SIGNAL PROCESSING DEVICE, CONTROL METHOD THEREOF, CONTROL PROCEDURE AND RECORDING MEDIUM

The invention relates to a signal processing device, a control method thereof, a control procedure and a recording medium, which is unnecessary to increase a memory capacity for implementing sampling to determine a filter parameter. The signal processing device includes a data acquiring element (10), acquiring signals of a time series, i.e. time series signals from a sensor; a filtering element (21), performing a filtering operation according to frequencies; a transfer element (30), transferring the time series signals; and a filter parameter determination element (50), performing frequency analysis to the time series signals within a pre-specified interval, i.e. a specified interval to determine a filter parameter.
Description

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The invention relates to a signal processing device, etc., capable of filtering measuring data received from a measuring device and transferring the same to a control device.

Description of Related Art

[0002] A known signal processing device is adapted to acquire a physical quantity measured by a sensor installed in industrial machinery such as a measuring device, etc., and perform signal processing to the acquired detection signal, and transfer the signal to a control device used for controlling the industrial machinery. The signal processing device may amplify an analog signal acquired from the sensor, and convert the analog signal into a digital signal by using an analog-to-digital (AD) converter, and transfer the digital signal to the control device. Moreover, the signal processing device uses a digital filter to filter a noise in the digital signal, and sends the filtered digital signal to the control device.

[0003] In a control system including the signal processing device, measuring objects (generally referred to as works) measured by a measuring device are diversified, and the noises generated corresponding to the measuring objects are also different. Therefore, the noises to be eliminated by the signal processing device are not necessarily the same, and each time a frequency of the noise to be eliminated has to be set corresponding to the measuring object.

[0004] Moreover, a patent literature 1 discloses a following technique: in a measuring device, a motor speed signal is taken as a base frequency, and amplitude of a specified frequency obtained by multiplying the base frequency by a multiplying power is used to determine an abnormal state. According to such technique, the motor speed signal can be used to determine the abnormal state, such that even the measuring object is changed, the abnormal state can still be easily determined.

Existing technical literature

Patent literature

SUMMARY OF THE INVENTION

[0006] In case that signals are acquired in order to determine the frequencies of the noises to be eliminated, a sampling frequency has a high possibility to become high. This is because that if the sampling is not performed at a frequency that is twice or more than twice of the frequency to be measured, other vibration with a low period is produced to become another noise.

[0007] Therefore, for example, in order to sample a high frequency vibration such as a mechanical vibration, a rather high sampling frequency is required. However, in case that the sampling frequency is increased to perform the sampling and sampling data is recorded, a data amount becomes larger, and a memory capacity is probably not satisfactory.

[0008] In the prior art, the memory capacity issue occurred when the sampling frequency is set high is not mentioned, so that the problem cannot be resolved.

[0009] In order to resolve the aforementioned problem, the invention provides a signal processing device, etc., by which even the sampling frequency required for determining the noises to be eliminated becomes higher, the sampling can still be performed to determine a filter parameter without increasing the required memory capacity.

[Technical means for resolving the problem]

[0010] In order to resolve the aforementioned problem, the invention provides a signal processing device to filter signals coming from a sensor and transfer the signals to a control device. The signal processing device includes a data acquiring element, periodically acquiring the signals coming from the sensor, so as to obtain the signals of a time series, i.e. time series signals; a filter element, filtering the time series signals acquired by the data acquiring element according to frequencies; a transfer element, transferring the time series signals filtered by the filter element to the control device; and a filter parameter determination element, performing frequency analysis to the time series signals within a pre-specified interval, i.e. a specified interval to determine a filter parameter of the filter element, and the filter element executes the filtering operation by using the filter parameter determined by the filter parameter determination element.

[0011] According to the above structure, the filter parameter can be determined by using the time series signals within the specified interval and coming from the sensor, so that the filter parameter can be determined according to proper signals except the noises.

[0012] Moreover, in order to properly determine the filter parameter, a period for acquiring the signals (a sampling frequency) has to be set high, though if the sampling frequency is increased, the data amount is increased. According to such structure, since an interval for acquiring the signals is specified, compared to the situation of acquiring the time series signals without specifying the interval, the data amount is suppressed, so as to mitigate a processing load.

