EXPANDING OCULAR IMPLANT DEVICES

Disclosed herein are devices and methods related to implants for treating one or more physiological conditions of the eye. Some embodiments disclosed herein include an expandable ocular implant for implanting in an eye. The expandable implant can include an implant having an elongate tubular body and an expandable sheath securely adapted to a part of the implant. Some embodiments of the expandable sheath can have at least one expandable feature that can assist the expandable sheath in fanning a compact and an expanded configuration.
Description

REFERENCE TO PRIORITY DOCUMENT

This application claims the benefit of priority under 35 U.S.C. §119(e) of U.S. Provisional Patent Application serial number 61/702,179 filed September 17, 2012 under 37 C.F.R. §1.78(a). Priority of the filing date is hereby claimed and the full disclosure of the aforementioned application is incorporated herein by reference.

FIELD

The subject matter described herein relates to embodiments of implants and methods for treating one or more physiological conditions of an eye.

BACKGROUND

The mechanisms that cause glaucoma are not completely known. It is known that glaucoma results in abnormally high pressure in the eye, which leads to optic nerve damage. Over time, the increased pressure can cause damage to the optic nerve, which can lead to blindness. Treatment strategies have focused on keeping the intraocular pressure down in order to preserve as much vision as possible over the remainder of the patient's life.

Pursuant to such strategies, one or more implants can be delivered into the eye for shunting fluid out of the anterior chamber in order to regulate pressure in the eye. Accurate placement of an implant in the angle of the eye is critical for the targeted effect of reducing intraocular pressure (IOP). Placing an implant too distally into the eye, such as too distally into the supraciliary space, may leave no portion of the implant remaining in the anterior chamber. This may inhibit aqueous outflow, as the fluid will not have a direct communication with the flow target location if there is no opening to the anterior chamber.

Conversely if the implant is placed too proximally in the supraciliary space such that a significant portion of the implant remains in the anterior chamber, damage to the corneal endothelium may result from implants that protrude upwards and touch the cornea. Implants placed too proximally may also touch the iris resulting in increased amounts of pigment dispersion in the eye, which can increase outflow resistance and intraocular pressure by clogging the trabecular meshwork. Therefore, at least correct placement of the implant is desired for a safety and a successful surgical outcome.

SUMMARY

Disclosed herein are devices and methods related to implants for treating one or more physiological conditions of the eye. Some embodiments disclosed herein include an expandable sheath that can have at least one expandable feature configured to form an expanded and a compact configuration with the at least one expandable feature extending from at least one of a proximal collar and a distal collar. In addition, the at least one of the proximal collar and distal collar can be adaptable to an ocular implant.

Some embodiments of methods disclosed herein include providing an expandable sheath, wherein the expandable sheath includes at least one expandable feature configured to form an expanded and a compact configuration. In addition, the at least one expandable feature can extend from at least one of a proximal collar and a distal collar, and the at least one of the proximal collar and distal collar can be adaptable to an ocular implant. Additionally, the method can further include adapting the expandable sheath to the implant and implanting the implant and the expandable sheath into an eye.

The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Other features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects will now be described in detail with reference to the following drawings.

FIG. 1 shows an example cross-sectional view of a portion of the human eye.

FIG. 2 shows an example cross-sectional perspective view of a portion of the eye showing a part of the anterior and posterior chambers of the eye.

FIG. 3 illustrates an embodiment of an expandable sheath in a compact configuration which may be used in combination with one or more ocular implants to form an expandable implant.

FIG. 4 illustrates an embodiment of an expandable sheath in an expanded configuration which may be used in combination with one or more ocular implants to form an expandable implant.

FIG. 5 illustrates an embodiment of an expandable implant in a compact configuration.

FIG. 6 illustrates an embodiment of an expandable implant in an expanded configuration.

FIG. 7 illustrates an embodiment of an expandable sheath with the proximal collar coupled to the implant in a more distal position.

FIG. 8 illustrates an embodiment of an expandable sheath having expandable features which include one or more wings extending from at least one sup-
FIG. 9 illustrates an embodiment of an expandable sheath having expandable features which include at least one helical support that extends between the proximal collar and distal collar.

FIG. 10 illustrates an embodiment of an expandable implant that is configured to form more than one expanding area.

FIG. 11 illustrates an embodiment of an expandable implant having one or more expandable features extending in a compact configuration from the distal end of the implant.

FIG. 12 illustrates an embodiment of an expandable implant having one or more expandable features extending in an expanded configuration from the distal end of the implant.

FIG. 13 illustrates another embodiment of an expandable implant having at least one expandable feature in a compact configuration extending between the distal end and proximal end of the implant.

FIG. 14 illustrates an embodiment of an expandable implant having at least one expandable feature in an expanded configuration extending between the distal end and proximal end of the implant.

