SMALL CELL MEASUREMENT METHOD AND TERMINAL

The present disclosure provides a cell measurement method and a terminal. The cell measurement method includes steps of: measuring a pilot signal from a to-be-measured cell, so as to acquire an channel estimation of N pilot signal transmission ports of the to-be-measured cell, N≥1; determining an equivalent received power corresponding to each precoding matrix in accordance with each precoding matrix in a set of precoding matrices and the channel estimation of the N pilot signal transmission ports of the to-be-measured cell; and determining an equivalent received power of the to-be-measured cell in accordance with the equivalent received power corresponding to each precoding matrix.
Description

CROSS-REFERENCE TO RELATED APPLICATION

The present application claims a priority of the Chinese patent application No.201510051428.3 filed on January 30, 2015, which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

The present disclosure relates to the field of wireless communication technology, in particular to a cell measurement method and a terminal.

BACKGROUND

For a Long Term Evolution (LTE) system, a cell search procedure is shown in Fig.1, where a terminal at first searches for a Primary Synchronization Signal (PSS) (see Step 101) and acquires a timing synchronization period of 5ms in accordance with the PSS, and then searches for a Secondary Synchronization Signal (SSS) (see Step 102) and achieve frame synchronization and acquire a cell identity (ID) in accordance with the SSS. Based on the above synchronization procedures, the terminal may acquire a Cell-Specific Reference Signal (CRS) (see Step 103), which is a common reference signal and may be used for channel estimation and demodulation as well as for cell measurement.

In the case that the terminal accesses to a cell, as a feasible method, the terminal may search for the cell as shown in Fig.1 among a plurality of candidate target cells, measure Reference Signal Received Power (RSRP) of the CRS of each candidate target cell, and select and access to the cell with the optimal RSRP.

In an antenna system in the related art, antennae in an antenna array of a base station are usually arranged horizontally, and a beam from a transmitter of the base station may merely be adjusted in a horizontal direction, with a fixed down-tilt angle in a vertical direction. Along with the development of the antenna technology, an active antenna, each element of which is capable of being controlled independently, has been presented in the industry. Through this design, the antennae of the antenna array may be arranged in a three-dimensional (3D) manner, i.e., both horizontally and vertically, rather than in a two-dimensional (2D) manner, i.e., merely horizontally. Due to this kind of antenna array, it is possible to dynamically adjust the beams in the vertical direction. One important feature of a 3D Multiple Input Multiple Output (MIMO) lies in that there are a large number of antennae (e.g., 8, 16, 32 or 64 antennae) at a base station side and these antennae are arranged in a 2D manner, as shown in Figs.2a to 2d.

Along with the development of the based station antenna technology, especially the occurrence of the antennae arranged in the 3D manner (i.e., both horizontally and vertically), it is necessary to provide a corresponding cell measurement method, so as to achieve the cell measurement and acquire a more accurate cell measurement result, thereby to enable the terminal to select and access to an appropriate cell.

SUMMARY

An object of the present disclosure is to provide a cell measurement method and a terminal, so as to achieve the cell measurement.

In one aspect, the present disclosure provides in some embodiments a cell measurement method, including steps of: measuring a pilot signal from a to-be-measured cell, so as to acquire an channel estimation of N pilot signal transmission ports of the to-be-measured cell, N≥1; determining an equivalent received power corresponding to each precoding matrix in accordance with each precoding matrix in a set of precoding matrices and the channel estimation of the N pilot signal transmission ports of the to-be-measured cell; and determining an equivalent received power of the to-be-measured cell in accordance with the equivalent received power corresponding to each precoding matrix.

In another aspect, the present disclosure provides in some embodiments a terminal, including: a measurement module configured to measure a pilot signal from a to-be-measured cell, so as to acquire a channel estimation of N pilot signal transmission ports of the to-be-measured cell, N≥1; and a first determination module configured to determine an equivalent received power corresponding to each precoding matrix in accordance with each precoding matrix in a set of precoding matrices and the channel estimation of the N pilot signal transmission ports of the to-be-measured cell; and a second determination module configured to determine an equivalent received power of the to-be-measured cell in accordance with the equivalent received power corresponding to each precoding matrix.

In yet another aspect, the present disclosure provides in some embodiments a terminal, including a processor, a memory and a transceiver. The processor is configured to read a program stored in the memory, so as to: measure a pilot signal from a to-be-measured cell, so as to acquire a channel estimation of N pilot signal transmission ports of the to-be-measured cell, N≥1; determine an equivalent received power corresponding to each precoding matrix in ac-
cordance with each precoding matrix in a set of precoding matrices and the channel estimation of the N pilot signal
transmission ports of the to-be-measured cell; and determine an equivalent received power of the to-be-measured cell
in accordance with the equivalent received power corresponding to each precoding matrix. The transceiver is configured
to receive and transmit data. The processor takes charge of managing bus architecture and general processings, and
the memory is configured to store data for the operation of the processor.

According to the embodiments of the present disclosure, the terminal may determine the equivalent received power
corresponding to each precoding matrix in accordance with each precoding matrix in the set of precoding matrices
and the channel estimation of the pilot signal transmission ports of the to-be-measured cell, and determine the equivalent
received power of the to-be-measured cell in accordance with the equivalent received power corresponding to each
precoding matrix, so as to determine the equivalent received power of the to-be-measured cell on the basis of the
precoding matrix. The set of the precoding matrices may be set flexibly, so it is able to, based on the feature of the
precoding matrix, acquire the equivalent received power of the cell in a more accurate manner, thereby to enable the
terminal to select and access to an appropriate cell in the case of cell selection or reselection on the basis of the equivalent
received power of the cell.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to illustrate the technical solutions of the present disclosure or the related art in a clearer manner, the
drawings desired for the present disclosure or the related art will be described hereinafter briefly. Obviously, the following
drawings merely relate to some embodiments of the present disclosure, and based on these drawings, a person skilled
in the art may obtain the other drawings without any creative effort.