[0013] The signal processing device of the invention includes a sensor data sending element, sending sensor
data representing the signals of the time series coming from the sensor to an external device, where the external device has a specification accepting element accepting specification of the specified interval from a user; and a specified interval acquiring element, acquiring the specified interval specified based on the sensor data from the external device, where the filter parameter determination element uses the time series signals within the specified interval acquired by the specified interval acquiring element to determine the filter parameter.

[0014] According to the above structure, the specified interval can be specified, so that an interval required by the user can be set as the specified interval. Therefore, the interval properly excluding the noises can be set as the specified interval. Accordingly, the filter parameter can be properly determined.

[0015] In an embodiment of the invention, in the signal processing device, the filter parameter determination element uses the time series signals within the specified interval specified by the control device to determine the filter parameter.

[0016] According to the above structure, the specified interval can be specified through the control device. Therefore, as long as the interval except a noise interval is set as the specified interval, and the specified interval is pre-stored in the control device, the time series signals within the proper specified interval can be used to determine the filter parameter according to an instruction of the control device.

[0017] In an embodiment of the invention, the signal processing device determines whether to apply the filter parameter determined by the filter parameter determination element to the filter element.

[0018] According to the above structure, the user may determine whether to apply the filter parameter determined by the filter parameter determination element to the filter element.

[0019] In an embodiment of the invention, in the signal processing device, the filter parameter represents at least one of a type of a filter and a setting value applied to the filter for implementing the filtering operation.

[0020] According to the above structure, the type of the applied filters and the setting value applied to the filters for implementing the filtering operation can be respectively determined according to the filter parameter.

[0021] In an embodiment of the invention, in the signal processing device, the filter element has a plurality of filters, and the signal processing device respectively determine whether to execute the filtering operation for the plurality of filters.

[0022] According to the above structure, whether each of the filters executes the filter operation can be determined by the user. In this way, the filter operation can be executed only through the filters required by the user.

[0023] In an embodiment of the invention, in the signal processing device, the filter element has moving average filters.

[0024] According to the above structure, the filtering operation can be performed through the moving average filter, so that besides the noise of the required frequency, noises with integer multiple frequencies of the frequency can also be suppressed.

[0025] In an embodiment of the invention, in the signal processing device, the filter parameter determination element takes a quotient of a period that the data acquiring element acquires the signals divided by a peak frequency of a frequency characteristic obtained by performing the frequency analysis to the signals of the time series acquired by the data acquiring element as an adding number of times of the moving average filters.

[0026] According to the above structure, since the quotient obtained by dividing the signal acquiring period (the sampling frequency) by the peak frequency of the frequency characteristic is set as the adding number of times of the moving average filters, the noise can be properly suppressed. This is because that by setting the quotient obtained by dividing the sampling frequency by the peak frequency of the frequency characteristic as the adding number of times of the moving average filters, the frequency of the noise is counteracted.

[0027] In order to resolve the aforementioned problem, the invention provides a control method of a signal processing device to filter signals coming from a sensor and transfer the signals to a control device. The control method of the signal processing device includes: a data acquiring step, periodically acquiring the signals coming from the sensor, so as to obtain the signals of a time series, i.e. time series signals; a filtering step, filtering the time series signals acquired in the data acquiring step according to frequencies; and a transfer step, transferring the time series signals filtered in the filtering step to the control device. The control method of the signal processing device further includes a filter parameter determination step, performing frequency analysis to the time series signals within a pre-specified interval i.e. a specified interval to determine a filter parameter for the filtering operation of the filtering step, and in the filtering step, the filtering operation is executed by using the filter parameter determined in the filter parameter determination step.

[0028] According to the above structure, an effect similar to the aforementioned effect is achieved.

[0029] The signal processing device can be implemented through a computer. In this case, the computer can be used as various elements (software elements) of the signal processing device, such that the signal processing device implemented by the computer, a control procedure of the signal processing device, and a recording medium recording the control procedure and readable by the computer also belong to a protection scope of the invention.

[Effect of the invention]

[0030] According to the invention, the filter parameter can be determined by using the time series signals com-
ing from the sensor and within the specified interval, so that the following effect is achieved: proper signals except the noises can be used to determine the filter parameter.

[0031] Moreover, in order to properly determine the filter parameter, the signal acquiring period (the sampling frequency) has to be set high, though if the sampling frequency is increased, the data amount is increased. According to such structure, since an interval for acquiring signals is specified, compared to the situation of acquiring the time series signals without specifying the interval, the data amount is suppressed, such that a processing load is mitigated.

