LEACHING METHOD FOR LITHIUM ION BATTERY SCRAP AND METHOD FOR RECOVERING METAL FROM LITHIUM ION BATTERY SCRAP

An object of the present invention is to provide a method for leaching lithium ion battery scrap and a method for recovering metals from the lithium ion battery scrap, which can effectively reduce treatment costs. The method for leaching the lithium ion battery scrap according to the present invention comprises leaching the scrap of the lithium ion battery containing nickel and/or cobalt in an acidic solution, the method comprising a metal leaching step of leaching nickel and/or cobalt by adding, together with the scrap, at least one of simple substances of manganese and/or iron, compounds of manganese and/or iron and a solution containing metal ions of manganese and/or iron which are not contained in the scrap, to the acidic solution so that the metal ions of manganese and/or iron are present in the acidic solution, and then contacting nickel and/or cobalt contained in the scrap with the metal ions of manganese and/or iron in the acidic solution containing the metal ions of manganese and/or iron.

Fig. 1

Battery Slag

Leaching Step

Leached Residue
MnO₂ precipitated

Leached Solution
Co, Ni, Li, partially Mn,
Al, Cu, Fe dissolved

Solvent Extraction

Fe, Al recovered

Solvent Extraction
Mn, Cu recovered

Solvent Extraction
Co recovered

Solvent Extraction
Ni recovered

Separation and Recovery Step

Li Solution
Description

TECHNICAL FIELD

[0001] The present invention relates to a method for leaching lithium ion battery scrap containing nickel and/or cobalt and a method for recovering defined metals from the lithium ion battery scrap. More particularly, it proposes a technique that can contribute to reduction of costs required for treating the lithium ion battery scrap.

BACKGROUND ART

[0002] Lithium ion batteries used in various industrial fields including various electronic devices employ lithium metal salts containing manganese, nickel and cobalt as positive electrode materials. In recent years, there have been circumstances where quantities of the lithium ion batteries to be used have been increased and the range of use of the battery has been expanded, so that quantities of the lithium ion batteries to be discarded have been increased due to product lives of the batteries and defects in the manufacturing processes.

Under such circumstances, it would be desired to easily recover expensive elements such as nickel and cobalt as stated above from the lithium ion battery scrap discarded in large quantities, with a relatively lower cost for recycling.

[0003] In order to treat the lithium ion battery scrap for recovering valuable metals, for example, powdered or particulate lithium ion battery scrap obtained via steps of calcining, crushing, sieving and the like as required are first acid-leached using hydrogen peroxide water, and lithium, nickel, cobalt, manganese, iron, copper, aluminum, and the like that can be contained therein are then dissolved in a solution to provide a leached solution. Subsequently, the leached solution is subjected to a solvent extraction method to sequentially separate the respective metal elements. Here, each valuable metal can be recovered by first recovering iron and aluminum, then manganese and copper, then cobalt, then nickel, and finally leaving lithium in the aqueous phase.

[0004] In addition, as methods for recovering valuable metals from secondary batteries such as lithium ion batteries, Patent Documents 1 and 2 disclose "a method for recovering valuable metals from Co, Ni, Mn-containing lithium battery residue" and "a method for recovering a metal from a discarded battery", respectively.

CITATION LIST

[0005]

SUMMARY OF INVENTION

Problem to be Solved by the Invention

[0006] In the treatment methods of the lithium ion battery scrap as stated above, the addition of hydrogen peroxide water as a reducing agent is required for acid-leaching the target metals contained in the lithium ion battery scrap, in order to improve recovery rates of metals to be recovered such as lithium, manganese, nickel and cobalt. In particular, since a positive electrode active material that may be contained in the lithium ion battery scrap is in the form of oxide of lithium and the like, a large amount of hydrogen peroxide water as the reducing agent will be also required in order to sufficiently leach the positive electrode active material.

Therefore, since the hydrogen peroxide water is relatively expensive, the above treatment methods have had a problem that the treatment costs are greatly increased due to the addition of a large amount of hydrogen peroxide water.

[0007] Further, metals other than the expensive metals, such as manganese contained in the leached solution in the above treatment methods can be recovered by the solvent extraction method in a subsequent step, as described above. However, in this case, there are problems that man-hours for extracting the metals by the solvent are increased so that costs are increased, as well as depending on the form of the metal to be recovered after the solvent extraction, it cannot be reused as it is, so that further treatment is required.