Fig.1 is a schematic view showing a cell searching procedure in the related art;
Figs.2a-2d are schematic views showing a 2D antenna array in a 3D MIMO system;
Fig.3 is a flow chart of a cell measurement method according to one embodiment of the present disclosure;
Fig.4 is a flow chart of Step 302 in Fig.3;
Figs.5a-5d are schematic views showing the transmission of a Channel State Information Reference Signal (CSI-
RS) according to one embodiment of the present disclosure;
Fig.6 is a schematic view showing a terminal according to one embodiment of the present disclosure; and
Fig.7 is another schematic view showing the terminal according to one embodiment of the present disclosure.

DETAILED DESCRIPTION OF THE EMBODIMENTS

In order to make the objects, the technical solutions and the advantages of the present disclosure more apparent,
the present disclosure will be described hereinafter in a clear and complete manner in conjunction with the drawings
and embodiments. Obviously, the following embodiments merely relate to a part of, rather than all of, the embodiments
of the present disclosure, and based on these embodiments, a person skilled in the art may, without any creative effort,
obtain the other embodiments, which also fall within the scope of the present disclosure.

A portion of the embodiments of the present disclosure will be described hereinafter, so as to facilitate the
understanding of the present disclosure, rather than to define critical or decisive elements of the present disclosure or
define the scope of the present disclosure. On the basis of the technical solutions in the present disclosure, any other
implementations may be acquired through substitutions, without departing from the spirit of the present disclosure.

According to the embodiments of the present disclosure, the terminal may perform channel estimation in accord-
ance with a pilot signal from each to-be-measured cell, and calculate an equivalent received power with respect to each
to-be-measured cell in accordance with a channel estimation result and each precoding matrix in a set of precoding
matrices, so as to acquire the equivalent received power of each to-be-measured cell as a basis for selecting a target
handover cell or a resident cell.

As shown in Fig.3, the present disclosure provides in some embodiments a cell measurement method executed
by a terminal or a cell selection device inside the terminal. The cell measurement method may include the following steps.

Step 301: measuring a pilot signal from a to-be-measured cell, so as to acquire a channel estimation of N pilot
signal transmission ports of the to-be-measured cell, N≥1.

The to-be-measuring cell of the terminal may include a serving cell of the terminal and a target handover cell.
The target handover cell refers to a cell to which the terminal may be switched, and it may include a cell adjacent to the
serving cell of the terminal. The pilot signal may be a CSI-RS or any other kind of pilot signal or reference signal.

The N pilot signal transmission ports may be configured by a base station. To be specific, through configuration
by the base station, one terminal may receive the pilot signals from all of the pilot signal transmission ports, or merely
from parts of the pilot signal transmission ports. In the case that the terminal is configured by the base station to receive
the pilot signals from all of the pilot signal transmission ports, the terminal may perform cell measurement in accordance

EP 3 253 125 A1
with the pilot signals from all of the pilot signal transmission ports, so as to acquire a channel estimation of these ports. In the case that the terminal is configured to receive the pilot signals from parts of the pilot signal transmission ports, the terminal may perform the cell measurement in accordance with the pilot signals from parts of the pilot signal transmission ports, so as to acquire the channel estimation of these ports. A channel estimation algorithm will not be particularly defined herein.

[0020] Step 302: determining an equivalent received power corresponding to each precoding matrix in accordance with each precoding matrix in a set of precoding matrices and the channel estimation of the N pilot signal transmission ports of the to-be-measured cell.

[0021] To be specific, as shown in Fig.4, Step 302 may include: Step 3021 of performing channel estimation on each Resource Element (RE); Step 3022 of, with respect to each precoding matrix, determining a combined channel on each RE in accordance with the channel estimation on each RE; Step 3023 of determining an equivalent received power on each RE corresponding to each precoding matrix in accordance with the combined channel on each RE; and Step 3024 of determining an equivalent received power on all of the REs corresponding to each precoding matrix in accordance with the equivalent received power on each RE corresponding to each precoding matrix, so as to acquire the respective equivalent received power corresponding to each precoding matrix.

[0022] The RE may be a RE for the terminal to receive the pilot signal.

[0023] In Step 3022, the combined channel on each RE may be determined through the following formula (1):

$$G_{k,n} = H_k V_n$$

where V_n represents an nth precoding matrix in the set of precoding matrices, H_k represents a channel estimated by the terminal on a kth RE and H_k is a matrix including N_r rows and N columns, N_r represents the number of reception antennae of the terminal, and $G_{k,n}$ represents a combined channel on the kth RE corresponding to V_n.

[0024] In Step 3023, in the case that a Rank Indicator (RI) is 1, the precoding matrix is a vector and $G_{k,n}$ is a row vector, the equivalent received power on each RE corresponding to each precoding matrix may be determined through the following formula (2):

$$P_{k,n} = \|G_{k,n}\|^2$$

where $P_{k,n}$ represents the equivalent received power of the terminal on the kth RE with respect to the nth precoding matrix, and $\|A\|$ represents a Frobenius norm of a matrix A.

[0025] In Step 3024, the equivalent received power corresponding to each precoding matrix may be determined through the following formula (3):

$$P_n = \text{mean} \{P_{k,n}\}_{k=1,...,K}$$

where P_n represents the equivalent received power corresponding to the nth precoding matrix, $\text{mean} \{}$ represents an averaging operation for acquiring an average value of all of the elements in a set $\{P_{k,n}\}_{k=1,...,K}$, and K represents the number of the REs.

