum, or a list comprising at least one peptide sequence and/or spectral data. A spectral library can be obtained either theoretically, e.g. based on expected fragment masses for known peptide sequences, or experimentally, e.g. based on peptide identifications in measurements.

[0068] PRM or parallel reaction monitoring: defines a targeted mass spectrometry method wherein precursor ions are isolated and are fragmented. This is followed by detection of all fragment ions in a high resolution mass analyzer for example an Orbitrap or TOF. For quantification in PRM one or more fragment ions are extracted as "pseudo-transitions" that are selected post-acquisition.

[0069] Total label cost: defines the summed up price for all labels used to label a certain amount (e.g. in mmol, mg, ml) of a specific set of peptides with a specific value of n_globalMaxVal. This only includes the costs for the labels but no other costs, such as e.g. the costs for unlabeled amino acids or further synthesis costs.

BRIEF DESCRIPTION OF THE DRAWINGS

[0070] Preferred embodiments of the invention are described in the following with reference to the drawings, which are for the purpose of illustrating the present preferred embodiments of the invention and not for the purpose of limiting the same. In the drawings,

- **Fig. 1** shows a) an MS1 spectrum wherein the mass window for fragmentation containing the unlabelled and the labelled precursor is marked, and b) a combined fragment ion spectrum comprising fragment ions from the unlabelled and the single-labelled variant of peptide DI-ASGLIGPLIIC[+C2+H3+N+O]K. The code [+C2+H3+N+O] denotes a carbamidomethyl modification at cysteine that is typically introduced on purpose during sample preparation; shows schematic drawings of a) a peptide fragmentation pattern and b) of a peptide and its y- and b-fragment ions;

- **Fig. 2** shows a schematic drawing comparing DDA with DIA, wherein mass windows containing several precursors are fragmented in the data-independent acquisition experiment and the resulting data are stored in combined fragment ion spectra;

- **Fig. 3** shows a schematic drawing comparing DDA with DIA, wherein mass windows containing several precursors are fragmented in the data-independent acquisition experiment and the resulting data are stored in combined fragment ion spectra;

- **Fig. 4** shows a schematic drawing of an mPRM experiment, wherein either larger mass windows containing several precursors or several mass windows containing precursors are fragmented and the resulting data are stored together; shows a) fragment overlap for unlabelled peptides and peptides with a single heavy label and b) displays a schematic drawing of the y- and b-ions;
Fig. 6 shows a fragment ion spectrum without fragment overlap and b) displays a schematic drawing of the y- and b-ions for unlabelled peptides and double-heavy-labelled peptides;

Fig. 7 exemplifies processes in a method to select optimal label positions;

Fig. 8 shows a schematic drawing of a calculation mode for selecting label positions;

Fig. 9 in a) and b) exemplifies the outcome of an analysis for optimal label positions: barplots show the frequency with which each amino acid would be labelled for different $n_{\text{globalMaxVal}}$ and a human blood plasma peptide spectral library containing two isotopically labelled amino acids per peptide;

Fig. 10 shows a schematic drawing of an isotopic labelling experiment wherein either single- or double-labelled reference peptides are combined with an unlabelled peptide mixture and the acquisition method is DIA;

Fig. 11 shows a schematic drawing of an isotopic labelling experiment wherein labelled reference peptides are combined with an unlabelled peptide mixture and the acquisition method is DIA;

Fig. 12 shows a schematic drawing of an isotopic labelling experiment wherein labelled reference peptides are combined with an unlabelled peptide mixture and the acquisition method is mPRM.

DESCRIPTION OF PREFERRED EMBODIMENTS

[0071] Herein after, the present invention is described in further detail and is exemplified. However, the examples are not intended to limit the present invention. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It must be noted that as used herein and in the claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example reference to “a label” includes a plurality of such labels and so forth.

[0072] Although any materials and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred materials and methods are now described.

[0073] This description specifically details the application of labelled reference peptides in quantitative proteomics studies wherein combined fragment ion spectra are obtained. It describes methods for the quantitative analysis of peptides and/or proteins, methods for the selection of suitable reference peptides and label positions, and the reference peptides used in said methods. Different aspects relating to the experimental setup, and labelling strategies are discussed. Finally, examples of applications illustrate the potential of the methods and substances of the present invention to improve the accuracy of quantitative studies.

Mass spectrometry methods:

[0074] Mass spectrometry (MS) methods are widely used for peptide and/or protein identification and quantification, especially in proteomics studies where large numbers of analytes are monitored. A standard sample preparation workflow for bottom-up liquid chromatography (LC)-MS experiments includes the following steps: Proteins comprised in a sample are digested to peptides using a protease such as trypsin. The peptides are then separated by liquid chromatography, most commonly via reversed-phase liquid chromatography (LC). As soon as the peptides elute from the chromatography column, they are ionized by electrospray ionization (ESI): At the ion source, a voltage is applied which disperses the liquid sample into fine droplets containing charged peptide molecules. These precursors then enter the mass spectrometer where they fly in an electric field and are resolved according to their mass-to-charge (m/z) ratio. Finally, the precursor ions are detected and their mass-to-charge (m/z) ratio is registered, resulting in MS1 (or MS) spectra acquired over the whole gradient. Single peptide precursors or wider mass ranges are sequenced as follows: The ions in the selected mass window are isolated and fragmented, e.g. by collision with Helium gas, a process termed collision-induced dissociation (CID) or by higher energy C-trap dissociation (HCD). All fragment ions are then recorded in one MS/MS, MS2, or fragment ion spectrum.

[0075] The fragment ion spectra serve as a basis for peptide identification. Peptides do not disintegrate randomly during fragmentation, but rather fragment according to a pattern into a, b, c, x, y, and z-ions (Fig. 2a). In common proteomics studies, the most prominent ion series are often y- and b-ions and special attention is paid to them. These two form complementary fragment ion series (Fig. 2b), wherein y-ions include the peptide’s C-terminus and b-ions include the N-terminus. Since peptide fragmentation follows a known pattern, the peptide sequence can be derived from the fragment ion peaks in an MS2 spectrum. Once the peptide has been identified, it can further be quantified using the acquired MS1 or MS2 data.

[0076] Different mass spectrometry approaches can be used in bottom-up proteomics experiments. While the basic steps of the protocols remain the same for all approaches, other parts, such as fragmentation, identification, and quantification of peptides, vary depending on the MS method used.