[0008] An object of the present invention is to solve such problems of the prior arts, and to provide a method for leaching lithium ion battery scrap and a method for recovering metals from the lithium ion battery scrap, which can decrease an amount of expensive hydrogen peroxide water to be added for leaching the lithium ion battery scrap, or eliminate the addition of hydrogen peroxide water, and can easily recover the metals and the like other than expensive metals to effectively reduce treatment costs.

Means for Solving the Problem

[0009] The present inventors have found that when leaching scrap of a lithium ion battery containing nickel and/or cobalt in an acidic solution, the leaching of nickel and/or cobalt can be effectively promoted by adding manganese and/or iron which are not contained in the scrap of the lithium ion battery to the acidic solution together with the scrap so that metal ions of manganese and/or iron dissolved in the acidic solution are contacted with nickel and/or cobalt.

Further, the present inventors have found that when leaching the scrap in the acidic solution, the metal ions of manganese and/or iron dissolved in the acidic solution are precipitated and can be recovered from the leached solution by solid-liquid separation or the like.
The present inventors have considered that this will allow reduction or elimination of the hydrogen peroxide water which was conventionally required to be added in a large amount, thereby reducing treatment costs.

Based on such findings, the present invention provides a method for leaching lithium ion battery scrap comprising leaching the scrap of the lithium ion battery containing nickel and/or cobalt in an acidic solution, the method comprising a metal leaching step of leaching nickel and/or cobalt by adding, together with the scrap, at least one of simple substances of manganese and/or iron, compounds of manganese and/or iron and a solution containing metal ions of manganese and/or iron which are not contained in the scrap, to the acidic solution, so that the metal ions of manganese and/or iron are present in the acidic solution, and then contacting nickel and/or cobalt contained in the scrap with the metal ions of manganese and/or iron in the acidic solution containing the metal ions of manganese and/or iron.

Preferably, in the metal leaching step, the metal ions of manganese and/or iron present in the acidic solution are precipitated as oxides by oxidation.

Further preferably, in the metal leaching step, a raw material of a positive electrode active material for the lithium ion battery is added together with the scrap to the acidic solution, wherein the raw material of the positive electrode active material for the lithium ion battery contains compounds of manganese and/or iron.

The method for recovering the metals from the lithium ion battery scrap according to the present invention comprises the metal leaching step in any one of the above methods for leaching the lithium ion battery scrap and a separation and recovery step of separating manganese and/or iron leached in a leached solution obtained in the metal leaching step from nickel and/or cobalt by solvent extraction and recovering manganese and/or iron from the leached solution.

In this recovery method, preferably, the solution containing the metal ions of manganese and/or iron, or the compounds of manganese and/or iron, which are added together with the scrap to the acidic solution in the metal leaching step is/are an acidic solution resulting from inverse extraction of the solvent containing manganese and/or iron in the separation and recovery step, or compounds of manganese and/or iron produced from the acidic solution.

Effects of the Invention

According to the present invention, it is possible to facilitate the leaching of nickel and/or cobalt without addition of a large amount of hydrogen peroxide water, by adding, in the metal leaching step, at least one of simple substances of manganese and/or iron; compounds of manganese and/or iron; and a solution containing metal ions of manganese and/or iron, together with scrap to an acidic solution, so that the metal ions of manganese and/or cobalt are present in the acidic solution and are brought into contact with nickel and/or cobalt contained in the scrap.

Further, manganese and/or iron can be easily recovered from the leached solution because the metal ions of manganese and/or iron added are brought into contact with nickel and/or cobalt in the acidic solution, so that manganese and/or iron are deposited/precipitated. Consequently, according to the present invention, it is possible to effectively reduce costs required for treating the lithium ion battery scrap, as compared with the conventional methods.

MODES FOR CARRYING OUT THE INVENTION

Hereinafter, embodiments of the present invention will be described in detail.

One embodiment of the method for leaching the lithium ion battery scrap according to the present invention relates to a method for leaching the scrap of the lithium ion battery containing nickel and/or cobalt in an acidic solution, the method comprising a metal leaching step of adding at least one of simple substances of manganese and/or iron; compounds of manganese and/or iron and a solution containing metal ions of manganese and/or iron, which are metals that are not contained in the scrap, together with the scrap to the acidic solution, so that the metal ions of manganese and/or iron are present in the acidic solution, and then contacting nickel and/or cobalt contained in the scrap with the metal ions of manganese and/or iron in the acidic solution containing the metal ions of manganese and/or iron.

