DOORFRAME ASSEMBLY FOR MICROWAVE OVEN, METHOD AND DEVICE FOR CONTROLLING DOORFRAME ASSEMBLY

The present disclosure discloses a doorframe assembly for a microwave oven, and a method and a device for controlling the doorframe assembly, which belongs to the field of smart home. The doorframe assembly includes: a door sheet (110) and a doorframe (120) connected to the door sheet (110) by a door hinge, wherein the door sheet (110) includes at least one region opposite to the doorframe (120). A first region (111) of the door sheet (110) opposite to the doorframe (120) is provided with a first type of magnet, and a second region (121) of the doorframe (120) opposite to the first region (111) is provided with a second type of magnet. The doorframe assembly further includes a control chip (130) and a distance sensor (140) that are interconnected.

![Fig. 1A](image-url)
Description

TECHNICAL FIELD

[0001] The present disclosure generally relates to the field of smart home, and more particularly, to a doorframe assembly for a microwave oven, and a method and a device for controlling the doorframe assembly.

BACKGROUND

[0002] Generally, a door of a microwave oven may be opened/closed by pulling/pushing the door manually by a user.

[0003] In the case where the pushing/pulling force applied by the user is insufficient to move the door, the user may be unable to push or pull the door of the microwave oven and thus may be unable to open/close the door normally.

SUMMARY

[0004] The present disclosure provides a doorframe assembly for a microwave oven, and a method and a device for controlling the doorframe assembly. The technical solution is as below:

[0005] According to a first aspect of the present invention, there is provided a doorframe assembly for a microwave oven including: a door sheet; and a doorframe connected to the door sheet by a door hinge, wherein the door sheet includes at least one region opposite to the doorframe, a first region of the door sheet opposite to the doorframe is provided with a first type of magnet, a second region of the doorframe opposite to the first region is provided with a second type of magnet, the first type of magnet is one of a permanent magnet and an electrical magnet, and the second type of magnet is the other one of the permanent magnet and the electrical magnet, and wherein the doorframe assembly further includes a control chip and a distance sensor that are interconnected, the distance sensor is configured to detect a distance between the door sheet and the doorframe, and the control chip is configured to control a direction of a current in the electrical magnet according to the distance detected by the distance sensor. By connecting the control chip with the distance sensor and detecting the distance between the door sheet of the microwave oven and the doorframe of the microwave oven using the distance sensor, the direction of the current flowed in the electrical magnet may be controlled by the control chip according to the distance determined by the distance sensor. The direction of the current flowed in the electrical magnet is related to the change of the distance between the door sheet of the microwave oven and the doorframe of the microwave oven, and thus it may solve a problem in the case where the pushing/pulling force applied by the user is insufficient to move the door, the user cannot push or pull the door of the microwave oven and thus unable to open/close the door normally. Accordingly, when the user pushes or pulls the door of the microwave oven, a force in the same direction of the door movement may be generated automatically by the microwave oven, thereby reducing the force required to push or pull the door.

[0006] Advantageously, the distance sensor is disposed at a first mounting position on the first region and detects a relative distance between the door sheet and the doorframe at the first mounting position, and wherein the relative distance is a vertical distance between the first mounting position and a plane in which the doorframe is positioned; or, the distance sensor is disposed at a second mounting position on the second region and detects a relative distance between the door sheet and the doorframe at the second mounting position, and wherein the relative distance is a vertical distance between the second mounting position and a plane in which the door sheet is positioned.

[0007] Advantageously, the door sheet is provided with a handle portion, and a parameter acquisition device, configured to acquire environmental characteristic parameters including at least one of temperature, brightness and pressure, is provided on the handle portion.

[0008] Advantageously, the parameter acquisition device is coupled to the distance sensor by wiring, or is coupled to the control chip by wiring.

[0009] According to a second aspect of the present invention, there is provided a method for controlling a doorframe assembly, the method being applicable in a microwave oven including a doorframe assembly according to the first aspect of the present disclosure, and the method including: inputting a current in a first direction when the control chip receives a first control signal transmitted from the distance sensor, so that an end of the electrical magnet facing the permanent magnet has a polarity opposite to that of the permanent magnet, the first control signal being generated when the distance sensor detects a decreasing distance between the door sheet and the doorframe; and inputting a current in a second direction to the electrical magnet when the control chip receives a second control signal transmitted from the distance sensor, so that the end of the electrical magnet facing the permanent magnet has a polarity the same as that of the permanent magnet, the second control signal being generated when the distance sensor detects an increasing distance between the door sheet and the doorframe, wherein the first direction differs from the second direction. The end of the electrical magnet facing the permanent magnet may be controlled to have a polarity opposite to or the same as that of the permanent magnet, by receiving at the control chip the control signal transmitted from the distance sensor and then inputting to the electrical magnet the current in the direction corresponding to the control signal. The control signal is generated according to the detected change of the distance between the door sheet of the microwave oven and the doorframe of the microwave oven, and thus it may solve a problem in the case where the pushing/pull-
Advantageously, the method further includes: receiving, at the control chip, a detection-on signal transmitted from the parameter acquisition device, the detection-on signal being generated by the parameter acquisition device when an acquired parameter reaches a predetermined parameter level; and transmitting, from the control chip to the distance sensor, a detection-on instruction for triggering the distance sensor to detect a distance change between the door sheet and the doorframe. The detection-on instruction is transmitted from the control chip to the distance sensor after the detection-on signal transmitted from the parameter acquisition device is received, and since the detection-on signal is generated by the parameter acquisition device when the acquired parameter reaches the predetermined parameter level, the distance between the door sheet of the microwave oven and the doorframe of the microwave oven is detected only when the door sheet of the microwave oven is operated by the user, thereby reducing power consumption of the doorframe assembly.

