EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 22.05.2019 Bulletin 2019/21

Application number: 17156992.4

Date of filing: 20.02.2017

ON-DEMAND HIGH VOLUME, LOW PRESSURE SPRAY SYSTEM AND CORRESPONDING METHOD

BEDARFSABHÄNGIGES HOCHVOLUMIGES NIEDERDRUCK-SPRÜHSYSTEM UND
ENTSPRECHENDE METHODE

SYSTÈME DE PULVÉRISATION BASSE PRESSION À VOLUME ÉLEVÉ ET À LA DEMANDE ET
MÉTHODE CORRESPONDANTE

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

22.01.2017 US 201762449078 P

Date of publication of application: 23.08.2017 Bulletin 2017/34

Divisional application: 19169553.5

Proprietor: Graco Minnesota Inc.
Minneapolis, MN 55413 (US)

Inventors:
• SVENDSEN, John M
Corcoran, MN 55340 (US)
• OLSON, Diane L
Elk River, MN 55330 (US)

Representative: Miller Sturt Kenyon
9 John Street
London WC1N 2ES (GB)

References cited:
US-A- 5 074 467

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
BACKGROUND

[0001] A high volume, low pressure (HVLP) spray system is commonly comprised of an air source that produces a high volume of air flow at low pressure. A motor is typically used to generate the HVLP air flow. The HVLP air is directed through a gun to propel paint onto a targeted substrate. The motor generally operates in an always-on constant level of operation in which the motor is always outputting pressurized air regardless of whether the user is spraying at the moment. The constant operation of the blower causes excessive motor wear, energy consumption, heat-generation, and noise. The motor may be manually turned off via a main power switch by the user when not in use to cause the motor to stop and the pressurized air to dissipate out of the HVLP spray system. The HVLP system can be manually turned back on when the user wishes to resume spraying, however the motor will have to accelerate to reach a speed adequate for generating HVLP air and then the system will have to be refilled with HVLP air by the motor before spraying can be resumed.

[0002] US 5,074,467 discloses a high volume low pressure spray painting system. The high volume low pressure spray painting system includes an electrically powered blower motor with a cooling fan, an high volume low pressure blower fan driven by the blower motor, an air conduit connecting the outlet of the blower fan to a spray gun adapted to atomize liquid paint with the high volume low pressure air delivered by the blower fan, and a valve in the spray gun actuated by a trigger for controlling the high volume low pressure air delivered by the blower fan. The control for the spray painting system includes a second valve arranged downstream from the blower fan outlet biased to a normally closed position which checks the flow of high volume low pressure air delivered by the blower fan when the valve in the spray gun is closed and simultaneously with the closing of the second valve the speed of the blower motor is reduced to idle. When the valve in the spray gun is open the pressure downstream from the second valve is reduced allowing the second valve to open and causing the speed of the blower motor to increase to a normal operating speed.

SUMMARY

[0003] This disclosure concerns sprayers having on-demand spraying capability even when power to an electric air supply unit has been reduced due to previous spraying inactivity.

[0004] According to a first aspect of the invention, there is provided a sprayer as defined in claim 1.

[0005] According to a second aspect of the invention, there is provided a method as defined in claim 16.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Embodiments of the present invention will now be described by way of further example only and with reference to the accompanying drawings, in which:

Fig. 1 is an isometric view of a HVLP sprayer.
Fig. 2 is a cross sectional view of the gun of an HVLP sprayer.
Fig. 3 is a sectional view of the HVLP air supply unit of an HVLP sprayer.
Fig. 4 is a cross sectional view of a fitting and valve of an HVLP sprayer.
Fig. 5 is a schematic of electrical components of an HVLP sprayer.

[0007] This disclosure makes use of examples concerning a featured embodiment to demonstrate various inventive aspects. The presentation of the examples and the featured embodiment should be understood as demonstrating a number of open ended combinable options and not restricted embodiment(s). Changes can be made in form and detail to the various embodiments and features without departing from the scope of the invention as defined by the claims.

DETAILED DESCRIPTION

[0008] Embodiments of the present disclosure are used to spray fluids. While paint will be used as an exemplar herein, this is merely one example and that other fluids can be sprayed in addition to and/or instead of paint, such as stains, varnishes, finishes, oil, water, coatings, solvents, and/or solutions, amongst other options.

[0009] Figure 1 is an isometric view of an HVLP system. The system comprises a gun 4, a fluid reservoir 6, an air supply unit 8, a fitting 14, valve 15 of the hose 10). The fittings 14, 15 can connect to another intermediary fitting that attaches to the fitting 16 of the hose 10. The air supply unit 8 contains various components for providing and controlling pressurized air suitable for HVLP spraying. The pressurized air is conveyed through the fitting 14 of the air supply unit 8, through the hose 10, and to the gun 4. The air flow can be approximately 0.047 m³/s (100 cubic feet per minute). The air supply unit 8 includes a fitting 14 which attaches to a fitting 15 on the first end of the hose 10 (alternatively the fitting 14 attaches to another intermediary fitting that attaches to the fitting 15 of the hose 10). The fittings 14, 15 can connect with one another by a threaded or quick disconnect interface, amongst other options. The hose 10 may be a 2.5 cm (1 inch) outer diameter hose with a bore size of at least 1.3 cm (1/2 inch) (e.g. 2.2 cm (7/8 inch) inner diameter), in some embodiments, however other sizes are possible. The hose 10 may be at least 4.6 m (15 feet) long, and is preferably 6.1 m (20 feet) in some embodiments. The hose 10 can be formed from a flexible material, such as polymer or rubber. The hose 10 can be a corrugated tube, as shown in Fig. 1. A fitting 16 on the
second end of the hose is attached to the gun 4 (alternatively the fitting 16 attaches to another intermediary fitting that attaches to the gun 4). The fitting 16 can be of a swivel, quick disconnect type for attaching to the gun 4.

[0010] The gun 4 is supplied paint by the reservoir 6 through neck 12. The gun 4 can use the pressurized air from the air supply unit 8, as conveyed by the hose 10, in multiple ways. The pressurized air propels the paint from the gun 4 as an atomized spray to paint various surfaces. Also, the gun 4 can route some of the pressurized air through tube 18 to the reservoir 6, the pressurized air forcing the paint within the reservoir 6 up the neck 12 and into the gun 4. However, a gravity feed or other type of paint feed may alternatively be used in various embodiments, thus not requiring pressurized air to be supplied to the reservoir 6.

[0011] Fig. 2 is a cross-sectional view of the gun 4 and the reservoir 6. The gun 4 includes a handle 20. The gun 4 includes a port 21 which mechanically connects with fitting 16 to make a sealed, pneumatic connection. The pressurized air supplied by the hose 10 flows through a channel located in the handle 20 and further into the interior of the gun 4. The gun 4 includes a trigger 22. The trigger 22 is mechanically connected to a needle 26. The needle 26 is an elongated metal rod. The trigger 22 is actuated by backward movement, which is toward the handle 20. The trigger 22 is unactuated or released by forward movement, which is away from the handle 20, and which can be driven by spring 29. Movement of the trigger 22 between actuated and unactuated states correspondingly moves the needle 26 backwards and forwards within the gun 4. The needle 26 seals two valves, whereby backward movement of the needle 26 opens the valves and forward movement of the needle 26 closes the valves. The first valve 30 comprises a shoulder or other enlarged portion in the needle 26 engaging an annular seat 31. The first valve 30 is normally closed but opens when the trigger 22 is actuated and the needle 26 is moved backwards, allowing the pressurized air in the channel in the handle 20 to flow into a front body portion 34 of the gun 4. When the trigger 22 is not actuated, the engagement between the shoulder or other enlarged portion in the needle 26 and the annular seat 31 prevents pressurized air in the channel in the handle 20 from flowing into a front body portion 34 of the gun 4. The second valve is formed by the front end of the needle 26 interfacing with the nozzle piece 28, the valve being opened by backward movement of the needle 26.

