SMALL CELL BASE STATION-BASED COMMUNICATION METHOD AND COMMUNICATION SYSTEM

Provided are a small cell base station-based communication method and communication system, the method comprising: dividing a plurality of small cell base stations into at least one small cell base station cluster; when a terminal is moving within any particular small cell base station cluster of the at least one small cell base station cluster, the terminal obtains identification information of the particular small cell base station cluster, and determines a small cell base station associated with the terminal from among the particular small cell base station cluster; and a specified small cell base station of the particular small cell base station cluster schedules the small cell base station associated with the terminal to provide communication services for the terminal. The technical solution of the present invention can effectively avoid interference with communication between the terminal and the small cell base station, while increasing the throughput of the interaction between the terminal and the base station and ensuring good communication when the terminal is moving at a high speed in the small cell base station.

Fig. 1
The present disclosure relates to the field of communication technology, and particularly to a small cell base station-based communication method and a small cell base station-based communication apparatus.

BACKGROUND

In the present wireless communication system, in order to further improve the capacity of the network, the miniaturization of base stations and the densification of network nodes have become the inevitable choice. However, the densification of network nodes will inevitably bring about interference with each other, and strong interference between nodes will greatly affect the performance of the system.

In order to solve the problem of interference between low power nodes, 3GPP has done a lot of standardization work. In stage R10/11, for the scene in which a macro base station and a low power base station work at the same frequency, the ABS (Almost Blank Sub-frame) method is introduce, in which an interference source can configure an ABS on some sub-frames, and in the sub-frame where the interference source is configured with the ABS, the interfered node can schedule the user whose interference is more serious. In the current stage R12, taking into account a more intensive small cell deployment scenario, and a small cell on/off method is introduced, in which some small cells can be turned on or off according to changes in business or interference. In this way, the interference among small cells can be avoided, and there are certain benefits for base station energy saving either.

In most of the existing interference avoidance methods, for example, the TDM (Time-Division Multiplexing) method, interference are avoided by coordinating resources and the effectiveness of resource use will be relatively low. In other methods, such as terminal side interference cancellation, it is necessary to implement a relatively complex interference cancellation algorithm on the terminal side, and this has a higher demand on the realization of the complexity of the terminal. For the method that avoid interference via CoMP (Coordinated Multiple Points), generally, the CoMP mechanism can only solve the performance problem of edge users and have certain requirements on the mobility of the terminal, and therefore is not applicable to scenes where the terminal moves at high speed.

Therefore, how to reduce the interference with communication between the terminal and the small cell base station while ensuring the communication effect when the terminal moves at high speed within the small cell base station has become an urgent technical problem to be solved.

SUMMARY

Based on at least one of the above-mentioned technical problems, the present disclosure provides a new small cell base station-based communication scheme, which can effectively avoid interference with communication between a terminal and a small cell base station, while increasing the throughput of the interaction between the terminal and the base station and ensuring good communication when the terminal moves at a high speed in the small cell base station.

In view of this, the present disclosure provides a small cell base station-based communication method, which includes: a plurality of small cell base stations are divided into at least one small cell base station cluster; when a terminal moves within any small cell base station cluster of the at least one small cell base station cluster, identification information of the any small cell base station cluster is obtained and a small cell base station associated with the terminal is determined from among the any small cell base station cluster through the terminal; the small cell base station associated with the terminal is scheduled to provide communication service for the terminal.

In this technical scheme, the small cell base station associated with the terminal is determined from among a small cell base station cluster, such that when the communication between the small cell base station in which the terminal is currently located and the terminal is interfered by other communication, other small cell base stations in the small cell base station cluster can be scheduled to carry out data interaction with the terminal, and therefore, interference between the terminal and the small cell base station can be avoided. And at the same time, since the terminal can be served through a plurality of small cell base stations, it is possible to improve the throughput of the interaction between the terminal and the base station, and ensure the communication effect when the terminal moves at high speed within the small cell base station, thus enhancing the user experience.

For example, in a small cell base station cluster, it is determined that small cell base stations associated with the terminal are small cell base station A, small cell base station B, and small cell base station C. Suppose the small cell base station currently communicating with the terminal is small cell base station A; however, it is found that the communication interference between small cell base station A and the terminal is large, and the communication interference between small cell base station B and/or small cell base station C and the terminal is small, then small cell base station B and/or small cell base station C can be scheduled to provide services for the terminal, so as to avoid the problem that the communication quality is poor due to the terminal continuing to communicate with small cell base station A. In addition, if small cell base station A currently communicating with the terminal has a large load, small cell base station B
and/or small cell base station C can be scheduled to provide services for the terminal, so as to reduce the load pressure of small cell base station A. At the same time, in order to ensure higher communication efficiency and throughput between the terminal and the small cell base station, small cell base station A, small cell base station B, and small cell base station C can be scheduled to provide services for the terminal simultaneously.