[0026] Step 303: determining an equivalent received power of the to-be-measured cell in accordance with the equivalent received power corresponding to each precoding matrix.

[0027] To be specific, in Step 303, a maximum one of the equivalent received powers corresponding to the precoding matrices may be determined as the equivalent received power of the to-be-measured cell.

[0028] For example, the set of REs may consist of all or parts of the REs occupied by CSI-RSs within a certain time period (e.g., 100ms) and a certain bandwidth range (e.g., 20MHz). In this regard, the equivalent received power is an average value within the time period and the bandwidth range.

[0029] For the to-be-measured cell, the terminal may acquire the maximum one of the equivalent received powers corresponding to all of the precoding matrices, so as to acquire a RSRP estimation value of the to-be-measured cell through the following equation:

$$\text{RSRP} = \max_n P_n \quad \text{or} \quad \text{RSRP} = a \max_n P_n,$$

where a represents a link gain adjustment value of a receiver and it includes a link gain from a terminal antenna to a
In a possible embodiment of the present disclosure, prior to Step 302, the method may further include a step of acquiring a set of precoding matrices. To be specific, the set of precoding matrices may be acquired in, but not limited to, the following modes.

Mode 1: the terminal may receive a dedicated signaling transmitted from the to-be-measured cell, and acquire the set of precoding matrices carried in the dedicated signaling. The to-be-measured cell may be a serving cell of the terminal and/or a target handover cell of the terminal.

Mode 2: the terminal may receive a broadcast message from the to-be-measured cell, and acquire the set of precoding matrices carried in the broadcast message. The to-be-measured cell may be a serving cell of the terminal and/or a target handover cell of the terminal.

Mode 3: the set of precoding matrices may be predefined, e.g., agreed through a protocol. The terminal may acquire the predefined set of precoding matrices.

Further, prior to Step 301 of measuring, by the terminal, the pilot signal from the to-be-measured cell, the method may further include a step of acquiring pilot signal configuration information about the to-be-measured cell. The pilot signal configuration information may at least include at least one of: a pilot signal transmission period, subframe offset, the number of the ports for transmitting the pilot signal, an identifier of the to-be-measured (e.g. a cell ID), or a pilot signal pattern.

The pilot signal configuration information about the to-be-measured cell may be acquired by the terminal in, but not limited to, the following modes.

Mode 1: the terminal may receive a broadcast message from the to-be-measured cell, and acquire the pilot signal configuration information about the to-be-measured cell carried in the broadcast message.

Mode 2: the terminal may receive a dedicated signaling transmitted from the to-be-measured cell, and acquire the pilot signal configuration information about the to-be-measured cell carried in the dedicated signaling.

Mode 3: the terminal may determine the pilot signal configuration information about the to-be-measured cell in an agreed manner.

Further, after determining the equivalent received power of each to-be-measured cell as mentioned above, the terminal may determine the target handover cell or the resident cell in accordance with the determined equivalent received power of each to-be-measured cell. Also, the terminal may transmit the determined equivalent received power of each to-be-measured cell to the serving cell of the terminal or a base station to which the serving cell belongs, so that the serving cell or the base station to which the serving cell belongs may determine the target handover cell or the resident cell of the terminal in accordance with the determined equivalent received power of each to-be-measured cell.

To be specific, the terminal may transmit RSRP values of all possible target cells (including the target handover cells and the current serving cell) to the base station to which the serving cell belongs. Then, the base station to which the serving cell belongs may determine the cell to which the terminal needs to access. In the case that the terminal is in a connected state, the base station to which the serving cell belongs may transmit a handover command to the terminal, and an ID of the cell selected for the terminal may be carried in the handover command. Alternatively, in the case that the terminal is in the connected state, the base station to which the serving cell belongs may transmit the ID of the selected cell to the terminal, and then the terminal may initiate an access progress so as to be switched to or reside in the cell.

The terminal may also select a to-be-accessed cell in accordance with the RSRP values, i.e., access to a cell with the largest RSRP value. The terminal may acquire the ID of the selected cell in accordance with the IDs of the target cells (including the target handover cells and the current serving cell) carried in the CSI-RS configuration information, and transmit the ID of the selected cell to the base station to which the serving cell belongs. Alternatively, the terminal may voluntarily reside in the selected cell, or initiate an uplink random access progress in the selected cell so as to access to the cell.

As mentioned above, the terminal may determine the equivalent received power corresponding to each precoding matrix in accordance with each precoding matrix in the set of precoding matrices and the channel estimation of the pilot signal transmission ports of the to-be-measured cell, and determine the equivalent received power of the to-be-measured cell in accordance with the equivalent received power corresponding to each precoding matrix, so as to determine the equivalent received power of the to-be-measured cell on the basis of the precoding matrix. The set of the precoding matrices may be set flexibly, so it is able to, based on the feature of the precoding matrix, acquire the equivalent received power of the cell in a more accurate manner, thereby to enable the terminal to select and access to an appropriate cell in the case of cell selection or reselection on the basis of the equivalent received power of the cell.

In a possible embodiment of the present disclosure, the elements in the set of precoding matrices may be Discrete Fourier Transformation (DFT) vectors. Each precoding matrix in the set of precoding matrices may correspond to a spatial direction in a vertical dimension, and the spatial directions in the vertical dimension corresponding to all of
the precoding matrices in the set of precoding matrices cover spatial directions of users in the to-be-measured cell in the vertical dimension.