[0012] When the first valve 30 is opened, some of the pressurized air coming into the front body portion 34 flows through the tube 18 into the reservoir 6, which is used to drive paint from the reservoir 6 through the neck 12 that connects the reservoir 6 to the gun 4 and into a paint channel 35 located within the front body portion 34 of the gun 4. The paint channel 35 is coaxial with the needle 26.

[0013] The reservoir 6 includes a cup 32. The cup 32 can be formed from a polymer or a metal. The cup 32 is rigid. As shown, the cup 32 contains a liner 36. A lid 38 fits over liner 36 and the cup 32. The liner 36 can contain paint. The liner 36 collapses toward the neck 12 to force the paint up the neck 12 and into the paint channel 35 for spraying. The paint is forced upwards toward and through the neck 12 because the pressurized air that traveled through the tube 18 is introduced into the sealed space between the inside of the cup 32 and the outside of the liner 36 (e.g. at 20.7 - 68.9 kPa (3 - 10 pounds per square inch)), thereby making the pressure outside the liner 36 greater than inside the liner 36 and collapsing the liner 36 while pushing the paint upwards. Recalling that the backward movement of the needle 26 due to actuating the trigger 22 also opens the valve formed between the front end of the needle 26 interfacing with the nozzle piece 28, the paint that was driven into the paint channel 35 from the neck 16 mixes with the pressurized air near the nozzle 24 and is propelled out of the gun 4 as an atomized spray. The back end of the nozzle piece 28 aligns with the paint channel 35 such that that paint moving through the paint channel 35 moves into and through the nozzle piece 28 to be mixed with the pressurized air for spraying from the nozzle 24.

[0014] While the illustrated embodiment uses a collapsible liner 36, various other embodiments may not include a liner 36. In such embodiments, the paint may reside directly in the cup 32. The gun 4 may be modified to invert the cup 32 above the gun 4 in a cup-over arrangement so that the flow of paint from the reservoir is gravity assisted. In a gravity assisted configuration, the tube 18, the liner 36, and supply of pressurized air into the cup 32 may be omitted.

[0015] Fig. 3 shows a sectional view of the air supply unit 8. The air supply unit 8 includes a blower 51, control circuitry 56, a sensor 58, and the fitting 14, in the illustrated embodiment. The air supply unit 8 includes a housing 50, which can be a metal or plastic box. The housing 50 can fully or partially contain the blower 51, the control circuitry 56, the sensor 58, and the fitting 14. The fitting 14 is shown to be both partially inside and outside of the housing 50 by extending through a wall of the housing 50, which can be a metal or plastic box. The housing 50 can route some of the pressurized air near the nozzle 24 and is propelled out of the gun 4 as an atomized spray. While the illustrated embodiment uses a collapsible liner 36, various other embodiments may not include a liner 36. In such embodiments, the paint may reside directly in the cup 32. The gun 4 may be modified to invert the cup 32 above the gun 4 in a cup-over arrangement so that the flow of paint from the reservoir is gravity assisted. In a gravity assisted configuration, the tube 18, the liner 36, and supply of pressurized air into the cup 32 may be omitted.

[0016] The HVLP air output by the blower 51, when the blower 51 is operating at a sustained level, can have a pressure in the range of 13.8 - 68.9 kPa (2-10 pounds per square inch). The pressure of the HVLP air at the nozzle 24 can be in the range of 13.8 - 68.9 kPa (2-10 pounds per square inch), however the fitting 14 may instead be located entirely inside or entirely outside of the housing 50. The fitting 14 connects with the fitting 15 of the hose 10 to create an airtight seal therebetween.
to atomize paint and therefore is dependent on the type of paint being used. The blower 51 sucks in ambient air through inlet 53, shown to include an air filter, compresses and accelerates the air within housing 52, and blows the air out of the fitting 14. A sectional view of the housing 52 is shown, revealing blades 57 which are rotated by the motor 55 to compress and move air. The motor 55 is an electrical motor that rotates based on input of electrical power. The motor 55 may be a rotor-stator motor, for example. The power output to the motor 55 can be either direct current or alternating current, depending on the type of motor. The air may be compressed and accelerated by any type of fan, impeller, turbine, or other type of bladed component being rotated within the housing 52 by motor 55. In the embodiment shown, the blower 51 is not a positive displacement pump, but rather is a centrifugal pump. Power output to the motor 55 is regulated by control circuitry 56. Specifically, the control circuitry 56 increases and decreases power output to the turbine 51 by increasing and decreasing power output to the motor 55 to cause the rotational output of the motor 55 to start, stop, speed up from a first non-zero level to a second higher level, and slowdown from the second higher level to the first non-zero level. The air flow output through the fitting 14 by the blower 51 flows into the hose 10 and through to the gun 4 along the flow path of pressurized air moving "downstream" as used herein means directionally closer to the blower 51 and the term "upstream" as used herein means directionally closer to the gun 4. The air flow output through the fitting 14 by the blower 51 flows into the hose 10 and through to the gun 4. The term "upstream" as used herein means directionally closer to the blower 51 and the term "downstream" as used herein means directionally closer to the gun 4 along the flow path of pressurized air moving from the blower 51 to the gun 4.

[0017] The fitting 14 can be formed from metal and/or polymer. As shown in Fig. 3, a first end of a tube 54 is connected to the fitting 14. The tube 54 extends within the housing 50. A second end of the tube 54 connects with sensor 58. The sensor 58 is mounted on a board with control circuitry 56 in the illustrated embodiment, however the sensor 58 may not be located remote from the board supporting the control circuitry 56 in various other embodiments. For example, the sensor 58 may be mounted in the fitting 14, hose 10, or gun 2. The sensor 58 can output a signal indicative of an air parameter, such as a signal indicative of air pressure or air flow. In the illustrated embodiment, the sensor 58 outputs a signal indicative of air pressure within the tube 54, which being tapped from the fitting 14, is indicative of air pressure within the fitting 14. The sensor 58 can be a digital or analog, air pressure or flow sensor that outputs a signal indicative of air pressure or flow. The sensor 58 can be a force collector-type transducer (e.g., a piezoelectric/resistive strain gauge or capacitive/electromagnetic transducer). The sensor 58 can be a microelectromechanical (MEMS) sensor.

[0018] Fig. 4 is a sectional view of the air supply unit 8 that shows a cross-section of the fitting 14. The blower 51 is shown to include an outlet 67 which directs the HVLP air flow into the fitting 14. In some embodiments, the fitting 14 may be the outlet of the blower 51. As shown, the fitting 14 contains a valve 68. The valve 68 is shown as a check valve. More specifically, the valve 68 is shown as a poppet-type valve, however other types of valves, such as a ball-type valve, can instead be used. The valve 68 is mechanically activated by air pressure, however an electrically controlled valve, such as a solenoid valve, controlled by the control circuitry 56 to open and close whenever the blower 51 turns on or off, respectively, can be substituted, amongst other options.

