OLED LIGHT-EMITTING DEVICE, PREPARATION METHOD THEREFOR AND DISPLAY DEVICE

This invention provides an OLED light-emitting device, a production method thereof as well as a display apparatus, and relates to the technical field of OLED display, which can enhance the internal quantum efficiency of a blue OLED light-emitting device. This OLED light-emitting device comprises a substrate, and an anode, a hole transport layer, a blue light-emitting layer and a cathode provided on the substrate; the OLED light-emitting device further comprises an Ag nanolayer located between the anode and the hole transport layer; wherein the blue light-emitting layer is a blue phosphorescent light-emitting layer; the absorption spectrum of the Ag nanolayer overlaps the emission spectrum of the blue phosphorescent light-emitting layer, and the blue phosphorescent light-emitting layer is located within the penetration depth of surface plasma of Ag nanoparticles in the Ag nanolayer. It is used in the production of a blue OLED light-emitting device and a display apparatus comprising the same.
This invention relates to the technical field of OLED display, and particularly to an OLED light-emitting device and a production method thereof as well as a display apparatus.

BACKGROUND OF THE INVENTION

[0002] An organic light-emitting diode (simply referred to as OLED) has advantages of low energy consumption, high efficiency, spontaneous light emission, high response speed, or the like.

[0003] A fluorescent or phosphorescent material is typically used as the luminescent material therein. Since the phosphorescent material still maintains a brightness for a considerable long period after excitation stops, the internal quantum efficiency thereof is higher than that of a known fluorescent material, OLEDs which mainly use the mechanism of phosphorescent light emission are highly anticipated recently.

[0004] However, options of phosphorescent materials suitable for emitting blue light are relatively few at present, resulting in that the enhancement of the internal quantum efficiency thereof is restricted from the aspect of materials.

SUMMARY OF THE INVENTION

[0005] This invention provides an OLED light-emitting device and a production method thereof as well as a display apparatus, which can enhance the internal quantum efficiency of a blue OLED light-emitting device.

[0006] To achieve the object described above, the invention employs the following technical solutions.

[0007] In one aspect, there is provided an OLED light-emitting device, comprising a substrate, and an anode, a hole transport layer, a blue light-emitting layer and a cathode provided on the substrate; the OLED light-emitting device further comprises an Ag nanolayer located between the anode and the hole transport layer; wherein the blue light-emitting layer is a blue phosphorescent light-emitting layer; the absorption spectrum of the Ag nanolayer overlaps the emission spectrum of the blue phosphorescent light-emitting layer, and the blue phosphorescent light-emitting layer is located within the penetration depth of surface plasma of Ag nanoparticles in the Ag nanolayer.

[0008] Preferably, the anode is opaque, and the cathode is semi-transparent.

[0009] Further preferably, the OLED light-emitting device further comprises a covering layer located on a side of the cathode away from the substrate, wherein the covering layer has a refractive index between 1.8 and 2.0.

[0010] Preferably, the Ag nanoparticles have a diameter between 15 and 30 nm.

[0011] Preferably, the Ag nanolayer has a thickness between 15 and 60 nm.

[0012] Preferably, the hole transport layer has a thickness between 1100 and 1300 nm.

[0013] Preferably, the blue phosphorescent light-emitting layer has a thickness between 20 and 40 nm.

[0014] Preferably, the OLED light-emitting device further comprises an electron transport layer located between the cathode and the blue phosphorescent light-emitting layer.

[0015] Based on those described above, the OLED light-emitting device further comprises a hole injection layer located between the anode and the hole transport layer; the Ag nanolayer is located between the hole injection layer and the hole transport layer, or the Ag nanolayer is located between the anode and the hole injection layer.

[0016] In another aspect, there is provided a display apparatus, comprising the OLED light-emitting device described above.

[0017] Preferably, the display apparatus further comprises a thin film transistor electrically connected to the anode of the OLED light-emitting device.

[0018] In yet another aspect, there is provided a production method for an OLED light-emitting device, comprising forming an anode, a hole transport layer, a blue light-emitting layer, and a cathode on a substrate; the method further comprises forming an Ag nanolayer between the anode and the hole transport layer; wherein the blue light-emitting layer is a blue phosphorescent light-emitting layer; the absorption spectrum of the Ag nanolayer overlaps the emission spectrum of the blue phosphorescent light-emitting layer, and the blue phosphorescent light-emitting layer is located within the penetration depth of surface plasma of Ag nanoparticles in the Ag nanolayer.