[0044] Due to the introduction of the 2D antenna array, the base station may also form a beam in the vertical dimension pointing toward the users at different heights and different vertical angles. However, in order to ensure the coverage of the cell, usually the pilot signal needs to form a directional narrow beam or wide beam in the vertical dimension. In this way, in the case that the cell is measured in accordance with the pilot signal and the cell is selected to be accessed in accordance with the cell measurement result, the terminal may access to an inappropriate cell. This is because, the pilot signal measured by the terminal points towards a fixed direction, but the signal transmitted to the terminal may point toward the terminal, i.e., the two directions may not match with each other. In the embodiments of the present disclosure, each precoding matrix in the set of precoding matrices may correspond to one spatial direction in the vertical dimension, and the spatial directions in the vertical dimension corresponding to all of the precoding matrices in the set of precoding matrices may cover the spatial directions of the users in the to-be-measured cell in the vertical dimension, so the equivalent received power of the cell measured as mentioned above may match with the spatial directions of the terminal and the to-be-measured cell in the vertical dimension in a better manner, and the terminal may select and reside in a more appropriate cell.

[0045] Several pilot signal transmission modes are provided in the embodiments of the present disclosure. The modes for transmitting the pilot signal by the base station will be described hereinafter by taking the CSI-RS as an example. Different port combinations for CSI-RS resources may correspond to different cells. For example, 8 ports may be configured for the CSI-RS resources, where port 0 to port 3 may correspond to cell 1, and port 4 to port 7 may correspond to cell 2.

Mode 1

[0046] A plurality of ports for the CSI-RS may be mapped to one column of antennae in a 2D antenna array, and the CSI-RS may be transmitted through the one column of antennae. The plurality of ports may include all or parts of ports for the CSI-RS. Fig.5a illustratively shows a port configuration for the CSI-RS in the case that the antenna array includes 4*4 antennae. The 4-port CSI-RSs (e.g., s(0), s(1), s(2) and s(3) in Fig.5a) may be mapped to, and transmitted through, one column of antennae in the antenna array, e.g., a first column of antennae. Each CSI-RS port may be mapped to one antenna unit. The CSI-RS may be transmitted in a wide-beam form in the vertical dimension, and a width of the beam depends on a beam width of a single antenna unit.

Mode 2

[0047] A plurality of ports for the CSI-RS may be mapped to all antenna units of a 2D antenna array, and the CSI-RS may be transmitted through these antenna units. The plurality of ports may be all or parts of the ports for the CSI-RS. Fig.5b illustratively shows a port configuration for the CSI-RS in the case that the antenna array includes 4*4 antennae. The 4-port CSI-RSs (e.g., s(0), s(1), s(2) and s(3) in Fig.5b) may be mapped to, and transmitted through, all of the antenna units. Each CSI-RS port may be mapped to one row of antenna units, and Wi represents a beamforming vector corresponding to an ith column of antennae. The pilot signal transmitted through each CSI-RS port may be beamformed and then transmitted through the one row of antennae. A beamforming weight value may be provided in such a manner as to enable the formed beam to cover the entire cell, e.g., to form a broadcasting beam. The CSI-RS may be transmitted in a wide-beam form in the vertical dimension, and a width of the wide beam depends on a beam width of a single antenna unit.

Mode 3

[0048] A plurality of ports for the CSI-RS may be mapped to all antenna units of a 2D antenna array, and the CSI-RS may be transmitted through these antenna units. The plurality of ports may be all or parts of the ports for the CSI-RS. Fig.5c illustratively shows a port configuration for the CSI-RS in the case that the antenna array includes 4*4 antennae. The 4-port CSI-RSs (e.g., s(0), s(1), s(2) and s(3) in Fig.5c) may be mapped to, and transmitted through, all of the antenna units. Each CSI-RS port may be mapped to one column of antenna units, and Wi represents a beamforming vector corresponding to an ith row of antennae. The pilot signal transmitted through each CSI-RS port may be beamformed and then transmitted through the one column of antennae. A beamforming weight value may be provided in such a manner as to enable the formed beam to cover the entire cell, e.g., to form a broadcasting beam. The CSI-RS may be transmitted in a wide-beam form in the vertical dimension, and a width of the wide beam depends on a beam width of a single antenna unit.
A plurality of ports for the CSI-RS may be mapped to one row of antennae of a 2D antenna array, and the CSI-RS may be transmitted through these antennae. The plurality of ports may be all or parts of the ports for the CSI-RS. Fig.5d illustratively shows a port configuration for the CSI-RS in the case that the antenna array includes 4*4 antennae. The 4-port CSI-RSs (e.g., s(0), s(1), s(2) and s(3) in Fig.5d) may be mapped to, and transmitted through, the one row of antennae, e.g., the first row of antennae. Each CSI-RS port may be mapped to one antenna unit. The CSI-RS may be transmitted in a wide-beam form in a horizontal direction, and a width of the wide beam depends on a beam width of a single antenna unit.

Based on an identical inventive concept, the present disclosure further provides in some embodiments a terminal. As shown in Fig.6, the present disclosure provides in some embodiments a terminal capable of performing the above-mentioned cell measurement. The terminal may include: a measurement module 601 configured to measure a pilot signal from a to-be-measured cell, so as to acquire a channel estimation of N pilot signal transmission ports of the to-be-measured cell, N ≥ 1; a first determination module 602 configured to determine an equivalent received power corresponding to each precoding matrix in accordance with each precoding matrix in a set of precoding matrices and the channel estimation of the N pilot signal transmission ports of the to-be-measured cell; and a second determination module 603 configured to determine an equivalent received power of the to-be-measured cell in accordance with the equivalent received power corresponding to each precoding matrix.