[0077] One of the most frequently used mass spectrometry approaches in proteomics is data-dependent acquisition (DDA), also called “shotgun” (Fig. 3, left panel). In a classical data-dependent workflow only the precursors with the highest signal intensities in the MS1 spectrum are sequenced: The ions in a small mass win-
Within the last years, data-independent acquisition approaches. Additionally, sensitivity is lower compared to other mass spectrometry methods. As a consequence, many peptides remain unidentified. Furthermore, changes in precursor intensities can result in different sets of peptides being sequenced even in replicate MS acquisitions of the same sample. Additionally, sensitivity is lower compared to other mass spectrometry approaches.

Within the last years, data-independent acquisition (DIA) emerged as a new MS approach which remedies many of DDA’s disadvantages. Techniques which are based on this principle include for example HRM, SWATH, MS² and All-Ion-Fragmentation. The core feature of all DIA methods is that instead of a single precursor as for DDA, larger mass windows, or swaths, containing multiple precursors are fragmented (Fig. 3, right panel). Usually, a quadrupole acts as a mass filter here and targets certain mass ranges for fragmentation. The resulting fragment ions are then acquired on a high resolution mass analyzer, such as a time-of-flight (TOF) or an Orbitrap. This produces complex MS2 spectra (combined fragment ion spectra) containing fragment ions of several precursors. Due to the complexity of the MS2 spectra, it is vital to acquire fragment ions with high resolution and high mass accuracy in order to later assign the different fragments to their corresponding peptide precursors.

Data analysis can be challenging due to the spectra containing fragments of several peptides. To identify and quantify the peptides present in a sample, the combined fragment ion spectra can be searched against a spectral library, or theoretical spectra or can be mined using SRM-like transitions. Fragments from the same peptide are subsequently arranged in SRM-like peak groups: The signal corresponds to the intensity of each fragment monitored over time in sequential spectra. Fragments of the same peptide will produce similarly shaped elution peaks with maxima at identical retention times (RT). These SRM-like peak groups can then be used to quantify e.g. an unlabeled endogenous peptide versus a labeled reference peptide. i.e. the quantification is done based on MS2 level data.

In an exemplary peptide and/or protein quantification experiment employing DIA, the amount of the endogenous, unlabeled peptide variant relative to its labeled, reference peptide variant has to be determined. To this end, unlabeled and labeled peptides comprised in a sample are fragmented. Due to the label introducing only a small mass shift the fragment ions of both precursors will most often be present in the same combined fragment spectrum. Thus, only fragment ions differing in at least one label can be distinguished between unlabeled and reference peptide. The amount of unlabeled peptide relative to reference peptide can be determined by comparing the SRM-like peaks formed by these fragment ions differing in at least one label.

DIA methods have several advantages over DDA and other targeted methods such as SRM: DIA approaches have excellent sensitivity and a large dynamic range. Moreover, since no stochastic peak picking is involved DIA methods avoid the missing peptide ID data points typical for DDA methods and peptides are reproducibly measured over all samples. Furthermore, DIA allows sequencing of almost complete proteomes within one run without requiring prior knowledge about targeted transitions. All these properties make DIA methods especially suitable for quantification studies where many peptides and/or proteins need to be measured.

Another MS method which is frequently used for the quantification of peptides and/or proteins is Selected Reaction Monitoring (SRM). SRM is a targeted mass spectrometry approach. Herein, fragment ions of a single, pre-selected target peptide are detected on low resolution, low mass accuracy mass spectrometers. Only limited numbers of peptides can be monitored with this technique, and assay development is laborious. Multiplexed parallel reaction monitoring (mPRM), a novel targeted proteomics technique, remedies these disadvantages (Fig. 4).

Usually, mPRM analyses are conducted on a quadrupole which is combined with a high resolution mass analyzer. The quadrupole acts as mass filter to target mass ranges for fragmentation in a second quadrupole, and the resulting fragment ions are acquired by the high resolution mass analyzer. Fragmentation is done by either of two ways: Several precursors can be fragmented sequentially and their fragment ions are stored together for later measurement. Alternatively, larger m/z ranges containing several precursors are fragmented together. In both cases the fragmentation procedure results in combined fragment ion spectra comprising fragment ions from several precursors.

The fragmentation ions are analyzed in the high resolution part of the instrument, often an Orbitrap analyzer. This has several advantages over using a low resolution instrument as in SRM studies: Firstly, all fragment ions a peptide produces can be monitored, rather than just a small number, leading to a higher specificity and increasing the confidence that the correct peptide was identified. Moreover, assay optimization becomes less crucial and the larger number of fragment ions that is monitored per peptide makes quantification more robust. Secondly, since the fragment ions are acquired with high resolution...
and mass accuracy, the probability of false positive identifications decreases.

DIA and mPRM workflows produce similar combined fragment ion spectra and can sometimes even be run on the same type of mass spectrometers. Therefore, also the basic principles for data analysis and quantification are the same. Thus, also for mPRM the SRM-like peak groups extracted from the fragment ion spectra can be used to quantify e.g. an unlabeled endogenous peptide versus a labelled reference peptide. Hence, quantification in an mPRM experiment is done based on MS2 level data.

The advantages of mPRM over DDA and SRM are similar to the ones mentioned above for DIA: high sensitivity, a large dynamic range, and reproducible peptide picking. As a consequence, it is especially suitable for quantification studies.

Use of multiply-labelled peptides in quantification studies employing DIA or mPRM:

A common setup for protein and/or peptide quantification is to compare the abundances of an unlabeled, endogenous peptide and its reference peptide variant carrying a single C-terminal label. Usually, this is an amino acid containing heavy elemental isotopes, most commonly arginine or lysine. When a combined fragment spectrum of these peptides is acquired with DIA or mPRM the presence of a single label will lead to complications: All C-terminal ions from the reference peptide will contain the label and will have an m/z distinct from their unlabeled counterparts (Fig. 5a, 5b). However, N-terminal ions from the reference peptide, such as b-ions, will not contain any label and will have the same m/z as the corresponding ions from the unlabeled peptide (Fig. 5a, 5b). We call this "fragment overlap". As a consequence, none of the N-terminal fragment ions can be used for quantification. Only the C-terminal fragment ion pairs differing in one label will reflect the abundance ratio between the unlabeled and the reference peptide. The use of only roughly half of the theoretical fragments leads to a less robust quantification. To further aggravate the problem, the presence of shared fragments between two peptide variants further complicates data analysis and hampers peptide identification, for instance if the known relative fragment ion intensity is used for scoring.

