A detection distance calibration method, apparatus, and device are provided. At least one detection signal is collected (S101); a strength value of the at least one detection signal is determined (S102), where the strength value of the detection signal reflects a length of a detection distance; a reference strength value of the detection signal is determined according to the strength value of the at least one detection signal (S103); a calibration threshold is determined according to the reference strength value (S104), where the calibration threshold is used to determine a calibration range of the detection distance; and the detection distance is calibrated according to the calibration threshold and a strength value of a subsequently collected detection signal (S105). Accuracy of calibrating a detection distance can be improved.
Description

TECHNICAL FIELD

[0001] The present invention relates to the field of communications technologies, and in particular, to a detection distance calibration method, apparatus, and device.

BACKGROUND

[0002] With further customized development of user terminal products, the terminal products have increasingly diverse functions. For example, distance detection may be performed by using an infrared sensing technology, and when a distance between an external object and a terminal device falls within a specified range, functions such as disabling screen display and shielding touchscreen sensing are performed according to a detection result.

[0003] When the terminal device performs the foregoing functions by using the infrared sensing technology, a calibration threshold is usually set, to calibrate a detection distance, and the calibration threshold is used to determine a calibration range of the detection distance. In specific implementation, the following manner is generally used: A detection signal is transmitted, and the detection signal is reflected back to the terminal device when encountering an external object; and the terminal device may determine a distance between the external object and the terminal device according to a collected detection signal, compare the determined distance between the external object and the terminal device with the specified calibration threshold, and perform a corresponding function according to a result of the comparing. For example, a strength value of the detection signal can reflect a length of the detection distance, and a larger strength value of the detection signal indicates a shorter detection distance. To implement the functions such as disabling screen display and shielding touchscreen sensing when the distance between the external object and the terminal device falls within the specified range, if the strength value of the collected detection signal exceeds the specified calibration threshold, the functions such as disabling screen display and shielding touchscreen sensing may be performed.

[0004] The foregoing calibration threshold used to determine the calibration range of the detection distance is a fixed parameter value. However, an external environment in which the terminal device is located often changes, and therefore, the specified fixed calibration threshold cannot adapt to an external environment change and cannot be adaptively adjusted. For example, the terminal device is placed at a fixed location, and if an obstacle is right located within an effective detection distance in this case, that is, the detection distance determined by the terminal device according to the collected detection signal always falls within an effective detection distance range, the terminal device keeps calibrating the detection distance. For example, trigger signals are continuously transmitted so that the terminal device performs a corresponding function operation, and consequently, a mistaken trigger phenomenon occurs, which affects accuracy of calibrating a detection distance by the terminal device.

SUMMARY

[0005] Embodiments of the present invention provide a detection distance calibration method, apparatus, and device, so as to improve accuracy of calibrating a detection distance by a terminal device.

[0006] According to a first aspect, a detection distance calibration method is provided, including:

- collecting at least one detection signal;
- determining a strength value of the at least one detection signal, where the strength value of the detection signal reflects a length of a detection distance;
- determining a reference strength value of the detection signal according to the strength value of the at least one detection signal;
- determining a calibration threshold according to the reference strength value. The calibration threshold is used to determine a calibration range of the detection distance; and
- calibrating the detection distance according to the calibration threshold and a strength value of a subsequently collected detection signal.

[0007] With reference to the first aspect, in a first implementation manner, the determining a reference strength value of the detection signal according to the strength value of the at least one detection signal specifically includes:

- using an average strength value of the collected detection signal as the reference strength value of the detection signal.

[0008] With reference to the first aspect or the first implementation manner of the first aspect, in a second implementation manner, the determining a calibration threshold according to the reference strength value specifically includes:

- determining whether the reference strength value exceeds a preset maximum reference strength value; and
- using a preset default value as the calibration threshold if the reference strength value exceeds the preset maximum reference strength value, where the default value is a reference strength value determined according to at least one collected stable detection signal; or using a sum of the reference strength value and a fixed parameter value as the calibration threshold if the reference strength value does not exceed
the preset maximum reference strength value.

[0009] With reference to the first aspect, the first implementation manner of the first aspect, or the second implementation manner of the first aspect, in a third implementation manner, before the determining a reference strength value of the detection signal according to the strength value of the at least one detection signal, the method further includes:

determining that a strength value of each collected detection signal falls within a preset standard range.

[0010] With reference to the third implementation manner of the first aspect, in a fourth implementation manner, the determining that a strength value of each collected detection signal falls within a preset standard range specifically includes:

determining a maximum strength value of the detection signal and a minimum strength value of the detection signal according to the strength value of at least one collected detection signal; and
if a difference between the maximum strength value of the detection signal and the minimum strength value of the detection signal does not exceed a preset standard value, determining that the strength value of each collected detection signal falls within the preset standard range.

[0011] With reference to the first aspect, the first implementation manner of the first aspect, or the second implementation manner of the first aspect, in a fifth implementation manner, before the determining a reference strength value of the detection signal according to the strength value of the at least one detection signal, the method further includes:

adding a quantity of collection times when a detection signal whose strength value does not fall within a preset standard range exists in the at least one detection signal;
determining whether a total quantity of collection times that is obtained after the quantity of collection times is added exceeds a specified quantity of times; and
if the total quantity of collection times that is obtained after the quantity of collection times is added is less than the specified quantity of times, performing again the collecting at least one detection signal; or if the total quantity of collection times that is obtained after the quantity of collection times is added is not less than the specified quantity of times, performing the determining a reference strength value of the detection signal according to the strength value of the at least one detection signal.

[0012] With reference to any one of the foregoing implementation manners of the first aspect, in a sixth implementation manner, after the determining the calibration threshold, the method further includes:

if a difference between the strength value of the subsequently collected detection signal and the reference strength value is not less than the preset standard value, performing again the collecting at least one detection signal.

[0013] With reference to any one of the foregoing implementation manners of the first aspect, in a seventh implementation manner, the detection signal includes an infrared signal or an ultrasonic signal.

[0014] According to a second aspect, a detection distance calibration apparatus is provided, including:

a collection unit, configured to collect at least one detection signal;

a first determining unit, configured to determine a strength value of the at least one detection signal collected by the collection unit, where the strength value of the detection signal reflects a length of a detection distance;

an old according to the reference strength value. The calibration threshold is used to determine a calibration range of the detection distance; and

a calibration unit, configured to calibrate the detection distance according to the calibration threshold determined by the second determining unit and a strength value of a subsequently collected detection signal.

[0015] With reference to the second aspect, in a first implementation manner, the second determining unit is specifically configured to determine the reference strength value of the detection signal according to the strength value of the at least one detection signal in the following manner:

using an average strength value of the collected detection signal as the reference strength value of the detection signal.

[0016] With reference to the second aspect or the first implementation manner of the second aspect, in a second implementation manner, the apparatus further includes a judging unit, where the judging unit is configured to determine whether the reference strength value exceeds a preset maximum reference strength value; and

the second determining unit is specifically configured to determine the calibration threshold according to the ref-
With reference to the second aspect, the first reference strength value in the following manner:

using a preset default value as the calibration threshold if a result of the determining of the judging unit is that the reference strength value exceeds the preset maximum reference strength value, where the default value is a reference strength value determined according to at least one collected stable detection signal; or using a sum of the reference strength value and a fixed parameter value as the calibration threshold if a result of the determining of the judging unit is that the reference strength value does not exceed the preset maximum reference strength value.