(Lithium Ion Battery Scrap)

The lithium ion battery scrap that can be used in the present invention may be so-called battery slags, positive electrode materials or positive electrode active materials with aluminum foil or at least one of these, which were discarded due to lifetimes of battery products, manufacturing defects or other reasons, or those resulting from optional calcination, chemical treatment, crushing and/or sieving of the battery slags and the like, as stated below. However, such calcination, chemical treatment, crushing or sieving may not be required depending on a type of lithium ion battery scrap and the like.

Here, for example when the lithium ion battery
scrap is the battery slag, the lithium ion battery scrap may generally contain single metal oxides consisting of one or more elements selected from the group consisting of lithium, nickel, cobalt, and manganese which form the positive electrode active material, or composite metal oxides consisting of two or more of the elements, as well as aluminum, copper, iron, and the like. Alternatively, when the scrap is the positive electrode active material, the lithium ion battery scrap may generally contain the above single metal oxides or composite metal oxides. Further, when the scrap is the positive electrode material with aluminum foil, aluminum may be further contained in addition to the single metal oxides or composite metal oxides.

(Calcination Step)

[0021] The above lithium ion battery scrap may be optionally calcined by an already known method. This will allow unnecessary compounds contained in the lithium ion battery scrap to decompose, burn or volatilize. A heating furnace that can be used for performing calcination includes a fixed bed furnace, an electric furnace, a heavy oil furnace, a kiln furnace, a stoker furnace, a fluidized bed furnace and the like.

[0022] In addition, it is possible to apply required chemical treatments together with such calcination, and adjust the lithium ion battery scrap to an appropriate size by crushing it using a single-axial crusher, a twin-screw crusher or the like, and then carry out a sieving step as follows.

(Sieving Step)

[0023] In the sieving step, the lithium ion battery scrap crushed as described above can be sieved to remove some of aluminum and the like. For effective sieving, the lithium ion battery scrap has been preferably subjected to the heat treatment or chemical treatment as stated above, in advance.

[0024] Although such sieving is not essential, when sieving is not carried out, an amount of a reagent used in acid leaching and neutralization in a leaching step described below may increase.

(Metal Leaching Step)

[0025] In the metal leaching step, the powdered or particulate lithium ion battery scrap obtained as described above are added to the acidic solution such as sulfuric acid, and leached out.

[0026] In this embodiment, the scrap is added to the acidic solution, and at the same time or after a certain period of time from the addition of the scrap, at least one of simple substances of manganese and/or iron; the compounds of manganese and/or iron and the solution containing the metal ions of manganese and/or iron is added to the acidic solution. Such manganese and iron are metals that are not contained in the lithium ion battery scrap.

[0027] The simple substances of manganese and/or iron and the compounds of manganese and/or iron are dissolved in the acidic solution, and the solution containing the metal ions of manganese and/or iron are maintained in their states, so that the metal ions of manganese and/or iron are present in the acidic solution. That is, in this case, their forms of manganese and/or iron before addition are not particularly limited, as long as the metal ions of manganese and/or iron are present in the acidic solution after addition.

[0028] As a result, the above metal ions of manganese and/or iron will be brought into contact with nickel and/or cobalt in the acidic solution, thereby facilitating the leaching of nickel and/or cobalt on the basis of an oxidation-reduction reaction of nickel and/or cobalt with the metal ions of manganese and/or iron. Consequently, the addition of a large amount of hydrogen peroxide water to the acidic solution is not required, so that the amount of expensive hydrogen peroxide water required for leaching can be decreased or eliminated and treatment costs can be effectively reduced.

[0029] Here, the metal to be leached may be at least one metal selected from the group consisting of nickel and cobalt that can be contained in the lithium ion battery. In order to effectively promote the leaching of such nickel and cobalt, the metal to be added to the acidic solution may be at least one metal selected from the group consisting of manganese and iron. In this case, the compounds of manganese and/or iron may be chlorides, sulfides, hydroxides or carbonates of manganese and/or iron.

[0030] In such a metal leaching step, manganese and/or iron to be added to the acidic solution together with the scrap have a lower oxidation-reduction equilibrium potential of the oxidation-reduction reaction, as compared with the oxidation-reduction equilibrium potential of nickel and/or cobalt. This will effectively promote the oxidation-reduction reaction of the metal ions of manganese and/or iron with nickel and/or cobalt, so that nickel and/or cobalt can be more efficiently leached.