FIG. 15 illustrates an embodiment of an expandable sheath that can be securely adapted to an ocular implant to form an expandable ocular implant, which can be implanted into the eye. The expandable sheath can include at least one expandable feature that form a compact and expanded configuration. For example, the compact configuration can allow the expandable implant to be implanted into the eye without requiring a large incision, and the expanded configuration can assist in promoting fluid flow in the eye, such as for assisting in treating glaucoma.

[0011] FIG. 1 is a cross-sectional view of a portion of the human eye. The eye is generally spherical and is covered on the outside by the sclera S. The retina registers the light and sends signals to the brain via the optic nerve. The bulk of the eye is filled with the vitreous body, a clear, jelly-like substance. The elastic lens L is located near the front of the eye. The lens L provides adjustment of focus and is suspended within a capsular bag from the ciliary body CB, which contains the muscles that change the focal length of the lens. A volume in front of the lens L is divided into two by the iris I, which controls the aperture of the lens and the amount of light striking the retina. The pupil is a hole in the center of the iris I through which light passes. The volume between the iris I and the lens L is the posterior chamber PC. The volume between the iris I and the cornea is the anterior chamber AC. Both chambers are filled with a clear liquid known as aqueous humor.

[0012] The ciliary body CB continuously forms aqueous humor in the posterior chamber PC by secretion from the blood vessels. The aqueous humor flows around the lens L and iris I into the anterior chamber and exits the eye through the trabecular meshwork, a sieve-like structure situated at the corner of the iris I and the wall of the eye (the corner is known as the iridocorneal angle). Some of the aqueous humor can filter through the trabecular meshwork near the iris root into Schlemm’s canal, a small channel that drains into the ocular veins. A smaller portion rejoins the venous circulation after passing through the ciliary body and eventually through the sclera (the uveoscleral route).

[0013] FIG. 2 is a cross-sectional, perspective view of a portion of the eye showing the anterior and posterior chambers of the eye. A schematic representation of an embodiment of an implant 10, such as an expandable implant, is shown positioned inside the eye such that a proximal end 12 is located in the anterior chamber 16 and a distal end 14 communicates with and/or is located in or near the suprachoroidal space. It should be appreciated that FIG. 1 and other figures herein are schematic and are not necessarily to scale with respect to size and...
The implant 10 can provide a fluid pathway between at least the anterior chamber 16 into the supraciliary space or the suprachoroidal space. For example, the implant 10 can include a distal end 14 that may be positioned in the supraciliary space or the suprachoroidal space. The implant 10 may be positioned at least partially between the ciliary body and the sclera or it may be at least partially positioned between the sclera and the choroid. The distal end 14 of the implant 10 may be positioned between other anatomical parts of the eye.

In some embodiments, the implant 10 can include an elongate tubular element having one or more internal lumens through which aqueous humor can flow from the anterior chamber 16 to the suprachoroidal space. The implant 10 can have a substantially uniform internal diameter along its entire length, although the shape of the implant 10 can vary, such as along its length (either before or after insertion of the implant). Moreover, the implant 10 can have various cross-sectional shapes (such as a, circular, oval or rectangular shape) and can vary in cross-sectional shape moving along its length. For example, the cross-sectional shape can be selected to facilitate easy insertion into the eye. The following applications describe exemplary implants: U.S. Patent Publication Nos. 2007-0191863 and 2009-0182421. These applications are incorporated by reference in their entirety.

The internal lumen of the implant 10 can serve as a passageway for the flow of aqueous humor through the implant 10 directly from the anterior chamber 16 toward or into the suprachoroidal space. In addition, the internal lumen of the implant can be used as an access location to mount the implant 10 onto a delivery system, as will be described in more detail below. The internal lumen can also be used as a pathway for flowing fluid, such as an irrigation fluid or a visco-elastic substance(s), into the eye for flushing or to maintain pressure in the anterior chamber, or using the fluid to assist in dissection, visualization or hydraulic creation of a dissection plane into or within the suprachoroidal space. Fluid can be flowed toward or into the suprachoroidal space, for example via a delivery cannula or through the internal lumen of the shunt. The fluid can be flowed into the eye with a pressure sufficient to form a dissection plane into or within the suprachoroidal space. Fluid can accumulate within the eye so as to form a lake. In general, hydro-dissection or the injection of fluids such as a visco-elastic substance(s) can be used to separate the ciliary body from the sclera to enlarge an area of detachment of the ciliary body from the sclera with or without insertion of a device.

In at least some instances, reduction in IOP can be correlated with the position of the implant 10 creating an area of separation between the choroid and sclera around at least a part of the implant 10 (also known as "tenting") and a space created around, for example, the most distal portion 14 of the implant 10 (also known as an "aqueous lake"). In addition, increasing the area of scleral and choroidal separation can improve IOP reduction in at least some instances.