With reference to the second aspect, the first reference strength value in the following manner:

configured to:

fifth implementation manner, the collection unit is further configured to:

ond implementation manner of the second aspect, in a third implementation manner of the second aspect, or the second determining unit is specifically configured to:

before determining the reference strength value of the detection signal according to the strength value of the at least one detection signal, determine that a strength value of each collected detection signal falls within a preset standard range.

With reference to the second aspect, the first reference strength value in the following manner:

configured to:

third implementation manner, the second determining unit is further configured to:

determining a maximum strength value of the detection signal and a minimum strength value of the detection signal according to the strength value of the at least one collected detection signal; and

if a difference between the maximum strength value of the detection signal and the minimum strength value of the detection signal does not exceed a preset standard value, determining that the strength value of each collected detection signal falls within the preset standard range.

With reference to any one of the foregoing implementation manners of the second aspect, in a sixth implementation manner, the collection unit is further configured to:

after the second determining unit determines the calibration threshold, if the first determining unit determines that a difference between the strength value of the subsequently collected detection signal and the reference strength value is not less than the preset standard value, perform again the collecting at least one detection signal.

With reference to any one of the foregoing implementation manners of the second aspect, in a seventh implementation manner, the detection signal collected by the collection unit includes an infrared signal or an ultrasonic signal.

According to a third aspect, a detection distance calibration device is provided, including: a signal transmitter, a sensor, and a processor, where the signal transmitter is configured to transmit at least one detection signal;

the sensor is configured to: collect the at least one detection signal, and determine a strength value of the at least one detection signal, where the strength value of the detection signal reflects a length of a detection distance;

the processor is configured to: obtain the strength value that is of the at least one detection signal and is determined by the sensor; determine a reference strength value of the detection signal according to the strength value of the at least one detection signal; and determine a calibration threshold according to the reference strength val-
ue. The calibration threshold is used to determine a calibration range of the detection distance; and the processor is further configured to calibrate the detection distance according to the calibration threshold and a strength value of a detection signal subsequently collected by the sensor.

[0023] With reference to the third aspect, in a first implementation manner, the processor is specifically configured to determine the reference strength value of the detection signal according to the strength value of the at least one detection signal in the following manner:

using an average strength value of the collected detection signal as the reference strength value of the detection signal.

[0024] With reference to the third aspect or the first implementation manner of the third aspect, in a second implementation manner, the processor is further configured to determine whether the reference strength value exceeds a preset maximum reference strength value; and the processor is specifically configured to determine the calibration threshold according to the reference strength value in the following manner:

using a preset default value as the calibration threshold if the reference strength value exceeds the preset maximum reference strength value, where the default value is a reference strength value determined according to at least one collected stable detection signal; or using a sum of the reference strength value and a fixed parameter value as the calibration threshold if the reference strength value does not exceed the preset maximum reference strength value.

[0025] With reference to the third aspect, the first implementation manner of the third aspect, or the second implementation manner of the third aspect, in a third implementation manner, the processor is further configured to:

before determining the reference strength value of the detection signal according to the strength value of the at least one detection signal, determine that a strength value of each collected detection signal falls within a preset standard range.

[0026] With reference to the third implementation manner of the third aspect, in a fourth implementation manner, the processor is specifically configured to determine, in the following manner, that the strength value of each collected detection signal falls within the preset standard range:

determining a maximum strength value of the detection signal and a minimum strength value of the detection signal according to the strength value of the at least one collected detection signal; and if a difference between the maximum strength value of the detection signal and the minimum strength value of the detection signal does not exceed a preset standard value, determining that the strength value of each collected detection signal falls within the preset standard range.

[0027] With reference to the third aspect, the first implementation manner of the third aspect, or the second implementation manner of the third aspect, in a fifth implementation manner, the processor is further configured to:

before determining the reference strength value of the detection signal according to the strength value of the at least one detection signal, add a quantity of collection times when a detection signal whose strength value does not fall within a preset standard range exists in the at least one detection signal; and if a total quantity of collection times that is obtained after the quantity of collection times is added is less than a specified quantity of times, instruct the sensor to perform again the collecting the at least one detection signal; or if a total quantity of collection times that is obtained after the quantity of collection times is added is not less than a specified quantity of times, perform the determining a reference strength value of the detection signal according to the strength value of the at least one detection signal.

[0028] With reference to any one of the foregoing implementation manners of the third aspect, in a sixth implementation manner, the processor is further configured to:

after determining the calibration threshold, if a difference between the strength value of the subsequently collected detection signal and the reference strength value is not less than the preset standard value, instruct the sensor to perform again the collecting the at least one detection signal.

[0029] With reference to any one of the foregoing implementation manners of the third aspect, in a seventh implementation manner, the signal transmitter is an infrared transmitter or an ultrasonic transmitter.

[0030] According to the detection distance calibration method, apparatus, and device provided in the embodiments of the present invention, a detection signal is collected; a strength value of the detection signal is determined, where the strength value of the detection signal can reflect a length of a detection distance of an external object; a reference strength value is determined according to the strength value of the collected detection signal; and a calibration threshold is determined according to the determined reference strength value, so that the determined calibration threshold adapts to an external envi-
viorment in which a terminal device is located. Therefore, the calibration threshold in the embodiments of the present invention can adapt to an environment change to be adaptively adjusted, which improves accuracy of calibrating a detection distance by the terminal device.

BRIEF DESCRIPTION OF DRAWINGS

[0031]

FIG. 1A is a flowchart of a detection distance calibration method according to an embodiment of the present invention;
FIG. 1B is a flowchart of a method for determining a reference strength value according to an embodiment of the present invention;
FIG. 1C is a flowchart of a method for determining an average strength value of detection signals according to an embodiment of the present invention;
FIG. 1D is a flowchart of a method for determining whether a strength value of a detection signal falls within a preset standard range according to an embodiment of the present invention;
FIG. IE is a flowchart of a method for determining a calibration threshold according to an embodiment of the present invention;
FIG. 2A and FIG. 2B are a flowchart of a detection distance calibration method according to another embodiment of the present invention;
FIG. 3A is a schematic structural diagram of a detection distance calibration apparatus according to an embodiment of the present invention;
FIG. 3B is a schematic structural diagram of a detection distance calibration apparatus according to another embodiment of the present invention; and
FIG. 4 is a schematic structural diagram of a detection distance calibration device according to an embodiment of the present invention.

DESCRIPTION OF EMBODIMENTS

[0032] The following clearly and completely describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Apparently, the described embodiments are some but not all of the embodiments of the present invention. All other embodiments obtained by persons of ordinary skill in the art based on the embodiments of the present invention without creative efforts shall fall within the protection scope of the present invention.

[0033] A detection distance calibration method provided in the embodiments of the present invention may be applied to a method in which a terminal device calibrates a detection distance and performs a corresponding processing function according to the calibrated detection distance. In a detection distance calibration process in the embodiments of the present invention, a detection signal is collected, and a calibration threshold is determined according to the actually collected detection signal. Therefore, the calibration threshold in the embodiments of the present invention adapts to an external environment in which the terminal device is located, that is, the determined calibration threshold can adapt to an environment change to be adaptively adjusted.

[0034] The collected detection signal in the embodiments of the present invention is a signal that can be used for distance detection. The collected detection signal in the embodiments of the present invention is associated with a detection signal transmitted by the terminal device. For example, if an infrared transmitting component is disposed in the terminal device, and the transmitted detection signal is an infrared signal, the collected detection signal is an infrared signal reflected by an external object. If an ultrasonic transmitting component is disposed in the terminal device, and the transmitted detection signal is an ultrasonic signal, the collected detection signal is an ultrasonic signal reflected by an external object. Certainly, the collected detection signal in the embodiments of the present invention is not limited to the foregoing two types.