[0031] Further, manganese and/or iron herein are metals that can have different oxidation numbers, and hence they tend to reduce nickel and/or cobalt to dissolve them, as well as oxidize themselves and precipitate as oxides.

[0032] Because of implementation of the above metal leaching step, only a small amount of or no nickel and/or cobalt will be contained in the leached solution obtained in the metal leaching step when recovering nickel and/or cobalt after the metal leaching step as in a recovery method described below, so that it is also possible to reduce the labor and cost required for separating manganese and/or iron when recovering nickel and/or cobalt.

[0033] For example, when the metal added to the acidic solution is manganese, manganese dioxide is precipitated in the acidic solution and can be recovered in the metal leaching step.

[0034] By the way, the raw material of the positive elec-
trode active material for the lithium ion battery (so-called positive electrode material precursor, etc.) contains, for example, compounds of lithium, cobalt, nickel and/or manganese, and it may also contain compounds such as, for example, chlorides, sulfides, hydroxides or carbonates of manganese and/or iron.

Such a case where the raw material of the positive electrode active material contains the compounds of manganese and/or iron as described above is suitable because the leaching of nickel and/or cobalt can be effectively promoted under the oxidation-reduction reaction as stated above by adding the raw material of the positive electrode active material together with the scrap to the acidic solution in the metal leaching step. The raw material of the positive electrode active material to be added to the solution in the metal leaching step. The raw material of the electrode active material together with the scrap to be leached. Accordingly, dissolution of nickel and/or iron can be sufficiently precipitated.

In addition, such a raw material of the positive electrode active material can be obtained as process scrap in the manufacturing process of the positive electrode active material, for example.

If only this raw material of the positive electrode active material is subjected to the acid leaching, cobalt, nickel, manganese, lithium and the like which can be contained therein will be easily dissolved, and the precipitation reaction of dissolved manganese will not sufficiently occur, and it is necessary to treat a large amount of manganese ion in the subsequent step.

In contrast, when the raw material of the positive electrode active material is mixed with the scraps and then subjected to the acid leaching as described above, the manganese ion dissolved from manganese (II) carbonate or the like that can be contained in the raw material of the positive electrode active material will function as a reducing agent, thereby promoting the leaching of cobalt and nickel in the scrap, while the precipitation reaction of dissolved manganese as manganese oxide will proceed. Therefore, this case can more effectively leach lithium, cobalt, nickel and the like as well as more manganese dioxide and the like can be precipitated, as compared with the case where only the scrap or only the raw material of the positive electrode active material is acid-leached alone.

When adding the manganese and/or iron in the metal leaching step described above, manganese and/or iron are preferably added after 0 to 12 hours from the beginning of the leaching of the lithium ion battery scrap in terms of shortening the treatment time for the metal leaching step.

Here, in order to shorten the treatment time as well, the leaching time of the lithium ion battery scrap in the metal leaching step is preferably from 1 hour to 24 hours.

Further, the amounts of manganese and/or iron added in the metal leaching step are preferably 0.1 to 5 times the contents of nickel and/or cobalt in the lithium ion battery scrap to be leached. Accordingly, dissolution of nickel and/or cobalt can be effectively promoted and manganese and/or iron can be sufficiently precipitated.

In addition, examples of the acid used in the metal leaching step may include mineral acids such as sulfuric acid and hydrochloric acid, as well as hydrogen peroxide water, and the like.

Further, the acidic solution is preferably stirred under a speed of from 0 rpm to 750 rpm at a temperature of 20°C to 80°C after adding manganese and/or iron to the acidic solution.

(Separation and Recovery Step)

In one embodiment of the method for recovering the metals from the lithium ion battery scrap according to the present invention, a separation and recovery step is conducted after the metal leaching step described above. More particularly, this embodiment can include, for example, the steps illustrated in Fig. 1 or 2, depending on the metal elements contained in the lithium ion battery scrap.

In the separation and recovery step, the leached solution obtained in the metal leaching step is subjected to, for example, a common solvent extraction method or electrolytic method or the like, to recover each element including nickel and/or cobalt dissolved therein, as well as to separate manganese and/or iron from nickel and/or cobalt and recover them when manganese and/or iron remain in their dissolved forms in the leached solution.