Although increasing the area of scleral and choroidal separation can be advantageous, several drawbacks may occur if a larger implant 10, such as an implant larger than approximately 0.5-1.0 mm in diameter, is used to create the larger separation. For example, some drawbacks may include the requirement for a larger incision, such as along the limbus, due to a greater diameter implant 10. A larger incision may cause fluids to escape the eye, such as at least from the anterior chamber, and complicate the implantation procedure. For example, an incision less than approximately 2.5mm may be preferable for implantation of at least one implant 10.

Other drawbacks to using a larger diameter implant 10 can include creating a larger cyclodialysis which may result in increased rates of hypotony post operatively and increased rates of retinal detachments. In addition, a larger implant 10 can be more difficult to insert into the supraciliary and suprachoroidal space due to the requirement of greater tissue separation which may result in excess tissue damage. Therefore, an implant 10 that can maintain a compact configuration during implantation and form an expanded configuration once implanted may overcome the drawbacks discussed above while achieving increased separation between the sclera and choroid for an improved reduction in IOP.

The present disclosure includes various embodiments of expandable sheaths that can be functionally coupled to one or more implants 10 and can function by providing a compact configuration during implantation of the implant and form an expanded configuration once implanted in a patient’s eye. Some embodiments disclosed herein include implants having expanding features that function similar to an expanding sheath such that these expanding features can maintain a compact configuration during implantation and expand once the implant has been implanted in the patient’s eye.

FIGS. 3 and 4 illustrate an embodiment of an expandable sheath 20 which may be used in combination with one or more ocular implants, such as the implant 10 discussed above, to form an expandable implant 22 (as shown in FIGS. 5 and 6). The expandable sheath 20 can include one or more expandable features 24, such as struts, that extend between a distal collar 26 and a proximal collar 28. At least one of the distal collar 26 or proximal collar 28 can be used to couple the expandable sheath 20 to an implant 10. The expandable sheath 20 can be made from any number of medical grade materials that allow the expandable sheath to form a condensed configuration during implantation, as shown for example in FIG. 3, and an expanded configuration, as shown for example in FIG. 4.

FIGS. 5 and 6 illustrate an embodiment of an expandable implant 22 in a condensed and expanded configuration, respectively. The expandable implant 22 can include the expandable sheath 20 functionally coupled or securely adapted to the implant 10 such that the
expandable sheath 20 can form at least a compact and expanded configuration. Some embodiments of the expandable sheath 20 may be coupled to the implant 10 such that the expandable sheath 20 can form a compact and expanded configuration without generally disrupting the shape of the implant 10.

[0023] In an embodiment of the expandable implant 22, the proximal collar 28 of the expandable sheath 20 can secure to at least a part of the proximal end 12 of the implant 10. The proximal collar 28 may be secured to the implant 10 such that the proximal collar 28 is permanently fixed and may not move relative to the implant 10. In addition, the distal collar 26 of the expandable sheath 20 may be coupled to at least part of the distal end 14 of the implant 10 such that the distal collar 26 may be movable relative to the implant 10. In this configuration, the distal collar 26 may be allowed to slide along at least a part of the distal end 14 of the implant 10 during deformation of the expandable sheath 20, such as from a compact to an expanded shape. By permanently fixing only one end of the expandable sheath 20, such as the proximal collar 28, to the implant 10 the shape of the implant 10 may not be affected during, for example, expansion of the expandable sheath 20.

[0024] One or more restraints (not shown) may be used to assist the expandable sheath 20 in maintaining a compact configuration, such as during implantation. In addition, the one or more restraints may be releasable in order to allow the expandable sheath 20 to deform into an expanded configuration. Any number of restraints may be used that can assist in maintaining the expandable sheath 20 in a compact configuration while also allowing at least the expandable sheath 20 to maintain a small diameter, such as less than approximately 2.5mm. For example, a tubing having an inner diameter that is larger than or equal to the outer diameter of the expandable sheath 20 or expandable features 24 in a compact configuration may be used to restrain expandable features 24 in a compact configuration. However, any number of features or mechanisms can be coupled with the expandable implant 22 to assist in restraining the expandable features 24 in a compact configuration until expansion is desired without departing from this disclosure.

[0025] For example, the expandable sheath 20 may be coupled to the implant 10 and restrained in a compact configuration such that the expandable implant 22 can have a minimal outer diameter. The expandable sheath 20 can maintain the condensed configuration around the implant during implantation of the expandable implant 22, such as with the use of a restraint. Once the expandable implant 22 has been positioned in the target implantation site in the eye, the restraint can be released to allow the expandable sheath 20 to deform into an expanded configuration, as shown for example in FIG. 6. As discussed above, the expandable sheath 20 can be made out of a shape memory material which can assist in deforming the expandable sheath from a compact to an expanded configuration once the restraint is released.