Advantageously, the method further includes: receiving, at the control chip, a third control signal transmitted from the distance sensor and carrying an acceleration of the door sheet, the third control signal being generated when the distance sensor detects a decreasing distance between the door sheet and the doorframe and a detected acceleration of the door sheet is greater than an acceleration threshold; querying, by the control chip, a predetermined current value corresponding to the acceleration of the door sheet, the acceleration of the door sheet being proportional to the predetermined current value; and inputting, by the control chip, a current in the second direction having the predetermined current value to the electrical magnet. The control chip inputs the current having the predetermined current value in the second direction to the electrical magnet when the distance between the door sheet and the doorframe is decreased and the acceleration of the door sheet is greater than the acceleration threshold, and since the acceleration of the door sheet of the microwave oven is proportional to the predetermined current value when the acceleration of the door sheet of the microwave oven is greater than the acceleration threshold, the control chip may control the electrical magnet to generate a repulsion force between the electrical magnet and the permanent magnet when the door sheet of the microwave oven is closed too fast, thereby preventing damage to the door sheet due to impacts between the door sheet of the microwave oven and the doorframe of the microwave oven.

According to a third aspect of the present invention, there is provided a device for controlling a doorframe assembly, the device being applicable in a microwave oven including a doorframe assembly according to the first aspect of the present disclosure, the device including: a first input module, configured to input a current in a first direction to the electrical magnet when the control chip receives a first control signal transmitted from the distance sensor, so that an end of the electrical magnet facing the permanent magnet has a polarity opposite to that of the permanent magnet, the first control signal being generated when the distance sensor detects a decreasing distance between the door sheet and the doorframe; and a second input module, configured to input a current in a second direction to the electrical magnet when the control chip receives a second control signal transmitted from the distance sensor, so that an end of the electrical magnet facing the permanent magnet has a polarity the same as that of the permanent magnet, the second control signal being generated when the distance sensor detects an increasing distance between the door sheet and the doorframe, wherein the first direction differs from the second direction.

Advantageously, the device further includes: a first receiving module, configured to receive a detection-on signal transmitted from the parameter acquisition device, the detection-on signal being generated by the parameter acquisition device when an acquired parameter reaches a predetermined parameter level; and a transmitting module, configured to transmit, to the distance sensor, a detection-on instruction for triggering the distance sensor to detect a distance change between the door sheet and the doorframe.

Advantageously, the device further includes a second receiving module, configured to receive a third control signal transmitted from the distance sensor and carrying an acceleration of the door sheet, the third control signal being generated when the distance sensor detects a decreasing distance between the door sheet and the doorframe and a detected acceleration of the door sheet is greater than an acceleration threshold; a querying module, configured to query a predetermined current value corresponding to the acceleration of the door sheet, the acceleration of the door sheet being proportional to the predetermined current value; and a third input module, configured to input a current in the second direction having the predetermined current value to the electrical magnet.

According to a fourth aspect of the present invention, there is also provided a computer program for executing the steps of a method for controlling a doorframe assembly as described above when this program is executed by a processor.

This program can use any programming language and take the form of source code, object code or a code intermediate between source code and object code, such as a partially compiled form, or any other desirable form.

The present disclosure is also directed to a com-
puter-readable information medium containing instructions of a computer program as described above.

The information medium can be any entity or device capable of storing the program. For example, the support can include storage means such as a ROM, for example a CD ROM or a microelectronic circuit ROM, or magnetic storage means, for example a diskette (floppy disk) or a hard disk.

Advantageously, the information medium can be an integrated circuit in which the program is incorporated, the circuit being adapted to execute the method in question or to be used in its execution.

It is to be understood that both the foregoing general description and the following detailed description are exemplary only and are not restrictive of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the present disclosure and, together with the description, serve to explain the principles of the present disclosure.

Fig. 1A is a structural diagram of a doorframe assembly applicable in a microwave oven according to an exemplary embodiment;

Fig. 1B is a structural diagram of a doorframe assembly applicable in a microwave oven according to another exemplary embodiment;

Fig. 1C is a top view of a doorframe assembly applicable in a microwave oven according to an exemplary embodiment;

Fig. 2 is a flow chart illustrating a method for controlling a doorframe assembly according to an exemplary embodiment;

Fig. 3 is a flow chart illustrating a method for controlling a doorframe assembly according to another exemplary embodiment;

Fig. 4A is a block diagram of a device for controlling a doorframe assembly according to an exemplary embodiment; and

Fig. 4B is a block diagram of a device for controlling a doorframe assembly according to another exemplary embodiment.

DETAILED DESCRIPTION

Reference will now be made in detail to exemplary embodiments, examples of which are illustrated in the accompanying drawings. The following description refers to the accompanying drawings in which the same numbers in different drawings represent the same or similar elements unless otherwise represented. The implementations set forth in the following description of exemplary embodiments do not represent all implementations consistent with the present disclosure. Instead, they are merely examples of devices and methods consistent with aspects related to the present disclosure as recited in the appended claims.