As shown in Fig. 1, iron and aluminum are first extracted by the solvent, among lithium, nickel, cobalt, manganese, aluminum, copper, iron and the like that are contained in the target lithium ion battery scrap and dissolved in the leached solution.

Manganese and copper are then recovered from the solution thus obtained. However, in this case, the amount of manganese contained in the solution is decreased due to the promoting of precipitation reaction of manganese dioxide in the leaching step, as described above. Depending on the conditions, manganese may not be contained in the solution, and in this case, any recovery of manganese is not required. As a result, any cost required for recovering manganese herein can be effectively reduced or eliminated.

Subsequently, each of cobalt and nickel can be sequentially recovered and lithium can be finally left in the solution to recover each metal.

On the other hand, the process as shown in Fig. 2 can be more easily carried out than the process as shown in Fig. 1 by sequentially recovering manganese, cobalt and nickel from the leached solution to provide a solution in which only lithium remains, because the elements contained in the lithium ion battery scrap are only lithium, nickel, cobalt, and manganese.

Here, such a separation and recovery step can provide an acidic solution obtained by reverse extraction from the solvent containing manganese and/or iron, and this acidic solution containing manganese and/or iron can
be preferably used by adding it as the solution containing the metal ions of manganese and/or iron to the acidic solution in the metal leaching step described above. This can contribute to the reduction of treatment cost due to the decrease in the amount of hydrogen peroxide water or the elimination of hydrogen peroxide water to be added in the metal leaching step.

This acidic solution may be preferably a solution of a sulfate, a solution of a hydrochloride or a solution of a nitrate, and more preferably a solution of manganese (II) sulfate.

[0043] In addition, manganese (II) sulfate generally cannot be used as it is when it is separately recycled, and requires further treatments and increases costs and man-hours, so that it is effective to use this substance in this metal leaching step.

Manganese (II) sulfate added to the acidic solution in the metal leaching step serves as a reducing agent and can effectively promote the leaching of nickel and/or cobalt.

[0044] When the above acidic solution is added as the solution containing the metal ions of manganese and/or iron in the metal leaching step, the concentration of manganese and/or iron in the acidic solution is preferably from 1 g/L to 50 g/L in order to effectively promote the dissolution of nickel and/or cobalt and the precipitation of manganese and/or iron.

[0045] Alternatively, compounds of manganese and/or iron produced by subjecting the above acidic solution to a treatment such as carbonation, hydroxylation, crystallization and the like can be effectively used by adding them to the acidic solution in the metal leaching step.

Examples of the compounds of manganese and/or iron thus produced include carbonates, hydroxides or sulfates or like of manganese and/or iron, among which manganese (II) carbonate is most suitable for use as an additive in the metal leaching step.

EXAMPLES

[0046] The methods for leaching the lithium ion battery scrap according to the present invention were experimentally carried out and their effects were confirmed. Results will be described below. However, the descriptions provided herein are merely for the purpose of illustration, and are not intended to be limited thereto.

(Example 1)

[0047] To 100 ml of dilute sulfuric acid (a sulfuric acid concentration of 150 g/L) was added 50 ml of a solution of manganese sulfate (a manganese concentration of 60 g/L). 10 g of a LiCoO₂-based positive electrode active material was then added and stirred at 60 °C for 6 hours. As a result, all of Co in the LiCoO₂-based positive electrode active material could be dissolved.

(Example 2)

[0048] To 100 ml of dilute sulfuric acid (a sulfuric acid concentration of 200 g/L) was added 6 g of manganese carbonate. 10 g of a LiCoO₂-based positive electrode active material was then added and stirred at 60 °C for 6 hours. As a result, all of Co in the LiCoO₂-based positive electrode active material could be dissolved.

(Comparative Example)

[0049] To 100 ml of dilute sulfuric acid (a sulfuric acid concentration of 150 g/L) was added 10 g of a LiCoO₂-based positive electrode active material, and stirred at 60 °C for 6 hours. As a result, all of Co in the LiCoO₂-based positive electrode active material could not be dissolved.

(Reference Example)

[0050] To 100 ml of dilute sulfuric acid (a sulfuric acid concentration of 150 g/L) was added 15 ml of hydrogen peroxide water (35%). 10 g of a LiCoO₂-based positive electrode active material was then added and stirred at 60 °C for 6 hours. All of Co in the LiCoO₂-based positive electrode active material could be dissolved.