[0032] In order to make the aforementioned and other features and advantages of the invention comprehensible, several exemplary embodiments accompanied with figures are described in detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.

FIG. 1 is a block diagram of a main structure of a load cell interface unit 1.
FIG. 2(a) and FIG. 2(b) are schematic diagrams of a measuring system 100 according to an embodiment 1 of the invention. FIG. 2(a) illustrates a situation that setting of a filter parameter is performed by a user through a specifying device 4, and FIG. 2(b) illustrates a situation that the filter parameter is automatically set in a load cell interface unit 1.
FIG. 3 is a block diagram of a main structure of a filter parameter specifying device 4b.
FIG. 4 is a block diagram of a main structure of the filter specifying device 4c.
FIG. 5 is a flowchart illustrating a processing flow for setting a filter parameter.
FIG. 6 is a diagram illustrating an example for setting the filter parameter.
FIG. 7 is block diagram of a main structure of a load cell interface unit 1 according to a embodiment 2.
FIG. 8 is a flowchart illustrating a processing flow for setting the filter parameter.

DESCRIPTION OF EMBODIMENTS

(Embodiment 1)

(Overall overview)

[0034] First, referring to FIG. 2 for a measuring system 100 of the present embodiment. FIG. 2(a) and FIG. 2(b) are schematic diagrams of the measuring system 100 according to the embodiment 1 of the invention. FIG. 2(a) illustrates a situation that setting of a filter parameter is performed by a user through a specifying device 4, and FIG. 2(b) illustrates a situation that the filter parameter is automatically set in a load cell interface unit 1.

[0035] As shown in FIG. 2(a), the measuring system 100 of the present embodiment includes a load cell interface unit (signal processing device) 1, a controller (control device) 2, a load cell (sensor) 3 and the specifying device 4. The controller 2 uses the load cell 3 to measure a weight (or pressure) of a load of a work (measuring object), and controls the work according to a measuring result. Moreover, in the measuring system 100, an output signal within a specified interval and output by the load cell 3 is used to set the filter parameter in the load cell interface unit 1.

[0036] In order to set the filter parameter, it is unnecessary to log in (record) all of the output signals of the load cell 3. Therefore, even in case of a high sampling frequency, the output signals can be logged in (recorded) without using a memory with a huge capacity.

[0037] The controller 2 is used for controlling the measuring system 100, which is, for example, programmable logic controller (PLC). The controller 2 calculates the weight (or pressure) of the load of the measuring object according to the output signal of the load cell 3 obtained through the load cell interface unit 1, and controls the load.

[0038] The load cell interface unit 1 amplifies the output signal of the load cell 3 acquired from the load cell 3, and performs an AD conversion (analog-to-digital conversion) and a filtering operation to the output signal, and sends a result thereof to the controller 2. Moreover, the load cell interface unit 1 directly or indirectly sends the output signal acquired from the load cell 3 to the specifying device 4 in terms of an interval specifying output signal. Moreover, the load cell interface unit 1 is described in detail later.

[0039] The specifying device 4 accepts an interval specification used for setting the filter parameter of a filter element 21 of the load cell interface unit 1, and sends the accepted specified interval to the load cell interface unit 1.

[0040] Moreover, the specifying device may also serve as all of or any two of aftermentioned interval specifying device 4a, a filter parameter specifying device 4b and a filter specifying device 4c. In this case, the specifying device may implement a function of the interval specifying device 4a, a function of the filter parameter specifying device 4b and a function of the filter specifying device 4c.

[0041] As described above, in the measuring system 100, according to an instruction of the controller 2, the load cell interface unit 1 supplies an input voltage to the load cell 3. Then, the load cell interface unit 1 acquires the output signal of the load cell 3 (a data acquiring step), and amplifies the same, and performs the AD conversion (analog-to-digital conversion) and the filtering operation (filtering step) to the output signal for transferring to the
controller 2 (transfer step). The controller 2 that acquires the filtered output signal from the load cell interface unit 1 calculates a measuring value of the measuring object according to the output signal, and performs corresponding control.

Moreover, the load cell interface unit 1 uses the output signal within the specified interval to determine the filter parameter used for the filtering operation (a filter parameter determination step).

(The load cell)

The load cell 3 of the present embodiment is schematically described below. The load cell 3 generally includes a Wheatstone bridge circuit using a strain gauge, where a resistance of the strain gauge is changed along with variation of an applied load (weight or pressure), and the output voltage is accordingly varied. The controller 2 derives the measuring value according to the variation of the output voltage (output signal).