Fig. 1A is a structural diagram of a doorframe assembly applicable in a microwave oven according to an exemplary embodiment. The doorframe assembly of the microwave oven may include but not limited to: a door sheet 110, a doorframe 120, a control chip 130, a distance sensor 140 and a door hinge.

As illustrated in Fig. 1A, the door sheet 110 is connected to the doorframe 120 by the door hinge. The door sheet 110 includes at least one region opposite to the doorframe 120. A first region 111 of the door sheet 110 opposite to the doorframe 120 is provided with a first type of magnet. A second region 121 of the doorframe 120 opposite to the first region 111 is provided with a second type of magnet. The first type of magnet is one of a permanent magnet and an electrical magnet, and the second type of magnet is the other one of the permanent magnet and the electrical magnet.

Accordingly, according to the doorframe assembly applicable in a microwave oven according to embodiments of the present disclosure, by connecting the control chip with the distance sensor and detecting the distance between the door sheet and the doorframe using the distance sensor, the direction of the current flowed in the electrical magnet may be controlled by the control chip according to the distance determined by the distance sensor. The direction of the current flowed in the electrical magnet is related to the change of the distance between the door sheet of the microwave oven and the doorframe of the microwave oven, and thus it may solve a problem in the case where the pushing/pulling force applied by the user is insufficient to move the door, the user cannot push or pull the door of the microwave oven and thus unable to open/close the door normally. Accordingly, when the user pushes or pulls the door of the microwave oven, a force in the same direction of the door movement may be generated automatically by the microwave oven, thereby reducing the force required to push or pull the door.

Continuing referring to Fig. 1A, the doorframe assembly of the microwave oven may include but not limited to: the door sheet 110, the doorframe 120, the control chip 130, the distance sensor 140 and the door hinge.

The door sheet 110 is connected to the doorframe 120 by the door hinge. The door sheet 110 includes at least one region opposite to the doorframe 120. A first
region 111 of the door sheet 110 opposite to the doorframe 120 is provided with a first type of magnet. A second region 121 of the doorframe 120 opposite to the first region 111 is provided with a second type of magnet. The first type of magnet is one of a permanent magnet and an electrical magnet, and the second type of magnet is the other one of the permanent magnet and the electrical magnet.

As illustrated in Fig. 1B, the control chip 130 is interconnected to the distance sensor 140. The distance sensor 140 is configured to detect a distance between the door sheet and the doorframe, and the control chip 130 is configured to control a direction of a current in the electrical magnet according to the distance detected by the distance sensor 140.

Alternatively, referring to Figs. 1A and 1B, the distance sensor 140 may be provided in the first region 111 or the second region 121, or may be provided in other positions, which is not limited in the present embodiment.

Fig. 1C is a top view of a doorframe assembly applicable in a microwave oven according to an exemplary embodiment. As illustrated in Fig. 1C, the distance between the door sheet 110 and the doorframe 120 detected by the distance sensor 140 may be different according to different mounting positions of the distance sensor 140.

In part (1) of Fig. 1C, the distance sensor 140 is disposed at a first mounting position 111a on the first region 111, and detects a relative distance between the door sheet 110 and the doorframe 120 at the first mounting position 111a. The relative distance is a vertical distance d1 between the first mounting position 111a and a plane in which the doorframe 120 is positioned.

In part (2) of Fig. 1C, the distance sensor 140 is disposed at a second mounting position 121a on the second region 121 and detects a relative distance between the door sheet 110 and the doorframe 120 at the second mounting position 121a. The relative distance is a vertical distance d2 between the second mounting position 121a and a plane in which the door sheet 110 is positioned.

Alternatively, the control chip 130 may be disposed in the distance sensor 140, or may be disposed at other positions, which is not limited herein.

Alternatively, continuing referring to Fig. 1A, a handle portion 150 is provided on the door sheet 110. The doorframe assembly further includes a parameter acquisition device provided on the handle portion 150.

Herein, the parameter acquisition device acquires environmental characteristic parameters at the handle portion 150 including at least one of temperature, brightness and pressure.

According to the present embodiment, the parameter acquisition device may be coupled to the distance sensor 140 by wiring, or is coupled to the control chip 130 by wiring.

Accordingly, according to the doorframe assembly applicable in a microwave oven according to embodiments of the present disclosure, by connecting the control chip with the distance sensor and detecting the distance between the door sheet and the doorframe using the distance sensor, the direction of the current flowed in the electrical magnet may be controlled by the control chip according to the distance determined by the distance sensor. The direction of the current flowed in the electrical magnet is related to the change of the distance between the door sheet of the microwave oven and the doorframe of the microwave oven, and thus it may solve a problem in the case where the pushing/pulling force applied by the user is insufficient to move the door, the user cannot push or pull the door of the microwave oven and thus unable to open/close the door normally. Accordingly, when the user pushes or pulls the door of the microwave oven, a force in the same direction of the door movement may be generated automatically by the microwave oven, thereby reducing the force required to push or pull the door.

Fig. 2 is a flow chart illustrating a method for controlling a doorframe assembly according to an exemplary embodiment. As illustrated in Fig. 2, the method for controlling the doorframe assembly is applicable in the doorframe assembly illustrated in Fig. 1A, and may include the steps as follows.