[0026] The one or more expandable features 24, such as the struts shown in FIGS. 3-6, can extend between the proximal collar 28 and distal collar 26 and can assist in allowing the expandable sheath 20 to form a condensed and expanded configuration. For example, the struts 24 may deform from an expanded configuration, as shown in FIG. 6. In the expanded configuration, the expandable features 24 can assist in separating surrounding tissue. For example, positioning at least part of the expandable sheath 20 between a part of the sclera and choroid and allowing the expandable features 24 to form an expanded configuration, the expandable sheath 20 can assist in increasing the separation between the choroid and sclera. The expandable features 24 can assist in separating the choroid and sclera while also allowing fluids to at least pass through the expandable features 24, thus allowing fluid flow through at least the expandable sheath 20.

[0027] FIG. 7 illustrates an embodiment of an expandable sheath 20 with the proximal collar 28 coupled to the implant 10 in a more distal position. In this configuration, the distal collar 26 of the expandable sheath 20 can extend more distally than the distal end 14 of the implant 10. In general, the expandable sheath 20 can be functionally coupled to the implant 10 in any number of ways, and either the proximal collar 28 or distal collar 26 can be in permanent fixed relation to the implant 10 or may be movable relative to the implant 10. The expandable sheath 20 may include a variety of shaped and sized expandable features 24 for assisting in forming an expanded configuration, as will be discussed in greater detail below.

[0028] FIG. 8 illustrates an embodiment of an expandable sheath having expandable features 24 including one or more wings 30 extending from at least one support 32. A restraint can be used for restraining the wings 30 in a compact configuration, such as during implantation. Release of the restraint can allow the expandable sheath 20 to form an expanded configuration, as shown in FIG. 8. In an expanded configuration, the wings 30 can extend radially and assist in further separating tissue, such as between the sclera and choroid. Similar to expandable sheath 20 embodiments discussed above, at least a part of the expandable features 24 can be made out of medical grade shape memory material so that upon release of the restraint at least the wings 30 can deform to an expanded configuration.

[0029] FIG. 9 illustrates an embodiment of an expandable sheath 20 having expandable features 24 which include at least one helical support 25 that extends between the proximal collar 28 and distal collar 26. The helical supports 25 may form a condensed configuration with a minimal diameter around the implant 10, such as during implantation. In addition, the helical supports 25 can deform and expand such that the outer diameter of the helix formed by the helical supports 25 increases. A restraint may also be used, such as those described above, for restraining the helical supports 25 in a compact configuration.
configuration during implantation. Release of the restraint, such as once the expandable implant 22 is positioned within a patient’s eye, can allow the expandable sheath 20 to form an expanded configuration, as shown in FIG. 9. In an expanded configuration, the helical supports 25 may assist in further separating tissue, such as between the sclera and choroid.

[0030] FIG. 10 illustrates an embodiment of an expandable implant 22 that is configured to form more than one expanding area. The expandable implant 22 shown in FIG. 10 may be comprised of two expandable sheaths 20a and 20b coupled consecutively along the length of the implant 10. The more than one expanding area may be formed by coupling more than one expandable sheath 20 along an implant 10 or a single expandable sheath 20 may be configured to form more than one expanding area.

[0031] One or more restraints can be used to constrain the expandable features 24 of the expandable sheaths 20a and 20b. It may be possible to release the one or more restraints such that the expandable sheaths 20a and 20b are allowed to expand independently or in unison. In addition, any one of the proximal collars 28 or distal collars 26 of the expandable sheaths 20a and 20b may be permanently fixed relative to the implant 10 or movable relative to the implant 10.

[0032] FIGS. 11 and 12 illustrate an embodiment of an expandable implant 22 having one or more expandable features 24 extending from the distal end of the implant 10. In this configuration, the expandable features 24 may be part of the implant 10 instead of part of an expandable sheath that is functionally coupled to the implant 10. The expandable features 24 can include extensions which may form a condensed configuration, as shown for example in FIG. 11, and flare out into an expanded configuration, as shown for example in FIG. 12. In this configuration, the expandable implant may be able to achieve a smaller compact diameter due to the expandable features 24 extending distally from the implant instead of alongside the implant 10, as shown for example in FIG. 5.

[0033] Similar to other expandable implants 22 described herein, the expandable features 24 can be made out of a medical grade shape memory material such that upon release of a restraint, the expandable features 24 may deform into an expanded configuration. One or more restraints may also be used for restraining the expandable features 24 in a compact configuration during implantation. Release of the restraints can allow the extensions to form an expanded configuration, as shown in FIG. 14. In an expanded configuration, the extensions may assist in further separating tissue, such as the sclera and choroid.

[0034] FIGS. 13 and 14 illustrate another embodiment of an expandable implant 22 having at least one expandable feature 24 extending between the distal end 14 and proximal end 12 of the implant 10. In this configuration, the expandable features 24 may be part of the implant 10 instead of part of an expandable sheath that is functionally coupled to the implant 10. The expandable features 24 can include extensions or struts which may form a condensed configuration, as shown for example in FIG. 13, and expand radially into an expanded configuration, as shown for example in FIG. 14. This embodiment of the expandable implant 22 may be able to achieve a smaller compact diameter due to the expandable features 24 extending between the distal end 14 and proximal end 12 of the implant 10 instead of alongside the implant 10, as shown for example in FIG. 5.