One way to eliminate the fragment overlap during DIA- or mPRM-based peptide and/or protein quantification experiments is by selectively introducing two labels (heavy isotopes or heavy isotope containing amino acids) at different positions into the reference peptides such that most C-terminal, as well as N-terminal fragment ions of interest will contain a label (Fig. 6). In any case the presence of multiple labels at suitable positions in the reference peptide results in distinct m/z for fragment ions from the reference and the unlabeled peptide (Fig. 6b), both for N- and C-terminal fragment ions. Thus, no fragment overlap occurs and the fragments stemming from unlabeled and labelled peptides can be distinguished.

The present invention makes use of such multiply-labelled reference peptides to provide an improved quantification method that is compatible with combined fragment ion MS spectra. Secondly, the present disclosure relates to a method for selecting the label and label position of at least one suitable reference peptide. Thirdly, the present disclosure relates to selectively double-labelled reference peptides for use in or produced by the above mentioned methods.

Using such multiply-labelled reference peptides solves the problems occurring with single-labelled reference peptides in conjunction with mass spectrometry approaches producing combined fragment ion spectra. It allows exploiting the full potential of DIA and mPRM methods for quantitative studies. Firstly, combined fragment ion spectra of unlabelled and labelled precursors will contain less shared fragment ions which can facilitate the identification of peptides and peak groups. Secondly, being able to differentiate between N-terminal fragment ions, such as b-ions, from unlabelled and from labelled peptides allows including them for quantification without skewing quantitative values. Including a higher number of suitable ions will render quantification more robust and accurate.

Steps for peptide and/or protein quantification using DIA or mPRM:

In quantification experiments unlabeled endogenous peptides and/or proteins will be pooled with reference peptides. Since sample preparation can introduce considerable inter-sample variability, preferably the unlabeled and labelled peptides are pooled as early as possible in the protocol. Thus, any variability introduced by later sample preparation steps will affect both, light and heavy peptide, in equal measures. The steps at which pooling is most suitable may vary and are therefore not included in the standard protocol below. Most frequently, synthetic reference peptides are added to peptide samples in a last step before liquid chromatography.

A standard protocol for the quantification of peptides and/or proteins by DIA or mPRM mass spectrometry includes, but is not limited to, the following steps:

1. **Protein extraction:** Proteins are extracted from samples. If necessary, this can include the use of detergents, mechanical force, heat, chaotropes or other means. The suitable protein extraction protocol depends on the sample and the skilled person will know which one is suitable for a specific mixture.
2. **Reduction of disulfide bonds:** Prior to digestion disulfide bonds between cysteine residues of proteins, are reduced. This serves to make more residues accessible for digestion and prevents two peptides from being connected which would result in complex fragment ion spectra. Preferably, Dithioth-
The details and the optimal implementation of selectively double-labelled reference peptides: tails of selecting a suitable label and label position for the experiment, the properties of the sample and the proteins of interest, and the instruments used, among other factors. The skilled person will know how to implement and alter the standard workflow to best suit a specific setup.

4. Protein digestion: Proteins in the sample are cleaved into peptides, preferably using a protease such as trypsin and/or Lys-C. The reaction is preferably carried out at 37 °C in a suitable buffer.

5. Peptide purification: The peptides are purified prior to MS analysis. Preferably they are desalted, typically using a C18 stationary phase.

6. Liquid chromatography: Several microliters of sample are loaded onto a liquid chromatography column and are separated, preferably by increasing hydrophobicity via reversed-phase LC and a gradient of increasing acetonitrile concentrations.

7. MS analysis: Peptides elute, are ionized and subjected to MS analysis via either a DIA- or an mPRM-method. Fragment ions are detected on a high resolution instrument and combined fragment ion spectra are stored.

8. Data analysis: Quantification is done based on MS2 level data. Spectra can be searched against a spectral library, or theoretical spectra, or can be mined using SRM-like transitions to identify and quantify peptides and/or proteins. Examples for specialized software for these analyses are Spectronaut (Biognosys AG) or OpenSWATH. Fragments from the same peptide are subsequently arranged in SRM-like peak groups: The signal corresponds to the intensity of each fragment monitored over time in sequential spectra. Fragments of the same peptide will produce similarly shaped elution peaks with maxima at identical retention times (RT). These SRM-like peak groups can then be used to quantify e.g. an unlabeled endogenous peptide versus a labelled reference peptide.

A method for the selection of optimal label positions to produce double-labelled peptides can for example contain the following steps (Fig. 7):

In a first step, a spectral library is selected. Moreover, any additional input data required for the optimization according to the desired parameters will be supplied. E.g. if the optimization occurs according to total label cost, the label cost for each label is obtained. In addition, the label positions to be considered during the optimization process need to be defined. This includes how many amino acid positions within the terminus will be considered, as well as if both termini of the peptide will be optimized according to the same parameters.

In a second step, the most advantageous amino acid position for labelling within the considered amino acids is determined for each peptide in the spectral library. During this step different parameters can be balanced to find the optimal label, e.g. information content of labelled fragment ions, total label cost which reflects the availability of the label and the complexity of its incorporation etc. For the optimization according to total label cost, the label with the lowest label cost but yielding fragment ions with maximum information content would be selected.

Optionally, the method could further include any of the following features:

- an estimation of the total label cost for the selected labels and label positions,
- a simulation of fragment collisions,
- a calculation of label and label position frequencies,
- and/or a report of the results.