In step 201, a current in a first direction is input to the electrical magnet when the control chip receives a first control signal transmitted from the distance sensor, so that an end of the electrical magnet facing the permanent magnet has a polarity opposite to that of the permanent magnet. The first control signal is generated when the distance sensor detects a decreasing distance between the door sheet and the doorframe.

In step 202, a current in a second direction is input to the electrical magnet when the control chip receives a second control signal transmitted from the distance sensor, so that the end of the electrical magnet facing the permanent magnet has a polarity the same as that of the permanent magnet. The second control signal is generated when the distance sensor detects an increasing distance between the door sheet and the doorframe.

Accordingly, according to the method for controlling a doorframe assembly according to embodiments of the present disclosure, the end of the electrical magnet facing the permanent magnet may be controlled to have a polarity opposite to or the same as that of the permanent magnet, by receiving at the control chip the control signal transmitted from the distance sensor and then inputting to the electrical magnet the current in the direction corresponding to the control signal. The control signal is generated according to the detected change of the distance between the door sheet of the microwave oven and the doorframe of the microwave oven, and thus may solve a problem in the case where the pushing/pulling force applied by the user is insufficient to move the door, the user cannot push or pull the door of the microwave oven.
and thus unable to open/close the door normally. Accordingly, when the user pushes or pulls the door of the microwave oven, a force in the same direction of the door movement may be generated automatically by the microwave oven, thereby reducing the force required to push or pull the door.

In daily life, the distance between the door frame of the microwave oven and the doorframe of the microwave oven may be changed due to natural factors such as wind force. A parameter acquisition device may be provided at a handle portion of the microwave oven to avoid frequent detection of unnecessary distance change using the distance sensor. When the control chip receives a detection-on signal transmitted from the parameter acquisition device, the control chip may transmit a detection-on instruction to the distance sensor to trigger the distance sensor to detect a distance change between the door sheet of the microwave oven and the doorframe of the microwave oven. The detection-on signal is generated by the parameter acquisition device when the acquired parameter reaches the predetermined parameter level, the distance between the door sheet of the microwave oven and the doorframe of the microwave oven is detected only when the door sheet of the microwave oven is operated by the user, thereby reducing power consumption of the doorframe assembly. As illustrated in Fig. 3, the method for controlling the doorframe assembly is applicable in the doorframe assembly according to another exemplary embodiment. In daily life, the distance between the door frame of the microwave oven and the doorframe of the microwave oven may be changed due to natural factors such as wind force. A parameter acquisition device may be provided at a handle portion of the microwave oven to avoid frequent detection of unnecessary distance change using the distance sensor. When the control chip receives a detection-on signal transmitted from the parameter acquisition device, the control chip may transmit a detection-on instruction to the distance sensor to trigger the distance sensor to detect a distance change between the door sheet of the microwave oven and the doorframe of the microwave oven. The detection-on signal is generated by the parameter acquisition device when the acquired parameter reaches the predetermined parameter level, the distance between the door sheet of the microwave oven and the doorframe of the microwave oven is detected only when the door sheet of the microwave oven is operated by the user, thereby reducing power consumption of the doorframe assembly. As illustrated in Fig. 3, the method for controlling the doorframe assembly is applicable in the doorframe assembly according to another exemplary embodiment. In step 301, the control chip receives the detection-on signal transmitted from the parameter acquisition device.

Herein, the detection-on signal is generated by the parameter acquisition device when the acquired parameter reaches the predetermined parameter level.

When a parameter is acquired by the parameter acquisition device, the parameter acquisition device judges whether the acquired parameter reaches the predetermined parameter level, and transmits the detection-on signal to the control chip when the parameter reaches the predetermined parameter level.

For example, assuming that parameters 1 to 10 belong to the first parameter level, parameters 11 to 20 belong to the second parameter level, and the predetermined parameter level is the second parameter level. When the parameter acquisition device acquires a parameter 9, it is judged that the parameter 9 does not reach the second parameter level, and thus no further operation is performed. When the parameter acquisition device acquires a parameter 13, it is judged that the parameter 13 reaches the second parameter level, and thus the detection-on signal is transmitted to the control chip.

Herein, the parameter is a parameter acquired by the parameter acquisition device corresponding to the environmental characteristic parameters at the handle portion of the microwave oven.

When the environmental characteristic parameter is temperature, the parameter corresponding to temperature may be a temperature value. When the environmental characteristic parameter is brightness, the parameter corresponding to brightness may be a brightness value. When the environmental characteristic parameter is pressure, the parameter corresponding to pressure may be a pressure value.

It should be noted that, detailed parameter level is not limited in the present embodiment.

In step 302, the control chip transmits a detection-on instruction to the distance sensor.

Herein, the detection-on instruction is an instruction for triggering the distance sensor to detect a distance change between the door sheet of the microwave oven and the doorframe of the microwave oven.

In step 303, a current in a first direction is input to the electrical magnet when the control chip receives a first control signal transmitted from the distance sensor, so that an end of the electrical magnet facing the permanent magnet has a polarity opposite to that of the permanent magnet.

Herein, the first control signal is generated when the distance sensor detects a decreasing distance between the door sheet of the microwave oven and the doorframe of the microwave oven.