[0035] Similar to other expandable implants 22 described herein, the expandable features 24 in FIGS. 13 and 14 can be made out of a medical grade shape memory material such that upon release of a restraint, the expandable features 24 may deform into an expanded configuration. One or more restraints may also be used for restraining the expandable features 24 in a compact configuration during implantation. Release of the restraints can allow the extensions to form an expanded configuration, as shown in FIG. 14. In an expanded configuration, the extensions may assist in further separating tissue, such as the sclera and choroid.

[0036] In general, the expandable features 24 can have any number of suitable shapes or patterns that can provide both a compact and expanded configuration for assisting in further separating tissue in an eye, such as between the sclera and choroid. In addition, any of the expandable features 24 at least described herein may be a part of the implant 10 or can be part of an expandable sheath 20 that is functionally coupled to the implant 10 without departing from the scope of this disclosure.

[0037] In addition, at least the expandable sheath 20 can be made out of any number of medical grade materials, including at least one of shape memory alloys, such as nitinol, or shape memory polymers. However, any number of medical grade materials may be used that allow the expandable sheath 20 to form a compact, or condensed, and expanded configuration. In addition, the expandable sheath 20 can be functionally coupled to the implant 10 in any number of ways, such as medical grade adhesive, heat shrink tubing, or various mechanical coupling. Furthermore, the expandable sheath may be functionally coupled to the implant in any number of ways that allow the expandable sheath to form at least a compact and expanded configuration.

[0038] The features and profile of the expandable sheath 20 may be formed by a variety of manufacturing methods. For example, the profile of the expandable sheath 20 may be laser cut or stamped from a flat sheet of material, such as a shape memory alloy, and rolled into a tubular shape that can functionally couple to an implant 10.

[0039] FIGS. 15A an 15B illustrate an embodiment of an expandable sheath 100 formed by laser cutting a medical grade material, including medical grade shape memory alloys, such as nitinol, and shape memory polymers. In addition, either a tube shape or a formable flat sheet of material made out of the medical grade material can
be used. The shape of the expandable sheath 100 in its expanded configuration, as shown for example in FIG. 15B, may be defined in a shape setting operation, such as those operations used for shape memory alloys and polymers. For example, the expandable features 102 may be held radially open in an expanded configuration with the use of an internal mandrel or fixture during the shape setting operation.

[0040] Any number of expanded configurations have been contemplated, including full and partial expansion of the expandable sheath 100 after placement in the eye. In addition, any number of shapes and dimensions of both the compact and expanded configuration have been contemplated. For example, the expandable sheath 100 can have a compact configuration with an outside diameter dimension in the range of 0.4 millimeter to 0.6 millimeter, such as 0.5 millimeters. Additionally, the expandable sheath 100 can have an expanded configuration with an outside diameter dimension in the range of 2.0 millimeters to 3.0 millimeters, such as 2.5 millimeters.

[0041] In addition, some embodiments of the implant may include a body having a tube shaped configuration that is made out of a soft biocompatible material, such as silicone. When implanted in the eye, the tube shaped body may extend proximally out of the expandable sheath into the anterior chamber while the distal end of the tube may terminate approximately in the middle of the expandable sheath.

[0042] Additionally, at least a part of a surface of the expandable sheath 20 can be treated with one or more surface treatments that can modify the topography of the expandable sheath. For example, surface areas of the expandable sheath that have been treated with a surface treatment can cause a variety of ocular tissue responses as a result of the expandable sheath being implanted in the eye and contacting the treated surface area to the ocular tissue.

[0043] Any number of surface treatments can be applied to any part of the expandable sheath for assisting in creating a variety of ocular tissue responses. For example, a plasma cleaning process can be used to treat at least a part of the surface of the expandable sheath. In addition, one or more variables, such as power, processing time, and pressure, can be varied, including varying the power by approximately 250%, in order to achieve a desired surface topography.

[0044] FIG. 16 illustrates an embodiment of a laser ablation pattern 104 applied to at least a part of the surface of the expandable sheath 100. For example, as shown in FIG. 16, the laser ablation pattern 104 can include at least one ribbed feature, including multiple micro ribs. Such laser ablation patterns 104 can provide a variety of tissue responses, and by varying at least one of the size and shape of the laser ablation patterns 104 any number of tissue responses can be achieved.

[0045] In addition, either the expandable sheath or implant can at least partially include at least one drug, such as either impregnated or coated with at least one drug. For example, at least the expandable sheath can include mitomycin or 5-FU, which can assist in reducing fibrotic and inflammatory tissue response, such as during trabeculectomy surgeries. Alternatively or in addition, the one or more drugs may be combined with a polymer comprising at least a part of either the expandable sheath or implant that can provide a sustained drug release profile during implantation of either the expandable sheath or implant.

