INTERNAL COMBUSTION ENGINE FOR REDUCING EXHAUST GAS EMISSIONS

An internal combustion engine (1) is provided, which includes at least one combustion chamber (2), and a turbocharger with an exhaust gas turbine (3) and an exhaust gas after-treatment device (11). The exhaust gas after-treatment device (11) has a first catalytic converter (4) arranged aerodynamically between the at least one combustion chamber (2) and the exhaust gas turbine (3). A second catalytic converter (5) is arranged aerodynamically between the first catalytic converter (4) and the exhaust gas turbine (3), and at least one partial oxidation chamber (6) is arranged aerodynamically between the first catalytic converter (4) and the second catalytic converter (5). Also provided is a method for reducing exhaust gas emissions of an internal combustion engine (1).
Description

BACKGROUND

[0001] Embodiments of the present invention relate to an internal combustion engine for reducing exhaust gas emissions.

[0002] A generic internal combustion engine is known in the art. If the total hydrocarbons (THC) present in the exhaust gas are to be oxidized to CO₂ and H₂O, this requires temperatures over 500°C, large catalytic converter volumes and oxidation catalytic converters with a high platinum group metal (PGM) loading, which makes such exhaust gas after-treatment devices very expensive.

BRIEF DESCRIPTION

[0003] The object of the embodiments of the invention is to provide a generic internal combustion engine with an exhaust gas after-treatment device in which the same catalytic effect as is known in the field can be achieved with a smaller catalytic converter volume.

[0004] This object is achieved by an internal combustion engine with the features described herein.

[0005] In an embodiment, the internal combustion engine includes first and second catalytic converters, which are both oxidation catalytic converters.

[0006] In an embodiment of the invention, the at least one partial oxidation chamber has at least two piping sections, whereby one of the at least two piping sections is arranged at least partially within another of the two piping sections at the least that are connected in series aerodynamically.

[0007] In an embodiment of the invention, the at least one partial oxidation chamber has at least one helical curved tube. In another embodiment, the at least one partial oxidation chamber has multiple helical curved tubes.

[0008] In an embodiment of the invention, the volume of the first catalytic converter is selected in such a way that, in the normal operation of the internal combustion engine, the exhaust gas temperature after passing through the first catalytic converter is at least 560°C, however it may be beneficial if the temperature is at least 590°C. If the exhaust gas exposure time in the partial oxidation chamber is increased, lower temperatures can also suffice. This is also possible if easily oxidizable additives are added to the exhaust gas prior to it entering the partial oxidation chamber.

[0009] In an embodiment of the invention, a bypass can be provided, which can be adjusted by means of a bypass valve, through which the exhaust gas can flow around the exhaust gas after-treatment device to the exhaust gas turbine.

[0010] In front of the first catalytic converter, a valve may be provided which allows the flow path to be blocked off via the first catalytic converter, the partial oxidation chamber and the second catalytic converter.

[0011] Embodiments of the invention can be used in a stationary internal combustion engine, for marine applications, or mobile applications such as the so-called "non-road mobile machinery" (NRMM), or more particularly as a reciprocating piston engine. The internal combustion engine can be used as a mechanical drive, e.g. for operating compressor systems or coupled with a generator to a genset for generating electrical energy. In an embodiment, the internal combustion engine may have a number of combustion chambers.

[0012] In an embodiment of the invention, a method for reducing exhaust gas emissions of an internal combustion engine is provided. The method includes providing an internal combustion engine having at least one combustion chamber, a turbocharger with an exhaust gas turbine and an exhaust gas after-treatment device, a first and a second catalytic converter, and at least one partial oxidation chamber; in the at least one combustion chamber, producing exhaust gas by the partial combustion of a fuel-air mixture; feeding the exhaust gas to the exhaust gas after-treatment device; oxidizing at least a portion of hydrocarbons in the exhaust gas in the first catalytic converter, which is arranged between the at least one combustion chamber and the exhaust gas turbine, thereby increasing the temperature of the exhaust gas as it exits the first catalytic converter; and in the at least one partial oxidation chamber, partially oxidizing the exhaust gas. Then a sensor is used to detect for the presence of pollutants in the exhaust gas as it exits the at least one partial oxidation chamber. If pollutants are still present in the exhaust gas, the exhaust gas is oxidized in the second catalytic converter, which is arranged between the first catalytic converter and the exhaust gas turbine.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Exemplary embodiments of the invention are discussed with reference to the figures, as follows:

Fig. 1 shows a schematic representation of an internal combustion engine according to an embodiment of the invention;

Fig. 2 shows a possible design of the partial oxidation chamber according to an embodiment of the invention;

Fig. 3 shows a further possible design of the partial oxidation chamber according to an embodiment of the invention; and

Fig. 4 shows a further possible design of the partial oxidation chamber according to an embodiment of the invention.
DETAILED DESCRIPTION

[0014] Reference will now be made in detail to present embodiments of the disclosure, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the disclosure.

[0015] Embodiments of the invention combine a gas-phase oxidation and catalytic oxidation processes, whereby the exhaust gas emissions of the internal combustion engine can be reduced with a smaller total catalytic converter volume of the first and second catalytic converters compared to the prior art. The heat energy generated by the oxidation of the pollutants contained in the exhaust gas (primarily hydrocarbons, CO, CH₂O) increases the thermal efficiency of the internal combustion engine.

[0016] Embodiments of invention are based on a multi-stage exhaust gas after-treatment, whereby a portion of the hydrocarbons contained in the exhaust gas is oxidized in the first catalytic converter, which increases the temperature of the exhaust gas exiting the first catalytic converter. As a result, the partial oxidation which occurs in the partial oxidation chamber, in particular that of CH₄, is increased. The partial oxidation, which itself emits heat energy, is also increased by a longer residence time in the partial oxidation chamber. The products resulting from the partial oxidation, in particular CO, the hydrocarbons still present in the exhaust gas, and other pollutants still present, e.g. CH₂O, are oxidized in the second catalytic converter.

[0017] An internal combustion engine 1 according to an embodiment of the invention is shown in Fig. 1. It has a number of combustion chambers 2, to which a fuel-air mixture is fed via an intake duct. Air filter 13 and a compressor of a turbocharger are arranged in the intake duct. The quantity of fuel-air mixture supplied to combustion chambers 2 can be adjusted by means of valve 14, which can be actuated by regulating device 12 of internal combustion engine 1. Exhaust gas, which is produced by the partial combustion of the fuel-air mixture in combustion chambers 2, is fed to exhaust gas after-treatment device 11, before flowing through exhaust gas turbine 3 of the turbocharger and entering exhaust gas discharge line 10.

[0018] A bypass is provided, by means of which untreated exhaust gas can be fed directly to exhaust gas turbine 3 around exhaust gas after-treatment device 11 when valve 7 is actuated by regulating device 12.

[0019] In front of the first catalytic converter, valve 9 may be provided which allows the flow path to be blocked off via first catalytic converter 4, partial oxidation chamber 6 and second catalytic converter 5.

[0020] A possible design of exhaust gas after-treatment 11 is shown in Fig. 2. In this exemplary embodiment, partial oxidation chamber 6 is designed as one structural unit together with second catalytic converter 5, although this is not absolutely necessary.

[0021] In the exemplary embodiment of Fig. 3, partial oxidation chamber 6 has a number of helical curved tubes 8, which also results in a compact design of partial oxidation chamber 6 with a long exposure time of exhaust gas.