The load cell 3 is, for example, a platform weighing system, a quantitative cut out control system or a press-in system, and the present embodiment is adapted to any one of the above systems.

Regarding the platform weighing system, a measuring object is adapted to be placed on a weighing platform, so as to measure a weight of the measuring object. A plurality of load cells is installed under the weighing platform, and respectively output signals thereof are input to a unit referred to as a junction box that is adapted to sum the output signals of the load cells. A summation (summing value) of the output signals output from the junction box is sent to the controller through the load cell interface unit, and the controller derives a weight value according to the summing value.

The quantitative cut out control system is a system adapted to measure a weight of a material thrown into a hopper, and expel the material to a container. The weight of the material in the hopper is measured on one hand, and a throw-in valve is controlled in a sequence of a large throw-in → a middle throw-in → a small throw-in on the other hand.

A plurality of the load cells are installed at a position adapted to measure a weight of the hopper, and the respective output signals thereof are input to the junction box, and the summation (summing value) of the output signals output from the junction box is sent to the controller through the load cell interface unit, and the controller derives the measuring value according to the summing value, so as to control the hopper.

The press-in system refers to a system adapted to produce a product where two parts are bonded by pressing in. For example, a servo driver is adopted to apply a load to the parts to implement pressing in. The load cell can be installed at a position adapted to measure the load, and whether the product is acceptable is determined according to whether the load measured by the load cell is proper.

(The load cell interface unit)

Referring to FIG. 1 to describe a detailed structure of the load cell interface unit 1, and FIG. 1 is a block diagram of a main structure of the load cell interface unit 1. As shown in FIG. 1, the load cell interface unit 1 includes a data acquiring element 10, an AD conversion element 20, a transfer element 30, a specified interval acquiring element (specification accepting element) 40, input voltage supplying element 60 and an interval specifying data sending element (sensor data sending element) 70. The AD conversion element 20 includes a filter element 21.

The data acquiring element 10 periodically acquires an output signal from the load cell 3, and sends the output signal to the AD conversion element 20. Moreover, since the data acquiring element 10 periodically acquires an output signal from the load cell 3, the data acquiring element 10 finally acquires output signals of a time series (time series signals).

The AD conversion element 20 converts the output signal of the load cell 3 acquired from the data acquiring element 10 into digital data from analog data, and uses the filter element 21 to perform digital filtering to the digital data. Then, the digital-filtered output signal of the load cell 3 is sent to the transfer element 30. Moreover, a type and amount of filters in the filter element 21 is not limited by the invention, for example, the filter can be a low pass filter, a moving average filter, a notch filter, etc.

Moreover, since the notch filter only removes a removing frequency, in case that an integer multiple frequency of the removing frequency is to be removed, another notch filter has to be prepared, though the moving average filter may also remove the integer multiple frequency of the removing frequency, so that the moving average filter is ideal. Moreover, number of the moving average filter and the number of the notch filter can be plural, and by applying a plurality of the moving average filters or the notch filters, following advantages are achieved:

Generally, in the measuring system, a measuring result probably has an error due to a mechanical vibration and an electrical noise in the measurement. Especially, the measuring value sometimes is unstable due to the mechanical vibration of a mechanical system in the measuring system, and an inherent vibration of a measuring object. Moreover, considering that these external interferences (the mechanical vibration of the mechanical system, and the inherent vibration of the measuring object) can be overlapped, a plurality of digital filters connected in series can be inserted to eliminate the influences, so as to properly eliminate the influences.

The transfer element 30 transfers the digital-filtered output signal of the load cell 3 that is output by the AD element 30 to the controller 2.

The specified interval acquiring element 40 acquires an interval specified by the interval specifying de-
vice 4a, and notifies the interval to a filter parameter determination element 50.

[0056] The filter parameter determination element 50 uses the output signals of the load cell 3 that is sent by the data acquiring element 10 and within the specified interval notified by the specified interval acquiring element 40 to determine the filter parameter, and sets the filter parameter to the filter element 21.