[0035] It should be noted that, a manner of determining a detection distance according to a detection signal varies with a detection signal used in the embodiments of the present invention. For example, if the infrared signal is used as the detection signal, a length of the detection distance is determined according to a value of a strength value of a collected detection signal reflected by the external object. If the ultrasonic signal is used as the detection signal, a length of the detection distance is determined according to a time of transmitting the detection signal and a time of receiving the detection signal.

[0036] In the embodiments of the present invention, an example in which a strength value of a detection signal reflects a length of a detection distance is mainly used for description. A detection signal is collected; a strength value of the collected detection signal is determined; a reference strength value is determined according to the determined strength value of the collected detection signal; and finally, a calibration threshold is determined according to the reference strength value. The calibration threshold is used to determine a calibration range of a detection distance. Because the reference strength value is determined according to the actually collected detection signal, the calibration threshold in the embodiments of the present invention adapts to an external environment in which the terminal device is located, that is, the determined calibration threshold can adapt to an environment change to be adaptively adjusted.

[0037] FIG. 1A shows a flowchart of a detection distance calibration method according to an embodiment of the present invention. The method may be executed by a terminal device, and the terminal device may be, for example, a mobile terminal such as a smartphone, a tablet computer, or a home gateway product. Certainly, the method may be executed by various components in a
In FIG. 1A, the method includes the following steps.

S101: Collect at least one detection signal.

S102: Determine a strength value of the collected detection signal.

The strength value of the detection signal reflects a length of a detection distance. Therefore, in this embodiment of the present invention, the length of the detection distance is determined by determining the strength value of the detection signal. In specific implementation, a component such as a sensor may be disposed in the terminal device, to determine the strength value of the collected detection signal. For example, if the detection signal is an infrared signal, a strength value of the infrared signal may be determined by sensing luminous intensity of the reflected infrared signal.

S103: Determine a reference strength value of the detection signal according to the strength value of the at least one detection signal.

S104: Determine a calibration threshold according to the reference strength value.

In this embodiment of the present invention, the calibration threshold is used to determine a calibration range of the detection distance, and the strength value of the detection signal reflects the length of the detection distance. In specific implementation, the determined calibration threshold is also a signal strength value, and the signal strength value reflects a signal strength value for implementing a corresponding processing function by the terminal device within an effective detection distance.

S105: Calibrate a detection distance according to the determined calibration threshold and a strength value of a subsequently collected detection signal.

In this embodiment of the present invention, the subsequently collected detection signal is relative to a detection signal collected in a process of determining the calibration threshold, that is, after the calibration threshold is determined, a collected detection signal may be referred to as the subsequently collected detection signal.

Therefore, the calibration threshold can adapt to an environment change to be adaptively adjusted.

S106: Perform a processing operation for implementing a corresponding function.

It should be noted that, in this embodiment of the present invention, there may be more than one determined calibration threshold. A condition for determining that the detection distance falls within the effective detection distance for performing a corresponding function by the terminal device is not limited to a case in which the strength value of the detection signal exceeds the determined calibration threshold, or may be a case in which the strength value of the detection signal does not exceed the determined calibration threshold. The determined calibration threshold may be set according to an actual situation.

According to the detection distance calibration method provided in this embodiment of the present invention, a reference strength value is determined according to a determined strength value of an actually collected detection signal, and a calibration threshold is determined according to the determined reference strength value. Therefore, the calibration threshold in this embodiment of the present invention can adapt to an environment change to be adaptively adjusted, and a phenomenon can be avoided that a calibration error occurs because there is always an obstacle within an effective detection distance range due to the environment change, which improves accuracy of calibrating a detection distance by a terminal device.

In an embodiment of the present invention, the following describes in detail a specific process, of determining the calibration threshold, involved in the foregoing
[0053] In this embodiment of the present invention, to improve accuracy of the determined reference strength value, an average strength value of the collected detection signal may be used as the reference strength value.

[0054] In this embodiment of the present invention, to improve accuracy of the determined reference strength value, before the average strength value of the collected detection signal is used as the reference strength value, it is required to determine whether the strength value of the collected detection signal falls within a preset standard range, that is, determine whether the current environment is in a stable state.

[0055] In this embodiment of the present invention, different processing manners may be used according to whether the strength value of the collected detection signal falls within the preset standard range. In this embodiment of the present invention, the preset standard range refers to an acceptable strength value fluctuation range in a stable environment in a process in which the terminal device calibrates the detection distance. If a strength value of each currently collected detection signal falls within the preset standard range, it indicates that the current environment is in a stable state, and an average strength value of the detection signals may be directly determined according to the strength values of the currently collected detection signals. In other words, in this embodiment of the present invention, before the average strength value of the collected detection signal is used as the reference strength value, it is required to ensure that the strength value of each collected detection signal falls within the preset standard range. A specific implementation process is shown in FIG. 1B, and includes the following steps:

S1031: Determine that a strength value of each collected detection signal falls within a preset standard range.

S1032: Use an average strength value of the collected detection signal as the reference strength value.

S1032: Determine whether a total quantity of collection times that is obtained after the quantity of collection times is added is less than the specified quantity of times, perform S1032c; or if the total quantity of collection times that is obtained after the quantity of collection times is added is less than the specified quantity of times, perform S1032d.

[0056] In this embodiment of the present invention, to improve accuracy of the determined reference strength value, an average strength value of the collected detection signal may be used as the reference strength value.

[0057] If a strength value of a currently collected detection signal does not fall within the preset standard range, it indicates that the current environment is in an unstable state. As shown in FIG. 1C, in this embodiment of the present invention, the following processing manner may be used in an unstable environment, and includes the following steps:

S1032a: Add a quantity of collection times.

S1032b: Determine whether a total quantity of collection times that is obtained after the quantity of collection times is added exceeds a specified quantity of times; and if the total quantity of collection times that is obtained after the quantity of collection times is added is less than the specified quantity of times, perform S1032c; or if the total quantity of collection times that is obtained after the quantity of collection times is added is less than the specified quantity of times, perform S1032d.

S1032d: If the total quantity of collection times that is obtained after the quantity of collection times is added is less than the specified quantity of times, perform again S101, that is, perform again detection signal collection.

S1032c: If the total quantity of collection times that is obtained after the quantity of collection times is added is not less than the specified quantity of times, directly perform the determining a reference strength value of the detection signal according to the strength value of the detection signal in S103, that is, if the average strength value of the collected detection signal is used as the reference strength value, and use the average strength value of the collected detection signal as the reference strength value.

S1032: Determine whether a difference between the maximum strength value of the detection signal and the minimum strength value of the detection signal exceeds a preset standard value.

S1031: Determine that the strength value of each detection signal does not fall within the preset standard range.

[0058] In this embodiment of the present invention, to improve accuracy of the determined reference strength value, an average strength value of the collected detection signal may be used as the reference strength value.

[0059] If a strength value of a currently collected detection signal does not fall within the preset standard range, it indicates that the current environment is in an unstable state. As shown in FIG. 1C, in this embodiment of the present invention, the following processing manner may be used in an unstable environment, and includes the following steps:

S1032a: Add a quantity of collection times.