[0010] In the above-mentioned technical scheme, as an implementation, the small cell base station associated with the terminal is scheduled to provide communication services for the terminal by a specified small cell base station of the any small cell base station cluster.

[0011] Specifically, each small cell base station cluster can have a cluster head, which can establish a connection with a communication base station and perform scheduling operations on other small cell base stations in the entire small cell base station cluster.

[0012] In the above-mentioned technical scheme, as an implementation, the method can further include: the identification information of the any small cell base station cluster is transmitted in the same or different time-frequency resources by part or all of the small cell base stations in the any small cell base station cluster, whereby the terminal can determine the small cell base station cluster in which the terminal is located.

[0013] In the above-mentioned technical scheme, as an implementation, identification information corresponding to each small cell base station in the any small cell base station cluster is transmitted to the terminal through the communication base station or the specified small cell base station.

[0014] In this technical scheme, by transmitting the identification information of a small cell base station and the corresponding identification information, the terminal can determine each small cell base station in the small cell base station cluster by measuring the identification information. After determining the associated small cell base station, the terminal can upload the identification information of a corresponding small cell base station to the cluster head performing scheduling operations, whereby the cluster head can schedule the corresponding small cell base station.

[0015] In the above-mentioned technical scheme, as an implementation, the identification information corresponding to each small cell base station includes CSI-RS (Channel State Information-Reference Signal) information.

[0016] In the above-mentioned technical scheme, as an implementation, the process that the small cell base station associated with the terminal is determined from among the any small cell base station cluster by the terminal includes: the CSI-RS information that is able to be received by the terminal at the current location is measured through the terminal; according to the CSI-RS information corresponding to each small cell base station, a small cell base station corresponding to the CSI-RS information that is able to be received by the terminal at the current location is determined, so as to determine the small cell base station associated with the terminal.

[0017] In the above-mentioned technical scheme, the specified small cell base station notifies the terminal to measure the CSI-RS information at a specified time-frequency location through a radio resource control signaling, a medium access control unit signaling, or a physical layer signaling.

[0018] In the above-mentioned technical scheme, as an implementation, the manner in which the small cell base station associated with the terminal is scheduled to provide communication services for the terminal includes: the small cell base station associated with the terminal is scheduled for joint transmission; the small cell base station that provides communication services to the terminal is selected dynamically, or the small cell base station associated with the terminal is scheduled to send transmission signals in coordination.

[0019] In this technical scheme, after the small cell base station associated with the terminal is determined, the terminal can be served in a combined transmission manner, so as to ensure the communication quality of the terminal and improve system throughput; in order to avoid interference to the communication of the terminal, the small cell base station that provides communication services for the terminal can be selected dynamically, or the small cell base station associated with the terminal can be scheduled to send transmission signals in coordination; in this way, under the prerequisite of ensuring communication continuity between the terminal and the small cell base station, the transmission efficiency of the communication process can be improved, the interference of communication can be effectively reduced, and the user experience can be enhanced.

[0020] In the above-mentioned technical scheme, as an implementation, the specified small cell base station can establish a connection with the communication base station.

[0021] In this technical scheme, the specified small cell base station (that is, the cluster head) can establish a connection with the communication base station, such that even if the terminal is out of coverage of the cluster head, it can also interact with the cluster head through the communication base station, thereby ensuring that the cluster head can schedule the corresponding small cell base station to provide services for the terminal according to the small cell base station reported by the terminal.

[0022] In the above-mentioned technical scheme, as an implementation, the specified small cell base station can establish the connection with the communication base station via a wired interface or a wireless interface.

[0023] According to a second aspect of the present disclosure, it is provided a small cell base station-based communication system, which includes: a dividing unit, configured to divide a plurality of small cell base stations into at least one small cell base station cluster; a determining unit, configured to obtain identification information
of the any small cell base station cluster when a terminal moves within any small cell base station cluster of the at least one small cell base station cluster, and determine from among the any small cell base station cluster a small cell base station associated with the terminal through the terminal; a scheduling unit, configured to schedule the small cell base station associated with the terminal to provide communication service for the terminal.

[0024] In this technical scheme, the small cell base station associated with the terminal is determined from among a small cell base station cluster, such that when the communication between the small cell base station in which the terminal is currently located and the terminal is interfered by other communication, other small cell base stations in the small cell base station cluster can be scheduled to carry out data interaction with the terminal, and therefore, interference between the terminal and the small cell base station can be avoided. And at the same time, since the terminal can be served through a plurality of small cell base stations, it is possible to improve the throughput of the interaction between the terminal and the base station, and ensure the communication effect when the terminal moves at high speed within the small cell base station, thus enhancing the user experience.