[0057] To be specific, the filter parameter determination element 50 performs frequency analysis (for example, fast Fourier transform (FFT)) to the output signal of the load cell 3 within the specified interval notified by the specified interval acquiring element 40 to derive a frequency to be removed, so as to determine the filter parameter. Moreover, the filter parameter determination element 50 notifies the determined interval to a filter parameter defining data to determine the interval that is proper for the measuring data, i.e. the waveform of the interval specification determined by the user. Then, the specified interval accepting element 403 accepts interval specification from the user, and notifies a result thereof to the load cell interface unit 1. To be specific, the user observes interval specifying data (sensor data) displayed on the display element 402 to determine the interval that is proper for the setting of the filter parameter. Therefore, an interval that is improper for the setting of the filter parameter cannot be set as the specified interval. Therefore, in the load cell interface unit 1, it is prevented to store improper intervals for the setting of the filter parameter in order to set the filter parameter, such that increase of the required memory in the load cell interface unit 1 can be suppressed.

(Whether to adopt the filter parameter)

[0066] Referring to FIG. 3 for description of a following structure: whether the filter parameter calculated by the filter parameter determination element 50 is adopted is determined by the instruction of the user.

[0067] FIG. 3 is a block diagram of a main structure of the filter parameter specifying device 4b. The filter parameter specifying device 4b includes a filter parameter acquiring element 411, a display element 412 and a filter parameter specification accepting element 413. The filter parameter calculated by the filter parameter determination element 50 is displayed on the display element 412, and whether the filter parameter is adopted is determined by the instruction of the user, and a result thereof is notified to the load cell interface unit 1. In this way, the user may determine whether to adopt the filter parameter calculated by the filter parameter determination element 50 is improper, the filter parameter is not adopted.

[0068] The filter parameter acquiring element 411 acquires the filter parameter calculated by the filter parameter determination element 50, and displays the same on the display element 412. The display element 412 is used for displaying information. Moreover, as described later, in case that the filter parameter specifying device 4b and the interval specifying device 4a are implemented by the same device, the display element 412 can be a same display element with that of the display element 402.

[0069] The filter parameter specification accepting element 413 is instructed by the user to determine whether to adopt the filter parameter that is acquired by the filter parameter acquiring element 411 and calculated by the filter parameter determination element 50, and notifies a result thereof to the load cell interface unit 1 (the filter parameter determination element 50). In case that the result of adopting the filter parameter is notified, the filter parameter determination element 50 sets the calculated filter parameter to the filter element 21. Moreover, in case that the result of not adopting the filter parameter is notified, the filter parameter determination element 50 again calculates the filter parameter.

[0070] Moreover, the filter parameter specifying device 4b implemented by an independent device is taken as an example for description, though the filter parameter specifying device 4b is not limited thereto, and the filter parameter specifying device 4b can be implemented by the same device as that of the interval specifying device 4a.
Referring to FIG. 4 for description of a following structure: in case that the filter element 21 includes a plurality of filters, each of the filters may select whether to execute filtering.

FIG. 4 is a block diagram of a main structure of the filter specifying device 4c. As shown in FIG. 4, the filter specifying device 4c includes a display element 421 and a filter specification accepting element 422. The display element 421 is used for displaying information, for example, displaying respective states of a plurality of filters contained in the filter element 21. Moreover, as described later, in case that the filter specifying device 4c is implemented by the same device as that of the interval specifying device 4a and the filter parameter specifying device 4b, the display element 421 can be a same display element with that of the display element 402 and the display element 412.

Regarding a plurality of filters (a filter 201 (for example, a low pass filter), a filter 202 (for example, a moving average filter), and a filter 203 (for example, a moving average filter)) contained in the filter element 21, the filter specification accepting element 422 respectively accepts on/off instructions (whether to execute the filtering operation) from the user, and turns on/off the filters contained in the filter element 21 according to the on/off instructions. In case that the filter element 21 includes a plurality of filters, the filtered frequencies are probably different according to the measuring objects (works). According to the present embodiment, since the filters can be turned on/off, the necessary filters can be turned on (to execute the filtering operation) if necessary.

Moreover, the filter specifying device 4c implemented by an independent device is taken as an example for description, though the filter specifying device 4c is not limited thereto, and the filter specifying device 4c can be implemented by the same device as that of the interval specifying device 4a and the filter parameter specifying device 4b, and can be implemented by the same device as that of any of the interval specifying device 4a and the filter parameter specifying device 4b.