When the control chip controls the end of the electrical magnet facing the permanent magnet to have a polarity opposite to that of the permanent magnet, attraction force may be generated between the electrical magnet and the permanent magnet. Accordingly, as the electrical magnet and the permanent magnet are disposed respectively at the first region on the door sheet of the microwave oven and the second region on the doorframe of the microwave oven, the door sheet of the microwave oven and the doorframe of the microwave oven may attract each other.

When the distance between the door sheet of the microwave oven and the doorframe of the microwave oven decreases, it may be determined that the door sheet is approaching the doorframe by external force. At this time, if there is attraction force between the door sheet of the microwave oven and the doorframe of the microwave oven, the external force required to push the door sheet towards the doorframe may be effectively reduced.

In step 304, a current in a second direction is input to the electrical magnet when the control chip receives a second control signal transmitted from the distance sensor, so that the end of the electrical magnet facing the permanent magnet has a polarity the same as that of the permanent magnet.

Herein, the second control signal is generated when the distance sensor detects an increasing distance between the door sheet of the microwave oven and the doorframe of the microwave oven.

When the control chip controls the end of the electrical magnet facing the permanent magnet to have
a polarity the same as that of the permanent magnet, repulsion force may be generated between the electrical magnet and the permanent magnet. Accordingly, as the electrical magnet and the permanent magnet are disposed respectively at the first region on the door sheet of the microwave oven and the second region on the doorframe of the microwave oven, the door sheet of the microwave oven and the doorframe of the microwave oven may repulse each other.

When the distance between the door sheet of the microwave oven and the doorframe of the microwave oven increases, it may be determined that the door sheet is moving away from the doorframe by external force. At this time, if there is repulsion force between the door sheet of the microwave oven and the doorframe of the microwave oven, the external force required to push the door sheet away from the doorframe may be effectively reduced.

It should be noted that, the first direction differs from the second direction in the present embodiment.

In step 305, the control chip receives a third control signal transmitted from the distance sensor and carrying an acceleration of the door sheet.

Herein, the third control signal is generated when the distance sensor detects a decreasing distance between the door sheet and the doorframe and a detected acceleration of the door sheet is greater than an acceleration threshold.

It should be noted that the detailed magnitude of the acceleration threshold is not limited in the present embodiment.

In step 306, the control chip queries a predetermined current value corresponding to the acceleration of the door sheet.

Herein, the acceleration of the door sheet is proportional to the predetermined current value. The larger the acceleration of the door sheet of the microwave oven is, the larger the predetermined current value corresponding to the acceleration of the door sheet becomes.

In step 307, the control chip inputs a current in the second direction having the predetermined current value to the electrical magnet.

As can be seen from the definitional equation of intensification of magnetic induction, i.e., \( F = B \times I \times L \), an electromagnetic force generated by the electrical magnet is proportional to the current flowing in the electrical magnet. Accordingly, the larger the current value of the current flowing in the second direction input to the electrical magnet is, the larger the electromagnetic force generated by the electrical magnet becomes, and thus the larger the repulsion force between the door sheet of the microwave oven and the doorframe of the microwave oven becomes.

Accordingly, according to the method for controlling a doorframe assembly according to the present disclosure, the end of the electrical magnet facing the permanent magnet may be controlled to have a polarity opposite to or the same as that of the permanent magnet, by receiving at the control chip the control signal transmitted from the distance sensor and then inputting to the electrical magnet the current in the direction corresponding to the control signal. The control signal is generated according to the detected change of the distance between the door sheet of the microwave oven and the doorframe of the microwave oven, and thus may solve a problem in the case where the pushing/pulling force applied by the user is insufficient to move the door, the user cannot push or pull the door of the microwave oven and thus unable to open/close the door normally. Accordingly, when the user pushes or pulls the door of the microwave oven, a force in the same direction of the door movement may be generated automatically by the microwave oven, thereby reducing the force required to push or pull the door.

In the present embodiment, the control chip inputs the current having the predetermined current value in the second direction to the electrical magnet when the distance between the door sheet and the doorframe is decreased and the acceleration of the door sheet is greater than the acceleration threshold, and since the acceleration of the door sheet of the microwave oven is proportional to the predetermined current value when the acceleration of the door sheet of the microwave oven is greater than the acceleration threshold, the control chip may control the electrical magnet to generate a repulsion force between the electrical magnet and the permanent magnet when the door sheet of the microwave oven is closed too fast, thereby preventing damage to the door sheet due to impacts between the door sheet of the microwave oven and the doorframe of the microwave oven.

Hereinafter, device embodiments of the present disclosure will be described. The device embodiments may be configured to perform the method embodiments of the present disclosure. Relevant contents that are not disclosure in detail in the device embodiments may be referred to some explanations in the method embodiments.

Fig. 4A is a block diagram of a device for controlling a doorframe assembly according to an exemplary embodiment. The device is applicable in a microwave oven. As illustrated in Fig. 4A, the device for controlling a doorframe assembly is applicable in the doorframe assembly illustrated in Fig. 1A. The device for controlling the doorframe assembly may include but not limited to: a first input module 401 and a second input module 402.

The first input module 401 is configured to input a current in a first direction to the electrical magnet when the control chip receives a first control signal transmitted from the distance sensor, so that an end of the electrical magnet facing the permanent magnet has a polarity opposite to that of the permanent magnet. The first control signal is generated when the distance sensor detects a decreasing distance between the door sheet and the doorframe.