S1032b: Determine whether a total quantity of collection times that is obtained after the quantity of collection times is added exceeds a specified quantity of times; and if the total quantity of collection times that is obtained after the quantity of collection times is added is less than the specified quantity of times, perform S1032c; or if the total quantity of collection times that is obtained after the quantity of collection times is added is less than the specified quantity of times, perform S1032d.

S1032d: If the total quantity of collection times that is obtained after the quantity of collection times is added is not less than the specified quantity of times, directly perform the determining a reference strength value of the detection signal according to the strength value of the detection signal in S103, that is, if the average strength value of the collected detection signal is used as the reference strength value, and use the average strength value of the collected detection signal as the reference strength value.

[0060] In this embodiment of the present invention, the foregoing specified quantity of times may be set according to an actual situation, to avoid performing an excessive quantity of times of collecting in the unstable environment.

S1032c: If the total quantity of collection times that is obtained after the quantity of collection times is added is not less than the specified quantity of times, perform again S101, that is, perform again detection signal collection.

S1032d: If the total quantity of collection times that is obtained after the quantity of collection times is added is not less than the specified quantity of times, directly perform the determining a reference strength value of the detection signal according to the strength value of the detection signal in S103, that is, if the average strength value of the collected detection signal is used as the reference strength value, and use the average strength value of the collected detection signal as the reference strength value.

Further, in this embodiment of the present invention, a manner shown in FIG. 1D may be used to determine that the strength value of each detection signal falls within the preset standard range:

S1031a: Determine a maximum strength value of the detection signal and a minimum strength value of the detection signal according to the strength value of the at least one collected detection signal.
standard range.

[0069] In this embodiment of the present invention, to adapt to different environments, different calibration thresholds are determined, and a case in which the calibration threshold cannot be determined is avoided. As shown in FIG. IE, the following manner of determining the calibration threshold according to the reference strength value may be used, and includes the following steps:

S1021: Determine whether the reference strength value exceeds a preset maximum reference strength value; and if the reference strength value exceeds the preset maximum reference strength value, perform S1022a; or if the reference strength value does not exceed the preset maximum reference strength value, perform S1022b.

[0070] In this embodiment of the present invention, the maximum reference strength value is related to a strength sensing register in a sensing apparatus, in the terminal device, for determining a strength value of a detection signal. A bit quantity of the strength sensing register in the sensing apparatus determines a maximum value of the maximum reference strength value. For example, if the bit quantity of the strength sensing register in the sensing apparatus is 10, the maximum reference strength value is $2^{10} = 1024$. If the strength value of the actually collected detection signal exceeds the maximum reference strength value, a strength value that is of a detection signal and is determined by the sensing apparatus does not change even within a shortest detection distance.

[0071] In this embodiment of the present invention, considering that normal detection distance calibration may be affected by a factor such as environment instability in an actual detection distance calibration process, when the maximum reference strength value is being determined, environment impact on the strength value of the detection signal may be taken into consideration, and a particular margin value may be set. Generally, the specified margin value and a preset standard value corresponding to the strength value fluctuation range of the detection signal in the acceptable stable environment are subtracted from a maximum strength value that is of a detection signal and is corresponding to the bit quantity of the register, to obtain a value, and the value is used as the maximum reference strength value.

[0072] S1022a: If the reference strength value exceeds the preset maximum reference strength value, use a preset default value as a calibration threshold for triggering an infrared sensing apparatus to send a trigger signal.

[0073] In this embodiment of the present invention, the default value is a reference strength value determined according to at least one collected stable detection signal. A stable detection signal means that a strength value of the detection signal falls within a specified strength value range. For example, if the specified strength value range is from 90 to 100, the strength value of the detection signal fluctuates in the range of 90 to 100, and it may indicate that the detection signal is a stable detection signal.

[0074] In this embodiment of the present invention, if the reference strength value exceeds the preset maximum reference strength value, the default value is set as the calibration threshold for triggering the infrared sensing apparatus to send a trigger signal, which can avoid a problem of low accuracy of the determined reference strength value due to an unstable environment state.

[0075] S1022b: Use a sum of the reference strength value and a fixed parameter value as the calibration threshold if the reference strength value does not exceed the preset maximum reference strength value.

[0076] Due to impact of factors such as a structure of the sensing apparatus, a location, and a thin film, the reference strength value determined by the sensing apparatus in the terminal device varies. That is, strength values of detection signals within a same detection distance also vary. However, at a same detection distance location, an absolute difference between the reference strength value and the strength value of the actually collected detection signal is relatively fixed, and the fixed difference may be obtained by collecting statistics about sample test data. In this embodiment of the present invention, the fixed parameter value generally refers to a difference between the strength value of the actually collected detection signal and the reference strength value if the sensing apparatus in the terminal device uses a same drive current and a same pulse value within a specified detection distance, and the difference is relatively fixed. For example, if the detection distance is 5 cm, a strength value of a detection signal collected for the first time is 3, the determined reference strength value is 2, and a difference between the two values is 1; a strength value of a detection signal collected for the second time is 4, the determined reference strength value is 3, a difference between the two values is 1, and the fixed parameter value may be set to 1.

[0077] In this embodiment of the present invention, the sum of the reference strength value and the fixed parameter value is used as the calibration threshold if the reference strength value does not exceed the preset maximum reference strength value. The calibration threshold can be determined with reference to an assembly structure of the sensing apparatus in the terminal device and the current environment, which can better adapt to different environments.

[0078] In an embodiment of the present invention, with reference to practical application, the following describes in detail the detection distance calibration method involved in the foregoing embodiment of the present invention. In this embodiment of the present invention, an example in which a terminal device calibrates a detection distance by using an infrared technology is used for de-
S201: An infrared sensing apparatus collects a specified quantity of infrared signals, and determines strength values of the collected infrared signals.

In this embodiment of the present invention, the infrared sensing apparatus may be any infrared sensing component that can transmit an infrared signal and collect the infrared signal. By collecting an infrared signal reflected by an external object, the infrared sensing component may determine a strength value of the infrared signal. For example, the infrared sensing component may be an infrared sensing apparatus that includes an infrared sensing chip and an infrared light emitting diode.

S202: Determine a maximum strength value, a minimum strength value, and an average strength value of the collected infrared signals.

S203: Compare a difference between the maximum strength value and the minimum strength value of the collected infrared signals with a preset standard value; and if the difference between the maximum strength value and the minimum strength value of the collected infrared signals does not exceed the preset standard value, perform S205; otherwise, perform S204.

S204: Add a quantity of collection times; determine whether a total quantity of collection times that is obtained after the quantity of collection times is added exceeds a specified quantity of times; and if the total quantity of collection times that is obtained after the quantity of collection times is added is less than the specified quantity of times, perform again S201, that is, perform again detection signal collection; or if the total quantity of collection times that is obtained after the quantity of collection times is added is not less than the specified quantity of times, perform S205.

S205: Use the average strength value of the specified quantity of collected infrared signals as a reference strength value.

S206: Determine whether the reference strength value exceeds a preset maximum reference strength value; and if the reference strength value exceeds the preset maximum reference strength value, perform S207a; or if the reference strength value does not exceed the preset maximum reference strength value, perform S207b.

S207a: Use a preset default value as a calibration threshold.

S207b: Use a sum of the reference strength value and a fixed parameter value as a calibration threshold.

S208: Calibrate a detection distance according to the determined calibration threshold and a strength value of a subsequently collected infrared signal.

In this embodiment of the present invention, if the strength value of the subsequently collected infrared signal exceeds the calibration threshold, the infrared sensing apparatus may be triggered to send a trigger signal to a primary system of the terminal device.