In Figure 8 an example of a calculation mode for an optimal label position analysis according to total label cost is displayed. Further, non-limiting details are listed in Example 3. To produce double-labelled reference peptides based on a spectral library wherein the positions for the heavy amino acid labels are optimized according to total label cost, a list of the label costs for all labels is needed. When selecting the labels and label positions, amino acids within a selected number \(\eta_{\text{globalMaxVal}} \) of positions from each terminus are considered for labelling. If a peptide comprises less amino acids than the double of \(\eta_{\text{globalMaxVal}} \) then instead all amino acids within \(\eta_{\text{pepMaxVal}} \) positions from each terminus are considered for labelling, wherein \(\eta_{\text{pepMaxVal}} \) corresponds to the peptide length divided by two and rounded down to the next lowest integer. For each peptide the amino acid with the lowest label cost will be selected from the stretch of considered amino acids (\(\eta \)). The label costs of all labels for each peptide will then be summed up to estimate the total label cost for the specific peptide.
If the positioning of the labels is optimized according to a specific parameter, then the amino acids with the best "values" for the respective parameter should be preferred over other amino acids. As a consequence they are picked more frequently for labelling. Figure 9 illustrates this: Optimal label positions were analyzed for double-labelling all peptides in a human plasma spectral library with amino acids containing heavy elemental isotopes. The label positions were optimized according to lowest label cost, e.g. the labelled amino acid with the lowest price per millimole from a certain vendor were preferred. This in turn also results in the lowest total label cost, i.e. the price for all labels used to label a certain amount of a specific set of proteins and/or peptides with a specific n_globalMaxVal. The character "ni" denotes the length of terminal amino acid stretches that were considered for positioning the label. E.g. "ni = 4" indicates that a first label can be incorporated at the position of any the 4 most N-terminal amino acids, and a second label can be incorporated at the position of any of the 4 most C-terminal amino acids. The frequency with which each amino acid was picked for labelling all peptides of the spectral library is displayed for n_globalMaxVal values from 1 to 22 (with 22 corresponding to half the length of the longest peptide in the library, rounded down to the next integer). The longer the n_globalMaxVal, the more positions are considered for labelling and the closer a situation is approached where primarily label positions are picked which correspond to alanine, glycine, arginine, leucine, arginine, and valine (Fig. 9). These are the five amino acids with the lowest label cost in this specific analysis.

Furthermore, we discovered that for the analysis displayed in Fig. 9, the decrease in total label cost was considerable for n_globalMaxVal equal to 2, 3, 4, and 5. For higher n_globalMaxVal the additional savings became smaller and a higher loss of information content occurred due to small fragment ions not being considered in the analysis.

The reference peptides of the present invention can further carry post translational modification(s) (PTM(s)). These can be any modification occurring on peptides. Preferably PTMs are selected from phosphorylation, acetylation, methylation, sulfation, hydroxylation, lipidation, ubiquitylation, sumoylation, and glycosylation.

Applications:

The methods and substances used in the present invention can be applied to the quantification of a variety of samples, including different cell or tissue types, environmental samples, or bodily fluids. In a preferred embodiment the methods and substances used in the present invention are applied to the quantification of human plasma proteins (Fig. 10, 11, 12).

In a first aspect, we analyzed the fragment overlap occurring during DIA-based quantification of human plasma peptides and/or proteins with sets of single-labelled synthetic peptides (Fig. 1, Fig. 10). To this end human plasma was subjected to in solution digestion: 10 μl of plasma were diluted in 75 μl 10 M urea and 0.1 M ammonium bicarbonate. The samples were reduced with 5 mM TCEP for 1 h at 37 °C. Subsequently, the plasma was alkylated with 25 mM iodoacetamide for 20 min at 21 °C. The samples were diluted to 2 M urea and digested with trypsin at a ratio 1:100 (enzyme to protein) at 37 °C for 15 h. The samples were centrifuged at 20,000 g at 4 °C for 10 min. The peptides were desalted using C18 MacroSpin columns from The Nest Group according to the manufacturer’s instructions. After drying, the peptides were resuspended in 1 % ACN and 0.1 % formic acid. Sets of reference peptides, each carrying a C-terminal heavy amino acid label (Arg10 or Lys8), were added to all of the samples. The reference peptides were derived from plasma protein sequences and thus allowed for the quantification of a number of endogenous plasma proteins.

Two micrograms of each sample were analyzed using a self-made analytical column (75 μm x 50cm length, packed with RepRoSil-Pur 120 A C18-AQ, 1.9 μm) at 50 °C on an Easy-nLC 1200 connected to a Q Exactive HF mass spectrometer (Thermo Scientific). The peptides were separated by a 1 h segmented gradient from 1 to 52 % acetonitrile (ACN) in 60 min with 0.1 % formic acid at 250 nl/min, followed by a linear increase to 90 % ACN in 2 min and 90% for 10 min. The DIA-MS method consisted of a survey scan at 120,000 resolution from 350 to 1,650 m/z (AGC target of 3*106 or 60ms injection time). Then, 14 DIA windows were acquired at 30,000 resolution (AGC target 3*106 and auto for injection time) spanning 350-1650 m/z. Stepped collision energy was 10% at 27%. The spectra were recorded in profile mode. The default charge state for the MS2 was set to 4.

The spectra were processed to extract peptide and protein identifications and quantitative values using specialized software such as Spectronaut (Biognosys AG). To demonstrate the fragment overlap occurring in combined fragment ion spectra between N-terminal b-ions from endogenous, unlabeled peptide and single-labelled synthetic reference peptides, we further analyzed spectra from single peptides.

Combined fragment ion spectra for three peptides showing an intense signal were analyzed. Figure 1 shows DIA data for one peptide present in an unlabeled, as well as a labelled variant carrying a modified lysine residue (K8) as single C-terminal label. In a first part of the Figure a section of an MS1 spectrum is displayed (Fig. 1a). The 50 Th mass window containing both the unlabeled and the labelled precursor of peptide DIASGLIGPLIIC[+C2H3N+O][K] is marked (Fig. 1a). All ions inside this swath were fragmented and a combined fragment ion spectrum comprising fragment ions from both the unlabeled and the labelled peptide was acquired (Fig. 1b). The fragment overlap for different fragment ions was analyzed. Fragment ions from the unlabeled (light) precursor are marked with white triangles, fragment ions from the labelled (heavy) precursor are marked with black...
triangles, and shared b-ions are marked with pointed circles. A mass shift between corresponding fragment ions from unlabeled and labeled peptides due to the C-terminal label is displayed as a line connecting two triangles. All y-ions show such a mass shift (for y+ the unlabeled signal is not marked). On the other hand, fragment overlap was observed for all b-ions in the spectrum. This affects quantification: if intensity at the apex of the first monoisotopic peak is compared, the y-fragment-ions have a light (unlabeled) to heavy (labelled) ratio \(\frac{L}{H} \) < 0.5 which reflects the ratio between the light and heavy precursor peptide in the MS1 spectrum (Fig. 1a). However, if b-ions are to be used for quantification, they show an \(\frac{L}{H} \) ratio of 1 since the same shared fragment ion peaks are compared between light and heavy peptides. Thus, if the b-ions are considered in the calculation they will skew the \(\frac{L}{H} \) ratios towards a higher amount of unlabeled peptide. Furthermore, due to the fragment overlap of b-ions spectra of light and heavy peptides comprise shared fragments. All these problems, fragment overlap leading to inaccurate quantitative values or unused ions and shared fragments, do not occur if selectively double-labelled peptides are used instead of single-labelled peptides.