When the control chip controls the end of the electrical magnet facing the permanent magnet to have
a polarity opposite to that of the permanent magnet, attraction force may be generated between the electrical magnet and the permanent magnet. Accordingly, as the electrical magnet and the permanent magnet are disposed respectively at the first region on the door sheet of the microwave oven and the second region on the doorframe of the microwave oven, the door sheet of the microwave oven and the doorframe of the microwave oven may attract each other.

[0075] When the distance between the door sheet of the microwave oven and the doorframe of the microwave oven decreases, it may be determined that the door sheet is approaching the doorframe by external force. At this time, if there is attraction force between the door sheet of the microwave oven and the doorframe of the microwave oven, the external force required to push the door sheet towards the doorframe may be effectively reduced.

[0076] The second input module 402 is configured to input a current in a second direction to the electrical magnet when the control chip receives a second control signal transmitted from the distance sensor, so that the end of the electrical magnet facing the permanent magnet has a polarity the same as that of the permanent magnet. The second control signal is generated when the distance sensor detects an increasing distance between the door sheet and the doorframe. The first direction differs from the second direction.

[0077] When the control chip controls the end of the electrical magnet facing the permanent magnet to have a polarity the same as that of the permanent magnet, repulsion force may be generated between the electrical magnet and the permanent magnet. Accordingly, as the electrical magnet and the permanent magnet are disposed respectively at the first region on the door sheet of the microwave oven and the second region on the doorframe of the microwave oven, the door sheet of the microwave oven and the doorframe of the microwave oven may repulse each other.

[0078] When the distance between the door sheet of the microwave oven and the doorframe of the microwave oven increases, it may be determined that the door sheet is moving away from the doorframe by external force. At this time, if there is repulsion force between the door sheet of the microwave oven and the doorframe of the microwave oven, the external force required to push the door sheet away from the doorframe may be effectively reduced.

[0079] In a further possible implementation, as illustrated in Fig. 4B, which is a block diagram of a device for controlling a doorframe assembly according to another exemplary embodiment, the device further includes a first receiving module 403 and a transmitting module 404.

[0080] The first receiving module 403 is configured to receive a detection-on signal transmitted from the parameter acquisition device. The detection-on signal is generated by the parameter acquisition device when an acquired parameter reaches a predetermined parameter level.

[0081] When a parameter is acquired by the parameter acquisition device, the parameter acquisition device judges whether the acquired parameter reaches the predetermined parameter level, and transmits the detection-on signal to the control chip when the parameter reaches the predetermined parameter level.

[0082] Herein, the parameter is a parameter acquired by the parameter acquisition device corresponding to the environmental characteristic parameters at the handle portion of the microwave oven.

[0083] When the environmental characteristic parameter is temperature, the parameter corresponding to temperature may be a temperature value. When the environmental characteristic parameter is brightness, the parameter corresponding to brightness may be a brightness value. When the environmental characteristic parameter is pressure, the parameter corresponding to pressure may be a pressure value.

[0084] It should be noted that, detailed parameter level is not limited in the present embodiment.

[0085] The transmitting module 404 is configured to transmit, to the distance sensor, a detection-on instruction for triggering the distance sensor to detect a distance change between the door sheet and the doorframe.

[0086] In a further possible implementation, continuing referring to Fig. 4B, the device further includes a second receiving module 405, a querying module 406 and a third input module 407.

[0087] The second receiving module 405 is configured to receive a third control signal transmitted from the distance sensor and carrying an acceleration of the door sheet. The third control signal is generated when the distance sensor detects a decreasing distance between the door sheet and the doorframe and a detected acceleration of the door sheet is greater than an acceleration threshold.

[0088] It should be noted that detailed magnitude of the acceleration threshold is not limited in the present embodiment.

[0089] The querying module 406 is configured to query a predetermined current value corresponding to the acceleration of the door sheet. The acceleration of the door sheet is proportional to the predetermined current value.

[0090] The larger the acceleration of the door sheet of the microwave oven is, the larger the predetermined current value corresponding to the acceleration of the door sheet becomes.

[0091] The third input module 407 is configured to input a current in the second direction having the predetermined current value to the electrical magnet.

[0092] As can be seen from the definitional equation of intensification of magnetic induction, i.e., \( F = B \times I \times L \), an electromagnetic force generated by the electrical magnet is proportional to the current flowing in the electrical magnet. Accordingly, the larger the current value of the current flowing in the second direction input to the electrical magnet is, the larger the electromagnetic force generated by the electrical magnet becomes, and thus
the larger the repulsion force between the door sheet of the microwave oven and the doorframe of the microwave oven becomes.

Accordingly, according to the method for controlling a doorframe assembly according to embodiments of the present disclosure, the end of the electrical magnet facing the permanent magnet may be controlled to have a polarity opposite to or the same as that of the permanent magnet, by receiving at the control chip the control signal transmitted from the distance sensor and then inputting to the electrical magnet the current in the direction corresponding to the control signal. The control signal is generated according to the detected change of the distance between the door sheet of the microwave oven and the doorframe of the microwave oven, and thus may solve a problem in the case where the pushing/pulling force applied by the user is insufficient to move the door, the user cannot push or pull the door of the microwave oven and thus unable to open/close the door normally. Accordingly, when the user pushes or pulls the door of the microwave oven, a force in the same direction of the door movement may be generated automatically by the microwave oven, thereby reducing the force required to push or pull the door.