[0022] In an embodiment of the invention, the internal combustion engine as shown in Fig. 1 can be used for reducing exhaust gas emissions of an internal combustion engine 1. The method according to an embodiment of the invention includes providing an internal combustion engine 1 having at least one combustion chamber 2, a turbocharger with an exhaust gas turbine 3 and an exhaust gas after-treatment device 11, a first and a second catalytic converter 4, 5, and at least one partial oxidation chamber; in the at least one combustion chamber 2, producing exhaust gas by the partial combustion of a fuel-air mixture; feeding the exhaust gas to the exhaust gas after-treatment device 11; oxidizing at least a portion of hydrocarbons in the exhaust gas in the first catalytic converter 4, which is arranged between the at least one combustion chamber 2 and the exhaust gas turbine, thereby increasing the temperature of the exhaust gas as it exits the first catalytic converter 4; and in the at least one partial oxidation chamber 6, partially oxidizing the exhaust gas. Then a sensor is used to detect for the presence of pollutants in the exhaust gas as it exits the at least one partial oxidation chamber 6. If pollutants are still present in the exhaust gas, the exhaust gas is oxidized in the second catalytic converter 5, which is arranged between the first catalytic converter 4 and the exhaust gas turbine.

[0023] It is to be understood that even though numerous characteristics and advantages of various embodiments have been set forth in the foregoing description, together with details of the structure and functions of various embodiments, this disclosure is illustrative only, and changes may be made in detail, especially in matters of structure and arrangement of parts within the principles of the embodiments to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. It will be appreciated by those skilled in the art that the teachings disclosed herein can be applied to other systems without departing from the scope and spirit of the application. For completeness, various aspects of the invention are set out in the following numbered clauses:

[0024] [0025]
1. An internal combustion engine comprising:
 at least one combustion chamber;
 a turbocharger with an exhaust gas turbine and an exhaust gas after-treatment device, the exhaust gas after-treatment device having a first catalytic converter arranged aerodynamically between the at least one combustion chamber and the exhaust gas turbine;
 a second catalytic converter arranged aerodynamically between the first catalytic converter and the exhaust gas turbine; and
 at least one partial oxidation chamber arranged aerodynamically between the first catalytic converter and the second catalytic converter.

2. The internal combustion engine according to clause 1, wherein the at least one partial oxidation chamber has at least two piping sections, wherein one of the at least two piping sections is arranged at least partially within the other of the at least two piping sections, and the at least two piping sections are connected aerodynamically in series.

3. The internal combustion engine according to clause 1, wherein the at least one partial oxidation chamber has at least one helical curved tube.

4. The internal combustion engine according to clause 3, wherein the at least one partial oxidation chamber has multiple helical curved tubes.

5. The internal combustion engine according to clause 1, wherein the at least one partial oxidation chamber has a loop shape.

6. The internal combustion engine according to clause 1, wherein the volume of the first catalytic converter is selected in such a way that, in the normal operation of the internal combustion engine, the exhaust gas temperature after passing through the first catalytic converter is at least 560°C.

7. The internal combustion engine according to clause 1, wherein the volume of the first catalytic converter is selected in such a way that, in the normal operation of the internal combustion engine, the exhaust gas temperature after passing through the first catalytic converter is at least 590°C.

8. The internal combustion engine according to clause 1, wherein oxidable additives are added to the exhaust gas before the exhaust gas enters the at least one partial oxidation chamber.

9. The internal combustion engine according to clause 1, further comprising a bypass configured to be adjusted by a bypass valve, through which the exhaust gas can flow around the exhaust gas after-treatment device to the exhaust gas turbine.

10. The internal combustion engine according to clause 1, further comprising a valve arranged in front of the first catalytic converter, wherein the valve is configured to adjust the quantity of fuel-air mixture supplied to the at least one combustion chamber.

11. The internal combustion engine according to clause 1, wherein the at least one partial oxidation chamber and the second catalytic converter are contained together in one structural unit.

12. The internal combustion engine according to clause 1, wherein the internal combustion engine has multiple combustion chambers.