[0019] The valve 68 includes a seat 64 and a poppet 62, the poppet 62 having a gasket 70 that is pushed against the seat 64 by a spring 60 to prevent airflow in the upstream direction when the valve 68 is closed. The poppet 62 seals against the seat 64 when there is no or minimal pressure differential between the upstream and downstream sides of the valve 68. The valve 68, when closed, prevents pressurized air within the hose 10 (as well as pressurized air that is within the fitting 14 but downstream of the valve 68 and within the tube 54) from moving back upstream past the seal between the seat 64 and the gasket 70 of the poppet 62. The poppet 62 lifts from the seat 64 when pressurized air, generated by the blower 51, pushes against poppet 62 to overcome the spring 60. However, if the valve 30 in the gun 4 is not open (due to the trigger 22 not being pulled), then the air pressure downstream of the valve 68 may equalize with the air pressure upstream of the valve 68, because the air within the hose 10 has no place else to flow, causing the valve 68 to close. Upon actuation of the trigger 22 to open valve 30, the air within the hose 10 and otherwise downstream of the fitting 14 flows into the gun 4, at least temporarily lowering the pressure downstream of the valve 68 and allowing the pressurized air upstream of the valve 68 to push against poppet 62 to overcome the spring 60.

[0020] The fitting 14 includes one or more ports 59 what extend from inside the fitting 59, upstream of the valve 68, to outside of the fitting 14 yet within the housing 50. The one or more ports 59 allow the HVLP air flow to exit the fitting 14, such as when the valve 68 is closed. The fitting 14 includes channel 66 that taps the fitting 14 downstream of the valve 68. In particular, the channel 66 taps the fitting 14 downstream of the seal between the seat 64 and the gasket 70 of the poppet 62. The tube 54 is in fluid communication with the channel 66 to allow the air parameter to be measured by sensor 58, the measured air parameter representing or otherwise indicating the level of the air parameter within the fitting 14 and/or downstream of the valve 68.

[0021] The valves 30, 68, when both closed, trap pressurized air inside each of the gun 4 (specifically, upstream of the valve 30), the hose 10 (including within fittings 15, 16), and the fitting 14 (e.g., downstream of the valve 68 in the case that the valve 68 is located with the fitting 14). The contained volume between the two valves 30, 68 is referred to herein as the pneumatic circuit. In some embodiments, the hose 10 may expand while under pressure from the blower 51 to increase its volume to accommodate more pressurized air. The tube 54, in extending
from the fitting 14 to the sensor 58, is a sealed, dead-end side branch of the pneumatic circuit. As such, the sensor 58 outputs a signal indicative of a parameter within the pneumatic circuit.

[0022] The pneumatic circuit serves as an accumulator by containing a reservoir of pressurized air that is released upon the opening of the valve 30. Most or essentially all of the volume of trapped air of the pneumatic circuit is located within the hose 10. The hose 10 can contain enough pressurized air, even at the low pressure used in HVLP spraying, to immediately resume spraying when the triggered 22 is actuated to open valve 30 to release pressurized air within the hose 10 into the front body portion 34 of the gun 4, even when the blower 51 is just restarting (i.e., not rotating and/or still accelerating to a normal rotational speed).

[0023] The valve 68 is located upstream from the hose 10, allowing the full volume of the hose 10 to be utilized as an air accumulator. The valve 68 may be immediately upstream of the hose 10 (e.g., within 2.5 - 7.6 cm (1-3 inches) from the fitting of the hose 10). Furthermore, no separate accumulator other than the gun 4, hose 10, and fittings 14-16 may be used in some embodiments. For example, the system may not have a chamber within or outside of the air supply unit 8 to store a reservoir of pressurized air for release into the front body portion 34 of the gun 4 or otherwise through the nozzle 24. In some embodiments, no separate accumulator (other than the pneumatic circuit) may be used downstream of the valve 68. In some embodiments, a separate accumulator is used (e.g., a metal tank in fluid connection with the fitting 14) and connects to the pneumatic circuit between the valves 30, 68.

[0024] It is not desirable to run the blower 51 at all times during a spraying project. Ordinarily, the user is not always spraying, and there may be prolonged periods of non-use between instances of spraying on the jobsite. An operator of an HVLP spray typically has frequent interruptions to their actual spraying of coatings. Users may readjust their work piece, configure taping or masking on the work piece or within their work areas, or focus on a different task. Conventional HVLP spray systems only turn off the air source when the power to the entire system is turned off by a manual external switch, leaving the system unpressurized and not ready for resumption of spraying before the motor 55 starts and accelerates to a speed sufficient for generating HVLP air adequate for spraying. Also, in a conventional HVLP spray system, the user must walk back to the main unit to turn it on and off, even if the user is spraying remotely via a hose. While running the blower 51 at all times provides plenty of pressurized air, even much more so than needed, such constant operation prematurely wears the blower 51, wastes energy, generates excessive heat, and creates excessive noise in the jobsite environment. To avoid excessive operation of the blower 51, the power to blower 51 can be reduced, including by being switched off, by control circuitry 56 when the user is not actuating the trigger 22 and thus not actively spraying. Pressured air trapped in pneumatic circuit can be used for immediate resumption of spraying even if power to the blower 51 is temporarily reduced upon actuation of the trigger 22, including if the blower 51 is restarting from a dead stop and thus still accelerating when the trigger 22 is actuated and the user expects to be spraying.

[0025] Fig. 5 is a schematic of the electronic components which control the operation of the HVLP system 2. The microcontroller 80 and secondary power regulator 82 components can comprise the control circuitry 56. The power source 76 can be an electrical power cord supplying electrical power from a conventional wall outlet. The power source 76 can alternatively be a battery, amongst other options. The power regulator 78 can convert (e.g., alternating current to direct current via one or more diodes or other components) and regulate (e.g., lower the voltage via one or more resistors or other components) the electrical energy from the power source 76 and deliver power along multiple channels to power different components. As shown, the power regulator 78 supplies power to the sensor 58, the microcontroller 80, and the secondary power regulator 82. Additional or otherwise supplied to any other component of the HVLP system 2.

[0026] The microcontroller 80 regulates power to the blower 51. For example, the microcontroller 80 turns the blower 51 on and off, and in some cases can decrease the supply of electrical energy to the blower 51 to a non-zero level and/or can increase the supply of electrical energy to the blower 51 from a non-zero level to a higher level. In the illustrated embodiment, the secondary power regulator 82 is operated by the microcontroller 80, the secondary power regulator 82 regulating power to the blower 51 as controlled by the microcontroller 80. The secondary power regulator 82 can close to allow electrical energy to flow to the blower 51 and open to block electrical energy from flowing to the blower 51. The secondary power regulator 82 can be an electronic switch operated by the microcontroller 80. The secondary power regulator 82 can be a solid state relay. The secondary power regulator 82 can be a semiconductor device such as a bidirectional triode thyristor (i.e. a TRIAC) or an insulated-gate bipolar transistor (i.e. an IGBT). The secondary power regulator 82 can additionally or alternatively include a variable resistor or other electrical component for selectively increasing and reducing power to the blower 51 without necessarily stopping current flow (i.e., is not limited to just open and closed circuit states).

[0027] The microcontroller 80 can include, among other things, a processor and memory storing program instructions thereon which, when executed by the processor, perform or cause to be performed any of the operations referenced herein, such as part of a firmware or software program. While microcontroller 80 and secondary...
ary power regulator 82 are shown and/or referenced as being a part of the control circuitry 56, the control circuitry 56 can include different components while still being configured to perform the operations described herein. The secondary power regulator 82 can be integrated into the microcontroller 80 in some embodiments. In summary, the control circuitry 56 comprises one or more electrical components, such as the microcontroller 80, which regulate power output to the blower 51 to selectively increase and reduce power output to the blower 51.