[0019] Preferably, Ag nanoparticles having a diameter of 15-30 nm are synthesized by a Liquid-Solid-Solution chemical synthesis method; the Ag nanolayer is formed by spin-coating an organic solvent comprising the Ag nanoparticles.

[0020] Preferably, the hole transport layer having a thickness between 1100 and 1300 nm is formed by an evaporation method.

[0021] Based on those described above, preferably, the anode is opaque, and the cathode is semi-transparent.

[0022] An embodiment of the invention provides an OLED light-emitting device. By forming an Ag nanolayer between the anode and the hole transport layer, enabling the absorption spectrum of the Ag nanolayer to overlap the emission spectrum of the blue phosphorescent light-emitting layer, and locating the blue phosphorescent light-emitting layer within the penetration depth of surface plasma of Ag nanoparticles, resonance between surface plasmas of Ag nanoparticles and excitons formed by recombination in the blue phosphorescent light-emitting layer is allowed to occur. The energy formed after reso-
nance may be transferred to the excitons to perform radioluminescence so as to enhance the speed of spontaneous radiation of triplet excitons and reduce the quenching of triplet-triplet excitons at a high current density, and thus the internal quantum efficiency of the device is increased and the utilization rate of excitons may be increased.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] In order to illustrate the technical solutions in embodiments of the invention or in the prior art more clearly, figures required for describing the embodiments or the prior art will be simply introduced below. It is apparent that the figures described below are merely some embodiments of the invention, and other figures may be further obtained by those of ordinary skill in the art according to these figures without exerting inventive work.

Fig. 1 is a first structural schematic diagram of an OLED light-emitting device provided in an embodiment of the invention; Fig. 2 is a second structural schematic diagram of an OLED light-emitting device provided in an embodiment of the invention; Fig. 3 is a third structural schematic diagram of an OLED light-emitting device provided in an embodiment of the invention; Fig. 4 is a fourth structural schematic diagram of an OLED light-emitting device provided in an embodiment of the invention; Fig. 5 is a fifth structural schematic diagram of an OLED light-emitting device provided in an embodiment of the invention; Fig. 6 is a structural schematic diagram of a display apparatus provided in an embodiment of the invention; and Fig. 7 is a schematic flow chart of a production method for an OLED light-emitting device provided in an embodiment of the invention.

Reference Numerals:

[0024] 01 - OLED light-emitting device; 10 - substrate; 20 - anode; 30 - Ag nanolayer; 40 - hole transport layer; 50 - blue phosphorescent light-emitting layer; 60 - cathode; 70 - light-reflecting layer; 80 - covering layer; 90 - electron transport layer; 100 - hole injection layer; 110 - thin film transistor.

DETAILED DESCRIPTION OF THE INVENTION

[0025] The technical solutions in the embodiments of the invention will be described clearly and fully below in conjunction with accompanying drawings in embodiments of the invention. Obviously, the embodiments described are merely part of the embodiments of the invention, rather than all of the embodiments. Based on the embodiments in the invention, all other embodiments obtained by those of ordinary skill in the art without performing inventive work belong to the scope protected by the invention.

[0026] An embodiment of the invention provides an OLED light-emitting device 01. As shown in Figs. 1-5, this OLED light-emitting device 01 comprises a substrate 10, and an anode 20, a hole transport layer 40, a blue light-emitting layer, and a cathode 60 provided on the substrate 10, and further comprises an Ag nanolayer 30 located between the anode 20 and the hole transport layer 40.

[0027] Here, the blue light-emitting layer is a blue phosphorescent light-emitting layer 50, and the absorption spectrum of the Ag nanolayer 30 overlaps the emission spectrum of the blue phosphorescent light-emitting layer 50, and the blue phosphorescent light-emitting layer 50 is located within the penetration depth of surface plasma of Ag nanoparticles in the Ag nanolayer 30.

[0028] Those to be indicated are as follows. First, since the emission spectrum of the Ag nanolayer 30 may be adjusted by the size of the Ag nanoparticles in the Ag nanolayer 30, the emission spectrum of the Ag nanolayer 30 may be allowed to overlap the emission spectrum of the blue phosphorescent light-emitting layer 50 by adjusting the size of the Ag nanoparticles in the embodiment of the invention.