[0025] For example, in a small cell base station cluster, if it is determined that small cell base stations associated with the terminal are small cell base station A, small cell base station B, and small cell base station C. Suppose the small cell base station currently communicating with the terminal is small cell base station A; however, it is found that the communication interference between small cell base station A and the terminal is small, and the communication interference between small cell base station B and/or small cell base station C and the terminal is small, then small cell base station B and/or small cell base station C can be scheduled to provide services for the terminal, so as to avoid the problem that the communication quality is poor due to the terminal continuing to communicate with small cell base station A. In addition, if small cell base station A is currently communicating with the terminal has a large load, small cell base station B and/or small cell base station C can be scheduled to provide services for the terminal, so as to reduce the load pressure of small cell base station A. At the same time, in order to ensure higher communication efficiency and throughput between the terminal and the small cell base station, small cell base station A, small cell base station B, and small cell base station C can be scheduled to provide services for the terminal simultaneously.

[0026] In the above-mentioned technical scheme, as an implementation, the scheduling unit is configured to schedule the small cell base station associated with the terminal to provide communication services for the terminal by a specified small cell base station of the any small cell base station cluster.

[0027] Specifically, each small cell base station cluster can have a cluster head, which can establish a connection with a communication base station and perform scheduling operations on other small cell base stations in the entire small cell base station cluster.

[0028] In the above-mentioned technical scheme, as an implementation, the system can further include: a transmitting unit, configured to transmit identification information of the any small cell base station cluster in the same or different time-frequency resources through part or all of the small cell base stations in the any small cell base station cluster, whereby the terminal can determine the small cell base station cluster in which the terminal is located.

[0029] In the above-mentioned technical scheme, as an implementation, identification information corresponding to each small cell base station in the any small cell base station cluster is transmitted to the terminal through the communication base station or the specified small cell base station.

[0030] In this technical scheme, by transmitting the identification information of a small cell base station and the corresponding identification information, the terminal can determine each small cell base station in the small cell base station cluster by measuring the identification information. After determining the associated small cell base station, the terminal can upload the identification information of a corresponding small cell base station to the cluster head performing scheduling operations, whereby the cluster head can schedule the corresponding small cell base station.

[0031] In the above-mentioned technical scheme, as an implementation, the identification information corresponding to each small cell base station includes CSI-RS information.

[0032] In the above mentioned technical scheme, as an implementation, the transmitting unit is further configured to: transmit the identification information of the any small cell base station and the CSI-RS information corresponding to each small cell base station in the any small cell base station to the terminal by the communication base station or the specified small cell base station.

[0033] In the above mentioned technical scheme, as an implementation, the determining unit is further configured to: measure the CSI-RS information that is able to be received by the terminal at the current location through the terminal; according to the CSI-RS information corresponding to each small cell base station, determine a small cell base station corresponding to the CSI-RS information that is able to be received by the terminal at the current location, so as to determine the small cell base station associated with the terminal.

[0034] In the above mentioned technical scheme, the specified small cell base station notifies the terminal to measure the CSI-RS information at a specified time-frequency location through a radio resource control signaling, a medium access control unit signaling, or a physical layer signaling.

[0035] In the above mentioned technical scheme, the scheduling unit is configured to schedule the small cell
base station associated with the terminal for joint transmission; select the small cell base station that provides communication services to the terminal dynamically, or schedule the small cell base station associated with the terminal to send transmission signals in coordination.

[0036] In this technical scheme, after the small cell base station associated with the terminal is determined, the terminal can be served in a combined transmission manner, so as to ensure the communication quality of the terminal and improve system throughput; in order to avoid interference to the communication of the terminal, the small cell base station that provides communication services for the terminal can be selected dynamically, or the small cell base station associated with the terminal can be scheduled to send transmission signals in coordination; in this way, under the prerequisite of ensuring communication continuity between the terminal and the small cell base station, the transmission efficiency of the communication process can be improved, the interference of communication can be effectively reduced, and the user experience can be enhanced.

[0037] In the above-mentioned technical scheme, as an implementation, the specified small cell base station can establish a connection with the communication base station.

[0038] In this technical scheme, the specified small cell base station (that is, the cluster head) can establish a connection with the communication base station, such that even if the terminal is out of coverage of the cluster head, it can also interact with the cluster head through the communication base station, thereby ensuring that the cluster head can schedule the corresponding small cell base station to provide services for the terminal according to the small cell base station reported by the terminal. For example, the specified small cell base station can establish the connection with the communication base station via a wired interface or a wireless interface.

[0039] In the above-mentioned technical scheme, as an implementation, the specified small cell base station can establish the connection with the communication base station via a wired interface or a wireless interface.

[0040] Through the above-mentioned technical scheme, it is possible to effectively avoid the problem of interference between the terminal and the small cell base station, improve the throughput of the interaction between the terminal and the base station, and ensure the communication effect when the terminal moves at high speed within the small cell base station.

BRIEF DESCRIPTION OF THE DRAWINGS

[0041] FIG. 1 is a schematic flow chart illustrating a small cell base station-based communication method according to an embodiment of the present disclosure.