[0028] In the preferred embodiment, the sensor 58 outputs a pressure reading, indicative of the air pressure within the pneumatic circuit, to the microcontroller 80. The microcontroller 80 monitors the pressure and, based on changes in the pressure, controls the operation of the blower 51. The microcontroller 80 increases power output to the blower 51 when the measured pressure is below a first threshold, which may include starting to deliver power to the blower 51. In this sense, the first threshold is an activation threshold. The first threshold can be less than 13.8 kPa (2 pounds per square inch), or can be 10.3 kPa (1.5 pounds per square inch) (all pressure values are relative to atmospheric pressure), for example. Increasing power output to the blower 51 when the measured pressure is below the first threshold may correspond to a condition in which the whole HVLP system 2 has just been turned on (e.g., by actuation of an on/off switch on the housing 50 or by being plugged into a standard electrical wall outlet) and the pressure in the pneumatic circuit is at zero or an atmospheric level. In this case, the microcontroller 80 causes power to be output to the blower 51 to charge up the pneumatic circuit with pressurized air, even if the trigger 22 is not actuated. The microcontroller 80 continues to monitor the pressure in the pneumatic circuit, which in this case is increasing.

[0029] The signal output by the sensor 58 is indicative of whether the trigger 22 is actuated. In the case that the sensor 58 is a pressure sensor that outputs a signal indicative of the pressure within the pneumatic circuit, the air pressure measured by the sensor 58 indicates that the trigger 22 is actuated by being at a relatively low and/or decreasing level corresponding to the pneumatic circuit emptying and not trapping air (e.g., at 34.5 kPa (5 pounds per square inch) or below), and indicates that the trigger 22 is not actuated by being at a relatively high and/or increasing level corresponding to the pneumatic circuit trapping air (e.g., at 55.2 kPa (8 pounds per square inch) or above). The control circuitry 56 can monitor the signal output by the sensor 58 and compare to one or more thresholds to assess whether the trigger 22 is actuated or not and determine whether to change or maintain the power level output to the blower 51.

[0030] The microcontroller 80 causes a decrease in power output to the blower 51 based on the pressure rising above a second threshold. Such decrease in power output may include stopping power output to the blower 51. In this sense, the second threshold can be a deactivation threshold. The second threshold can be in the range of 48.3 - 68.9 kPa (7-10 pounds per square inch), or can be 48.3 kPa (7 pounds per square inch), or can be 62.1 kPa (9 pounds per square inch), amongst other options. The second threshold can represent a state in which the pneumatic circuit is charged with pressurized air and the air is not escaping the pneumatic circuit (e.g., by the trigger 22 not being actuated, thus keeping valve 30 closed). Once charged, the pressurized air remains trapped in the pneumatic circuit by valves 30, 68, ready for use upon actuation of the trigger 22. Once the measured pressure rises above the second threshold, the microcontroller 80 can either immediately reduce power to the blower 51 (e.g., by partially or completely cutting power to the blower 51) or can start a timer while maintaining the same power output to the blower 51. The counting is performed by the microcontroller 80. The timer can be five, ten, or twenty seconds in duration, amongst other options. This time setting can be adjusted to shorter or longer durations (e.g., by a user input control, which can be a dial or button interface) to best suit the user's preferences and application of the unit.

[0031] When a timer is used in association with the second threshold, the blower 51 continues to be powered during the counting of the timer at the same level as output to the blower 51 before the pressure level was recognized to cross the second threshold. This continued operation of the blower 51 may continue to build pressure within the pneumatic circuit or may just exhaust surplus pressurized air into the housing 50 of the air supply unit 8. The low pressure nature of HVLP blower 51 means that the air pressure within the accumulator may equal the air pressure output by the blower 51 within a few seconds (e.g., 2 seconds) and before the timer expires. The purpose of the timer is to keep the blower 51 operating in case the user resumes spraying shortly after having released the trigger 22, and in which case frequent stopping and starting of the blower 51 is not desired. The time in which a user retriggers to resume spraying is most likely to be soon after having released the trigger 22 (e.g., within 20 seconds). The blower 51 is left operating during the counting of the timer so that the system continues to output pressurized air in case of retriggering by the user.

[0032] If, during the counting of the timer, the pressure level drops back below the second threshold or is otherwise measured to be unstable (e.g., the pressure changes more than a predetermined amount, such as 13.8 kPa (two pounds per square inch)), which would be due to the user again depressing the trigger 22, then the control circuitry 56 continues to maintain the same level of power output to the blower 51 (or otherwise does not decrease power to the blower 51) while canceling the current count of the __________ timer and/or otherwise terminating any sequence that may have been started to reduce power to the blower 51. It is noted that the pressure within the pneumatic circuit is usually below the second (deactivation) threshold while the trigger 22 is actuated and the valve 30 is open such that the measured pressure stays below, and does not cross the second threshold.
so long as the user continues to keep the trigger 22 actuated to continue spraying. The second threshold is set at such a level that the pressure within the pneumatic circuit will rise above the second threshold when closure of the valve 30, due to the trigger 22 no longer being actuated, stops the downstream release of pressurized air from the pneumatic circuit, thereby causing the control circuitry 56 to either immediately reduce power to the blower 51 or start the timer that may lead to reducing power to the blower 51 so long as the pressure remains above the second threshold and/or otherwise stable.

Upon expiration of the timer without the measured pressure having dropped back below the second threshold and/or the pressure having otherwise stayed stable during the counting of the time, the microcontroller 80 controls the secondary power regulator 82 to reduce the flow of electrical energy to the blower 51. The blower 51 can then remain stopped or at a lowered speed while the pneumatic circuit remains charged with air trapped between valves 30, 68, the trapped air ready to supply the gun 4 for spraying once the trigger 22 is again actuated.

When the trigger 22 is once again actuated, the accumulated volume of pressurized air in the pneumatic circuit flows through the opened valve 30 to spray paint. If the blower 51 was off or otherwise operating with reduced power when the trigger 22 was reactivated, then the pressure within the pneumatic line, as measured by the sensor 58, will drop as the valve 30 opens. A measured drop in the pressure level can initiate an increase in power output to the blower 51 by the microcontroller 80 in one or more ways, as detailed below. If the blower 51 was already on or otherwise operating with non-reduced power when the trigger 22 was reactivated, then blower 51 will continue to be supplied with the same level of power, as controlled by microcontroller 80, to provide pressurized air into the pneumatic circuit.

The following examples demonstrate various ways in which the control circuitry 56 can increase the power output to the blower 51 after having detected that the trigger 22 has been actuated. In a first example, the microcontroller 80 can be configured to increase power output to the blower 51 upon detecting the monitored pressure level dropping below a threshold (e.g., the first threshold, the second threshold, or a third threshold that is set at a pressure level between the first and second thresholds). In a second example, the microcontroller 80 can be configured to increase power output to the blower 51 upon detecting any drop in monitored pressure greater than a predetermined amount. Continuing the second example, the microcontroller 80 can be configured to increase power output to the blower 51 upon detecting a decrease in measured pressure greater than a predetermined amount, such as 20.7 kPa (3 pounds per square inch). In a third example, the microcontroller 80 can be configured to monitor the rate of change of the monitored pressure over time (e.g., by taking the derivative of the pressure signal pattern) and increase power output to the blower 51 if a rate of change of greater than a predetermined amount (e.g. 0.7 kPa (0.1 pounds per square inch) per fifty milliseconds) is detected. It is noted that one or multiple of the above criteria can be monitored and used to initiate an increase in power output to the blower 51, the power output being increased when any one of the criteria is met.