In this embodiment of the present invention, that the infrared sensing apparatus sends the trigger signal to the primary system of the terminal device may be that the trigger signal is sent to the primary system in a manner of outputting a low level by using an interruption pin of the infrared sensing chip.

S209: A primary system of the terminal device performs a corresponding processing operation according to a received trigger signal.

S210: Continue to perform infrared signal collection; determine whether a difference between the strength value of the subsequently collected infrared signal and the reference strength value is less than a preset standard value corresponding to a strength value fluctuation range of an infrared signal detected in a stable environment; and if the difference between the strength value of the detected infrared signal and the reference strength value is less than the preset standard value, it indicates that a current environment does not change, and continue to perform the calibrating a detection distance in S208.

According to the foregoing detection distance calibration method in this embodiment of the present invention, a calibration threshold is determined according to a strength value of a currently collected detection signal, and can adapt to an environment change to be adaptively adjusted, which avoids a mistaken trigger phenomenon caused by the environment change. Further, in this embodiment of the present invention, after the calibration threshold is determined, if a difference between a strength value of a subsequently collected detection signal and a reference strength value is not less than a preset standard value, it indicates that a current environment changes, and the reference strength value needs to be determined again, so that the calibration threshold can be adjusted by further adapting to the environment change.

Based on the detection distance calibration method provided in the foregoing embodiment, an embodiment of the present invention further provides a detection distance calibration apparatus 300. As shown in FIG. 3A, the detection distance calibration apparatus 300 includes a collection unit 301, a first determining unit 302, a detection distance calibration apparatus 300, and a calibration unit 304. The collection unit 301 is configured to collect at least one detection signal.

The first determining unit 302 is configured to determine a strength value of the at least one detection signal collected by the collection unit 301, where the
strength value of the detection signal reflects a length of a detection distance.

[0097] The second determining unit 303 is configured to: determine a reference strength value of the detection signal according to the strength value that is of the at least one detection signal and is determined by the first determining unit 302; and determine a calibration threshold according to the reference strength value. The calibration threshold is used to determine a calibration range of the detection distance.

[0098] The calibration unit 304 is configured to calibrate the detection distance according to the calibration threshold determined by the second determining unit 303 and a strength value of a subsequently collected detection signal.

[0099] In a first implementation manner, the second determining unit 303 is specifically configured to determine the reference strength value of the detection signal according to the strength value of the at least one detection signal in the following manner:

using an average strength value of the collected detection signal as the reference strength value of the detection signal.

[0100] In a second implementation manner, as shown in FIG. 3B, the detection distance calibration apparatus 300 further includes a judging unit 305.

[0101] The judging unit 305 is configured to determine whether the reference strength value exceeds a preset maximum reference strength value.

[0102] The second determining unit 303 is specifically configured to determine the calibration threshold according to the reference strength value in the following manner:

using a preset default value as the calibration threshold if a result of the determining of the judging unit 305 is that the reference strength value exceeds the preset maximum reference strength value, where the default value is a reference strength value determined according to at least one collected stable detection signal; or using a sum of the reference strength value and a fixed parameter value as the calibration threshold if a result of the determining of the judging unit 305 is that the reference strength value does not exceed the preset maximum reference strength value.

[0103] In a third implementation manner, the second determining unit 303 is further configured to:

before determining the reference strength value of the detection signal according to the strength value of the at least one detection signal, determine that a strength value of each collected detection signal falls within a preset standard range.

[0104] In a fourth implementation manner, the second determining unit 303 is specifically configured to determine, in the following manner, that the strength value of each collected detection signal falls within the preset standard range:

determining a maximum strength value of the detection signal and a minimum strength value of the detection signal according to the strength value of the at least one detection signal; and

if a difference between the maximum strength value of the detection signal and the minimum strength value of the detection signal does not exceed a preset standard value, determining that the strength value of each collected detection signal falls within the preset standard range.

[0105] In a fifth implementation manner, the collection unit 301 is further configured to:

before the reference strength value of the detection signal is determined according to the strength value of the at least one detection signal, add a quantity of collection times when a detection signal whose strength value does not fall within a preset standard range exists in the at least one detection signal.

[0106] The detection distance calibration apparatus 300 further includes the judging unit 305.

[0107] The judging unit 305 is configured to determine whether a total quantity of collection times that is obtained after the quantity of collection times is added exceeds a specified quantity of times.

[0108] The collection unit 301 is further configured to:

if a result of the determining of the judging unit 305 is that the total quantity of collection times that is obtained after the quantity of collection times is added is less than the specified quantity of times, perform again the collecting at least one detection signal.

[0109] The second determining unit 303 is further configured to:

if a result of the determining of the judging unit 305 is that the total quantity of collection times that is obtained after the quantity of collection times is added is not less than the specified quantity of times, perform the determining a reference strength value of the detection signal according to the strength value of the at least one detection signal.

[0110] In a sixth implementation manner, the collection unit 301 is further configured to:

after the second determining unit 303 determines the calibration threshold, if the first determining unit
302 determines that a difference between the strength value of the subsequently collected detection signal and the reference strength value is not less than the preset standard value, perform again the collecting at least one detection signal.

[0111] In a seventh implementation manner, the detection signal collected by the collection unit 301 includes an infrared signal or an ultrasonic signal.

[0112] The detection distance calibration apparatus 300 provided in this embodiment of the present invention may be a terminal device, and the terminal device may be, for example, a mobile terminal such as a smartphone, a tablet computer, or a home gateway product. Certainly, the detection distance calibration apparatus 300 may be a component in a terminal device, and this is not construed as a limitation in this embodiment of the present invention.

[0113] It should be noted that, the detection distance calibration apparatus 300 provided in this embodiment of the present invention may be configured to execute the method procedures shown in FIG. 1A to FIG. 1E, and FIG. 2A and FIG. 2B. Therefore, for descriptions of the detection distance calibration apparatus 300 in this embodiment of the present invention that are not given in detail, refer to descriptions of the related method embodiments. Details are not described again in this embodiment of the present invention.

[0114] According to the detection distance calibration apparatus 300 provided in this embodiment of the present invention, a calibration threshold is determined according to a strength value of a currently collected detection signal, and can adapt to an environment change to be adaptively adjusted, which avoids a mistaken trigger phenomenon caused by the environment change. Further, in this embodiment of the present invention, after the calibration threshold is determined, if a difference between a strength value of a subsequently collected detection signal and a reference strength value is not less than a preset standard value, it indicates that a current environment changes, and the reference strength value needs to be determined again, so that the calibration threshold can be adjusted by further adapting to the environment change.

[0115] With reference to the detection distance calibration method and apparatus provided in the foregoing embodiments, an embodiment of the present invention further provides a detection distance calibration device 400. As shown in FIG. 4, the detection distance calibration device 400 includes a signal transmitter 401, a sensor 402, and a processor 403.

[0116] It should be noted that, the detection distance calibration device 400 in this embodiment of the present invention may further include a memory and a bus according to an actual situation, and the memory is configured to store program code executed by the processor 403. The signal transmitter 401, the sensor 402, the processor 403, and the memory are all connected to the bus.