(Example for setting the filter parameter)

Referring to FIG. 6 for an example for setting example of the filter parameter. FIG. 6 is a diagram illustrating an example for setting the filter parameter. A description partition 601 of FIG. 6 represents states of the output signal coming from the load cell 3, the specified interval specified by the interval specifying device 4a, a photoelectric sensor output, and a frequency analysis completion flag.

The output signal coming from the load cell 3 is represented by a graph with a vertical axis representing weight value and a horizontal axis representing time. Moreover, the specified interval specified by the interval specifying device 4a is represented by a filter analysis sampling period from "start" to "end". Moreover, the photoelectric sensor output indicates whether the measuring object (work) is located at a measuring position. Moreover, the frequency analysis completion flag indicates whether frequency analysis is completed, i.e. whether calculation of the filter parameter is completed. When the frequency analysis completion flag is "1", it represents that the frequency analysis is completed.

The frequency analysis is performed the measuring data within the filter analysis sampling period and shown in the description partition 601, and a result thereof is shown in a description partition 602. As shown in the description partition 602, according to the result of the frequency analysis, it is known that gain peaks are
achieved in a frequency f_α and a frequency f_β.

[0083] In collaboration with the peaks, filters such as the low pass filter, the moving average filter for the frequency f_α and the moving average filter b for the frequency f_β are configured. Moreover, the filter parameter such as the adding number of times of the moving average filter a and the moving average filter b can be set according to the gains of the peaks.

[0084] To be specific, a quotient of a period (sampling frequency) that the data acquiring element 10 acquires the output signal divided by a peak frequency (f_α or f_β) of a frequency characteristic obtained by performing the frequency analysis (FFT) to the time series signals acquired by the data acquiring element 10 is taken as an adding number of times of the moving average filter a and the moving average filter b.

(Brief summary)

[0085] As described above, the load cell interface unit 1 of the present embodiment may specify an interval for setting the filter parameter in the interval specifying device 4 using an instruction, i.e. an interval intend to eliminate an external interference such as vibration, etc. Moreover, the output signal (sampling data) of the specified interval can be logged in (recorded), and frequency analysis can be executed to determine a frequency of the external interference, so as to set the filter parameter (for example, the adding number of times of the moving average filters).

[0086] In the past, in case of high-speed sampling frequency and data logging, the data amount becomes huge, and the storage capacity becomes inadequate. Therefore, in case of the high-speed sampling frequency, only one of methods of none logging or low-speed storage of the sampling frequency is adopted, and proper setting of the filter parameter probably cannot be implemented.

[0087] However, according to the method of the present embodiment, the interval to be logged is specified, so that the above problem is resolved, and the filter parameter can be properly set.

(Embodiment 2)

[0088] Another embodiment of the invention is provided below with reference of FIG. 2, FIG. 7 and FIG. 8. Moreover, to facilitate the description, regarding the components with the same functions as that of the components of the aforementioned embodiment, the same reference numbers denote the same or like components, and descriptions of the same technical contents are omitted.

[0089] A difference between the present embodiment and the embodiment 1 is that the specified interval used for determining the filter parameter is not specified by the user, but is specified by the controller 2.

[0090] Referring to FIG. 2(b) for an overview of the present embodiment. As shown in FIG. 2(b), the measuring system 100 of the present embodiment includes a load cell interface unit 1’, the controller 2 and the load cell 3. The controller 2 uses the load cell 3 to measure a weight (or pressure) of a load of a work (measuring object), and controls the work according to a measuring result. Moreover, in the measuring system 100’, the output signals of the interval specified by the controller 2 are used to set the filter parameter in the load cell interface unit 1’.

[0091] In this way, it is unnecessary to sample all of the output signals of the load cell 3. Therefore, even in case of a high sampling frequency, the output signals can be recorded without using a memory with a huge capacity.

(Processing flow for setting the filter parameter)

[0092] Referring to FIG. 7 for a main structure of the load cell interface unit 1’ of the present embodiment, and FIG. 7 is block diagram of a main structure of the load cell interface unit 1’ according to the present embodiment.

[0093] As shown in FIG. 7, in the load cell interface unit 1’ of the present embodiment, the specified interval acquiring element 40 acquires the specified interval from the controller 2, and notifies the same to the filter parameter determination element 50. By using the controller 2 to specify the interval without waiting for the instruction of the user, setting of the filter parameter can be quickly performed.

[0094] Moreover, specifying of the specified interval can be implemented by the controller 2 in advance according to a property of the measuring object (work).