[0029] Here, when phosphorescent materials in the blue phosphorescent light-emitting layer 50 are different, there is a certain difference in the emission spectra thereof. Therefore, the size of the Ag nanoparticles is not defined in the embodiment of the invention, and the size of the Ag nanoparticles may be correspondingly selected according to the phosphorescent material selected.

[0030] Second, the surface plasma is a local surface electromagnetic wave, and has an intensity exhibiting an exponential decay along with the distance vertical to the surface. That is, the surface plasma has a certain effective penetration depth, which is the range of action of surface plasma.

[0031] Here, in the penetration depth

\[Z = \frac{\lambda}{2\pi} \left(\frac{\varepsilon_0 - \varepsilon_m}{\varepsilon_m^2} \right)^{\frac{2}{3}}, \]

\(\varepsilon_0 \) is the dielectric constant of an organic material (i.e., the hole transport layer 40 and a part of the blue phosphorescent light-emitting layer 50) contained within the distance between metal surface plasmas and light-emitting excitons (excitons are generated by recombination of holes and electrons in the blue phosphorescent light-emitting layer 50), \(\varepsilon_m \) is the dielectric constant of the Ag nanoparticle, and \(\lambda \) is a photoluminescence (simply referred to as PL) spectrum which surface plasma corresponds to, and the unit thereof is nm.

[0032] That is, it can be seen from the equation of the penetration depth described above that the value of the penetration depth Z is determined after the materials of
the hole transport layer 40 and the blue phosphorescent light-emitting layer 50 are determined. [0033] On this basis, by adjusting the thickness of the hole transport layer 40, the blue phosphorescent light-emitting layer 50 is allowed to be located within the penetration depth of surface plasma of the Ag nanoparticles. That is, excitons are limited within the penetration depth of surface plasma of the Ag nanoparticles.

[0034] Third, the materials of the hole transport layer 40 and the blue phosphorescent light-emitting layer 50 are not defined.

[0035] Fourth, the materials of the anode 20 and the cathode 60 are not defined. Here, the cathode 60 may be allowed to be thinner. That is, the cathode 60 is semi-transparent. Of course, the cathode 60 may also be allowed to be relatively thick. That is, the cathode 60 is opaque. Those may be specifically set according to practical situations, and are not defined herein.

[0036] An embodiment of the invention provides an OLED light-emitting device 01. By forming an Ag nanolayer between the anode 20 and the hole transport layer 40, enabling the absorption spectrum of the Ag nanolayer 30 to overlap the emission spectrum of the blue phosphorescent light-emitting layer 50, and locating the blue phosphorescent light-emitting layer 50 within the penetration depth of surface plasma of the Ag nanoparticles, resonance between surface plasmas of Ag nanoparticles and excitons formed by recombination on the blue phosphorescent light-emitting layer 50 is allowed to occur. The energy formed after resonance may be transferred to excitons to perform radioluminescence so as to enhance the speed of spontaneous radiation of triplet excitons and reduce the quenching of triplet-triplet excitons at a high current density, and thus the internal quantum efficiency of the device is increased and the utilization rate of excitons may be increased.

[0037] Preferably, the anode 20 is opaque. That is, a three-layer structure of transparent conductive layer/opaque metal layer/transparent conductive layer, for example a three-layer structure of ITO conductive layer/opaque metal layer/transparent conductive layer, may be used as the anode 20. The cathode 60 is semi-transparent. That is, the cathode 60 employs a metal material and has a relatively thin thickness.

[0038] Of course, as shown in Fig. 3, the anode 20 may also be transparent. That is, an ITO material is used. On this basis, the OLED light-emitting device 01 may further comprise a light-reflecting layer 70 on a side of the anode 20 away from the cathode 60; wherein, with respect to the cathode 60, the anode 20 is provided close to the substrate 10.

[0039] That is, from bottom to top, there are sequentially: a substrate 10, a light-reflecting layer 70, a transparent anode 20, an Ag nanolayer 30, a hole transport layer 40, a blue phosphorescent light-emitting layer 50, and a semi-transparent cathode 60.