FIG. 2 is a schematic block diagram illustrating a small cell base station-based communication system according to an embodiment of the present disclosure.

FIG. 3 is a structural diagram illustrating a small cell base station-based communication system according to an embodiment of the present disclosure.

FIG. 4 is a schematic flow chart illustrating a small cell base station-based communication method according to another embodiment of the present disclosure.

DETAILED DESCRIPTION OF ILLUSTRATED EMBODIMENTS

[0042] In order to illustrate the technical solutions of the present disclosure or the related art more clearly, a brief description of the accompanying drawings used herein is given below. Obviously, the drawings listed below are only examples, and a person skilled in the art should be noted that, other drawings can also be obtained on the basis of these exemplary drawings without creative work.

[0043] In the following description, numerous specific details are set forth in order to facilitate a thorough understanding of the present disclosure, however, the present disclosure can be practiced otherwise than as specifically described herein, and therefore, the scope of the present disclosure is not to be limited by the specific embodiments disclosed below.

[0044] FIG. 1 is a schematic flow chart illustrating a small cell base station-based communication method according to an embodiment of the present disclosure.

[0045] As shown in FIG. 1, the small cell base station-based communication method according to an embodiment of the present disclosure includes: S102, a plurality of small cell base stations are divided into at least one small cell base station cluster; S104, when a terminal moves within any small cell base station cluster of the at least one small cell base station cluster, identification information of the any small cell base station cluster is obtained and a small cell base station associated with the terminal is determined from among the any small cell base station cluster through the terminal; and S106, the small cell base station associated with the terminal is scheduled to provide communication service for the terminal.

[0046] In this technical scheme, the small cell base station associated with the terminal is determined from among a small cell base station cluster, such that when the communication between the small cell base station in which the terminal is currently located and the terminal is interfered by other communication, other small cell base stations in the small cell base station cluster can be scheduled to carry out data interaction with the terminal, and therefore, interference between the terminal and the small cell base station can be avoided. And at the same time, since the terminal can be served through a plurality of small cell base stations, it is possible to improve the throughput of the interaction between the ter-
minal and the base station, and ensure the communication effect when the terminal moves at high speed within the small cell base station, thus enhancing the user experience.

[0047] For example, in a small cell base station cluster, it is determined that small cell base stations associated with the terminal are small cell base station A, small cell base station B, and small cell base station C. Suppose the small cell base station currently communicating with the terminal is small cell base station A; however, it is found that the communication interference between small cell base station A and the terminal is large, and the communication interference between small cell base station B and/or small cell base station C is significant. In this situation, the terminal can determine the associated small cell base station B and/or small cell base station C can be scheduled to provide services for the terminal, so as to avoid the problem that the communication quality is poor due to the terminal continuing to communicate with small cell base station A. In addition, if small cell base station A currently communicating with the terminal has a large load, small cell base station B and/or small cell base station C can be scheduled to provide services for the terminal, so as to reduce the load pressure of small cell base station A. At the same time, in order to ensure higher communication efficiency and throughput between the terminal and the small cell base station, small cell base station A, small cell base station B, and small cell base station C can be scheduled to provide services for the terminal simultaneously.

[0048] In the above-mentioned technical scheme, as an implementation, the small cell base station associated with the terminal is scheduled to provide communication services for the terminal by a specified small cell base station of the any small cell base station cluster.

[0049] Specifically, each small cell base station cluster can have a cluster head, which can establish a connection with a communication base station and perform scheduling operations on other small cell base stations in the entire small cell base station cluster.

[0050] In the above-mentioned technical scheme, as an implementation, the method can further include: identification information of the any small cell base station cluster is transmitted in the same or different time-frequency resources by part or all of the small cell base stations in the any small cell base station cluster, whereby the terminal can determine the small cell base station cluster in which the terminal is located.

[0051] In the above-mentioned technical scheme, as an implementation, identification information corresponding to each small cell base station in the any small cell base station cluster is transmitted to the terminal through the communication base station or the specified small cell base station.

[0052] In this technical scheme, by transmitting the identification information of a small cell base station and the corresponding identification information, the terminal can determine each small cell base station in the small cell base station cluster by measuring the identification information. After determining the associated small cell base station, the terminal can upload the identification information of a corresponding small cell base station to the cluster head performing scheduling operations, whereby the cluster head can schedule the corresponding small cell base station.

[0053] In the above-mentioned technical scheme, as an implementation, the identification information corresponding to each small cell base station includes CSI-RS (Channel State Information-Reference Signal) information.

[0054] In the above-mentioned technical scheme, as an implementation, the process that the small cell base station associated with the terminal is determined from among the any small cell base station cluster by the terminal includes: the CSI-RS information that is able to be received by the terminal at the current location is measured by the terminal; according to the CSI-RS information corresponding to each small cell base station, a small cell base station corresponding to the CSI-RS information that is able to be received by the terminal at the current location is determined, so as to determine the small cell base station associated with the terminal.