Example 1: Quantification of human plasma proteins using selectively double-labelled peptides

Sample preparation:

Preparation of labelled reference peptides:

Mass spectrometry analysis:

Data analysis:

Experimental part:

Preparation of labelled reference peptides:

Mass spectrometry analysis:

Data analysis:

Experimental part:

Preparation of labelled reference peptides:

Mass spectrometry analysis:

Data analysis:

Experimental part:

Preparation of labelled reference peptides:

Mass spectrometry analysis:

Data analysis:

Experimental part:

Preparation of labelled reference peptides:

Mass spectrometry analysis:

Data analysis:

Experimental part:

Preparation of labelled reference peptides:

Mass spectrometry analysis:

Data analysis:

Experimental part:

Preparation of labelled reference peptides:

Mass spectrometry analysis:

Data analysis:

Experimental part:

Preparation of labelled reference peptides:

Mass spectrometry analysis:

Data analysis:

Experimental part:

Preparation of labelled reference peptides:

Mass spectrometry analysis:

Data analysis:
such as for example Spectronaut, OpenSWATH, SpectroDive or MaxQuant.

Example 3: Method for selecting cheapest amino acid for labelling and estimate total label costs

[0114] A method was created to select optimal amino acids and positions for labelling. Furthermore, the method estimated the total label cost for double-labelling a set of peptides. It offered the following features:

In a first step three pieces of input data were accepted, first containing the label prices, i.e. the price of amino acids containing heavy elemental isotopes as stated by a certain vendor, the second containing the molecular weight of all 20 amino acids, and the third being a spectral library for human plasma.

[0115] In a second step the label prices and the amino acid molecular weight data was used to estimate the cost per mmol of each labelled amino acid. Furthermore, all unique, unmodified peptide sequences were extracted from the spectral library.

[0116] In a third step a value for \(n_{\text{globalMaxVal}} \) was specified. Herein \(n_{\text{globalMaxVal}} \) defines a positive integer that is set by the experimenter, e.g. \(n_{\text{globalMaxVal}} = 4 \). The highest possible value for \(n_{\text{globalMaxVal}} \) is equal to the length of the longest peptide in the analyzed peptide spectral library divided by two, and rounded down to the nearest lower positive integer if the value was not an integer.

[0117] In a fourth step, the value for \(n_{\text{globalMaxVal}} \) was used to select the amino acid with the lowest label cost for each peptide from the spectral library. The cost of the first label for said peptide were determined as follows:

- For each peptide sequence extracted from the library the peptide-specific value for \(n_i \) will be equal to the lower of two values: either the value of the user-defined positive integer \(n_{\text{globalMaxVal}} \), or the value of \(n_{\text{pepMaxVal}} \) which corresponds to the number of amino acids in the peptide divided by two and rounded down to the nearest lower integer if the value was not an integer.
- The position and the cost of the first label for said peptide were determined by selecting the amino acid with the lowest label cost per millimole from a stretch of amino acids of length \(n_i \) starting from the C-terminus. The position and the cost of the second label were determined by applying the same procedure to the N-terminus. This was repeated for all peptide sequences. The label costs for all peptide sequences were summed up to obtain the total label cost for the selected \(n_{\text{globalMaxVal}} \) value.

[0119] This calculation was repeated for different integer values of \(n_{\text{globalMaxVal}} \) between 1 and the maximum possible value (length of longest peptide in the library divided by two and rounded down to the next lowest integer). As a result, a separate total label cost was calculated for each \(n_{\text{globalMaxVal}} \) value.

[0120] In a fifth step, the resulting total label costs for labelling the peptide sequences were displayed for each \(n_{\text{globalMaxVal}} \) value. Furthermore, the frequencies with which each of the 20 amino acids had been selected for labelling, were calculated (Fig. 8).

Example 4: Exclusion of modified amino acids and analysis of fragment collisions

[0121] A method for the selection of labels and label positions will be created which will offer the following features in addition to the label cost calculation features of Example 3:

After the optimization of label positions according to total label cost as in Example 3, the present method will in a first aspect select the amino acid with the next lowest label cost for labelling if the selected amino acid is an amino acid that is often post-translationally modified in the experimental setup. In a second aspect the method will simulate the fragment masses that would be produced by the selected double-labelled peptide sequences. Based on the simulation the method will further analyze how many fragment collisions occur, i.e. how many fragment ions from the double-labelled precursor overlap with any other fragment ions of the unlabeled precursor. If the number lies above a certain threshold, the amino acid with the next lowest label cost with a number of fragment collisions which lies below the threshold will instead be selected for labelling if such a residue is available.

Example 5: Set of synthetic double-labelled human plasma peptides

[0122] A list of tryptic sequences extracted from a human plasma spectral library will be analyzed. The value for \(n_{\text{globalMaxVal}} \) will be set equal to 4. For each peptide stretches of \(n_i \) amino acids from each terminus were considered. The \(n_i \) values were peptide-specific and related to an amino acid stretch starting from the terminus of a peptide, e.g. a value of \(n_i = 1 \) comprised the terminal amino acid, \(n_i = 2 \) comprised the terminal amino acid and the amino acid one removed from the terminus, and so forth.

[0123] For each peptide sequence extracted from the library the peptide-specific value for \(n_i \) will be equal to the lower of two values: either the value of the user-defined positive integer \(n_{\text{globalMaxVal}} \), or the value of \(n_{\text{pepMaxVal}} \) which corresponds to the number of amino acids in the peptide divided by two and rounded down to the nearest lower integer if the value was not an integer.

[0124] For each peptide a first amino acid having the lowest label cost from the \(n_i \) most C-terminal amino acids,
and a second amino acid having the lowest label cost from the \(n_i \) most N-terminal amino acids will be selected for labelling. \(n_i \) will adopt values 1, 2, 3, and 4 for different peptides, depending on their length, e.g. for a peptide of six amino acids \(n_i \) will be 3, for a peptide of seven amino acids \(n_i \) will be 3, for a peptide of eight amino acids, \(n_i \) will be 4.