Reducing power to the blower 51 based on a sensed air parameter, as discussed herein, can include either lowering the power from a first level to a second non-zero level that is lower than the first level or stopping the flow of power to the blower 51, depending on how the control circuitry 56 in the particular embodiment is configured. Lowering the power to the second non-zero level allows the blower 51 to still rotate and be poised to quickly accelerate to its previous air flow output at the first level while reducing wear, heat generation, and noise while being supplied at the second non-zero level. Likewise, increasing power to the blower 51 based on a sensed air parameter can include resuming delivery of power to the blower 51 after a state in which no power was being output to the blower 51 or can include changing power output from the second non-zero level back to the first level. Also, accelerating the blower 51 refers to increasing the rotational speed of the fan, turbine, impeller, or other bladed component of the blower 51 to increase its output of HVLP air. The blower 51 is accelerated by increasing the power output to the motor 55 of the blower 51. The blower 51 may be accelerated from a dead stop or accelerated from a first non-zero speed to a second speed that is greater than the first speed.

In summary of the preferred embodiment, the control circuitry 56 directs power to the blower 51 to move HVLP air through the pneumatic circuit and into the gun 4 as long as the trigger 22 remains actuated. When the user releases the trigger of the gun 4 to an unactuated state, the flow of air through the pneumatic circuit will be stopped by closure of valve 30. This will result in an increase in pressure within the pneumatic circuit. Very soon after the closure of valve 30 (e.g., within 3 seconds), the valve 68 will close as the pressure gradient upstream and downstream from the valve 68 equalizes due to a lack of continuous flow through the pneumatic circuit. Based on the signal output by the sensor 58 indicative of the pressure within the pneumatic circuit, the control circuitry 56 will recognize that the pressure within the pneumatic circuit has crossed a threshold pressure (e.g., the first, second, or third threshold discussed above). The control circuitry 56 will then initiate the counting of a timer. The timer will begin to count to a predetermined value (e.g., 10 seconds) and then stop outputting power to the blower 51 if the pressure is maintained above the threshold and/or some other pressure threshold is not breached while the timer is counting to the predetermined value. If the pressure is not maintained during the counting, then the blower 51 shutoff sequence will be canceled and the blower 51 will continue to be powered at the same level at least until the next time the pressure within the pneu-
matic circuit completes with the pressure being maintained above the threshold and/or some other pressure threshold is not breached while the timer is counting to the predetermined value, then the control circuitry 56 will turn off power to the blower 51 and the pneumatic circuit will hold pressure, the hose 10 functioning as an accumulator ready to supply pressurized air when the trigger 22 is again actuated. When the user pulls the trigger 22 to an actuated state, the valve 30 will open to allow pressurized air trapped within the pneumatic circuit to flow through the gun 4 to spray paint even though the blower 51 is off (or accelerating). Upon the release of pressurized air from the pneumatic circuit while the blower 51 is off (or accelerating), the control circuitry 56 will recognize that the pressure within the pneumatic circuit has dropped below a threshold pressure (e.g., the first, second, or third threshold discussed above) and will immediately resume output of power to the blower 51. Upon the blower 51 reestablishing positive air flow, the valve 68 will re-open due to the upstream pressure being greater than the downstream pressure and the system will once again run in a sustained spraying mode so long as the trigger 22 remains actuated. It is noted that the measured pressure rising above a threshold indicates that the pressure has increased while the measured pressuring falling below a threshold indicates that the pressure has decreased.

[0038] In an alternative design, the sensor 58 is an air flow sensor placed in the pneumatic circuit, such as within the air flow path with fitting 14. The air flow sensor can be a hot wire mass airflow sensor or a spring-loaded air flap attached to a potentiometer, amongst other options. The air flow sensor outputs a signal to the microcontroller 80 indicative of the mass of air flow in the pneumatic circuit. The level of air flow as indicated by the signal can be used to increase and decrease power output to the blower 51 by the control circuitry 56 in the same manner as when a pressure sensor output the signal as discussed herein. As such, the conditions for increasing and decreasing power to the blower 51 as described based on pressure as described herein can apply to a system using an airflow sensor instead of a pressure sensor, wherein low or no air flow corresponds to a low or no pressure condition (in which the control circuitry 56 increases power to the blower 51) and high air flow corresponds to a high pressure condition (in which the control circuitry 56 decreases power to the blower 51). Therefore, all options discussed herein for a blower 51 modulated by an air pressure signal can be applied similarly in a system modulated by an air flow signal.

[0039] The benefits of this designs presented herein include the ability to achieve good spray atomization due to the use of the hose 10 as an accumulator to provide instant positive air flow when the trigger 22 is first actuated even if the blower 51 is not powered, is operating at a low power setting, and/or is accelerating to a higher speed. The transition from using trapped air in the pneumatic circuit for spraying to using pressurized air continuously flowing from the blower 51 (once fully accelerated) for spraying can be seamless to the user. Allowing the blower 51 to stop or operate at a low power setting when the trigger 22 is not actuated minimizes motor wear, energy consumption, heat generation, and noise.

[0040] The present disclosure is made using an embodiment and examples to highlight various inventive aspects. Modifications can be made to the embodiment presented herein without departing from the scope of the invention. As such, the scope of the invention is not limited to the embodiment disclosed herein but is defined by the claims.

Claims

1. A sprayer (2) comprising:

 a. an air supply unit (8) comprising a motor (55), the air supply unit (8) configured to output a high volume flow of pressurized air by operation of the motor (55);
 b. a hose (10) having a first end and a second end, the first end receiving the pressurized air output by the air supply unit (8);
 c. a spray gun (4) having a trigger (22) and a first valve (30), the second end of the hose (10) connected to the spray gun (4), wherein actuation of the trigger (22) causes the first valve (30) to open and the spray gun (4) to spray fluid using the pressurized air from the hose (10);
 d. a second valve (68) located upstream of the hose (10) and through which at least some of the pressurized air output by the air supply unit (8) flows;
 e. a sensor (58) that outputs a signal indicative of whether the trigger (22) is actuated; and
 f. control circuitry (56) that receives the signal and regulates power output to the motor (55), wherein a volume of the pressurized air is trapped within the hose (10) by the first and second valves (30, 68) when the first and second valves are closed, and the volume of the pressurized air is used by the spray gun (4) for spraying while the trigger (22) is actuated yet the motor (55) is accelerating, characterized in that the control circuitry (56) is configured to reduce electrical power output to the motor (55) so as to stop the motor (55) based on the signal indicating that the trigger (22) is not actuated, and increase electrical power output to the motor (55) so as to restart the motor (55) based on the signal indicating that the trigger (22) is actuated.

2. The sprayer (2) of claim 1, wherein the sensor (58) is a pressure sensor.
3. The sprayer (2) of either of claims 1 or 2, wherein the signal is indicative of a parameter of the pressurized air when the pressurized air is either trapped or flowing between the first and second valves (30, 68).

4. The sprayer (2) of claim 3, wherein the control circuitry (56) is configured to reduce electrical power output to the motor (55) based on the signal indicating that the trigger (22) is not actuated by indicating that the parameter of the pressurized air has increased.

5. The sprayer (2) of either of claims 3 or 4, wherein the control circuitry (56) is configured to increase electrical power output to the motor (55) based on the signal indicating that the pressure of the pressurized air has decreased.

6. The sprayer (2) of any preceding claim, wherein the sensor (58) is exposed to pressurized air via a tube (54) that branches from a pneumatic circuit between the first and second valves (30, 68).