To be specific, the first determination module 602 may determine the equivalent received power corresponding to each precoding matrix by: performing channel estimation on each RE; with respect to each precoding matrix, determining a combined channel on each RE in accordance with the channel estimation on each RE; determining an equivalent received power on each RE corresponding to each precoding matrix; and determining an equivalent received power on all of the REs corresponding to each precoding matrix in accordance with the equivalent received power on each RE corresponding to each precoding matrix, so as to acquire the equivalent received power corresponding to each precoding matrix.

The first determination module 602 may determine the combined channel on each RE through the above-mentioned formula (1), determine the equivalent received power on each RE corresponding to each precoding matrix through the above-mentioned formula (2), and determine the equivalent received power corresponding to each precoding matrix through the above-mentioned formula (3). For details of the formulae (1), (2) and (3) and the parameters thereof, it may refer to those mentioned above, and thus will not be particularly defined herein.

To be specific, the second determination module 603 may determine a maximum one of the equivalent received powers corresponding to the precoding matrices as the equivalent received power of the to-be-measured cell.

Further, the terminal may further include a third determination module or a transmission module (not shown). The transmission module is configured to transmit the determined equivalent received power of the to-be-measured cell to the serving cell of the terminal, so that the serving cell may determine the target handover cell or the resident cell of the terminal in accordance with the equivalent received power of each to-be-measured cell of the terminal. The third determination module is configured to determine the target handover cell or the resident cell in accordance with the determined equivalent received power of each to-be-measured cell.

Further, the first determination module 602 may be further configured to acquire pilot signal configuration information about the to-be-measured cell. The pilot signal configuration information may include at least one of: a pilot signal transmission period, subframe offset, the number of ports for transmitting the pilot signal, an ID of the to-be-measured cell or a pilot signal pattern.

Further, each precoding matrix in the set of precoding matrices may correspond to a spatial direction in a vertical dimension, and the spatial directions in the vertical dimension corresponding to all of the precoding matrices in the set of precoding matrices cover spatial directions of users in the to-be-measured cell in the vertical dimension.

Based on an identical inventive concept, the present disclosure further provides in some embodiments a terminal. As shown in Fig.7, the present disclosure provides in some embodiments a terminal capable of performing the above-mentioned cell measurement. The terminal may include a processor 701, a memory 702 and a transceiver 703. The processor 701 is configured to read a program stored in the memory 702, so as to: measure a pilot signal from a to-be-measured cell, so as to acquire a channel estimation of N pilot signal transmission ports of the to-be-measured cell; and transmit the pilot signal to the to-be-measured cell, so as to acquire the channel estimation of N pilot signal transmission ports of the to-be-measured cell. Further, each precoding matrix in the set of precoding matrices may correspond to a spatial direction in a vertical dimension, and the spatial directions in the vertical dimension corresponding to all of the precoding matrices in the set of precoding matrices cover spatial directions of users in the to-be-measured cell in the vertical dimension.
cell, N≥1; determine an equivalent received power corresponding to each precoding matrix in accordance with each
precoding matrix in a set of precoding matrices and the channel estimation of the N pilot signal transmission ports of
the to-be-measured cell; and determine an equivalent received power of the to-be-measured cell in accordance with the
equivalent received power corresponding to each precoding matrix. The transceiver 703 is configured to receive and
transmit data under the control of the processor 701.

[0061] In Fig.7, bus architecture may include a number of buses and bridges connected to each other, so as to connect
certain various circuits for one or more processors such as the processor 701 and one or more memories such as the memory
702. In addition, the bus architecture may be used to connect any other circuits, such as a circuit for a peripheral device,
a circuit for a voltage stabilizer and a power management circuit, which is known in the art and will not be particularly
defined herein. Bus interfaces are provided, and the transceiver 703 may consist of a plurality of elements, i.e., a
transmitter and a receiver for communication with any other devices over a transmission medium. The processor 701
may take charge of managing the bus architecture as well as general processings. The memory 702 may store data
desired for the operation of the processor 701.

[0062] Further, the processor 701 may acquire the set of precoding matrices by: receiving through the transceiver 703
dedicated signaling from the to-be-measured cell and acquiring the set of precoding matrices carried in the dedicated
signaling, the to-be-measured cell including a target handover cell and/or a serving cell of the terminal; or receiving
through the transceiver 703 a broadcast message from the to-be-measured cell and acquiring the set of precoding
matrices carried in the broadcast message, the to-be-measured cell including a target handover cell and/or a serving
cell of the terminal; or acquiring a predefined set of precoding matrices.

[0063] To be specific, the processor 701 may determine the equivalent received power corresponding to each precoding
matrix by: performing channel estimation on each RE; with respect to each precoding matrix, determining a combined
channel on each RE in accordance with the channel estimation on each RE; determining an equivalent received power
on each RE corresponding to each precoding matrix in accordance with the combined channel on each RE; and deter-
mining an equivalent received power on all of the REs corresponding to each precoding matrix in accordance with the
equivalent received power on each RE corresponding to each precoding matrix, so as to acquire the respective equivalent
received power corresponding to each precoding matrix.

[0064] The processor 701 may determine the combined channel on each RE through the above-mentioned formula
(1), determine the equivalent received power on each RE corresponding to each precoding matrix through the above-
mentioned formula (2), and determine the equivalent received power corresponding to each precoding matrix through
the above-mentioned formula (3). For details of the formulae (1), (2) and (3) and the parameters thereof, it may refer to
those mentioned above, and thus will not be particularly defined herein.

[0065] To be specific, the processor 701 may determine a maximum one of the equivalent received powers corre-
sponding to the precoding matrices as the equivalent received power of the to-be-measured cell.