[0055] In the above-mentioned technical scheme, the specified small cell base station notifies the terminal to measure the CSI-RS information at a specified time-frequency location through a radio resource control signaling, a medium access control unit signaling, or a physical layer signaling.

[0056] In the above-mentioned technical scheme, as an implementation, the manner in which the small cell base station associated with the terminal is scheduled to provide communication services for the terminal includes: the small cell base station associated with the terminal is scheduled for joint transmission; the small cell base station that provides communication services to the terminal is selected dynamically, or the small cell base station associated with the terminal is scheduled to send transmission signals in coordination.

[0057] In this technical scheme, after the small cell base station associated with the terminal is determined, the terminal can be served in a combined transmission manner, so as to ensure the communication quality of the terminal and improve system throughput; in order to avoid interference to the communication of the terminal, the small cell base station that provides communication services for the terminal can be selected dynamically, or the small cell base station associated with the terminal can be scheduled to send transmission signals in coordination; in this way, under the prerequisite of ensuring communication continuity between the terminal and the small cell base station, the transmission efficiency of the communication process can be improved, the interference of communication can be effectively reduced, and the user experience can be enhanced.

[0058] In the above-mentioned technical scheme, as an implementation, the specified small cell base station can establish a connection with the communication base
In this technical scheme, the specified small cell base station (that is, the cluster head) can establish a connection with the communication base station, such that even if the terminal is out of coverage of the cluster head, it can also interact with the cluster head through the communication base station, thereby ensuring that the cluster head can schedule the corresponding small cell base station to provide services for the terminal according to the small cell base station reported by the terminal.

In the above-mentioned technical scheme, an implementation, the specified small cell base station can establish the connection with the communication base station via a wired interface or a wireless interface.

FIG. 2 is a schematic block diagram illustrating a small cell base station-based communication system according to an embodiment of the present disclosure.

As illustrated in FIG. 2, a small cell base station-based communication system 200 according to the embodiment of the present disclosure includes: a dividing unit 202, configured to divide a plurality of small cell base stations into at least one small cell base station cluster; a determining unit 204, configured to obtain identification information of the any small cell base station cluster when a terminal moves within any small cell base station cluster of the at least one small cell base station cluster, and determine from among the any small cell base station cluster a small cell base station associated with the terminal through the terminal; a scheduling unit 206, configured to schedule the small cell base station associated with the terminal to provide communication service for the terminal.

In this technical scheme, the small cell base station associated with the terminal is determined from among a small cell base station cluster, such that when the communication between the small cell base station in which the terminal is currently located and the terminal is interfered by other communication, other small cell base stations in the small cell base station cluster can be scheduled to carry out data interaction with the terminal, and therefore, interference between the terminal and the small cell base station can be avoided. And at the same time, since the terminal can be served through a plurality of small cell base stations, it is possible to improve the throughput of the interaction between the terminal and the base station, and ensure the communication effect when the terminal moves at high speed within the small cell base station, thus enhancing the user experience.

For example, in a small cell base station cluster, it is determined that small cell base stations associated with the terminal are small cell base station A, small cell base station B, and small cell base station C. Suppose the small cell base station currently communicating with the terminal is small cell base station A; however, it is found that the communication interference between small cell base station A and the terminal is large, and the communication interference between small cell base station B and/or small cell base station C and the terminal is small, then small cell base station B and/or small cell base station C can be scheduled to provide services for the terminal, so as to avoid the problem that the communication quality is poor due to the terminal continuing to communicate with small cell base station A. In addition, if small cell base station A currently communicating with the terminal has a large load, small cell base station B and/or small cell base station C can be scheduled to provide services for the terminal, so as to reduce the load pressure of small cell base station A. At the same time, in order to ensure higher communication efficiency and throughput between the terminal and the small cell base station, small cell base station A, small cell base station B, and small cell base station C can be scheduled to provide services for the terminal simultaneously.

Specifically, each small cell base station cluster can have a cluster head, which can establish a connection with a communication base station and perform scheduling operations on other small cell base stations in the entire small cell base station cluster.

In the above-mentioned technical scheme, as an implementation, the system can further include: a transmitting unit 208, configured to transmit identification information of the any small cell base station cluster in the same or different time-frequency resources through part or all of the small cell base stations in the any small cell base station cluster, whereby the terminal can determine the small cell base station cluster in which the terminal is located.

In this technical scheme, by transmitting the identification information of a small cell base station and the corresponding identification information, the terminal can determine each small cell base station in the small cell base station cluster by measuring the identification information. After determining the associated small cell base station, the terminal can upload the identification information of a corresponding small cell base station to the cluster head performing scheduling operations, whereby the cluster head can schedule the corresponding small cell base station.
RS information.