7. The sprayer (2) of any preceding claim, wherein the second valve (68) is located within a fitting to which the hose (10) attaches.

8. The sprayer (2) of any preceding claim, wherein the second valve (68) is a check valve.

9. The sprayer (2) of any preceding claim, wherein the first valve (30) is located within a body of the spray gun (4).

10. The sprayer (2) of any preceding claim, wherein the air supply unit (8) comprises a blower (51).

11. The sprayer (2) of any preceding claim, wherein, in reaction to actuation of the trigger (22), the volume of the pressurized air that was trapped in the hose (10) is released into the spray gun (4) and used for spraying fluid while the control circuitry (56) increases electrical power output to the motor (55) to accelerate the motor (55) to resupply pressurized air to the hose (10).

12. The sprayer (2) of any preceding claim, wherein the control circuitry (56) is configured to reduce electrical power output to the motor (55) based on the signal indicating that the trigger (22) was not actuated during the counting of the timer.

13. The sprayer (2) of any preceding claim, wherein the control circuitry (56) is configured to reduce the supply of electrical power to the motor (55) based on the signal indicating that the trigger (22) is not actuated by stopping delivery of power to the motor (55).

14. The sprayer (2) of any preceding claim, wherein the control circuitry (56) is configured to increase the supply of electrical power to the motor (55) based on the signal indicating that the trigger (22) is actuated by resuming delivery of power to the motor (55).

15. The sprayer (2) of any preceding claim, further comprising a fluid reservoir (6) attached to the spray gun (4) from which the spray gun (4) draws fluid for spraying.

16. A method of controlling a sprayer (2) comprising:

- providing power to a motor (55) of an air supply unit (8) based on a signal output from a sensor (58), the air supply unit (8) outputting a high volume flow of pressurized air, the pressurized air flowing within a hose (10) and through two valves (30, 68), the two valves respectively located upstream and downstream of the hose (10), the signal indicative of a parameter of the pressurized air within the hose (10);
- reducing power to the motor (55) and thereby stopping the motor (55) based on the signal indicating an increase in the level of the parameter;
- increasing power to the motor (55) and thereby restarting the motor (55) based on the signal indicating a decrease in the level of the parameter; and
- spraying fluid from a spray gun (4) using a volume of the pressurized air while performing the step of increasing power to the motor (55), the volume of pressurized air previously having been trapped in the hose (10) between the two valves (30, 68) while the two valves were closed and while a trigger (22) of the spray gun (4) was not actuated, the volume of pressurized air being released due to actuation of the trigger (22) opening one of the two valves (30, 68), wherein the gun (4) receives the pressurized air from the hose (10) and each of the steps of providing, reducing, and increasing are performed by control circuitry (56).

17. The method of claim 16, wherein:

- the parameter is pressure of the pressurized air, the step of reducing power to the motor (55) based on the signal indicating the increase in the parameter comprises stopping delivery of
power to the motor (55), and
the step of increasing power to the motor (55)
based on the signal indicating the decrease in
the parameter comprises resuming delivery of
power to the motor (55).

18. The method of either of claims 16 or 17, wherein the
step of reducing power to the motor (55) of the air
supply unit (8) based on the signal indicating an in-
crease in the parameter comprises:

- starting a timer for a predetermined amount of
time,
- starting the reduction in electrical power output
to the motor (55) if the signal indicates that the
trigger (22) was not actuated during the counting
of the timer,
- not reducing electrical power output to the motor
(55) if the signal indicates that the trigger (22)
was actuated during the counting of the timer.

Patentansprüche

1. Spritzvorrichtung (2), die Folgendes umfasst:

eine Luftzufuhreinheit (8), die einen Motor (55)
umfasst, wobei die Luftzufuhreinheit (8) dafür
konfiguriert ist, einen volumenstarken Druckluft-
strom mittels des Betriebes des Motors (55) aus-
zugeben;
einen Schlauch (10) mit einem ersten Ende und
einem zweiten Ende, wobei das erste Ende die
 durch die Luftzufuhreinheit (8) ausgegebene
Druckluft empfängt;
eine Spritzpistole (4) mit einem Auslöser (22)
und einem ersten Ventil (30), wobei das zweite
Ende des Schlauches (10) mit der Spritzpistole
(4) verbunden ist, wobei eine Betätigung des
Auslösers (22) bewirkt, dass sich das erste Ven-
til (30) öffnet und die Spritzpistole (4) Fluid unter
Verwendung der Druckluft von dem Schlauch
(10) spritzt;
ein zweites Ventil (68), das stromaufwärts des
Schlauches (10) angeordnet ist und durch das
mindestens ein Teil der durch die Luftzufuhrein-
heit (8) ausgegebenen Druckluft strömt;
einen Sensor (58), der ein Signal ausgibt, das
anzeigen, ob der Auslöser (22) betätigt wird; und
eine Steuerschaltung (56), die das Signal emp-
fängt und die Stromausgabe an den Motor (55)
regelt,
wobei ein Volumen der Druckluft innerhalb des
Schlauches (10) durch das erste und das zweite
Ventil (30, 68) eingeschlossen wird, wenn das
erne und das zweite Ventil geschlossen sind,
und das Volumen der Druckluft durch die Spritz-
pistole (4) zum Spritzen verwendet wird, wäh-
rend der Auslöser (22) betätigt wird, der Motor
(55) aber beschleunigt, dadurch gekennzeich-
net, dass
die Steuerschaltung (56) dafür konfiguriert ist,
die elektrische Leistungsspannung an den Motor
(55) so zu reduzieren, dass der Motor (55) ge-
stoppt wird, wenn das Signal zeigt, dass der
Auslöser (22) nicht betätigt wird, und die elek-
trische Leistungsspannung an den Motor (55) zu
erhöhen, um den Motor (55) neu zu starten,
und das Signal zeigt, dass der Auslöser (22)
betätigt wird.

2. Spritzvorrichtung (2) nach Anspruch 1, wobei der
Sensor (58) ein Drucksensor ist.

3. Spritzvorrichtung (2) nach einem der Ansprüche 1
oder 2, wobei das Signal einen Parameter der Druck-
luft anzeigt, wenn die Druckluft entweder zwischen
dem ersten und zweiten Ventil (30, 68) eingeschlos-
sen ist oder strömt.

4. Spritzvorrichtung (2) nach Anspruch 3, wobei die
Steuerschaltung (56) dafür konfiguriert ist, die elek-
trische Leistungsspannung an den Motor (55) zu redu-
zieren, wenn das Signal zeigt, dass der Auslöser
(22) nicht betätigt wird, indem angezeigt wird, dass
der Parameter der Druckluft größer geworden ist.

5. Spritzvorrichtung (2) nach einem der Ansprüche 3
oder 4, wobei die Steuerschaltung (56) dafür konfi-
guriert ist, die elektrische Leistungsspannung an den
Motor (55) zu erhöhen, wenn das Signal zeigt, dass
der Auslöser (22) betätigt wird, indem ange-
zeigt wird, dass der Druck der Druckluft kleiner ge-
worden ist.

6. Spritzvorrichtung (2) nach einem der vorangehen-
den Ansprüche, wobei der Sensor (58) über ein Rohr
(54) mit Druckluft in Kontakt gebracht wird, das von
einem Druckluftkreis zwischen dem ersten und zwei-
ten Ventil (30, 68) abzweigt.

7. Spritzvorrichtung (2) nach einem der vorangehen-
den Ansprüche, wobei das zweite Ventil (68) inner-
halb eines Anschlussstücks angeordnet ist, an das
der Schlauch (10) angeschlossen ist.