[0040] Here, the material of the cathode 60 may be, for example a magnesium silver alloy, and the thickness thereof may be less than 15 nm. [0041] In the embodiment of the invention, illustration is made by exemplifying the anode 20 which is opaque (i.e., comprising a three-layer structure of transparent conductive layer/opaque metal layer/transparent conductive layer). By allowing the anode 20 to be opaque and allowing the cathode 60 to be semi-transparent, a microcavity may be formed between the anode 20 to the cathode 60. Due to the interference effect (microcavity effect) of the light in the microcavity, the output efficiency of the light may be increased.

[0042] Further preferably, as shown in Fig. 4, the OLED light-emitting device 01 further comprises a covering layer 80 located on a side of the cathode 60 away from the substrate 10, and the covering layer 80 has a refractive index between 1.8 and 2.0.

[0043] Here, the thickness of the covering layer 80 is preferably between 50 and 55 nm.

[0044] Since the refractive index of the covering layer 80 is relatively larger, significant shifts of the intensity and the color coordinate of the light will occur along with the variation of the viewing angle, and the distribution of light intensity substantially complies with Lambertian distribution. That is, the brightness on the vertical angle is much greater than brightnesses on other angles, and thus the output efficiency of the light on the vertical angle may be increased.

[0045] Preferably, the Ag nanoparticles have a diameter between 15 and 30 nm, and for example, may be 25 nm.

[0046] Preferably, the Ag nanolayer has a thickness between 15 and 60 nm, preferably between 15 and 30 nm.

[0047] Here, by setting the diameter of the Ag nanoparticles between 15 and 30 nm, the absorption spectrum thereof may be allowed to be at least partly located in the range of the light emission spectrum of the blue phosphorescent light-emitting layer 50.

[0048] Preferably, the hole transport layer 40 has a thickness between 1100 and 1300 nm.

[0049] Here, the material of the hole transport layer 40 may be aromatic triamine series, bipheryl diamine derivatives, and cross structure linked diamine bipheryl. For example, it may be NPB (N,N'-diphenyl-N,N'- (1-naphthyl)-1,1'-biphenyl-4,4'-diamine), TCTA (4,4',4'-Tri(9-carbazoyl)triphenylamine), m-MTDATA (4,4',4'-Tris(N-3-methylphenyl-N-phenylamino)triphenylamine), or the like.

[0050] In the embodiment of the invention, the thickness of the hole transport layer 40 is set in the range of 1100-1300 nm. On the one hand, surface plasmas of Ag nanoparticles and excitons are separated, and the metallic light absorption due to Forster-type transfer is reduced. On the other hand, projections of the Ag nanolayer 30 are completely covered to prevent the phenomenon of breakdown and excitons can be limited within the penetration depth of surface plasma of the Ag nanoparticles, allowing that effective resonance phenomenon can occur.
It is to be indicated that when the OLED light-emitting device 01 comprises the microcavity structure described above, the thickness of the hole transport layer 40 may be adjusted according to the thickness of the microcavity.

Preferably, the blue phosphorescent light-emitting layer 50 has a thickness between 20 and 40 nm. Further, in order to obtain a higher internal quantum efficiency, the blue phosphorescent light-emitting layer 50 preferably employs a host-guest doping system; wherein an iridium (Ir) complex, for example FIrpic, may be used as a guest material, and CBP (4,4'-Bis(9H-carbazol-9-yl)biphenyl), UGH3 (1,3-bis(triphenylsilicon)benzene), UGH4, mCP (9,9'-(1,3-phenyl)di-9H-carbazole) or the like, may be used as a host material.

In the embodiment of the invention, by setting the thickness of the blue phosphorescent light-emitting layer 50 in the range of 20-40 nm, it is possible to prevent the light-emitting interface from shifting to an adjacent organic layer.

Preferably, as shown in Figs. 2-4, the OLED light-emitting device 01 further comprises an electron transport layer 90 located between the cathode 60 and the blue phosphorescent light-emitting layer 50.

Here, the material of the electron transport layer 90 may be metal chelates, azole compounds, phenanthroline derivatives, etc. For example, it may be AlQ3 (tris(8-hydroxyquinolinate)aluminum), BPhen (4,7-diphenyl-1,10-phenanthroline), TmPyPB (1,3,5-tris ([3-pyridyl]-3-phenyl)benzene), OXD-7 (2,2'-(1,3-phenyl)bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole]). The thickness may be 25-35 nm, for example, 30 nm.