[0066] The processor 701 may further determine the target handover cell or the resident cell in accordance with the
determined equivalent received power of each to-be-measured cell, or transmit through the transceiver 703 the deter-
mined equivalent received power of the to-be-measured cell to the serving cell of the terminal, so that the serving cell
of the terminal may determine the target handover cell or the resident cell of the terminal in accordance with the equivalent
received power of each to-be-measured cell of the terminal.

[0067] In addition, the processor 701 may further acquire pilot signal configuration information about the to-be-meas-
ured cell. The pilot signal configuration information may include at least one of: a pilot signal transmission period, subframe
offset, the number of ports for transmitting the pilot signal, an ID of the to-be-measured cell or a pilot signal pattern.

[0068] Further, each precoding matrix in the set of precoding matrices may correspond to a respective spatial direction
in a vertical dimension, and the spatial directions in the vertical dimension corresponding to all of the precoding matrices
in the set of precoding matrices cover spatial directions of users in the to-be-measured cell in the vertical dimension.

[0069] According to the embodiments of the present disclosure, the terminal may determine the equivalent received
power corresponding to each precoding matrix in accordance with each precoding matrix in the set of precoding matrices
and the channel estimation of the pilot signal transmission ports of the to-be-measured cell, and determine the equivalent
received power of the to-be-measured cell in accordance with the equivalent received power corresponding to each
precoding matrix, so as to determine the equivalent received power of the to-be-measured cell on the basis of the
precoding matrix. The set of the precoding matrices may be set flexibly, so it is able to, based on the feature of the
precoding matrix, acquire the equivalent received power of the cell in a more accurate manner, thereby to enable the
terminal to select and access to an appropriate cell in the case of cell selection or reselection on the basis of the equivalent
received power of the cell.

[0070] Further, each precoding matrix in the set of precoding matrices may correspond to one respective spatial
direction in the vertical dimension, and the spatial directions in the vertical dimension corresponding to all of the precoding
matrices in the set of precoding matrices may cover the spatial directions of the users in the to-be-measured cell in the
vertical dimension, so the equivalent received power of the cell measured as mentioned above may match with the
spatial directions of the terminal and the to-be-measured cell in a better manner, and the terminal
may select and reside in a more appropriate cell.

[0071] The present disclosure has been described with reference to the flow charts and/or block diagrams of the method, device (system) and computer program product according to the embodiments of the present disclosure. It should be understood that computer program instructions may be used to implement each of the work flows and/or blocks in the flow charts and/or the block diagrams, and the combination of the work flows and/or blocks in the flow charts and/or the block diagrams. These computer program instructions may be provided to a processor of a common computer, a dedicated computer, an embedded processor or any other programmable data processing devices to create a machine, so that instructions executable by the processor of the computer or the other programmable data processing devices may create a device to achieve the functions assigned in one or more work flows in the flow chart and/or one or more blocks in the block diagram.

[0072] These computer program instructions may also be stored in a computer readable storage that may guide the computer or the other programmable data process devices to function in a certain way, so that the instructions stored in the computer readable storage may create a product including an instruction unit which achieves the functions assigned in one or more work flows in the flow chart and/or one or more blocks in the block diagram.

[0073] These computer program instructions may also be loaded in the computer or the other programmable data process devices, so that a series of operation steps are executed on the computer or the other programmable devices to create processes achieved by the computer. Therefore, the instructions executed in the computer or the other programmable devices provide the steps for achieving the function assigned in one or more work flows in the flow chart and/or one or more blocks in the block diagram.

[0074] Although the optional embodiments are described above, a person skilled in the art may make modifications and alterations to these embodiments in accordance with the basic concept of the present disclosure. So, the attached claims are intended to include the optional embodiments and all of the modifications and alterations that fall within the scope of the present disclosure.

[0075] Obviously, a person skilled in the art may make further modifications and improvements without departing from the spirit of the present disclosure, and these modifications and improvements shall also fall within the scope of the present disclosure.

Claims

1. A cell measurement method, comprising steps of:

 measuring a pilot signal from a to-be-measured cell, to acquire a channel estimation of N pilot signal transmission ports of the to-be-measured cell, wherein N≥1;

 determining an equivalent received power corresponding to each precoding matrix in accordance with each precoding matrix in a set of precoding matrices and the channel estimation of the N pilot signal transmission ports of the to-be-measured cell; and

 determining an equivalent received power of the to-be-measured cell in accordance with the equivalent received power corresponding to each precoding matrix.

2. The cell measurement method according to claim 1, wherein prior to the step of determining the equivalent received power corresponding to each precoding matrix in accordance with each precoding matrix in the set of precoding matrices and the channel estimation of the N pilot signal transmission ports of the to-be-measured cell, the cell measurement cell further comprises:

 receiving a dedicated signaling transmitted from the to-be-measured cell, and acquiring the set of precoding matrices carried in the dedicated signaling, the to-be-measured cell comprising a target handover cell and/or a serving cell of a terminal; or

 receiving a broadcast message transmitted from the to-be-measured cell, and acquiring the set of precoding matrices carried in the broadcast message, the to-be-measured cell comprising a target handover cell and/or a serving cell of the terminal; or

 acquiring a predefined set of precoding matrices.

3. The cell measurement method according to claim 1, wherein the step of determining the equivalent received power corresponding to each precoding matrix in accordance with each precoding matrix in the set of precoding matrices and the channel estimation of the N pilot signal transmission ports of the to-be-measured cell comprises:

 performing channel estimation on each Resource Element (RE);
with respect to each precoding matrix, determining a combined channel on each RE in accordance with the channel estimation on each RE;

determining an equivalent received power on each RE corresponding to each precoding matrix in accordance with the combined channel on each RE; and

determining a respective equivalent received power on all of the REs corresponding to each precoding matrix in accordance with the equivalent received power on each RE corresponding to each precoding matrix, to acquire the respective equivalent received power corresponding to each precoding matrix.