[0117] In this embodiment of the present invention, the processor 403 is a control center of the detection distance calibration device 400, and is connected to each part of the entire terminal device by using various interfaces and lines, and performs various functions of the terminal device and/or processes data by running or executing a software program and/or module stored in the memory and invoking data stored in the memory. The processor 403 may include an integrated circuit (Integrated Circuit, IC for short). For example, the processor 403 may include a single packaged IC, or may include multiple connected packaged ICs with a same function or different functions. For example, the processor 403 may include only a central processing unit (Central Processing Unit, CPU for short), or may be a combination of a GPU, a digital signal processor (Digital Signal Processor, DSP for short), and a control chip (for example, a baseband chip) in a communications unit. In an implementation manner of the present invention, the CPU may be a single computing core, or may include multiple computing cores.

[0118] In this embodiment of the present invention, the sensor 402 may be a sensing chip, and may be implemented by, for example, an infrared sensing chip or an ultrasonic sensing chip in specific implementation.

[0119] In this embodiment of the present invention, the signal transmitter 401 may be a transmitter that can transmit a detection signal, and may be, for example, an infrared transmitter or an ultrasonic transmitter in specific implementation.

[0120] Further, in specific implementation of this embodiment of the present invention, the signal transmitter 401 and the sensor 402 may be integrated together, or may be separate hardware, which is not limited in this embodiment of the present invention.

[0121] In a specific implementation process of the present invention:

the signal transmitter 401 is configured to transmit at least one detection signal;
the sensor 402 is configured to: collect the at least one detection signal, and determine a strength value of the at least one detection signal, where the strength value of the detection signal reflects a length of a detection distance;
the processor 403 is configured to: obtain the strength value that is of the at least one detection signal and is determined by the sensor 402; determine a reference strength value of the detection signal according to the strength value of the at least one detection signal; and determine a calibration threshold according to the reference strength value. The calibration threshold is used to determine a calibration range of the detection distance; and
the processor 403 is further configured to calibrate the detection distance according to the calibration threshold and a strength value of a detection signal subsequently collected by the sensor 402.
In a first implementation manner, the processor 403 is specifically configured to determine the reference strength value of the detection signal according to the strength value of the at least one detection signal in the following manner:

- Using an average strength value of the collected detection signal as the reference strength value of the detection signal.

In a second implementation manner, the processor 403 is further configured to determine whether the reference strength value exceeds a preset maximum reference strength value.

The processor 403 is specifically configured to determine the calibration threshold according to the reference strength value.

In a third implementation manner, the processor 403 is specifically configured to determine the calibration threshold according to the reference strength value in the following manner:

- Using a preset default value as the calibration threshold if the reference strength value exceeds the preset maximum reference strength value, where the default value is a reference strength value determined according to at least one collected stable detection signal; or using a sum of the reference strength value and a fixed parameter value as the calibration threshold if the reference strength value does not exceed the preset maximum reference strength value.

In a fourth implementation manner, the processor 403 is specifically configured to determine the calibration threshold in the following manner:

- Before determining the reference strength value of the detection signal according to the strength value of the at least one detection signal, determine that a strength value of each collected detection signal falls within a preset standard range.

In a fifth implementation manner, the processor 403 is further configured to:

- Determining a maximum strength value of the detection signal and a minimum strength value of the detection signal according to the strength value of the at least one collected detection signal; and if a difference between the maximum strength value of the detection signal and the minimum strength value of the detection signal does not exceed a preset standard value, determining that the strength value of each collected detection signal falls within the preset standard range.

In a sixth implementation manner, the processor 403 is further configured to:

- After determining the calibration threshold, if a difference between the strength value of the subsequently collected detection signal and the reference strength value is not less than the preset standard value, instruct the sensor to perform again the collecting the at least one detection signal.

The detection distance calibration device 400 provided in this embodiment of the present invention may be a terminal device, and the terminal device may be, for example, a mobile terminal such as a smartphone, a tablet computer, or a home gateway product. Certainly, the detection distance calibration device 400 may be a component in a terminal device, and this is not construed as a limitation in this embodiment of the present invention.

It should be noted that, the detection distance calibration device 400 provided in this embodiment of the present invention may be configured to execute the method procedures shown in FIG. 1A to FIG. 1E, and FIG. 2A and FIG. 2B. Therefore, for descriptions of the detection distance calibration device 400 in this embodiment of the present invention that are not given in detail, refer to descriptions of the related method embodiments. Details are not described again in this embodiment of the present invention.

According to the detection distance calibration device 400 provided in this embodiment of the present invention, a calibration threshold is determined according to a strength value of a currently collected detection signal, and can adapt to an environment change to be adaptively adjusted, which avoids a mistaken trigger phenomenon caused by the environment change. Further, in this embodiment of the present invention, after the calibration threshold is determined, if a difference between a strength value of a subsequently collected detection signal and a reference strength value is not less than a preset standard value, it indicates that a current environment changes, and the reference strength value needs to be determined again, so that the calibration threshold can be adjusted by further adapting to the environment.
persons skilled in the art should understand that the embodiments of the present invention may be provided as a method, a system, or a computer program product. Therefore, the present invention may use a form of hardware only embodiments, software only embodiments, or embodiments with a combination of software and hardware. Moreover, the present invention may use a form of a computer program product that is implemented on one or more computer-usable storage media (including but not limited to a disk memory, a CD-ROM, an optical memory, and the like) that include computer-usable program code.

The present invention is described with reference to the flowcharts and/or block diagrams of the method, the device (system), and the computer program product according to the embodiments of the present invention. It should be understood that computer program instructions may be used to implement each process and/or each block in the flowcharts and/or the block diagrams and a combination of a process and/or a block in the flowcharts and/or the block diagrams. These computer program instructions may be provided for a general-purpose computer, a dedicated computer, an embedded processor, or a processor of any other programmable data processing device to generate a machine, so that the instructions executed by a computer or a processor of any other programmable data processing device generate an apparatus for implementing a specific function in one or more processes in the flowcharts and/or in one or more blocks in the block diagrams.

These computer program instructions may also be stored in a computer readable memory that can instruct the computer or any other programmable data processing device to work in a specific manner, so that the instructions stored in the computer readable memory generate an artifact that includes an instruction apparatus. The instruction apparatus implements a specific function in one or more processes in the flowcharts and/or in one or more blocks in the block diagrams.

These computer program instructions may also be loaded onto a computer or another programmable data processing device, so that a series of operations and steps are performed on the computer or the another programmable device, thereby generating computer-implemented processing. Therefore, the instructions executed on the computer or the another programmable device provide steps for implementing a specific function in one or more processes in the flowcharts and/or in one or more blocks in the block diagrams.

Although some preferred embodiments of the present invention have been described, persons skilled in the art can make changes and modifications to these embodiments once they learn the basic inventive concept. Therefore, the following claims are intended to be construed as to cover the example embodiments and all changes and modifications falling within the scope of the present invention.

Obviously, persons skilled in the art can make various modifications and variations to the embodiments of the present invention without departing from the spirit and scope of the embodiments of the present invention. The present invention is intended to cover these modifications and variations provided that they fall within the scope of protection defined by the following claims and their equivalent technologies.

1. A detection distance calibration method, comprising:
 - collecting at least one detection signal;
 - determining a strength value of the at least one detection signal, wherein the strength value of the detection signal reflects a length of a detection distance;
 - determining a reference strength value of the at least one detection signal according to the strength value of the at least one detection signal;
 - determining a calibration threshold according to the reference strength value, wherein the calibration threshold is used to determine a calibration range of the detection distance; and
 - calibrating the detection distance according to the calibration threshold and a strength value of a subsequently collected detection signal.