[0071] In the above mentioned technical scheme, as an implementation, the transmitting unit 208 is further configured to: transmit the identification information of the any small cell base station and the CSI-RS information corresponding to each small cell base station in the any small cell base station to the terminal by the communication base station or the specified small cell base station.

[0072] In the above mentioned technical scheme, as an implementation, the determining unit 204 is further configured to: measure the CSI-RS information that is able to be received by the terminal at the current location through the terminal; according to the CSI-RS information corresponding to each small cell base station, determine a small cell base station corresponding to the CSI-RS information that is able to be received by the terminal at the current location, so as to determine the small cell base station associated with the terminal.

[0073] In the above mentioned technical scheme, the specified small cell base station notifies the terminal to measure the CSI-RS information at a specified time-frequency location through a radio resource control signaling, a medium access control unit signaling, or a physical layer signaling.

[0074] In the above mentioned technical scheme, the scheduling unit 206 is configured to: schedule the small cell base station associated with the terminal for joint transmission; select the small cell base station that provides communication services to the terminal dynamically, or schedule the small cell base station associated with the terminal to send transmission signals in coordination.

[0075] In this technical scheme, after the small cell base station associated with the terminal is determined, the terminal can be served in a combined transmission manner, so as to ensure the communication quality of the terminal and improve system throughput; in order to avoid interference to the communication of the terminal, the small cell base station that provides communication services for the terminal can be selected dynamically, or the small cell base station associated with the terminal can be scheduled to send transmission signals in coordination; in this way, under the prerequisite of ensuring communication continuity between the terminal and the small cell base station, the transmission efficiency of the communication process can be improved, the interference of communication can be effectively reduced, and the user experience can be enhanced.

[0076] In the above-mentioned technical scheme, as an implementation, the specified small cell base station can establish a connection with the communication base station.

[0077] In this technical scheme, the specified small cell base station (that is, the cluster head) can establish a connection with the communication base station, such that even if the terminal is out of coverage of the cluster head, it can also interact with the cluster head through the communication base station, thereby ensuring that the cluster head can schedule the corresponding small cell base station to provide services for the terminal according to the small cell base station reported by the terminal. For example, the specified small cell base station can establish the connection with the communication base station via a wired interface or a wireless interface.

[0078] In the above-mentioned technical scheme, as an implementation, the specified small cell base station can establish the connection with the communication base station via a wired interface or a wireless interface.

[0079] Technical schemes of the present disclosure will now be described in detail with reference to FIG. 3 and FIG. 4.

[0080] In order to better illustrate the technical scheme of the present disclosure, as shown in FIG. 3, the scenario given first is as follows:

1. The terminal always has a cell connection to ensure mobility.
2. Adjacent small cells form a small cell cluster, and the mechanism of clustering may be based on geographic location, mutual interference status, and the like. In one small cell cluster, there is a small cell as a cluster head, which is used for cluster coordination and can be connected with other small cells through an ideal backhaul. The cluster head can be connected to a MeNB or a small cell gateway through an optical fiber, copper or other wire interface or through a wireless interface. If the terminal is located in a small cell cluster, then all or part of nodes (that is, small cells other than the cluster head in the cluster) in the small cell cluster can carry out data communication with the terminal in a collaborative manner, and the communication process is illustrated in FIG. 4.

[0081] S402, the terminal obtains the cluster ID.

[0082] All nodes in a small cell cluster can have the same physical layer cell ID (that is, cluster ID), and the cell ID is transmitted to the terminal through a MeNB or the terminal can obtain the cell ID by searching. In order to enable the terminal to obtain the physical layer cell ID of the cluster by searching, in a cluster, all nodes can transmit PSS (Primary Synchronization Signal)/SSS (Secondary Synchronization Signal) at the same or different time-frequency resources, or, only some of the nodes (for example, the cluster head node) can transmit PSS/SSS at the same or different time-frequency resources.

[0083] S404, the terminal obtains a configuration set of the CSI-RS in the cluster.

[0084] Specifically, if it is required to distinguish between different nodes in a cluster, then it is necessary to inform the terminal of a configuration set of the CSI-RS, which can be achieved in two ways. One approach is to inform the terminal through a MeNB, specifically, the MeNB can inform the terminal of a correspondence relationship between a physical layer cell-ID and a CSI-RS
configuration set, and when the terminal enters into a small cell cluster, it can know the configuration set of the CSI-RS of the small cell cluster with aid of the detected physical layer cell ID and the correspondence relationship informed by the MeNB. Another approach is to inform the terminal of the configuration set of the CSI-RS of a cluster by the cluster head of the cluster, and when the terminal enters into a small cell cluster and detects the physical layer cell ID, the cluster head can inform the terminal the configuration set of the CSI-RS of the cluster via RRC (Radio Resource Control) signaling, a MAC (Medium Access Control) CE (Control Element), or system information (such as physical layer signaling).