In the present embodiment, the end of the electrical magnet facing the permanent magnet may be controlled to have a polarity opposite to or the same as that of the permanent magnet, by receiving at the control chip the control signal transmitted from the distance sensor and then inputting to the electrical magnet the current in the direction corresponding to the control signal. The control signal is generated according to the detected change of the distance between the door sheet of the microwave oven and the doorframe of the microwave oven, and thus may solve a problem in the case where the pushing/pulling force applied by the user is insufficient to move the door, the user cannot push or pull the door of the microwave oven and thus unable to open/close the door normally. Accordingly, when the user pushes or pulls the door of the microwave oven, a force in the same direction of the door movement may be generated automatically by the microwave oven, thereby reducing the force required to push or pull the door.

In the present embodiment, the control chip inputs the current having the predetermined current value in the second direction to the electrical magnet when the distance between the door sheet and the doorframe is decreased and the acceleration of the door sheet is greater than the acceleration threshold, and since the acceleration of the door sheet of the microwave oven is proportional to the predetermined current value when the acceleration of the door sheet of the microwave oven is greater than the acceleration threshold, the control chip may control the electrical magnet to generate a repulsion force between the electrical magnet and the permanent magnet when the door sheet of the microwave oven is closed too fast, thereby preventing damage to the door sheet due to impacts between the door sheet of the microwave oven and the doorframe of the microwave oven.

Claims

1. A doorframe assembly for a microwave oven characterized in comprising:

   a door sheet (110); and
   a doorframe (120) connected to the door sheet (110) by a door hinge, wherein the door sheet (110) comprises at least one region opposite to the doorframe (120), a first region (111) of the door sheet (110) opposite to the doorframe (120) is provided with a first type of magnet, a second region (121) of the doorframe (120) opposite to the first region (111) is provided with a second type of magnet, the first type of magnet is one of a permanent magnet and an electrical magnet, and the second type of magnet is the other one of the permanent magnet and the electrical magnet, and wherein the doorframe assembly further comprises a control chip (130) and a distance sensor (140) that are interconnected, the distance sensor (140) is configured to detect a distance between the door sheet (110) and the doorframe (120), and the control chip (130) is configured to control a direction of a current in the electrical magnet according to the distance detected by the distance sensor (140).

2. The doorframe assembly according to claim 1, wherein the distance sensor (140) is disposed at a first mounting position (111a) on the first region (111) and detects a relative distance between the door sheet (110) and the doorframe (120) at the first mounting position (111a), and wherein the relative distance is a vertical distance between the first mounting position (111a) and a plane in which the doorframe (120) is positioned; or, wherein the distance sensor (140) is disposed at a second mounting position (121a) on the second region (121) and detects a relative distance between the door sheet (110) and the doorframe (120) at the
second mounting position (121a), and wherein the relative distance is a vertical distance between the second mounting position (121a) and a plane in which the door sheet (110) is positioned.

3. The doorframe assembly according to claim 1 or 2, wherein the door sheet (110) is provided with a handle portion (150), and a parameter acquisition device, configured to acquire environmental characteristic parameters comprising at least one of temperature, brightness and pressure, is provided on the handle portion (150).

4. The doorframe assembly according to claim 3, wherein the parameter acquisition device is coupled to the distance sensor (140) by wiring, or is coupled to the control chip (130) by wiring.

5. A method for controlling a doorframe assembly, the method being applicable in a microwave oven comprising a doorframe assembly according to any one of the preceding claims, characterized in the method comprising:

- inputting (201) a current in a first direction to the electrical magnet when the control chip receives a first control signal transmitted from the distance sensor (140), so that an end of the electrical magnet facing the permanent magnet has a polarity opposite to that of the permanent magnet, the first control signal being generated when the distance sensor (140) detects a decreasing distance between the door sheet (110) and the doorframe (120); and
- inputting (202) a current in a second direction to the electrical magnet when the control chip (130) receives a second control signal transmitted from the distance sensor (140), so that the end of the electrical magnet facing the permanent magnet has a polarity the same as that of the permanent magnet, the second control signal being generated when the distance sensor (140) detects an increasing distance between the door sheet (110) and the doorframe (120), wherein the first direction differs from the second direction.

6. The method according to claim 5, wherein the method is applicable in a microwave oven comprising a doorframe assembly according to claim 3 or claim 4, and the method further comprises:

- receiving (301), at the control chip (130), a detection-on signal transmitted from the parameter acquisition device, the detection-on signal being generated by the parameter acquisition device when an acquired parameter reaches a predetermined parameter level; and
- transmitting (302), from the control chip (130) to the distance sensor (140), a detection-on instruction for triggering the distance sensor (140) to detect a distance change between the door sheet (110) and the doorframe (120).

7. The method according to claim 5 or claim 6, further comprising:

- receiving (305), at the control chip (130), a third control signal transmitted from the distance sensor (140) and carrying an acceleration of the door sheet (110), the third control signal being generated when the distance sensor (140) detects a decreasing distance between the door sheet (110) and the doorframe (120) and a detected acceleration of the door sheet (110) is greater than an acceleration threshold; and
- querying (306), by the control chip (130), a predetermined current value corresponding to the acceleration of the door sheet (110), the acceleration of the door sheet (110) being proportional to the predetermined current value; and
- inputting (307), by the control chip (130), a current in the second direction having the predetermined current value to the electrical magnet.