2. The method according to claim 1, wherein the determining a reference strength value of the at least one detection signal according to the strength value of the at least one detection signal specifically comprises:
 - using an average strength value of the at least one collected detection signal as the reference strength value of the at least one detection signal.

3. The method according to claim 1 or 2, wherein the determining a calibration threshold according to the reference strength value specifically comprises:
 - determining whether the reference strength value exceeds a preset maximum reference strength value; and
 - using a preset default value as the calibration threshold if the reference strength value exceeds the preset maximum reference strength value, wherein the default value is a reference value determined according to at least one collected stable detection signal; or using a sum of the reference strength value and a fixed parameter value as the calibration threshold if the reference strength value does not exceed the pre-
set maximum reference strength value.

4. The method according to any one of claims 1 to 3, wherein before the determining a reference strength value of the at least one detection signal according to the strength value of the at least one detection signal, the method further comprises:

- determining that a strength value of each collected detection signal falls within a preset standard range.

5. The method according to claim 4, wherein the determining that a strength value of each collected detection signal falls within a preset standard range specifically comprises:

- determining a maximum strength value of the at least one detection signal and a minimum strength value of the at least one detection signal according to the strength value of the at least one collected detection signal; and if a difference between the maximum strength value of the at least one detection signal and the minimum strength value of the at least one detection signal does not exceed a preset standard value, determining that the strength value of each collected detection signal falls within the preset standard range.

6. The method according to any one of claims 1 to 3, wherein before the determining a reference strength value of the at least one detection signal according to the strength value of the at least one detection signal, the method further comprises:

- adding a quantity of collection times when a detection signal whose strength value does not fall within a preset standard range exists in the at least one detection signal;
- determining whether a total quantity of collection times that is obtained after the quantity of collection times is added exceeds a specified quantity of times; and
- if the total quantity of collection times that is obtained after the quantity of collection times is added is less than the specified quantity of times, performing again the collecting at least one detection signal; or if the total quantity of collection times that is obtained after the quantity of collection times is added is not less than the specified quantity of times, performing the determining a reference strength value of the at least one detection signal according to the strength value of the at least one detection signal.

7. The method according to any one of claims 1 to 6, wherein after the determining a calibration threshold, the method further comprises:

- if a difference between the strength value of the subsequently collected detection signal and the reference strength value is not less than the preset standard value, performing again the collecting at least one detection signal.

8. The method according to any one of claims 1 to 7, wherein the detection signal comprises an infrared signal or an ultrasonic signal.

9. A detection distance calibration apparatus, comprising:

- a collection unit, configured to collect at least one detection signal;
- a first determining unit, configured to determine a strength value of the at least one detection signal collected by the collection unit, wherein the strength value of the detection signal reflects a length of a detection distance;
- a second determining unit, configured to: determine a reference strength value of the at least one detection signal according to the strength value that is of the at least one detection signal and is determined by the first determining unit; and determine a calibration threshold according to the reference strength value, wherein the calibration threshold is used to determine a calibration range of the detection distance; and
- a calibration unit, configured to calibrate the detection distance according to the calibration threshold determined by the second determining unit and a strength value of a subsequently collected detection signal.

10. The apparatus according to claim 9, wherein the second determining unit is specifically configured to determine the reference strength value of the at least one detection signal according to the strength value of the at least one detection signal in the following manner:

- using an average strength value of the at least one collected detection signal as the reference strength value of the at least one detection signal.

11. The apparatus according to claim 9 or 10, wherein the apparatus further comprises a judging unit, wherein the judging unit is configured to determine whether the reference strength value exceeds a preset maximum reference strength value; and the second determining unit is specifically configured to determine the calibration threshold according to
the reference strength value in the following manner:

using a preset default value as the calibration threshold if a result of the determining of the judging unit is that the reference strength value exceeds the preset maximum reference strength value, wherein the default value is a reference value determined according to at least one collected stable detection signal; or using a sum of the reference strength value and a fixed parameter value as the calibration threshold if a result of the determining of the judging unit is that the reference strength value does not exceed the preset maximum reference strength value.

12. The apparatus according to any one of claims 9 to 11, wherein the second determining unit is further configured to:

before determining the reference strength value of the at least one detection signal according to the strength value of the at least one detection signal, determine that a strength value of each collected detection signal falls within a preset standard range.

13. The apparatus according to claim 12, wherein the second determining unit is specifically configured to determine, in the following manner, that the strength value of each collected detection signal falls within the preset standard range:

determining a maximum strength value of the at least one detection signal and a minimum strength value of the at least one detection signal according to the strength value of the at least one collected detection signal; and

if a difference between the maximum strength value of the at least one detection signal and the minimum strength value of the at least one detection signal does not exceed a preset standard value, determining that the strength value of each collected detection signal falls within the preset standard range.

14. The apparatus according to any one of claims 9 to 11, wherein the collection unit is further configured to:

before the reference strength value of the at least one detection signal is determined according to the strength value of the at least one detection signal, add a quantity of collection times when a detection signal whose strength value does not fall within a preset standard range exists in the at least one detection signal; the apparatus comprises the judging unit, wherein

the judging unit is configured to determine whether a total quantity of collection times that is obtained after the quantity of collection times is added exceeds a specified quantity of times; and

the collection unit is further configured to:

if a result of the determining of the judging unit is that the total quantity of collection times that is obtained after the quantity of collection times is added is less than the specified quantity of times, perform again the collecting at least one detection signal; or

the second determining unit is further configured to:

if a result of the determining of the judging unit is that the total quantity of collection times that is obtained after the quantity of collection times is added is not less than the specified quantity of times, perform the determining a reference strength value of the at least one detection signal according to the strength value of the at least one detection signal.

15. The apparatus according to any one of claims 9 to 14, wherein the collection unit is further configured to:

after the second determining unit determines the calibration threshold, if the first determining unit determines that a difference between the strength value of the subsequently collected detection signal and the reference strength value is not less than the preset standard value, perform again the collecting at least one detection signal.

16. The apparatus according to any one of claims 9 to 15, wherein the detection signal collected by the collection unit comprises an infrared signal or an ultrasonic signal.

17. A detection distance calibration device, comprising:

a signal transmitter, a sensor, and a processor, wherein

the signal transmitter is configured to transmit at least one detection signal; the sensor is configured to: collect the at least one detection signal, and determine a strength value of the at least one detection signal, wherein the strength value of the detection signal reflects a length of a detection distance; the processor is configured to: obtain the strength
value that is of the at least one detection signal and is determined by the sensor; determine a reference strength value of the at least one detection signal according to the strength value of the at least one detection signal; and determine a calibration threshold according to the reference strength value, wherein the calibration threshold is used to determine a calibration range of the detection distance; and the processor is further configured to calibrate the detection distance according to the calibration threshold and a strength value of a detection signal subsequently collected by the sensor.

18. The device according to claim 17, wherein the processor is specifically configured to determine the reference strength value of the at least one detection signal according to the strength value of the at least one detection signal in the following manner:

using an average strength value of the at least one collected detection signal as the reference strength value of the at least one detection signal.

19. The device according to claim 17 or 18, wherein the processor is further configured to:

determine whether the reference strength value exceeds a preset maximum reference strength value; and

the processor is specifically configured to determine the calibration threshold according to the reference strength value in the following manner:

using a preset default value as the calibration threshold if the reference strength value exceeds the preset maximum reference strength value, wherein the default value is a reference value determined according to at least one collected stable detection signal; or using a sum of the reference strength value and a fixed parameter value as the calibration threshold if the reference strength value does not exceed the preset maximum reference strength value.