[0085] S406, the terminal reports the detected node information.

[0086] Specifically, when the terminal moves in the cluster, it can obtain information of transmission nodes around by measuring in accordance with the informed configuration set of CSI-RS and transmit a SR (Scheduling Request) on pre-defined resources, the detected information of the transmission nodes can be informed to the cluster head via a PUCCH (Physical Uplink Control Channel), a PUSCH (Physical Uplink Shared Channel), or a PRACH (Physical Random Access Channel). In this situation, the cluster head needs to inform the terminal of the time-frequency information to be measured in advance.

[0087] S408, the cluster head coordinates the transmission points to provide services for the terminal.

[0088] Specifically, when the cluster head obtains the information of the nodes around, it will inform, via backhaul signaling, corresponding nodes to serve the terminal. Specific service methods can be combined transmission, dynamic node selection, or coordinated transmission of transmission signals, etc. Corresponding nodes will provide the terminal with communication service jointly or independently according to the scheduling operations of the cluster head.

[0089] As the terminal moves, the cluster head can allocate different service nodes to the terminal in real time according to the node information detected by the terminal, so as to ensure the continuity of terminal communication.

[0090] Technical schemes of the present disclosure have been described in detail with reference to the accompanying drawings. Considering the problem in the related art that mobile communication of the terminal cannot be guaranteed while reducing interference among small cell base stations, the new small cell base station-based communication scheme is proposed in the present disclosure, through which the terminal can be cooperatively served in a small cell base station cluster, interferences among small cell base stations can be reduced, and communication effect when the terminal moves at a high speed in a small cell base station can be ensured, therefore, the user experience can be enhanced.

[0091] While the present disclosure has been described in detail above with reference to the exemplary embodiments, the scope of the present disclosure is not limited thereto. As will occur to those skilled in the art, the present disclosure is susceptible to various modifications and changes without departing from the spirit and principle of the present disclosure. Therefore, the scope of the present disclosure should be determined by the scope of the claims.

Claims

1. A small cell base station-based communication method, comprising:

 dividing a plurality of small cell base stations into at least one small cell base station cluster;

 when a terminal moves within any small cell base station cluster of the at least one small cell base station cluster, obtaining identification information of the any small cell base station cluster and determining a small cell base station associated with the terminal from among the any small cell base station cluster through the terminal;

 scheduling the small cell base station associated with the terminal to provide communication service for the terminal.

2. The small cell base station-based communication method of claim 1, wherein the small cell base station associated with the terminal is scheduled to provide communication services for the terminal by a specified small cell base station of the any small cell base station cluster.

3. The small cell base station-based communication method of claim 2, further comprising:

 transmitting the identification information of the any small cell base station cluster in the same or different time-frequency resources by part or all of the small cell base stations in the any small cell base station cluster, whereby the terminal can determine the small cell base station cluster in which the terminal is located.

4. The small cell base station-based communication method of claim 3, wherein identification information corresponding to each small cell base station in the any small cell base station cluster is transmitted to the terminal through the communication base station or the specified small cell base station.

5. The small cell base station-based communication method of claim 4, wherein the identification information corresponding to each small cell base station comprises CSI-RS (Channel State Information-Reference Signal) information.
6. The small cell base station-based communication method of claim 5, wherein the step of determining the small cell base station associated with the terminal from among the any small cell base station cluster through the terminal comprises:

 - the CSI-RS information that is able to be received by the terminal at the current location is measured through the terminal; and
 - according to the CSI-RS information corresponding to each small cell base station, determining a small cell base station corresponding to the CSI-RS information that is able to be received by the terminal at the current location, so as to determine the small cell base station associated with the terminal.

7. The small cell base station-based communication method of claim 6, wherein the specified small cell base station notifies the terminal to measure the CSI-RS information at a specified time-frequency location through a radio resource control signaling, a medium access control unit signaling, or a physical layer signaling.

8. The small cell base station-based communication method of claim 2, wherein manners of scheduling the small cell base station associated with the terminal to provide communication service for the terminal comprises:

 - scheduling the small cell base station associated with the terminal for joint transmission;
 - dynamically selecting the small cell base station that provides communication services to the terminal; or
 - scheduling the small cell base station associated with the terminal to send transmission signals in coordination.

9. The small cell base station-based communication method of any of claims 2-8, wherein the specified small cell base station establishes a connection with the communication base station.

10. The small cell base station-based communication method of claim 9, wherein the specified small cell base station establishes the connection with the communication base station via a wired interface or a wireless interface.

11. A small cell base station-based communication system, comprising:

 - a dividing unit, configured to divide a plurality of small cell base stations into at least one small cell base station cluster;
 - a determining unit, configured to obtain identification information of the any small cell base station cluster when a terminal moves within any small cell base station cluster of the at least one small cell base station cluster, and determine from among the any small cell base station cluster a small cell base station associated with the terminal through the terminal; and
 - a scheduling unit, configured to schedule the small cell base station associated with the terminal to provide communication service for the terminal.