[0046] In some embodiments of the expandable implant, the expandable sheath may include at least one drug, such as any drug described herein, while the implant, such as the implant having a tube shaped body, may not include a drug. Additionally, some embodiments of the expandable sheath can be implanted in the eye without being coupled to an implant.

[0047] In addition, a delivery system can be used to deliver an expandable implant 22 into the eye, for example such that the expandable implant 22 at least provides fluid communication between the anterior chamber toward the suprachoroidal space. As described above, the expandable implant 22 can include one or more expandable features 24 which may assist in further separating tissue, such as between the sclera and choroid.

[0048] FIG. 17 shows an embodiment of a delivery system 50 that can be used to deliver the expandable implant 22 into the eye. It should be appreciated that these delivery systems 50 are exemplary and that variations in the structure, shape and actuation of the delivery system 50 are possible.

[0049] The delivery system 50 generally includes a proximal handle component 52 and a distal delivery component 54. The proximal handle component 52 can include an actuator 56, such as a button, to control the release of an expandable implant 22 from the delivery component 54 into the target location in the eye. The actuator 56 can vary in structure.

[0050] An embodiment of the delivery component 54 can include an elongate applier in the form of a guidewire 58 that inserts longitudinally through an internal lumen of the expandable implant 22 and a “stopper” or sheath 60 positioned axially over the guidewire 58. The sheath 60 can aid in the release of the expandable implant 22 from the delivery component 54 into the target location in the eye. The actuator 56 can be used to control movement or relative movement of the guidewire 58 and/or the sheath 60. For example, the sheath 60 can be fixed relative to the handle component 52 and act as a stopper that impedes the expandable implant 22 from moving in a proximal direction as the guidewire 58 is withdrawn proximally from the expandable implant 22 upon actuation of the actuator 56. In a first state, the guidewire 58 can be extended distally relative to the sheath 60. Actuation of the actuator 56, such as by pressing the actuator 56, can cause the guidewire 58 to slide proximally into the sheath 60. This can effectively disengage the expandable implant 22 off the distal end of the guidewire 58 and releases the expandable implant 22 in a controlled manner.
FIG. 18 shows an enlarged view of an expandable implant 22 mounted on a delivery component 54 for inserting the expandable implant 22 into the eye. The expandable implant 22 can be mounted on a distal region of a guidewire 58. The sheath 60 can be sized and shaped to receive or abut a portion of the proximal end of the expandable implant 22. In this embodiment upon actuation of the actuator 56, the guidewire 58 can slide in the proximal direction (arrow P) into the sheath 60. The proximal end of the expandable implant 22 can abut the distal edge of the sheath 60 to prevent the expandable implant 22 from sliding in the proximal direction. This can effectively disengage the implant 10 off the distal end of the guidewire 58 and controllably release the expandable implant 22 into the eye tissue.

A method of delivering and implanting the expandable implant 22 and guidewire 58 can be positioned on the delivery system 50 such that the distal tip of the guidewire 58, the expandable implant 22 and the sheath 60 can penetrate through a small corneal incision and access the anterior chamber, such as within the limbus of the cornea. In an embodiment, the incision is very close to the limbus, such as at the level of the limbus or within 2 mm of the limbus in the clear cornea. The guidewire 58 can be used to make the incision or a separate cutting device can be used. For example, a knife-tipped device or diamond knife can be used to initially enter the cornea.

The guidewire 58 can be advanced into the anterior chamber along a pathway that enables the expandable implant 22 to be delivered to a position such that the expandable implant 22 provides a flow passageway from the anterior chamber AC toward the suprachoroidal space. The guidewire 58 can be advanced further into the eye such that the blunt distal tip of the guidewire 58 and/or the expandable implant 22 can seat with and penetrate the iris root IR, or a region of the ciliary body CB, or the iris root part of the ciliary body near its tissue border with the scleral spur.

The guidewire 58 can approach the iris root from the same side of the anterior chamber AC as the deployment location such that the guidewire 58 does not have to be advanced across the iris. Alternately, the guidewire 58 can approach the location from across the anterior chamber AC such that the guidewire 58 is advanced across the iris and/or the anterior chamber toward the opposite iris root. The guidewire 58 can approach the eye and the iris root IR along a variety of pathways. The guidewire 58 does not necessarily cross over the eye and does not intersect the optical axis of the eye. In other words, the corneal incision and the location where the implant is implanted at the iris root can be in the same quadrant (if the eye is viewed from the front and divided into four quadrants). Also, the pathway of the implant from the corneal incision to the iris root desirably does not pass through the optic axis of the eye to avoid interfering with the pupil.
that the dissection entry point of the distal tip of the guidewire 58 can penetrate the iris root IR near its junction with the scleral spur SSp or the iris root portion of the ciliary body CB or other desired location. The surgeon can rotate or reposition the handle of the delivery device 50 in order to obtain a proper approach trajectory for the distal tip of the guidewire 58, as described in further detail below.