[0125] The most appropriate 1, 2, 3, 4, 5 or more peptides per protein will be selected based on labeling cost and other criteria (such as peptide length, hydrophobicity and so forth). Furthermore, total label costs for \(n_{\text{gMaxVal}} \) will be estimated. Special selection criteria will apply in case fragment collisions occur or in case the selected amino acid is easily modified. The corresponding set of quantified, double-labelled peptides corresponding to the data of \(n_{\text{gMaxVal}} = 4 \) will be synthesized wherein the labels are the designated amino acids containing \(^{13}\text{C}\) and/or \(^{15}\text{N}\).

[0126] The set of synthetic double-labelled peptides will be diluted appropriately. A suitable amount of the double-labelled peptide mix will be added to a sample containing an unlabelled protein digest from human plasma. Fragment ion spectra for the combined peptide mixture will be acquired using a DIA method. Due to the labelled peptides being added in known amounts, absolute peptide abundances in the unlabeled sample can then be determined using specialized software. Due to the synthetic peptides containing two labels, their b- and y-ions series will have different masses from the corresponding ions of the unlabeled peptide. Thus, no fragment overlap will occur.

LIST OF REFERENCE SIGNS/ABBREVIATIONS

[0127]

CID - collision-induced dissociation
ECD - electron-capture dissociation
ESI - electrospray ionization
ETD - electron-transfer dissociation
HCD - Higher-energy collisional dissociation
LC - liquid chromatography
MALDI - matrix-assisted laser desorption ionization
mmol - millimole
mPRM - multiplexed parallel reaction monitoring
MS - mass spectrometry
m/z - mass to charge ratio
NETD - negative electron transfer dissociation
PQD - Pulsed Q Collision Induced Dissociation
SRM - selected reaction monitoring

Claims

1. Method for the absolute or relative quantitative analysis of proteins and/or peptides with or without post translational modification(s) using a mass spectrometry method in which in

a first step unlabelled proteins from an endogenous mixture are digested and subsequently digestion products thereof selected, in a second step said digestion products are fragmented, and in which in a third step a combined fragment spectrum is acquired comprising b-ions as well as y-ions of said digestion products, wherein at least one reference peptide is added to said mixture before and/or after digestion, is fragmented, acquired, and stored in said combined fragment spectrum comprising also b-ions and y-ions of said digestion products, wherein the said at least one reference peptide is added in a known concentration in case of absolute quantification or in always the same concentration in a series of experiments for relative quantitative analysis, wherein said at least one reference peptide is selectively isotopically labeled by having incorporated

one isotopically labeled amino acid forming its very C-terminus or being one of the four terminal amino acids at the C-terminus and additionally one further isotopically labeled amino acid forming its very N-terminus, or being one of the four terminal amino acids at the N-terminus.

2. Method according to claim 1, wherein in said reference peptide, apart from the isotopically labeled amino acid at or close to the C-terminus and the isotopically labeled amino acid at or close to the N-terminus, not more than one additional amino acid is isotopically labeled, preferably no additional amino acid is isotopically labeled.

3. Method according to any of the preceding claims, wherein in said reference peptide one isotopically labeled amino acid is forming its very C-terminus and one further isotopically labeled amino acid forming its very N-terminus.

4. Method according to any of the preceding claims, wherein said combined fragment spectrum is acquired using a mass isolation window having a full-range mass isolation window, or a width in terms of mass-to-charge ratio in the range of \((2 \cdot 1.036426 \cdot 10^{-8} \text{ kg/C}) - (1000 \cdot 1.036426 \cdot 10^{-8} \text{ kg/C})\) or \((5 \cdot 1.036426 \cdot 10^{-8} \text{ kg/C}) - (100 \cdot 1.036426 \cdot 10^{-8} \text{ kg/C})\).

5. Method according to any of the preceding claims, wherein said combined fragment spectrum is acquired using a mass isolation window of \((5 \cdot 1.036426 \cdot 10^{-8} \text{ kg/C}) - (100 \cdot 1.036426 \cdot 10^{-8} \text{ kg/C})\), preferably of \((10 \cdot 1.036426 \cdot 10^{-8} \text{ kg/C}) - (25 \cdot 1.036426 \cdot 10^{-8} \text{ kg/C})\).

6. Method according to any of the preceding claims,
7. Method according to any of the preceding claims, wherein said reference peptide consists of 5-100, preferably 7-30, most preferably 10-20 amino acids.

8. Method according to any of the preceding claims, wherein it involves using DIA or mPRM techniques.

9. Use of a method according to claims 1-8, for the relative and/or absolute quantification in protein analysis in proteomic experiments.

Patentansprüche

1. Verfahren zur absoluten oder relativen quantitativen Analyse von Proteinen und/oder Peptiden mit oder ohne posttranslationalen Modifikation(en) unter Verwendung eines massenspektrometrischen Verfahrens, bei dem man in einem ersten Schritt unmarkierte Proteine aus einem körpereigenen Gemisch verdaut und anschließend deren Verdauungsprodukte ausgewählt, in einem zweiten Schritt die Aufschlussprodukte fragmentiert und in welchem in einem dritten Schritt ein kombiniertes Fragmentspektrum gewonnen wird, das sowohl b-Ionen als auch y-Ionen der Aufschlussprodukte umfasst, wobei mindestens ein Referenzpeptid zu der Mischung vor und/oder nahe dem Aufschluss hinzugefügt wird, fragmentiert wird und aufgenommen wird, und in dem kombinierten Fragmentspektrum gespeichert wird, das auch b-Ionen und y-Ionen der Aufschlussprodukte umfasst, wobei das mindestens eine Referenzpeptid in einer bekannten Konzentration im Falle einer absoluten Quantifizierung oder in immer derselben Konzentration in einer Reihe von Experimenten zur relativen quantitativen Analyse zugegeben wird, wobei das mindestens eine Referenzpeptid selektiv isotopenmarkiert ist.

2. Verfahren nach Anspruch 1, wobei in dem Referenzpeptid, außer der isotopenmarkierten Aminosäure am oder nahe dem N-Terminus, nicht mehr als eine zusätzliche Aminosäure isotopenmarkiert ist, vorgzugsweise keine zusätzliche Aminosäure isotopenmarkiert ist.