20. The device according to any one of claims 17 to 19, wherein the processor is further configured to:

before determining the reference strength value of the at least one detection signal according to the strength value of the at least one detection signal, add a quantity of collection times when a detection signal whose strength value does not fall within a preset standard range exists in the at least one detection signal; and if a total quantity of collection times that is obtained after the quantity of collection times is added is less than a specified quantity of times, instruct the sensor to perform again the collecting the at least one detection signal; or if a total quantity of collection times that is obtained after the quantity of collection times is added is not less than a specified quantity of times, perform the determining a reference strength value of the at least one detection signal according to the strength value of the at least one detection signal.

21. The device according to claim 20, wherein the processor is specifically configured to determine, in the following manner, that the strength value of each collected detection signal falls within the preset standard range:

determining a maximum strength value of the at least one detection signal and a minimum strength value of the at least one detection signal according to the strength value of the at least one collected detection signal; and if a difference between the maximum strength value of the at least one detection signal and the minimum strength value of the at least one detection signal does not exceed a preset standard value, determining that the strength value of each collected detection signal falls within the preset standard range.

22. The device according to any one of claims 17 to 21, wherein the processor is further configured to:

before determining the reference strength value of the at least one detection signal according to the strength value of the at least one detection signal, add a quantity of collection times when a detection signal whose strength value does not fall within a preset standard range exists in the at least one detection signal; and if a total quantity of collection times that is obtained after the quantity of collection times is added is less than a specified quantity of times, instruct the sensor to perform again the collecting the at least one detection signal; or if a total quantity of collection times that is obtained after the quantity of collection times is added is not less than a specified quantity of times, perform the determining a reference strength value of the at least one detection signal according to the strength value of the at least one detection signal.

23. The device according to any one of claims 17 to 22, wherein the processor is further configured to:

after determining the calibration threshold, if a difference between the strength value of the subsequently collected detection signal and the reference strength value is not less than the preset standard value, instruct the sensor to perform again the collecting the at least one detection signal.

24. The device according to any one of claims 17 to 23, wherein the processor is specifically configured to determine, in the following manner, that the strength value of each collected detection signal falls within the preset standard range:

determining a maximum strength value of the at least one detection signal and a minimum strength value of the at least one detection signal according to the strength value of the at least one collected detection signal; and if a difference between the maximum strength value of the at least one detection signal and the minimum strength value of the at least one detection signal does not exceed a preset standard value, determining that the strength value of each collected detection signal falls within the preset standard range.
Collect at least one detection signal

Determine a strength value of the collected detection signal

Determine a reference strength value of the detection signal according to the strength value of the at least one detection signal

Determine a calibration threshold according to the reference strength value

Calibrate a detection distance according to the determined calibration threshold and a strength value of a subsequently collected detection signal

FIG. 1A

Determine an average strength value of a collected detection signal

Use the average strength value of the collected detection signal as a reference strength value

FIG. 1B
Add a quantity of collection times

S1032a

Determine whether a total quantity of collection times that is obtained after the quantity of collection times is add exceeds a specified quantity of times

S1032b

No

Perform again detection signal collection

S1032c

Yes

Determine a reference strength value of a detection signal according to a strength value of the detection signal

S1032d

FIG. 1C
Determine a maximum strength value of a detection signal and a minimum strength value of the detection signal

Determine whether a difference between the maximum strength value of the detection signal and the minimum strength value of the detection signal exceeds a preset standard value

No

Determine that a strength value of each collected detection signal falls within a preset standard range

Yes

Determine that a strength value of each collected detection signal does not fall within a preset standard range

FIG. 1D

Determine whether a reference strength value exceeds a preset maximum reference strength value

No

Use a sum of the reference strength value and a fixed parameter value as a calibration threshold

Yes

Use a preset default value as a calibration threshold

FIG. 1E
An infrared sensing apparatus collects a specified quantity of infrared signals, and determines strength values of the collected infrared signals.

Determine a maximum strength value, a minimum strength value, and an average strength value of the collected infrared signals.

Add a quantity of collection times, and determine whether a total quantity of collection times that is obtained after the quantity of collection times is added exceeds a specified quantity of times.

Determine whether a difference between the maximum strength value and the minimum strength value of the collected infrared signals exceeds a preset standard value.

Use the average strength value of the specified quantity of collected infrared signals as a reference strength value.

FIG. 2A
Use a preset default value as a calibration threshold

Determine whether the reference strength value exceeds a preset maximum reference strength value

No

Use a sum of the reference strength value and a fixed parameter value as a calibration threshold

Calibrate a detection distance according to the determined calibration threshold and a strength value of a subsequently collected infrared signal

A primary system of a terminal device performs a corresponding processing operation according to a received trigger signal

No

Continue to perform infrared signal collection, and determine whether a difference between the strength value of the subsequently collected infrared signal and the reference strength value is less than the preset standard value

Yes

FIG 2B
Detection distance calibration device

Signal transmitter 401 Sensor 402 Processor 403

FIG. 4
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H04M 1/725 (2006.01) i
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04M 1/-

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT, EPDOC, WPI, CNKI: HUAWEI, screen, touch, display, off, shut+, close, distance, adjust+, correct+, calibrate+, threshold

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN 103442136 A (HUZHOU TCL MOBILE COMMUNICATION CO., LTD.) 11 December 2013 (11.12.2013) description, paragraphs [0037]-[0057], [0063]-[0072], and figures 1 and 2</td>
<td>1, 2, 4, 7-10, 12, 15-18, 20, 23, 24</td>
</tr>
<tr>
<td>A</td>
<td>CN 102520852 A (HUAWEI DEVICE CO., LTD.) 27 June 2012 (27.06.2012) the whole document</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>CN 103837910 A (SHENZHEN GIONEE COMMUNICATION EQUIPMENT CO., LTD.) 04 June 2012 (04.06.2012) the whole document</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>CN 102833419 A (HUAWEI DEVICE CO., LTD.) 19 December 2012 (19.12.2012) the whole document</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>CN 102917124 A (DONGGUAN YULONG COMMUNICATION TECHNOLOGY CO., LTD.) 06 February 2013 (06.02.2013) the whole document</td>
<td>1-24</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 “A” document defining the general state of the art which is not considered to be of particular relevance
 “E” earlier application or patent but published on or after the international filing date
 “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 “O” document referring to an oral disclosure, use, exhibition or other means
 “P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“*” document member of the same patent family

Date of the actual completion of the international search
25 May 2015

Date of mailing of the international search report
23 June 2015

Name and mailing address of the ISA
State Intellectual Property Office of the P. R. China
No. 6, Xitucheng Road, Jmenqiao
Haidian District, Beijing 100088, China
Facsimile No. (86-10) 62019451

Authorized officer
HAN, Bing
Telephone No. (86-10) 62414455

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 103442136 A</td>
<td>11 December 2013</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 102520852 A</td>
<td>27 June 2012</td>
<td>EP 2600218 A1</td>
<td>05 June 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013078876 A1</td>
<td>06 June 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013299442 A1</td>
<td>05 September 2013</td>
</tr>
<tr>
<td>CN 103837910 A</td>
<td>04 June 2012</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 102833419 A</td>
<td>19 December 2012</td>
<td>CN 102833419 B</td>
<td>05 November 2014</td>
</tr>
<tr>
<td>CN 102917124 A</td>
<td>06 February 2013</td>
<td>CN 102917124 B</td>
<td>26 November 2014</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)