[0060] The guidewire 58 with the expandable implant 22 positioned thereupon can be advanced from a region of the anterior chamber that can be viewed through a transparent zone of the cornea C through to a region of the anterior chamber that is obscured by the opaque zone of the cornea. The guidewire 58 and expandable implant 22 can be advanced through the cornea C until resistance is felt and the delivery device can be seated at a location near the iris root IR, the ciliary body or the iris root portion of the ciliary body. The guidewire 58 can then be advanced further such that the expandable implant 22 loaded thereon penetrate an area of fibrous attachment between the scleral spur SSp and the ciliary body CB. This area of fibrous attachment can be approximately 1 mm.

[0061] Once the distal tip of the guidewire 58 penetrates and is urged past this fibrous attachment region, the guidewire 58 can then more easily cause the sclera S to peel away or otherwise separate from the ciliary body CB and possibly the choroid as it follows the inner curve of the sclera S and enters the suprachoroidal space. A combination of the guidewire’s tip shape, material, material properties, diameter, flexibility, compliance, coatings, pre-curvature etc. make it more inclined to follow an implantation pathway that mirrors the curvature of the inner wall of the sclera and between tissue layers such as between the sclera and the ciliary body, and between the sclera and the choroid.

[0062] The dissection plane of the guidewire 58 and expandable implant 22 can follow the curve of the inner scleral wall such that the expandable implant 22 mounted on the guidewire 58 after penetrating the iris root or the iris root portion of the ciliary body, bluntly dissects the boundary between tissue layers of the scleral spur SSp and the ciliary body CB such that at least the distal region of the expandable implant 22 extends into the suprachoroidal space. In an embodiment, the expandable implant 22 is positioned such that it extends sufficiently past the scleral spur SSp such that it is positioned between the tissue boundaries of the sclera and the choroid (the suprachoroidal space).

[0063] Once at least a part of one or more expandable features of the expandable implant 22 are positioned in the suprachoroidal space, the one or more restraints may be released in order to allow the expandable implant 22 to enter into an expanded configuration, as shown in FIG. 20. In an expanded configuration, the expandable features 24 of the expandable implant 22 can assist in increasing the separation between the sclera and choroid than what was achieved prior to expansion of the expandable implant 22. As described above, the increase in separation between the sclera and choroid can assist in reducing IOP in an eye, such as an eye suffering from glaucoma.

[0064] Once properly positioned in an expanded configuration, the expandable implant 22 can then be released from the guidewire 58. The expandable implant 22 can be released, for example, by withdrawing the guidewire 58 such that the expandable implant 22 is effectively disengaged in a controlled manner from the tip of the guidewire 58 with the sheath 60.

[0065] The expandable implant 22 can include one or more structural features near its proximal region that aid to anchor or retain the implant 105 in the target region in the eye. The structural features can include flanges, protrusions, wings, tines, or prongs, and the like that can lodge into the surrounding eye anatomy to retain the expandable implant 22 in place and prevent the expandable implant 22 from moving further into the suprachoroidal space SchS.

[0066] While this specification contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination.

[0067] Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Only a few examples and implementations are disclosed. Variations, modifications and enhancements to the described examples and implementations and other implementations may be made based on what is disclosed.

Clauses

[0068] Clause 1. A device for implanting in an eye, comprising: an expandable sheath having at least one expandable feature configured to form an expanded and a compact configuration, the at least one expandable feature extending from at least one of a proximal collar and a distal collar, and wherein the
at least one of the proximal collar and distal collar is adaptable to an ocular implant.
Clause 2. The device of clause 1, wherein the implant includes an elongate tubular body configured to be implanted in an eye.
Clause 3. The device of clause 1, wherein at least the expandable features are made out of a medical grade shape memory material, such as nitinol or a shape memory polymer.
Clause 4. The device of clause 1, wherein the expandable feature comprises at least one of a strut and a helical support.
Clause 5. The device of clause 1, wherein the expandable feature comprises one or more wings extending from supports.
Clause 6. The device of clause 1, wherein the expandable sheath is formed out of a laser cut nitinol material.
Clause 7. The device of clause 1, wherein at least a part of a surface of the expandable sheath is treated with a plasma cleaning process.
Clause 8. The device of clause 1, wherein at least a part of a surface of the expandable sheath is treated with a laser ablation process.
Clause 9. The device of clause 8, wherein the surface treated with the laser ablation process includes at least one ribbed feature.
Clause 10. The device of clause 1, wherein the compact configuration has an outside diameter dimension in the range of 0.4 millimeter to 0.6 millimeter.
Clause 11. The device of claim 1, wherein the expanded configuration has an outside diameter dimension in the range of 2.0 millimeters to 3.0 millimeters.