8. Spritzvorrichtung (2) nach einem der vorangehen-
den Ansprüche, wobei das zweite Ventil (68) ein
Rückschlagventil ist.

9. Spritzvorrichtung (2) nach einem der vorangehen-
den Ansprüche, wobei das erste Ventil (30) innerhalb
eines Körpers der Spritzpistole (4) angeordnet ist.

10. Spritzvorrichtung (2) nach einem der vorangehen-
den Ansprüche, wobei die Luftzufuhreinheit (8) ein
11. Spritzvorrichtung (2) nach einem der vorangehenden Ansprüche, wobei, in Reaktion auf das Betätigen des Auslöser (22), das Volumen der Druckluft, die in dem Schlauch (10) eingeschlossen war, in die Spritzpistole (4) hinein freigegeben wird und dafür verwendet wird, Fluid zu spritzen, während die Steuerschaltung (56) die elektrische Leistungsabgabe an den Motor (55) erhöht, um den Motor (55) zu beschleunigen, um erneut Druckluft in den Schlauch (10) zu leiten.

12. Spritzvorrichtung (2) nach einem der vorangehenden Ansprüche, wobei die Steuerschaltung (56) dafür konfiguriert ist, die elektrische Leistungsabgabe an den Motor (55) zu reduzieren, wenn das Signal anzeigt, dass der Auslöser (22) nicht betätigt wird, indem ein Timer für eine zuvor festgelegte Zeitdauer gestartet wird und dann die elektrische Leistungsabgabe an den Motor (55) reduziert wird, wenn das Signal anzeigt, dass der Auslöser (22) während des Zählers des Timers nicht betätigt wurde, aber die elektrische Leistungsabgabe an den Motor (55) nicht reduziert wird, wenn das Signal anzeigt, dass der Auslöser (22) während des Zählers des Timers betätigt wurde.

13. Spritzvorrichtung (2) nach einem der vorangehenden Ansprüche, wobei die Steuerschaltung (56) dafür konfiguriert ist, die Zufuhr von elektrischem Strom zu dem Motor (55) zu reduzieren, wenn das Signal anzeigt, dass der Auslöser (22) nicht betätigt wird, indem die Zufuhr von Strom zu dem Motor (55) gestoppt wird.

14. Spritzvorrichtung (2) nach einem der vorangehenden Ansprüche, wobei die Steuerschaltung (56) dafür konfiguriert ist, die Zufuhr von elektrischem Strom zu dem Motor (55) zu erhöhen, wenn das Signal anzeigt, dass der Auslöser (22) betätigt wird, indem die Zufuhr von Strom zu dem Motor (55) wiederaufgenommen wird.

15. Spritzvorrichtung (2) nach einem der vorangehenden Ansprüchen, die des Weiteren ein Fluidreservoir (6) umfasst, das an die Spritzpistole (4) angeschlossen ist und aus dem die Spritzpistole (4) Fluid zum Spritzen entnimmt.

16. Verfahren zum Steuern einer Spritzvorrichtung (2), das Folgendes umfasst:

Zuführen von Strom zu einem Motor (55) einer Luftzufuhrleitung (8) auf der Basis eines von einem Sensor (58) ausgegebenen Signals, wobei die Luftzufuhrleitung (8) einen Volumenstrom ausgibt, wobei die Druckluft in-

nerhalb eines Schlauches (10) und durch zwei Ventile (30, 68) strömt, wobei die zwei Ventile stromabwärts bzw. stromaufwärts des Schlauches (10) angeordnet sind, wobei das Signal einen Parameter der Druckluft innerhalb des Schlauches (10) anzeigt; Reduzieren des Stroms zu dem Motor (55) und dadurch Stoppen des Motors (55) auf der Basis des Signals, was anzeigt eine Erhöhung des Wertes des Parameters anzeigt; Erhöhen des Stroms zu dem Motor (55) und dadurch erneutes Starten des Motors (55) auf der Basis des Signals, was eine Verringerung des Wertes des Parameters anzeigt; Spritzen von Fluid von einer Spritzpistole (4) unter Verwendung eines Volumens der Druckluft während der Ausführung des Schrittes des Erhöhens des Stroms zu dem Motor (55), wobei das Druckluftvolumen zuvor in dem Schlauch (10) zwischen den zwei Ventilen (30, 68) eingeschlossen war, während die zwei Ventile geschlossen waren und während ein Auslöser (22) der Spritzpistole (4) nicht betätigt wurde, wobei das Druckluftvolumen freigegeben wird, indem der Auslöser (22) betätigt wird, wodurch eines der zwei Ventile (30, 68) geöffnet wird, wobei die Pistole (4) die Druckluft von dem Schlauch (10) empfängt und jeder der Schritte des Zuführens, des Reduzierens und des Erhöhens durch die Steuerschaltung (56) ausgeführt wird.

17. Verfahren nach Anspruch 16, wobei:

18. Verfahren nach einem der Ansprüche 16 und 17, wobei der Schritt des Reduzierens des Stroms zu dem Motor (55) der Luftzufuhrleitung (8), wenn das Signal eine Erhöhung des Parameters anzeigt, Folgendes umfasst:

Starten eines Timers für eine zuvor festgelegte Zeitdauer, Starten der Reduzierung der elektrischen Leistungsabgabe an den Motor (55), wenn das Signal anzeigt, dass der Auslöser (22) während des Zählers des Timers nicht betätigt wurde, nicht Reduzieren der elektrischen Leistungsab-
gabe an den Motor (55), wenn das Signal anzeigt, dass der Auslöser (22) während des Zählers des Timers betätigt wurde.

Revendications

1. Pulvérisateur (2) comprenant :
 une unité d’alimentation d’air (8) comprenant un moteur (55), l’unité d’alimentation d’air (8) étant configurée pour délivrer un flux à volume élevé d’air pressurisé par le fonctionnement du moteur (55) ;
 un tuyau flexible (10) ayant une première extrémité et une seconde extrémité, la première extrémité recevant l’air pressurisé sorti par l’unité d’alimentation d’air (8) ;
 un pistolet de pulvérisation (4) ayant un déclencheur (22) et une première valve (30), la seconde extrémité du tuyau flexible (10) étant raccordée au pistolet de pulvérisation (4), dans lequel l’actionnement du déclencheur (22) amène la première valve (30) à s’ouvrir et le pistolet de pulvérisation (4) à pulvériser un fluide en utilisant l’air pressurisé provenant du tuyau flexible (10) ;
 une seconde valve (68) située en amont du tuyau flexible (10) et à travers laquelle au moins une partie de l’air pressurisé sorti par l’unité d’alimentation d’air (8) s’écoule ;
 un capteur (58) qui émet un signal indiquant le déclencheur (22) est actionné ; et
 un circuit de commande (56) qui reçoit le signal est régulé une puissance de sortie vers le moteur (55), dans lequel un volume de l’air pressurisé est piégé à l’intérieur du tuyau flexible (10) par la première et la seconde valve (30, 68) lorsque la première et la seconde valve sont fermées, et le volume de l’air pressurisé et utilisé par le pistolet de pulvérisation (4) pour la pulvérisation alors que le déclencheur (22) est actionné alors que le moteur (55) est en train d’accélérer, caractérisé en ce que
 le circuit de commande (56) est configuré afin de régler une puissance électrique sortie vers le moteur (55) de manière à arrêter le moteur (55) sur la base du signal indiquant que le déclencheur (22) n’est pas actionné et augmenter une puissance électrique sortie vers le moteur (55) de manière à redémarrer le moteur (55) sur la base du signal indiquant que le déclencheur (22) est actionné.