[0095] Referring to FIG. 8 for the processing flow for setting the filter parameter of the present embodiment, and FIG. 8 is a flowchart illustrating a processing flow for setting the filter parameter.

[0096] As shown in FIG. 8, first, the load cell interface unit 1 acquires measuring data (output signal) from the load cell 3 (S201). Then, the controller 2 notifies the predetermined specified interval to the load cell interface unit 1 (S202).

[0097] The filter parameter determination element 50 in the load cell interface unit 1 that receives the notified specified interval from the controller 2 uses the measuring data corresponding to the specified interval to calculate the filter parameter (S203). Then, the load cell interface unit 1 sets the calculated filter parameter to the filter element 21 (S204).

[0098] The processing flow for setting the filter parameter is described above.
Control modules (especially the AD conversion element 20 (the filter element 21) and the filter parameter determination element 50) of the load cell interface unit 1 can be implemented by logic circuits (hardware) formed on an integrated circuit (IC chip), and can also be implemented by using a central processing unit (CPU) through software.

In the later case, the load cell interface unit 1 has a CPU adapted to execute commands of software (i.e. procedures) capable of implementing various functions, a read only memory (ROM) or a storage device (referred to as a recording medium) recording the procedures and various data that can be read by a computer (or the CPU), a random access memory (RAM) for spreading the procedures, etc. Moreover, the procedures recorded in the recording medium can be read and executed by the computer (or the CPU) to achieve the purpose of the invention. The recording medium can be implemented by a non-temporary physical medium, for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, etc. Moreover, the procedure can be provided to the computer through any transmission medium (a communication network or a radio wave, etc.) capable of transmitting the procedure. In addition, the data embodying the procedure and embedded in carriers can be implemented in form of signals through teletransmission.

Claims

1. A signal processing device (1), adapted to filter signals coming from a sensor (3) and transfer the signals to a control device (2), and the signal processing device (1) comprising:

- a data acquiring element (10), periodically acquiring the signals coming from the sensor (3), so as to obtain the signals of a time series, i.e. time series signals;
- a filter element (21), filtering the time series signals acquired by the data acquiring element (10) according to frequencies;
- a transfer element (30), transferring the time series signals filtered by the filter element (21) to the control device (2); and
- a filter parameter determination element (50), performing frequency analysis to the time series signals within a pre-specified interval, i.e. a specified interval to determine a filter parameter of the filter element (21), wherein the filter element (21) executes the filtering operation by using the filter parameter determined by the filter parameter determination element (50).

2. The signal processing device (1) as claimed in claim 1, further comprising:

- a sensor data sending element (70), sending sensor data representing the signals of the time series coming from the sensor (3) to an external device (4a), wherein the external device (4a) has a specification accepting element (403) accepting specification of the specified interval from a user; and
- a specified interval acquiring element (40), acquiring the specified interval specified based on the sensor data from the external device (4a), wherein the filter parameter determination element (50) uses the time series signals within the specified interval acquired by the specified interval acquiring element (40) to determine the filter parameter.

3. The signal processing device (1) as claimed in claim 1, wherein the filter parameter determination element (50) uses the time series signals within the specified interval specified by the control device (2) to determine the filter parameter.

4. The signal processing device (1) as claimed in any one of claims 1 to 3, wherein the signal processing device (1) determines whether to apply the filter parameter determined by the filter parameter determination element (50) to the filter element (21).

5. The signal processing device (1) as claimed in any one of claims 1 to 4, wherein the filter parameter represents at least one of a type of a filter and a setting value applied to the filter for implementing the filtering operation.

6. The signal processing device (1) as claimed in any one of claims 1 to 5, wherein the filter element (21) has a plurality of filters (201-203), and the signal processing device (1) respectively determine whether to execute the filtering operation for the plurality of filters (201-203).

7. The signal processing device (1) as claimed in any one of claims 1 to 6, wherein the filter element (21) comprises moving average filters.