4. The cell measurement method according to claim 3, wherein the step of, with respect to each precoding matrix, determining the combined channel on each RE in accordance with the channel estimation on each RE comprises:

determining the combined channel on each RE through the following formula:

\[G_{k,n} = H_k V_n \]

where \(V_n \) represents an \(n \)th precoding matrix in the set of precoding matrices, \(H_k \) represents a channel estimated by a terminal on a \(k \)th RE, and \(H_k \) is a matrix comprises \(N_r \) rows and \(N \) columns, \(N_r \) represents the number of reception antennae of the terminal, and \(G_{k,n} \) represents a combined channel on the \(k \)th RE corresponding to \(V_n \);

the step of determining the equivalent received power on each RE corresponding to each precoding matrix in accordance with the combined channel on each RE comprises:

determining the equivalent received power on each RE corresponding to each precoding matrix through the following formula:

\[P_{k,n} = \|G_{k,n}\|^2 \]

where \(P_{k,n} \) represents the equivalent received power of the terminal on the \(k \)th RE with respect to the \(n \)th precoding matrix, and \(\|A\| \) represents a Frobenius norm of a matrix \(A \); and

the step of determining the equivalent received power on all of the REs corresponding to each precoding matrix in accordance with the equivalent received power on each RE corresponding to each precoding matrix to acquire the respective equivalent received power corresponding to each precoding matrix comprises:

determining the respective equivalent received power corresponding to each precoding matrix through the following formula:

\[P_n = \text{mean} \{ P_{k,n} \}_{k=1,...,K} \]

where \(P_n \) represents the equivalent received power corresponding to the \(n \)th precoding matrix, \(\text{mean} \{ \} \) represents an averaging operation for acquiring an average value of all of the elements in the set \(\{ P_{k,n} \}_{k=1,...,K} \) and \(K \) represents the number of the REs.

5. The cell measurement method according to claim 1, wherein the step of determining the equivalent received power of the to-be-measured cell in accordance with the equivalent received power corresponding to each precoding matrix comprises:

determining a maximum one of the equivalent received powers corresponding to the precoding matrices as the equivalent received power of the to-be-measured cell.

6. The cell measurement method according to claim 1, wherein subsequent to the step of determining the equivalent received power of the to-be-measured cell in accordance with the equivalent received power corresponding to each precoding matrix, the cell measurement method further comprises:

transmitting the determined equivalent received power of the to-be-measured cell to a serving cell of a terminal, to enable the serving cell of the terminal to determine the target handover cell or a resident cell of the terminal in accordance with the equivalent received power of each to-be-measured cell of the terminal; or

determining the target handover cell or the resident cell in accordance with the determined equivalent received
power of each to-be-measured cell.

7. The cell measurement method according to claim 1, wherein prior to the step of measuring the pilot signal from the to-be-measured cell, the cell measurement method further comprises:

acquiring pilot signal configuration information about the to-be-measured cell, wherein the pilot signal configuration information comprises at least one of: a pilot signal transmission period, subframe offset, the number of ports for transmitting the pilot signal, an identity(ID) of the to-be-measured cell, or a pilot signal pattern.

8. The cell measurement method according to claim 7, wherein the step of acquiring the pilot signal configuration information about the to-be-measured cell comprises:

receiving a broadcast message transmitted from the to-be-measured cell, and acquiring the pilot signal configuration information about the to-be-measured cell carried in the broadcast message; or

receiving a dedicated signaling transmitted from the to-be-measured cell, and acquiring the pilot signal configuration information about the to-be-measured cell carried in the dedicated signaling; or

determining the pilot signal configuration information about the to-be-measured cell in a predetermined manner.

9. The cell measurement method according to any one of claims 1 to 8, wherein each precoding matrix in the set of precoding matrices corresponds to a respective spatial direction in a vertical dimension, and the spatial directions in the vertical dimension corresponding to all of the precoding matrices in the set of precoding matrices cover spatial directions of users in the to-be-measured cell in the vertical dimension.

10. A terminal, comprising:

a measurement module configured to measure a pilot signal from a to-be-measured cell, to acquire a channel estimation of N pilot signal transmission ports of the to-be-measured cell, wherein N ≥ 1;

a first determination module configured to determine an equivalent received power corresponding to each precoding matrix in accordance with each precoding matrix in a set of precoding matrices and the channel estimation of the N pilot signal transmission ports of the to-be-measured cell; and

a second determination module configured to determine an equivalent received power of the to-be-measured cell in accordance with the equivalent received power corresponding to each precoding matrix.

11. The terminal according to claim 10, wherein the measurement module is further configured to:

receive a dedicated signaling transmitted from the to-be-measured cell, and acquire the set of precoding matrices carried in the dedicated signaling, the to-be-measured cell comprising a target handover cell and/or a serving cell of the terminal; or

receive a broadcast message transmitted from the to-be-measured cell, and acquire the set of precoding matrices carried in the broadcast message, the to-be-measured cell comprising a target handover cell and/or a serving cell of the terminal; or

acquire a predefined set of precoding matrices.

12. The terminal according to claim 10, wherein the first determination module is further configured to:

perform channel estimation on each Resource Element (RE);

with respect to each precoding matrix, determine a combined channel on each RE in accordance with the channel estimation on each RE;

determine an equivalent received power on each RE corresponding to each precoding matrix in accordance with the combined channel on each RE; and

determine a respective equivalent received power on all of the REs corresponding to each precoding matrix in accordance with the equivalent received power on each RE corresponding to each precoding matrix, to acquire the respective equivalent received power corresponding to each precoding matrix.