2. Pulvérisateur (2) selon la revendication 1, dans lequel le capteur (58) est un capteur de pression.

3. Pulvérisateur (2) selon l’une ou l’autre des revendications 1 ou 2, dans lequel le signal indique un paramètre de l’air pressurisé lorsque l’air pressurisé est soit piégé soit s’écoule entre la première et la seconde valve (30, 68).

4. Pulvérisateur (2) selon la revendication 3, dans lequel le circuit de commande (56) est configuré pour réduire la puissance électrique sortie vers le moteur (55) sur la base du signal indiquant que le déclencheur (22) n’est pas actionné en indiquant que le paramètre de l’air pressurisé a augmenté.

5. Pulvérisateur (2) selon l’une ou l’autre des revendications 1 ou 2, dans lequel le circuit de commande (56) est configuré pour augmenter une puissance électrique sortie vers le moteur (55) sur la base du signal indiquant que le déclencheur (22) est actionné en indiquant que la pression de l’air pressurisé a diminué.

6. Pulvérisateur (2) selon une quelconque des revendications précédentes, dans lequel le capteur (58) est exposé à l’air pressurisé via un tube (54) qui s’embranche à partir d’un circuit pneumatique entre la première et la seconde valve (30, 68).

7. Pulvérisateur (2) selon une quelconque des revendications précédentes, dans lequel la seconde valve (68) est située à l’intérieur d’un raccord auquel le tuyau flexible (10) se rattle.

8. Pulvérisateur (2) selon une quelconque des revendications précédentes, dans lequel la valve (68) est un clapet anti retour.

9. Pulvérisateur (2) selon une quelconque des revendications précédentes, dans lequel la première valve (30) est située à l’intérieur d’un corps du pistolet de pulvérisation (4).

10. Pulvérisateur (2) selon une quelconque des revendications précédentes, dans lequel l’unité d’alimentation d’air (8) comprend un ventilateur (51).

11. Pulvérisateur (2) selon une quelconque des revendications précédentes, dans lequel, en réaction à l’actionnement du déclencheur (22), le volume de l’air pressurisé qui a été piégé dans le tuyau flexible (10) est libéré à l’intérieur du pistolet de pulvérisation (4) et utilisé pour pulvériser du fluide alors que le circuit de commande (56) augmente la puissance électrique sortie vers le moteur (55) pour accélérer le moteur (55) afin de réalimenter l’air pressurisé dans le tuyau flexible (10).

12. Pulvérisateur (2) selon une quelconque des revendications précédentes, dans lequel le circuit de com-
mande (56) est configuré pour régler une puissance électrique sortie vers le moteur (55) sur la base du signal indiquant que le déclencheur (22) n’est pas actionné en : démarrant un temporisateur pendant une période de temps prédéterminé et ensuite réduisant la puissance électrique sortie vers le moteur (55) si le signal indique que le déclencheur (22) n’a pas été actionnée pendant le comptage du temporisateur, mais ne réduisant pas la puissance électrique sortie vers le moteur (55) si le signal indique que le déclencheur (22) a été actionné pendant le comptage du temporisateur.

13. Pulvérisateur (2) selon une quelconque des revendications précédentes, dans lequel le circuit de commande (56) est configuré pour régler une puissance électrique sortie vers le moteur (55) sur la base du signal indiquant que le déclencheur (22) n’est pas actionné en : démarrant un temporisateur pendant une période de temps prédéterminé et ensuite réduisant la puissance électrique sortie vers le moteur (55) si le signal indique que le déclencheur (22) n’a pas été actionnée pendant le comptage du temporisateur, mais ne réduisant pas la puissance électrique sortie vers le moteur (55) si le signal indique que le déclencheur (22) a été actionné pendant le comptage du temporisateur.

14. Pulvérisateur (2) selon une quelconque des revendications précédentes, dans lequel le circuit de commande (56) est configuré pour régler une puissance électrique sortie vers le moteur (55) sur la base du signal indiquant que le déclencheur (22) n’est pas actionné en : démarrant un temporisateur pendant une période de temps prédéterminé et ensuite réduisant la puissance électrique sortie vers le moteur (55) si le signal indique que le déclencheur (22) n’a pas été actionnée pendant le comptage du temporisateur, mais ne réduisant pas la puissance électrique sortie vers le moteur (55) si le signal indique que le déclencheur (22) a été actionné pendant le comptage du temporisateur.

15. Pulvérisateur (2) selon une quelconque des revendications précédentes, comprenant en outre un réservoir de fluide (6) fixé au pistolet de pulvérisation (4) à partir duquel le pistolet de pulvérisation (4) extrait du fluide pour la pulvérisation.

16. Procédé de commande de pulvérisateur (2) comprenant de :

- fournir une alimentation électrique à un moteur (55) d’une unité d’alimentation d’air (8) sur la base d’un signal sorti d’un capteur (58), l’unité d’alimentation d’air (8) fournissant un flux à volume élevé d’air pressurisé, l’air pressurisé circulant à l’intérieur d’un tuyau flexible (10) et à travers deux valves (30, 68), les deux valves étant respectivement situées en amont et en aval du tuyau flexible (10), le signal indiquant un paramètre de l’air pressurisé à l’intérieur du tuyau flexible (10), réduire l’alimentation électrique vers le moteur (55) et ainsi arrêter le moteur (55) sur la base du signal indiquant une augmentation d’un niveau du paramètre ;
- augmenter l’alimentation électrique vers le moteur (55) et ainsi redémarrer le moteur (55) sur la base du signal indiquant une diminution du niveau du paramètre ; et
- pulvériser du fluide à partir d’un pistolet de pulvérisation (4) en utilisant un volume de l’air pressurisé tout en effectuant l’étape d’augmentation d’alimentation électrique vers le moteur (55), le volume d’air pressurisé ayant été précédemment piégé dans le tuyau flexible (10) entre les deux valves (30, 68) et les deux valves étaient fermées et pendant qu’un déclencheur (22) du pistolet de pulvérisation (4) n’était pas actionné, le volume d’air pressurisé étant libéré en raison de l’actionnement du déclencheur (22) ouvrant une des deux soupapes (30, 68), dans lequel le pistolet (4) reçoit l’air pressurisé provenant du tuyau flexible (10) et chacune des états de fourniture, réduction et augmentation sont effectuées par un circuit de commande (56).

17. Procédé selon la revendication 16, dans lequel :

- le paramètre et la pression de l’air pressurisé ;
- l’étape de réduction de l’alimentation électrique vers le moteur (55) basée sur le signal indiquant l’augmentation dans le paramètre comprend d’arrêter la fourniture d’alimentation électrique au moteur (55), et l’étape d’augmentation de l’alimentation électrique vers le moteur (55) sur la base du signal indiquant la diminution dans le paramètre comprend de reprendre la fourniture d’alimentation électrique au moteur (55).

18. Procédé selon l’une ou l’autre des revendications 16 ou 17, dans lequel l’étape de réduction d’alimentation écrit vers le moteur (55) de l’unité d’alimentation d’air (8) basée sur le signal indiquant une augmentation du paramètre comprend de :

- démarrer un temporisateur pendant une période de temps prédéterminée,
- démarrer la réduction de la puissance électrique sortie vers le moteur (55) si le signal indique que le déclencheur (22) n’a pas été actionnée pendant le comptage du temporisateur,
- ne pas réduire la puissance électrique sortie vers le moteur (55) si le signal indique que le déclencheur (22) a été actionné pendant le comptage du temporisateur.
FIG. 5
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5074467 A [0002]