Compared to one that is not provided with the electron transport layer 90, it required to enable the blue phosphorescent light-emitting layer 50 to have a relatively strong ability of electron transport. By providing the electron transport layer 90, the electron transporting ability may be enhanced, and the requirement for electron transporting ability with respect to the blue phosphorescent light-emitting layer 50 may be reduced.

Based on those described above, preferably, the OLED light-emitting device 01 further comprises a hole injection layer 100 located between the anode 20 and the hole transport layer 40.

Here, as shown in Fig. 5, the Ag nanolayer 30 is located between the hole injection layer 100 and the hole transport layer 40.

Or, the Ag nanolayer 30 may be located between the anode 20 and the hole injection layer 100.

By providing the hole injection layer 100, on the one hand, the hole transporting ability may be enhanced, and on the other hand, it may also have a function of repairing surface defects of the anode 20 when it is located above the anode 20 as shown in Fig. 5.

It is to be indicated that since a microcavity is formed between the anode 20 and the cathode 60 and the thickness of the microcavity is determined, the hole injection layer 100 may have a function of adjusting the thickness of the hole transport layer 40, i.e., a function of adjusting the distance between the plasmas and that excitons, after it is added.

Moreover, with respect to the circumstances as shown in Fig. 5, since the Ag nanolayer 30 is formed on the hole injection layer 100, an organic solvent which does not corrode the hole injection layer 100 is required to be used when forming the Ag nanolayer 30. Here, an aqueous dispersion of poly(3,4-ethylenedioxythiophene) and poly(styrene sulfonates) (PEDOT:PSS) is preferably used as the material for the hole injection layer 100.

An embodiment of the invention further provides a display apparatus, comprising any one of OLED light-emitting devices 01 described above.

By forming an Ag nanolayer 30 between the anode 20 and the hole transport layer 40, enabling the absorption spectrum of the Ag nanolayer 30 to overlap the emission spectrum of the blue phosphorescent light-emitting layer 50, and locating the blue phosphorescent light-emitting layer 50 within the penetration depth of surface plasma of the Ag nanoparticles, resonance between the surface plasmas of Ag nanoparticles and the excitons formed by recombination on the blue phosphorescent light-emitting layer 50 is allowed to occur. The energy generated after resonance may be transferred to excitons to perform radioluminescence so as to enhance the speed of spontaneous radiation of triplet excitons and reduce the quenching of triplet-triplet excitons at a high current density, and thus the internal quantum efficiency of the device is increased and the utilization rate of excitons may be increased.

In view of the deficient aspect of a passive matrix when being used in a large-size display apparatus, it is preferable that the display apparatus provided in an embodiment of the invention is an active matrix type display apparatus. That is, as shown in Fig. 6, the display apparatus further comprises a thin film transistor 110 electrically connected to an anode 20 of the OLED light-emitting device 01.

Here, the thin film transistor 110 comprises a gate electrode, a gate insulating layer, a semiconductor active layer, a source electrode, and a drain electrode.

It is to be indicated that the structure of the thin film transistor 110 is not defined in the embodiment of the invention, and it may be top gate type or may be bottom gate type. Moreover, the material of the semiconductor active layer is not defined either, and it may employ semiconductor materials, such as amorphous silicon, polycrystalline silicon, metal oxides, organic materials or the like.

Of course, the OLED display apparatus should further comprise a package substrate overlying on the cathode 60 or the covering layer 80. The package substrate may be a thin film or may be a glass cover plate, and it is not specifically defined herein.

An embodiment of the invention further provides a production method for an OLED light-emitting...
device, and with reference to those shown in Fig. 1, this production method comprises: forming an anode 20, a hole transport layer 40, a blue light-emitting layer, and a cathode 60 on a substrate 10; and the method further comprises: forming an Ag nanolayer 30 between the anode 20 and the hole transport layer 40. Here, the blue light-emitting layer is a blue phosphorescent light-emitting layer 50; and the absorption spectrum of the Ag nanolayer 30 overlaps the emission spectrum of the blue phosphorescent light-emitting layer 50, and the blue phosphorescent light-emitting layer 50 is located within the penetration depth of surface plasma of the Ag nanoparticles in the Ag nanolayer 30.