13. The terminal according to claim 12, wherein the first determination module is further configured to:

determine the combined channel on each RE through the following formula:
where V_n represents an nth precoding matrix in the set of precoding matrices, H_k represents a channel estimated by the terminal on a kth RE, and $G_{k,n}$ represents a combined channel on the kth RE corresponding to V_n;

determine the equivalent received power on each RE corresponding to each precoding matrix through the following formula:

$$P_{k,n} = ||G_{k,n}||^2,$$

where $P_{k,n}$ represents the equivalent received power of the terminal on the kth RE with respect to the nth precoding matrix, and $||A||$ represents a Frobenius norm of a matrix A; and

determine the respective equivalent received power corresponding to each precoding matrix through the following formula:

$$P_n = \text{mean} \left\{ P_{k,n} \right\}_{k=1,...,K},$$

where P_n represents the equivalent received power corresponding to the nth precoding matrix, $\text{mean} \{\}$ represents an averaging operation for acquiring an average value of all of the elements in the set $\{P_{k,n}\}_{k=1,...,K}$ and K represents the number of the REs.

14. The terminal according to claim 10, wherein the second determination module is further configured to:

determine a maximum one of the equivalent received powers corresponding to the precoding matrices as the equivalent received power of the to-be-measured cell.

15. The terminal according to claim 10, further comprising:

- a transmission module configured to transmit the determined equivalent received power of the to-be-measured cell to a serving cell of the terminal, to enable the serving cell of the terminal to determine the target handover cell or a resident cell of the terminal in accordance with the equivalent received power of each to-be-measured cell; or
- a third determination module configured to determine the target handover cell or the resident cell in accordance with the determined equivalent received power of each to-be-measured cell.

16. The terminal according to claim 10, wherein the first determination module is further configured to:

- acquire pilot signal configuration information about the to-be-measured cell, and the pilot signal configuration information comprises at least one of: a pilot signal transmission period, subframe offset, the number of ports for transmitting the pilot signal, an ID of the to-be-measured cell, or a pilot signal pattern.

17. The terminal according to any one of claims 10 to 16, wherein each precoding matrix in the set of precoding matrices corresponds to a respective spatial direction in a vertical dimension, and the spatial directions in the vertical dimension corresponding to all of the precoding matrices in the set of precoding matrices cover spatial directions of users in the to-be-measured cell in the vertical dimension.

18. A terminal, comprising a processor, a memory and a transceiver, wherein the processor is configured to read a program stored in the memory to:

- measure a pilot signal from a to-be-measured cell, to acquire a channel estimation of N pilot signal transmission ports of the to-be-measured cell, wherein $N \geq 1$;
- determine an equivalent received power corresponding to each precoding matrix in accordance with each precoding matrix in a set of precoding matrices and the channel estimation of the N pilot signal transmission ports of the to-be-measured cell; and
determine an equivalent received power of the to-be-measured cell in accordance with the equivalent received power corresponding to each precoding matrix,

the transceiver is configured to receive and transmit data, and

the processor takes charge of managing bus architecture and general processings, and the memory is configured to store therein data for the operation of the processor.
Fig. 1

101. searching for a PSS

102. searching for a SSS

103. acquiring a CRS

Fig. 2a
measuring a pilot signal from a to-be-measured cell, so as to acquire a channel estimation of N pilot signal transmission ports of the to-be-measured cell, wherein $N \geq 1$

determining an equivalent received power corresponding to each precoding matrix in accordance with each precoding matrix in a set of precoding matrices and the channel estimation of the N pilot signal transmission ports of the to-be-measured cell

determining an equivalent received power of the to-be-measured cell in accordance with the equivalent received power corresponding to each precoding matrix
performing channel estimation on each RE for receiving a pilot signal

with respect to each precoding matrix, determining a combined channel on each RE receiving the pilot signal in accordance with the channel estimation on each RE receiving the pilot signal

determining an equivalent received power on each RE receiving the pilot signal and corresponding to each precoding matrix in accordance with the combined channel on each RE receiving the pilot signal

determining an equivalent received power on all of the REs receiving the pilot signal and corresponding to each precoding matrix in accordance with the equivalent received power on each RE receiving the pilot signal and corresponding to each precoding matrix, so as to acquire the respective equivalent received power corresponding to each precoding matrix

Fig. 4

Fig. 5a
Fig. 5b

Fig. 5c
Fig. 5d

Fig. 6

Fig. 7
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: H04W; H04B; H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT, CNKI, EPODOC, WPI; RSRP, cell, measure, handover, handoff, hand over, hand off, select, reselect, pilot, reference signal, precode, matrix, matrices, correspond, equivalent, power, channel

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN 101766681 A (DATANG MOBILE COMM EQUIP CO.) 30 June 2010 (30.06.2010) the whole document</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>CN 103078703 A (UNIV. SOUTHEAST) 01 May 2013 (01.05.2013) the whole document</td>
<td>1-18</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

“E” earlier application or patent but published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search 14 January 2016

Date of mailing of the international search report 01 March 2016

Authorized officer XUE, Yongxu

Telephone No. (86-10) 62415365

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 101764681 A</td>
<td>30 June 2010</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 103078703 A</td>
<td>01 May 2013</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101325741 A</td>
<td>17 December 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2174428 A2</td>
<td>14 April 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011211485 A1</td>
<td>01 September 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010195514 A1</td>
<td>05 August 2010</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- CN 201510051428 [0001]