13. A method for reducing exhaust gas emissions of an internal combustion engine, comprising:
 providing an internal combustion engine having at least one combustion chamber, a turbocharger with an exhaust gas turbine and an exhaust gas after-treatment device, a first and a second catalytic converter, and at least one partial oxidation chamber;
 in the at least one combustion chamber, producing exhaust gas by the partial combustion of a fuel-air mixture;
 feeding the exhaust gas to the exhaust gas after-treatment device;
 oxidizing at least a portion of hydrocarbons in the exhaust gas in the first catalytic converter, which is arranged between the at least one combustion chamber and the exhaust gas turbine, thereby increasing the temperature of the exhaust gas as it exits the first catalytic converter;
 in the at least one partial oxidation chamber, partially oxidizing the exhaust gas;
 with a sensor, detecting for the presence of pollutants in the exhaust gas as it exits the at least one partial oxidation chamber; and
 if pollutants are still present in the exhaust gas, oxidizing the exhaust gas in the second catalytic converter, which is arranged between the first catalytic converter and the exhaust gas turbine.

14. The method according to clause 13, wherein the
at least one partial oxidation chamber has at least two piping sections, wherein one of the at least two piping sections is arranged at least partially within the other of the at least two piping sections, and the at least two piping sections are connected aerodynamically in series.

15. The method according to clause 13, wherein the at least one partial oxidation chamber has at least one helical curved tube.

16. The method according to clause 13, further comprising providing a bypass valve, through which the exhaust gas can flow around the exhaust gas after-treatment device directly to the exhaust gas turbine.

17. The method according to clause 13, further comprising providing a valve arranged in front of the first catalytic converter, wherein the valve is configured to adjust the quantity of fuel-air mixture supplied to the at least one combustion chamber.

18. The method according to clause 13, wherein the pollutants comprise CO, hydrocarbons, and/or CH2O.

Claims

1. An internal combustion engine comprising:

 at least one combustion chamber;
 a turbocharger with an exhaust gas turbine and an exhaust gas after-treatment device, the exhaust gas after-treatment device having a first catalytic converter arranged aerodynamically between the at least one combustion chamber and the exhaust gas turbine;
 a second catalytic converter arranged aerodynamically between the first catalytic converter and the exhaust gas turbine; and
 at least one partial oxidation chamber arranged aerodynamically between the first catalytic converter and the second catalytic converter.

2. The internal combustion engine according to claim 1, wherein the at least one partial oxidation chamber has at least two piping sections, wherein one of the at least two piping sections is arranged at least partially within the other of the at least two piping sections, and the at least two piping sections are connected aerodynamically in series.

3. The internal combustion engine according to claim 1, wherein the at least one partial oxidation chamber has at least one helical curved tube.

4. The internal combustion engine according to claim 1, wherein the at least one partial oxidation chamber has multiple helical curved tubes.

5. The internal combustion engine according to claim 1, wherein the at least one partial oxidation chamber has a loop shape.

6. The internal combustion engine according to claim 1, wherein the volume of the first catalytic converter is selected in such a way that, in the normal operation of the internal combustion engine, the exhaust gas temperature after passing through the first catalytic converter is at least 560°C.

7. The internal combustion engine according to claim 1, wherein the volume of the first catalytic converter is selected in such a way that, in the normal operation of the internal combustion engine, the exhaust gas temperature after passing through the first catalytic converter is at least 590°C.

8. The internal combustion engine according to claim 1, wherein oxidable additives are added to the exhaust gas before the exhaust gas enters the at least one partial oxidation chamber.

9. The internal combustion engine according to claim 1, further comprising a bypass configured to be adjusted by a bypass valve, through which the exhaust gas can flow around the exhaust gas after-treatment device to the exhaust gas turbine.

10. The internal combustion engine according to claim 1, further comprising a valve arranged in front of the first catalytic converter, wherein the valve is configured to adjust the quantity of fuel-air mixture supplied to the at least one combustion chamber.