[0051] It is understood from the results of Examples 1 and 2 and Comparative Example described above, that even if only the positive electrode active material is added to the acidic solution, cobalt in the positive electrode active material cannot be sufficiently dissolved, but cobalt in the positive electrode active material can be effectively dissolved by adding manganese that is not contained in the positive electrode active material, without adding hydrogen peroxide water.

Claims

1. A method for leaching lithium ion battery scrap comprising leaching the scrap of the lithium ion battery containing nickel and/or cobalt in an acidic solution, the method comprising a metal leaching step of leaching nickel and/or cobalt by adding, together with the scrap, at least one of simple substances of manganese and/or iron, compounds of manganese and/or iron and a solution containing metal ions of manganese and/or iron which are not contained in the scrap, to the acidic solution so that the metal ions of manganese and/or iron are present in the acidic solution, and then contacting nickel and/or cobalt contained in the scrap with the metal ions of manganese and/or iron in the acidic solution containing the metal ions of manganese and/or iron.

2. The method for leaching lithium ion battery scrap according to claim 1, wherein, in the metal leaching step, the metal ions of manganese and/or iron
present in the acidic solution are precipitated as oxides by oxidation.

3. The method for leaching lithium ion battery scrap according to claim 1 or 2, wherein, in the metal leaching step, a raw material of a positive electrode active material for the lithium ion battery is added together with the scrap to the acidic solution, and wherein the raw material of the positive electrode active material for the lithium ion battery contains compounds of manganese and/or iron.

4. A method for recovering metals from lithium ion battery scrap, comprising the metal leaching step in the method for leaching lithium ion battery scrap according to any one of claims 1 to 3, and a separation and recovery step of separating manganese and/or iron leached in a leached solution obtained in the metal leaching step from nickel and/or cobalt by solvent extraction and recovering manganese and/or iron from the leached solution.

5. The method for recovering the metals from the lithium ion battery scrap according to claim 4, wherein the solution containing the metal ions of manganese and/or iron, or the compounds of manganese and/or iron, which are added together with the scrap to the acidic solution in the metal leaching step is/are an acidic solution resulting from inverse extraction of the solvent containing manganese and/or iron in the separation and recovery step, or compounds of manganese and/or iron produced from the acidic solution.
Fig. 1

Battery Slag

↓

Leaching Step

Leached Residue
MnO₂ precipitated

↓

Leached Solution
Co, Ni, Li, partially Mn,
Al, Cu, Fe dissolved

↓

Solvent Extraction
Fe, Al recovered

↓

Solvent Extraction
Mn, Cu recovered

↓

Solvent Extraction
Co recovered

↓

Solvent Extraction
Ni recovered

↓

Li Solution
Fig. 2

Positive Electrode Active Material

\[\text{Leaching Step} \rightarrow \text{Leached Residue} \]
\[\text{MnO}_2 \text{ precipitated} \]

\[\text{Leached Solution} \rightarrow \text{Co, Ni, Li, partially Mn dissolved} \]

\[\text{Solvent Extraction} \rightarrow \text{Mn recovered} \]

\[\text{Solvent Extraction} \rightarrow \text{Co recovered} \]

\[\text{Solvent Extraction} \rightarrow \text{Ni recovered} \]

\[\text{Li Solution} \]
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
C22B7/00(2006.01)i, C22B3/08(2006.01)i, C22B3/26(2006.01)i, C22B23/00
(2006.01)i, C22B26/12(2006.01)i, C22B47/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
C22B1/00-C22B61/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2012-1750 A (Mitsui Mining & Smelting Co., Ltd.), 05 January 2012 (05.01.2012), paragraphs [0017], [0032] to [0035] (Family: none)</td>
<td>1-2</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2014-162982 A (JX Nippon Mining & Metals Corp.), 08 September 2014 (08.09.2014), paragraphs [0001], [0020] to [0072]; fig. 1 (Family: none)</td>
<td>4</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2013-112859 A (JX Nippon Mining & Metals Corp.), 10 June 2013 (10.06.2013), paragraphs [0020] to [0026] (Family: none)</td>
<td>4</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search
07 December 2015 (07.12.15)

Date of mailing of the international search report
15 December 2015 (15.12.15)

Name and mailing address of the ISA/
Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku,
Tokyo 100-8805, Japan

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 2009193778 A [0005]
- JP 2005149889 A [0005]