8. A device for controlling a doorframe assembly, the device being applicable in a microwave oven comprising a doorframe assembly according to any one of the claims 1 to 4, characterized in the device comprising:

- a first input module (401), configured to input a current in a first direction to the electrical magnet when the control chip receives a first control signal transmitted from the distance sensor (140), so that an end of the electrical magnet facing the permanent magnet has a polarity opposite to that of the permanent magnet, the first control signal being generated when the distance sensor (140) detects a decreasing distance between the door sheet (110) and the doorframe (120); and
- a second input module (402), configured to input a current in a second direction to the electrical magnet when the control chip (130) receives a second control signal transmitted from the distance sensor (140), so that the end of the electrical magnet facing the permanent magnet has a polarity the same as that of the permanent magnet, the second control signal being generated when the distance sensor (140) detects an increasing distance between the door sheet (110) and the doorframe (120), wherein the first direction differs from the second direction.
9. The device according to claim 8, wherein the device is applicable in a microwave oven comprising a doorframe assembly according to claim 3 or claim 4, and the device further comprises:

   a first receiving module (403), configured to receive a detection-on signal transmitted from the parameter acquisition device, the detection-on signal being generated by the parameter acquisition device when an acquired parameter reaches a predetermined parameter level; and a transmitting module (404), configured to transmit, to the distance sensor (140), a detection-on instruction for triggering the distance sensor (140) to detect a distance change between the door sheet (110) and the doorframe (120).

10. The device according to claim 8 or claim 9, further comprising:

   a second receiving module (405), configured to receive a third control signal transmitted from the distance sensor (140) and carrying an acceleration of the door sheet (110), the third control signal being generated when the distance sensor (140) detects a decreasing distance between the door sheet (110) and the doorframe (120) and a detected acceleration of the door sheet (110) is greater than an acceleration threshold;
   a querying module (406), configured to query a predetermined current value corresponding to the acceleration of the door sheet (110), the acceleration of the door sheet (110) being proportional to the predetermined current value; and
   a third input module (407), configured to input a current in the second direction having the predetermined current value to the electrical magnet.

11. A computer program, which when executing on a processor, performs a method according to any one of claims 5 to 7.

12. A computer-readable information medium containing instructions of a computer program according to claim 11.
Fig. 1B

- Control Chip
- Distance Sensor
Inputting a current in a first direction to the electrical magnet when the control chip receives a first control signal transmitted from the distance sensor, so that an end of the electrical magnet facing the permanent magnet has a polarity opposite to that of the permanent magnet, the first control signal being generated when the distance sensor detects a decreasing distance between the door sheet and the doorframe.

Inputting a current in a second direction to the electrical magnet when the control chip receives a second control signal transmitted from the distance sensor, so that the end of the electrical magnet facing the permanent magnet has a polarity the same as the permanent magnet, the second control signal being generated when the distance sensor detects an increasing distance between the door sheet and the doorframe.

Fig. 2
Receiving, at the control chip, a detection-on signal transmitted from the parameter acquisition device 301

Transmitting, from the control chip to the distance sensor, a detection-on instruction 302

Inputting a current in a first direction to the electrical magnet when the control chip receives a first control signal transmitted from the distance sensor, so that an end of the electrical magnet facing the permanent magnet has a polarity opposite to that of the permanent magnet 303

Inputting a current in a second direction to the electrical magnet when the control chip receives a second control signal transmitted from the distance sensor, so that the end of the electrical magnet facing the permanent magnet has a polarity the same as the permanent magnet 304

Receiving, at the control chip, a third control signal transmitted from the distance sensor and carrying an acceleration of the door sheet 305

Querying, by the control chip, a predetermined current value corresponding to the acceleration of the door sheet 306

Inputting, by the control chip, a current in the second direction having the predetermined current value to the electrical magnet 307

Fig. 3
Fig. 4A

First Input Module 401
Second Input Module 402
Fig. 4B
## DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 550 897 A2 (DAEWOO ELECTRONICS CO LTD [KR]) 14 July 1993 (1993-07-14) * column 2, line 57 - column 3, line 35; figures 1,2,3A,3B</td>
<td>1-12 INV. H05B6/64</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE 15 53 307 A1 (KRUPP GMBH) 4 December 1969 (1969-12-04) * page 3, last paragraph; figure *</td>
<td>1-12</td>
<td></td>
</tr>
</tbody>
</table>

**TECHNICAL FIELDS SEARCHED (IPC)**

- H05B
- F24C
- E05C
- G07C

---

The present search report has been drawn up for all claims.
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 07-07-2017.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 0550897 A2</td>
<td>14-07-1993</td>
<td>DE 69230216 D1</td>
<td>02-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0550897 A2</td>
<td>14-07-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H05248641 A</td>
<td>24-09-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5293020 A</td>
<td>08-03-1994</td>
</tr>
<tr>
<td>DE 1553307 A1</td>
<td>04-12-1969</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3884566 T2</td>
<td>03-02-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0317973 A2</td>
<td>31-05-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H0183296 U</td>
<td>02-06-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H0541517 Y2</td>
<td>20-10-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4868358 A</td>
<td>19-09-1989</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.