3. Verfahren nach einem der vorhergehenden Ansprüche, wobei in dem Referenzpeptid eine isotopenmarkierte Aminosäure ihren eigenlichen C-Terminus und eine weitere isotopenmarkierte Aminosäure ihren eigenlichen N-Terminus bildet.

4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das kombinierte Fragmentspektrum unter Verwendung eines Massenisolationsfensters mit einem Vollbereichs-Massenisolationsfenster oder einer Breite in Bezug auf das Masse-Ladungs-Verhältnis im Bereich von (2 \cdot 1.036426 \cdot 10^{-8} \text{ kg/C}) - (1000 \cdot 1.036426 \cdot 10^{-8} \text{ kg/C}) oder (5 \cdot 1.036426 \cdot 10^{-8} \text{ kg/C}) - (100 \cdot 1.036426 \cdot 10^{-8} \text{ kg/C}) erfasst wird.

5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das kombinierte Fragmentspektrum unter Verwendung eines Massenisolationsfensters von (5 \cdot 1.036426 \cdot 10^{-8} \text{ kg/C}) - (100 \cdot 1.036426 \cdot 10^{-8} \text{ kg/C}), vorgzugsweise von (10 \cdot 1.036426 \cdot 10^{-8} \text{ kg/C}) - (25 \cdot 1.036426 \cdot 10^{-8} \text{ kg/C}) erfasst wird.

6. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Additionspeptid aus 5-100, vorgzugsweise 7-30, am meisten bevorzugt 10-20 Aminosäuren besteht.

7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das posttranslationale Modifikation eine oder mehrere ist, ausgewählt aus Phosphorylierung, Acetylierung, Methylierung, Sulfatierung, Hydroxylierung, Ubiquitylierung, Sumoylierung und Glykosylierung.

8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem DIA- oder mPRM-Techniken verwendet werden.

Revendications

1. Procédé d'analyse quantitative absolue ou relative de protéines et/ou peptides avec ou sans modification(s) post-traductionnelle(s) au moyen d'un procédé de spectrométrie de masse dans lequel dans une première étape, des protéines non marquées d'un mélange endogène sont digérées et ensuite les produits de digestion de celui-ci sont sélectionnés, dans une deuxième étape, lesdits produits de digestion...
sont fragmentés, et dans lequel dans une troisième étape, un spectre de fragments combinés est acquis comprenant des ions b ainsi que des ions y desdits produits de digestion, dans lequel au moins un peptide de référence est ajouté audit mélange avant et/ou après digestion, est fragmenté, acquis, et stocké dans ledit spectre de fragments combinés comprenant en outre des ions b et des ions y desdits produits de digestion, dans lequel ledit au moins un peptide de référence est ajouté à une concentration connue en cas de quantification absolue ou toujours à la même concentration dans une série d’essais pour analyse quantitative relative, dans lequel ledit au moins un peptide de référence est sélectivement marqué de façon isotopique en incorporant dans celui-ci un acide aminé marqué de façon isotopique formant son extrémité C-terminale ou étant l’un des quatre acides aminés terminaux à l’extrémité C-terminale et en outre un acide aminé marqué de façon isotopique supplémentaire formant son extrémité N-terminale, ou étant l’un des quatre acides aminés terminaux à l’extrémité N-terminale.

2. Procédé selon la revendication 1, dans lequel, dans ledit peptide de référence, hormis l’acide aminé marqué de façon isotopique à ou à proximité de l’extrémité C-terminale et l’acide aminé marqué de façon isotopique à ou à proximité de l’extrémité N-terminale, pas plus d’un acide aminé supplémentaire est marqué de façon isotopique, de préférence aucun acide aminé supplémentaire n’est marqué de façon isotopique.

3. Procédé selon l’une quelconque des revendications précédentes, dans lequel, dans ledit peptide de référence, un acide aminé marqué de façon isotopique forme son extrémité C-terminale et un acide aminé marqué de façon isotopique supplémentaire forme son extrémité N-terminale.

4. Procédé selon l’une quelconque des revendications précédentes, dans lequel ledit spectre de fragments combinés est acquis en utilisant une fenêtre d’isolation de masse ayant une fenêtre d’isolation de masse de plage complète, ou une largeur en termes de rapport masse/charge dans la plage de (2 \cdot 1,036426 \cdot 10^{-8} \text{ kg/C}) à (1000 \cdot 1,036426 \cdot 10^{-8} \text{ kg/C}) ou (5 \cdot 1,036426 \cdot 10^{-8} \text{ kg/C}) à (100 \cdot 1,036426 \cdot 10^{-8} \text{ kg/C}).

5. Procédé selon l’une quelconque des revendications précédentes, dans lequel ledit spectre de fragments combinés est acquis en utilisant une fenêtre d’isolation de masse de (5 \cdot 1,036426 \cdot 10^{-8} \text{ kg/C}) à (100 \cdot 1,036426 \cdot 10^{-8} \text{ kg/C}), de préférence de (10 \cdot 1,036426 \cdot 10^{-8} \text{ kg/C}) à (25 \cdot 1,036426 \cdot 10^{-8} \text{ kg/C}).

6. Procédé selon l’une quelconque des revendications précédentes, dans lequel ladite modification post-traductionnelle est l’une ou plusieurs choisies parmi une phosphorylation, une acétylation, une méthylation, une sulfatation, une hydroxylation, une lipidadtion, une ubiquitylation, une sumoylation et une glycosylation.

7. Procédé selon l’une quelconque des revendications précédentes, dans lequel ledit peptide de référence est constitué de 5 à 100, de préférence 7 à 30, de manière préférée entre toutes 10 à 20 acides aminés.

8. Procédé selon l’une quelconque des revendications précédentes, celui-ci mettant en oeuvre l’utilisation de techniques DIA ou mPRM.