Claims

1. A device (10) for implanting in an eye, comprising:

 an expandable sheath (20) formed of an elongate, tubular body having at least one expandable feature (24) configured to form an expanded and a compact configuration, the at least one expandable feature (24) including at least two longitudinal, non-intersecting struts each extending from a proximal collar (28) to a distal collar (26), and wherein the at least one of the proximal collar (28) and distal collar (26) is adaptable to an ocular implant, wherein the implant includes a second elongate tubular body configured to be implanted in an eye and wherein at least one of the proximal collar (28) and the distal collar (26) is fixedly attached to the second tubular body of the device and the other of the proximal collar (28) and the distal collar (26) is movably attached to the second tubular body of the device such that the distal collar (26) slides co-axially along a longitudinal axis of the second tubular body.

2. The device (10) of claim 1, wherein at least the expandable features (24) are made out of a medical grade shape memory material, such as nitinol or a shape memory polymer.
3. The device (10) of claim 1, wherein the expandable sheath (20) is formed out of a laser cut nitinol material.

4. The device (10) of claim 1, wherein at least a part of a surface of the expandable sheath (20) is treated with a plasma cleaning process.

5. The device (10) of claim 1, wherein at least a part of a surface of the expandable sheath (20) is treated with a laser ablation process.

6. The device (10) of claim 5, wherein the surface treated with the laser ablation process includes at least one ribbed feature.

7. The device (10) of claim 1, wherein the compact configuration has an outside diameter dimension in the range of 0.4 millimeter to 0.6 millimeter.

8. The device (10) of claim 1, wherein the expanded configuration has an outside diameter dimension in the range of 2.0 millimeters to 3.0 millimeters.

9. The device (10) of claim 1, wherein the expandable sheath (20) includes at least one drug.

10. The device (10) of claim 9, wherein the expandable sheath (20) is adapted to an implant that does not include a drug.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2009/035562 A2 (QLT PLUG DELIVERY INC [US]; UTKHEDE DEEPAK [CA]; SHIMIZU ROBERT W [US]) 19 March 2009 (2009-03-19) * page 92, paragraph 2 - page 93, paragraph 2 * * page 108, paragraph 3 - page 109, paragraph 2 * * figures 1a,1b *</td>
<td>1-10</td>
<td>INV. A61F9/00</td>
</tr>
<tr>
<td>A</td>
<td>WO 2012/019136 A2 (FORSIGHT VISION 4 INC [US]; DE JUAN EUGENE [US]; ALSTER YAIR [US]: FAR) 9 February 2012 (2012-02-09) * paragraph [0429]; figures 7c-1 *</td>
<td>1-10</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

Place of search
The Hague

Date of completion of the search
23 June 2017

Examiner
Espuch, Antonio
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on the European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

23-06-2017

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BR P10817075 A2</td>
<td>26-07-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2698573 A1</td>
<td>19-03-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101984745 A</td>
<td>09-03-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103349799 A</td>
<td>16-10-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 2207529 T3</td>
<td>09-03-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 2614844 T3</td>
<td>08-06-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2207529 A2</td>
<td>21-07-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2614844 A1</td>
<td>17-07-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2533359 T3</td>
<td>09-04-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2538838 T3</td>
<td>24-06-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1155104 A1</td>
<td>17-04-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1189521 A1</td>
<td>31-03-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010538696 A</td>
<td>16-12-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014236980 A</td>
<td>18-12-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016166503 A</td>
<td>15-09-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 2010063111 A</td>
<td>10-06-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20150136140 A</td>
<td>04-12-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20170065905 A</td>
<td>16-01-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 583678 A</td>
<td>30-03-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 598483 A</td>
<td>30-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2010113387 A</td>
<td>20-10-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 184738 A1</td>
<td>30-10-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201002367 A</td>
<td>16-01-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009104243 A</td>
<td>23-04-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012187594 A</td>
<td>26-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014186420 A</td>
<td>03-07-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009035562 A2</td>
<td>19-03-2009</td>
</tr>
<tr>
<td>WO 2012019136 A2</td>
<td>09-02-2012</td>
<td>AU 2011285545 A1</td>
<td>07-03-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2014203235 A1</td>
<td>10-07-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 20162000097 A1</td>
<td>04-02-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2807535 A1</td>
<td>09-02-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103209733 A</td>
<td>17-07-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 105435338 A</td>
<td>30-03-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2609930 A2</td>
<td>12-06-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6063382 B2</td>
<td>18-01-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013532576 A</td>
<td>19-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2017060862 A</td>
<td>30-03-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 187730 A1</td>
<td>28-03-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013245544 A1</td>
<td>19-09-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013324918 A1</td>
<td>05-12-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015250647 A1</td>
<td>10-09-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012019136 A2</td>
<td>09-02-2012</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/2021
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 23-06-2017.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 61702179 A [0001]
- US 20070191863 A [0015]
- US 20090182421 A [0015]