12. The small cell base station-based communication system of claim 11, wherein the scheduling unit is configured to:

 - schedule the small cell base station associated with the terminal to provide communication services for the terminal through a specified small cell base station of the any small cell base station cluster.

13. The small cell base station-based communication system of claim 11, further comprising:

 - a transmitting unit, configured to transmit the identification information of the any small cell base station cluster in the same or different time-frequency resources by part or all of the small cell base stations in the any small cell base station cluster, whereby the terminal can determine the small cell base station cluster in which the terminal is located.

14. The small cell base station-based communication system of claim 13, wherein the transmitting unit is further configured to:

 - transmit identification information corresponding to each small cell base station in the any small cell base station cluster to the terminal through the communication base station or the specified small cell base station.

15. The small cell base station-based communication system of claim 14, wherein the identification information corresponding to each small cell base station comprises CSI-RS (Channel State Information-Reference Signal) information.

16. The small cell base station-based communication system of claim 15, wherein the determining unit is configured to:

 - measure the CSI-RS information that is able to be received by the terminal at the current location through the terminal; and
 - according to the CSI-RS information corresponding to each small cell base station, deter-
mine a small cell base station corresponding to the CSI-RS information that is able to be received by the terminal at the current location, so as to determine the small cell base station associated with the terminal.

17. The small cell base station-based communication system of claim 16, wherein the specified small cell base station notifies the terminal to measure the CSI-RS information at a specified time-frequency location through a radio resource control signaling, a medium access control unit signaling, or a physical layer signaling.

18. The small cell base station-based communication system of claim 12, wherein the scheduling unit is configured to: schedule the small cell base station associated with the terminal for joint transmission; dynamically select the small cell base station that provides communication services to the terminal; or schedule the small cell base station associated with the terminal to send transmission signals in coordination.

19. The small cell base station-based communication system of any of claims 12-18, wherein the specified small cell base station establishes a connection with the communication base station.

20. The small cell base station-based communication system of claim 19, wherein the specified small cell base station establishes the connection with the communication base station via a wired interface or a wireless interface.
Start

Divide a plurality of small cell base stations into at least one small cell base station cluster

When a terminal is moving within any particular small cell base station cluster of the at least one small cell base station cluster, the terminal obtains identification information of the particular small cell base station cluster, and determines a small cell base station associated with the terminal from among the particular small cell base station cluster

A specified small cell base station of the particular small cell base station cluster schedules the small cell base station associated with the terminal to provide communication services for the terminal

End

Fig. 1

Dividing unit 202
Scheduling unit 206
Determining unit 204
Transmitting unit 208

Small cell base station-based communication system 200

Fig. 2
The terminal is informed of the cluster ID

The terminal is informed the configuration set of CSI-RS in the cluster

The terminal reports the detected node information

The cluster head coordinates transmission points to serve the terminal

End
INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2014/096037

A. CLASSIFICATION OF SUBJECT MATTER

H04W 36/00 (2009.01); H04W 28/08 (2009.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04W

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNABS; CNKI; VEN: cellular, small cell, micro cell, femto cell, base station, group, set, cluster, coordinate, cooperative, transmission, load, balance

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX</td>
<td>CN 104125598 A (YULONG COMPUTER TELECOMMUNICATION SCIENTIFIC (SHENZHEN) CO., LTD.), 29 October 2014 (29.10.2014), claims 1-20</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>CN 103238014 A (DONGGUAN YULONG COMMUNICATION TECHNOLOGY CO., LTD.; YULONG COMPUTER TELECOMMUNICATION SCIENTIFIC (SHENZHEN) CO., LTD.), 31 July 2013 (31.07.2013), the whole document</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>CN 103906152 A (BEIJING SAMSUNG COMMUNICATION TECHNOLOGY RESEARCH INSTITUTE; SAMSUNG ELECTRONICS CO., LTD.), 02 July 2014 (02.07.2014), the whole document</td>
<td>1-20</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search

20 April 2015 (20.04.2015)

Date of mailing of the international search report

15 May 2015 (15.05.2015)

Name and mailing address of the ISA/CN:

State Intellectual Property Office of the P. R. China
No. 6, Xitucheng Road, Jinyuqiao
Haidian District, Beijing 100080, China
Facsimile No.: (86-10) 62019451

Authorized officer

WANG, Wei

Telephone No.: (86-10) 62089398

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 104125598 A</td>
<td>29 October 2014</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 103228014 A</td>
<td>31 July 2013</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 103906152 A</td>
<td>02 July 2014</td>
<td>WO 2014104705 A1</td>
<td>03 July 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014179325 A1</td>
<td>26 June 2014</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)