9. Utilisation d’un procédé selon les revendications 1 à 8, pour la quantification relative et/ou absolue en analyse de protéine dans des essais de protéomique.
FIG. 2
DDA

unlabelled
Precursor 1

labelled
Precursor 2

precursor selection window

fragmentation

MS1

Fragment ions of Precursor 2

Fragment ions of Precursor 1

MS2

Quantification

MS1: XIC

Precursor 1: m/z: e.g. 1038.414 – 1038.424

Precursor 2: m/z: e.g. 1041.002 – 1041.012

DIA

unlabelled
Precursor 1

labelled
Precursor 2

precursor selection window

fragmentation

MS1

Fragment ions of Precursor 1 & Precursor 2

MS2

Quantification

MS2: XIC

Precursor 1

Precursor 2

FIG. 3
mPRM

Unlabelled, Llabelled, Precursor 1 Precursor 2
precursor selection windows

or

Unlabelled, Llabelled, Precursor 1 Precursor 2
precursor selection window

sequential fragmentation
joint storage of fragment ions

MS2
Fragment ions of Precursor 1 & Precursor 2

Quantification

MS2: XIC

Precursor 1

Precursor 2

FIG. 4
a) combined fragment spectrum:

mass shift

% variant in sample:

100%

70%

unlabelled

labelled

b-) ions: fragment overlap

- b-ions of unlabelled peptide
- b-ions of labelled peptide
- y-ions of unlabelled peptide
- y-ions of labelled peptide

b) unlabelled

\[
\text{LVLSNDAGK} \\
\text{b}_1, \text{b}_2, \text{b}_3, \text{b}_4, \text{b}_5, \text{b}_6, \text{b}_7, \text{b}_8
\]

labelled

\[
\text{LVLSNDAGK} \\
\text{b}_1, \text{b}_2, \text{b}_3, \text{b}_4, \text{b}_5, \text{b}_6, \text{b}_7, \text{b}_8
\]

C-terminal label

fragment overlap

FIG. 5
a) combined fragment spectrum:

![Graph showing combined fragment spectrum with mass shift and percentage variant in sample]

- b-iions of unlabelled peptide
- b-iions of labelled peptide
- y-iions of unlabelled peptide
- y-iions of labelled peptide

b) unlabelled

\[
\begin{align*}
&y_8 \, y_7 \, y_6 \, y_5 \, y_4 \, y_3 \, y_2 \, y_1 \\
&\textbf{LVLSNDAGK}
\end{align*}
\]

- \(b_8 \text{ LVLSNDAG } K \) \(y_1 \)
- \(b_7 \text{ LVLSNDAG })K \) \(y_2 \)
- \(b_6 \text{ LVLSND } AGK \) \(y_3 \)
- \(b_5 \text{ LVLSN } DAGK \) \(y_4 \)
- \(b_4 \text{ LVLS } NDAGK \) \(y_5 \)
- \(b_3 \text{ LV } SNDAGK \) \(y_6 \)
- \(b_2 \text{ LV } LSNDAGK \) \(y_7 \)
- \(b_1 \text{ VLSNDAGK } y_8 \)

b) labelled

\[
\begin{align*}
&y_8 \, y_7 \, y_6 \, y_5 \, y_4 \, y_3 \, y_2 \, y_1 \\
&\textbf{LVLSNDAGK}^* \text{ C-terminal label}
\end{align*}
\]

- \(b_8 \text{ LVLSNDAG } K^* \) \(y_1 \)
- \(b_7 \text{ LVLSNDAG })K^* \) \(y_2 \)
- \(b_6 \text{ LVLSND } AGK^* \) \(y_3 \)
- \(b_5 \text{ LVLSN } DAGK^* \) \(y_4 \)
- \(b_4 \text{ LVLS } NDAGK^* \) \(y_5 \)
- \(b_3 \text{ LV } SNDAGK^* \) \(y_6 \)
- \(b_2 \text{ LV } LSNDAGK^* \) \(y_7 \)
- \(b_1 \text{ VLSNDAGK } y_8 \)

FIG. 6
FIG. 7

Peptide spectral library:

- **Peptide 1**
 - LVLSNDAGK
- **Peptide 2**
 - GADK

Label cost: A< G< K< V< P< L< N< S< D

Double-labelling:

- $n_{\text{globalMaxVal}} = 4$, n_i values from 1 to $n_{\text{pepMaxVal}}$ or $n_{\text{globalMaxVal}}$, whichever is lower

 - **Peptide 1**
 - $n_{\text{pepMaxVal}} = 9/2$ rounded down = 4
 - $n_{\text{globalMaxVal}} < n_{\text{pepMaxVal}}$
 - **Peptide 2**
 - $n_{\text{pepMaxVal}} = 4/2$ rounded down = 2
 - $n_{\text{globalMaxVal}} > n_{\text{pepMaxVal}}$

FIG. 8

Total label cost c_{total} for 2 peptides
FIG. 9

Amino acid Frequency

\[n_{\text{globalMaxVal}} = 1 \]

Amino acid

\[n_{\text{globalMaxVal}} = 2 \]

Amino acid

\[n_{\text{globalMaxVal}} = 3 \]

Amino acid

\[n_{\text{globalMaxVal}} = 4 \]

Amino acid

\[n_{\text{globalMaxVal}} = 5 \]

Amino acid

\[n_{\text{globalMaxVal}} = 6 \]

Amino acid

\[n_{\text{globalMaxVal}} = 7 \]

Amino acid

\[n_{\text{globalMaxVal}} = 8 \]

Amino acid

\[n_{\text{globalMaxVal}} = 9 \]

Amino acid

\[n_{\text{globalMaxVal}} = 10 \]

Amino acid

\[n_{\text{globalMaxVal}} = 11 \]

Amino acid

\[n_{\text{globalMaxVal}} = 12 \]

Amino acid

\[n_{\text{globalMaxVal}} = 13 \]

Amino acid

\[n_{\text{globalMaxVal}} = 14 \]

Amino acid
FIG. 9
FIG. 10
MS analysis: DIA

Unlabelled, Labelled, Precursor 1, Precursor 2

![Diagram of MS analysis process](image-url)

Quantification

Precursor 1, Precursor 2

MS2: XIC

RT

100% 50%

unlabelled labelled

Precursor 1 Precursor 2

FIG. 11
MS analysis: mPRM

Unlabelled, Llabelled,
Precursor 1, Precursor 2
precursor selection windows

Sequential fragmentation
joint storage of
fragment ions

Precursor 1 & Precursor 2

MS2

Quantification

Precursor 1

Precursor 2

MS2: XIC

Unlabelled
Precursor 1

labelled
Precursor 2

FIG. 12
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 2014248603 A [0013]
- WO 2002083923 A [0026]

Non-patent literature cited in the description