11. The internal combustion engine according to claim 1, wherein the at least one partial oxidation chamber and the second catalytic converter are contained together in one structural unit.

12. The internal combustion engine according to claim 1, wherein the internal combustion engine has multiple combustion chambers.

13. A method for reducing exhaust gas emissions of an internal combustion engine, comprising:

 providing an internal combustion engine having at least one combustion chamber, a turbocharger with an exhaust gas turbine and an exhaust gas after-treatment device, a first and a second catalytic converter, and at least one partial oxidation chamber;
 in the at least one combustion chamber, producing exhaust gas by the partial combustion of a
fuel-air mixture; feeding the exhaust gas to the exhaust gas after-treatment device; oxidizing at least a portion of hydrocarbons in the exhaust gas in the first catalytic converter, which is arranged between the at least one combustion chamber and the exhaust gas turbine, thereby increasing the temperature of the exhaust gas as it exits the first catalytic converter; in the at least one partial oxidation chamber, partially oxidizing the exhaust gas; with a sensor, detecting for the presence of pollutants in the exhaust gas as it exits the at least one partial oxidation chamber; and if pollutants are still present in the exhaust gas, oxidizing the exhaust gas in the second catalytic converter, which is arranged between the first catalytic converter and the exhaust gas turbine.

14. The method according to claim 13, wherein the at least one partial oxidation chamber has at least two piping sections, wherein one of the at least two piping sections is arranged at least partially within the other of the at least two piping sections, and the at least two piping sections are connected aerodynamically in series.

15. The method according to claim 13, wherein the at least one partial oxidation chamber has at least one helical curved tube.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2011 111945 A (ISUZU MOTORS LTD) 9 June 2011 (2011-06-09)</td>
<td>1,8,10,12</td>
<td>FO1N13/00</td>
</tr>
<tr>
<td>A</td>
<td>abstract * * paragraphs [0012], [0020], [0024] * * figure 1 *</td>
<td>2-7,9,11,13-15</td>
<td>F01N3/10</td>
</tr>
<tr>
<td>A</td>
<td>* paragraphs [0038], [0039] * * figure 2 *</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>JP 2004 100489 A (HINO MOTORS LTD) 2 April 2004 (2004-04-02)</td>
<td>1,10,12</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>* abstract * * paragraphs [0011] - [0013] * * figures 1,2 *</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>WO 2005/116411 A1 (EMITEC EMISSIONSTECHNOLOGIE [DE]; MAUS WOLFGANG [DE]; BRUECK ROLF [DE]) 8 December 2005 (2005-12-08)</td>
<td>1,10,12</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>* page 15, line 24 - page 17, line 18 * * figures 2,3 *</td>
<td>13</td>
<td>F01N</td>
</tr>
<tr>
<td>A</td>
<td>DE 22 59 946 A1 (AUGUST PAUL DIPLO ING DR H 1-15 C) 27 June 1974 (1974-06-27) * page 3, line 21 - line 27 * * figure 1 *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

Place of search: Munich
Date of completion of the search: 14 June 2017
Examiner: Ikas, Gerhard
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

14-06-2017

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP 2011111945 A</td>
<td>09-06-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013189900 A</td>
<td>26-09-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015047348 A</td>
<td>19-02-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013137309 A</td>
<td>19-09-2013</td>
</tr>
<tr>
<td>JP 2004100489 A</td>
<td>02-04-2004</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>WO 2005116411 A1</td>
<td>08-12-2005</td>
<td>CN 1950594 A</td>
<td>18-04-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102004024685 A</td>
<td>15-12-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5175545 B2</td>
<td>03-04-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007537848 A</td>
<td>27-12-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070010085 A</td>
<td>19-01-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2379528 C2</td>
<td>20-01-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200538626 A</td>
<td>01-12-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007065350 A</td>
<td>22-03-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005116411 A1</td>
<td>08-12-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1383881 A</td>
<td>12-02-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 397117 B</td>
<td>17-10-1977</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.