[0071] Here, spin-coating an organic solvent containing Ag nanoparticles in the Ag nanolayer 30.

[0072] Preferably, the anode 20 is opaque and the cathode 60 is semi-transparent.

[0073] Here, a three-layer structure of ITO conductive layer/Ag conductive layer/ITO conductive layer may be used as the anode 20. The material of the cathode 60 may be, for example a magnesium silver alloy, and the thickness thereof may be less than 15 nm.

[0074] Further preferably, with reference to those shown in Fig. 4, the method further comprises forming a covering layer 80 on a side of the cathode 60 away from the substrate 10, and the covering layer 80 has a refractive index between 1.8 and 2.0. Here, the thickness of the covering layer 80 is preferably between 50 and 55 nm.

[0075] Preferably, Ag nanoparticles having a diameter of 15-30 nm may be synthesized by a Liquid-Solid-Solution (simply referred to as LSS) chemical synthesis method. Thus, the absorption spectrum thereof may be allowed to be at least partly located in the range of the light emission spectrum of the blue phosphorescent light-emitting layer 50.

[0076] On this basis, the Ag nanolayer 30 may be formed by spin-coating an organic solvent containing Ag nanoparticles.

[0077] Preferably, the hole transport layer 40 having a thickness between 1100 and 1300 nm is formed by an evaporation method.

[0078] Here, the material of the hole transport layer 40 may be aromatic triamine series, biphenyl diamine derivatives, cross structure linked diamine biphenyl, or the like.

[0079] In the embodiment of the invention, the hole transport layer 40 having a thickness of 1100-1300 nm is formed. On the one hand, the surface plasmas of Ag nanoparticles and excitons are separated, and the metallic light absorption due to Forster-type transfer is reduced. On the other hand, the projections of the Ag nanolayer 30 are completely covered to prevent the phenomenon of breakdown and excitons can be limited within the penetration depth of surface plasma of the Ag nanoparticle, allowing that effective resonance phenomenon can occur between excitons and plasmas.

[0080] Preferably, the blue phosphorescent light-emitting layer 50 having a thickness between 20 and 40 nm is formed by an evaporation method. In order to obtain a higher internal quantum efficiency, the blue phosphorescent light-emitting layer 50 preferably employs a host-guest doping system; wherein an iridium (Ir) complex, for example Flrpic, may be used as a guest material, and CBP, UGH3, UGH4, mCP or the like, may be used as a host material.

[0081] Preferably, as shown in Figs. 2-5, the method further comprises forming an electron transport layer 90 having a thickness between 25 and 35 nm by an evaporation method. Here, the material of the electron transport layer 90 may be metal chelates, azole compounds, phenanthroline derivatives, or the like.

[0082] Based on those described above, preferably, with reference to those shown in Fig. 5, the method further comprises forming a hole injection layer 100 between the anode 20 and the Ag nanolayer 30 by an evaporation method. Here, an aqueous dispersion of poly(3,4-ethylenedioxythiophene) and poly(styrene sulfonates) (PEDOT:PSS) is preferably used as the material for the hole injection layer 100.

[0083] Moreover, the hole injection layer 100 may also be formed between the Ag nanolayer 30 and the hole transport layer 40.

[0084] A specific example is provided below to describe a production method for an OLED light-emitting device 01 in detail. As shown in Fig. 7, this method comprises the following steps.

[0085] S10: With reference to those shown in Fig. 4, an opaque anode 20 is formed on a substrate 10 by a patterning process.

[0086] For example, a three-layer structure of ITO conductive layer/Ag conductive layer/ITO conductive layer is used as the anode 20.

[0087] S11: With reference to those shown in Fig. 4, on the basis of S10, an Ag nanolayer 30 is formed by spin-coating an organic solvent comprising Ag nanoparticles.

[0088] Here, an Ag nanoparticle having a diameter of 15-30 nm may be synthesized by using a Liquid-Solid-Solution chemical synthesis method.

[0089] S12: With reference to those shown in Fig. 4, on the basis of S11, a hole transport layer 40 having a thickness between 1100 and 1300 nm is formed by a vacuum evaporation method.

[0090] Here, the material of the hole transport layer 40 may be NPB, TCTA, m-MTDATA, etc.