8. The signal processing device (1) as claimed in claim 7, wherein the filter parameter determination element (50) takes a quotient of a period that the data acquiring element (10) acquires the signals divided by a peak frequency of a frequency characteristic obtained by performing the frequency analysis to the signals of the time series acquired by the data acquiring element (10) as an adding number of times of the moving average filters.
9. A control method of a signal processing device (1), adapted to filter signals coming from a sensor (3) and transfer the signals to a control device (2), and the control method of the signal processing device (1) comprising:

- a data acquiring step, periodically acquiring the signals coming from the sensor (3), so as to obtain the signals of a time series, i.e. time series signals;
- a filtering step, filtering the time series signals acquired in the data acquiring step according to frequencies; and
- a transfer step, transferring the time series signals filtered in the filtering step to the control device (2).

the control method of the signal processing device (1) further comprising:

- a filter parameter determination step (S101–S109), performing frequency analysis to the time series signals within a pre-specified interval i.e. a specified interval to determine a filter parameter for the filtering operation of the filtering step, and
- in the filtering step, the filtering operation is executed by using the filter parameter determined in the filter parameter determination step.

10. A control procedure, adapted to be loaded to a computer to function as the signal processing device (1) as claimed in claim 1, wherein the control procedure is loaded to the computer to function as the data acquiring element (10), the filter element (21), the transfer element (30) and the filter parameter determination element (50).

11. A recording medium, recording the control procedure as claimed in claim 10 and adapted to be accessed by a computer.
FIG. 1
Specifying device
(Interval specifying device: 4a)
(Filter parameter specifying device: 4b)
(Filter specifying device: 4c)

Controller

Load cell interface unit

Load cell

FIG. 2(a)

Process Diagram

1. Input voltage
 2. Controller
 3. Load cell
 4. Output signal

Load (weight/pressure)

FIG. 2(b)

Process Diagram

1. Input voltage
 2. Controller
 3. Load cell
 4. Output signal

Load (weight/pressure)
Start

Acquire measuring data from the load cell by the unit $S101$

Acquire the measuring data from the unit by the specifying device (tool) $S102$

Display the measuring data $S103$

Accept a specified interval $S104$

Send the specified interval to the unit $S105$

Calculate the filter parameter according to the measuring data received by the unit and corresponding to the specified interval $S106$

Send the calculated filter parameter to the specifying device (tool) $S107$

Is the calculated filter parameter adopted? $S108$

No

Yes

Set the filter parameter by the specifying device (tool) $S109$

End

FIG. 5
Start

Acquire measuring data from the load cell by the unit $S201$

Specify the specified interval in advance by the controller $S202$

Calculate the filter parameter according to the measuring data corresponding to the specified interval specified by the controller $S203$

Set the calculated filter parameter by the unit $S204$

End

FIG. 8
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 1 736 748 A1 (METTLER TOLEDO AG [CH]) 27 December 2006 (2006-12-27) * abstract; claim 1; figure 2 *</td>
<td>1-11</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>EP 2 012 429 A1 (ISHIDA SEISAKUSHO [JP]) 7 January 2009 (2009-01-07) * abstract; claim 1; figure 1 *</td>
<td>1-11</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>EP 2 202 498 A2 (WIPOTEC WIEGE & POSITIONIERSYS [DE]) 30 June 2010 (2010-06-30) * abstract; claims 1-6; figures 1-3 *</td>
<td>1-11</td>
<td>G01G H03H</td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

Place of search
The Hague
Date of completion of the search
16 June 2017
Examiner
Katerbau, Ragnar

CATEGORY OF CITED DOCUMENTS

- **X**: particularly relevant if taken alone
- **Y**: particularly relevant if combined with another document of the same category
- **A**: technological background
- **O**: non-written disclosure
- **P**: intermediate document
- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **&**: member of the same patent family, corresponding document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

16-06-2017

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 69815985 T2</td>
<td>27-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H11108751 A</td>
<td>23-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6271484 B1</td>
<td>07-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1884982 A</td>
<td>27-12-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1736748 A1</td>
<td>27-12-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5032799 B2</td>
<td>26-09-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007003524 A</td>
<td>11-01-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007007046 A</td>
<td>11-01-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3771195 B2</td>
<td>26-09-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003337062 A</td>
<td>28-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003215100 A</td>
<td>20-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2012429 A1</td>
<td>07-01-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008182367 A</td>
<td>07-08-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009125575 A</td>
<td>14-05-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008090822 A</td>
<td>31-07-2008</td>
</tr>
<tr>
<td>EP 2202498 A2</td>
<td>30-06-2010</td>
<td>DE 102008062972 A</td>
<td>24-06-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2202498 A2</td>
<td>30-06-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5117478 B2</td>
<td>16-01-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010151812 A</td>
<td>08-07-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010161268 A</td>
<td>24-06-2010</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2014153234 A [0005]