[0091] S13: With reference to those shown in Fig. 4, on the basis of S12, a blue phosphorescent light-emitting layer 50 having a thickness between 20 and 40 nm is formed by a vacuum evaporation method.

[0092] Here, in the blue phosphorescent light-emitting layer 50, Flrpic may be used as a guest material, and CBP,
UGH3, UGH4, mCP, etc., may be used as a host material.

[S14] With reference to those shown in Fig. 4, on the basis of S13, an electron transport layer 90 having a thickness between 25 and 35 nm is formed by a vacuum evaporation method.

[S15] Here, the material of the electron transport layer 90 may be AlQ3, BPhen, TmPyPB, OXD-7, or the like.

[S16] With reference to those shown in Fig. 4, on the basis of S14, a cathode 60 having a thickness less than 15 nm is formed by a vacuum evaporation method.

[S17] Here, the material of the cathode 60 may be a magnesium silver alloy.

[S18] With reference to those shown in Fig. 4, on the basis of S15, a covering layer 80 having a thickness between 50 and 55 nm and a refractive index between 1.8 and 2.0 is formed by a vacuum evaporation method.

[S19] Those described above are only specific embodiments of the invention, but the scope of the invention is not limited thereto. Within the technical scope disclosed by this present invention, any person skilled in the art will easily conceive variations or replacements, which should be covered by the scope of the invention. Therefore, the protection scope of the invention should be determined by the scope of the claims.

Claims

1. An OLED light-emitting device, comprising a substrate, and an anode, a hole transport layer, a blue light-emitting layer and a cathode provided on the substrate; characterized in that:

 the OLED light-emitting device further comprises an Ag nanolayer located between the anode and the hole transport layer; wherein the blue light-emitting layer is a blue phosphorescent light-emitting layer; the absorption spectrum of the Ag nanolayer overlaps the emission spectrum of the blue phosphorescent light-emitting layer, and the blue phosphorescent light-emitting layer is located within the penetration depth of surface plasma of Ag nanoparticles in the Ag nanolayer.

2. The OLED light-emitting device according to claim 1, characterized in that:

 the anode is opaque, and the cathode is semi-translucent.

3. The OLED light-emitting device according to claim 2, characterized in that:

 the OLED light-emitting device further comprises a covering layer located on a side of the cathode away from the substrate, wherein the covering layer has a refractive index between 1.8 and 2.0.

4. The OLED light-emitting device according to claim 1, characterized in that:

 the Ag nanoparticles have a diameter between 15 and 30 nm.

5. The OLED light-emitting device according to claim 1, characterized in that:

 the Ag nanolayer has a thickness between 15 and 60 nm.

6. The OLED light-emitting device according to claim 1, characterized in that:

 the hole transport layer has a thickness between 1100 and 1300 nm.

7. The OLED light-emitting device according to claim 1, characterized in that:

 the blue phosphorescent light-emitting layer has a thickness between 20 and 40 nm.

8. The OLED light-emitting device according to claim 1, characterized in that:

 the OLED light-emitting device further comprises an electron transport layer located between the cathode and the blue phosphorescent light-emitting layer.

9. The OLED light-emitting device according to any one of claims 1 to 8, characterized in that:

 the OLED light-emitting device further comprises a hole injection layer located between the anode and the hole transport layer; wherein the Ag nanolayer is located between the hole injection layer and the hole transport layer, or the Ag nanolayer is located between the anode and the hole injection layer.

10. A display apparatus, characterized by comprising the OLED light-emitting device of any one of claims 1 to 9.

11. The display apparatus according to claim 10, characterized in that the display apparatus further comprises a thin film transistor electrically connected to the anode of the OLED light-emitting device.

12. A production method for an OLED light-emitting device, comprising forming an anode, a hole transport layer, a blue light-emitting layer, and a cathode on a
substrate; characterized in that the method further comprises forming an Ag nanolayer between the anode and the hole transport layer; wherein the blue light-emitting layer is a blue phosphorescent light-emitting layer; the absorption spectrum of the Ag nanolayer overlaps the emission spectrum of the blue phosphorescent light-emitting layer, and the blue phosphorescent light-emitting layer is located within the penetration depth of surface plasma of Ag nanoparticles in the Ag nanolayer.

13. The method according to claim 12, characterized in that:

Ag nanoparticles having a diameter of 15-30 nm are synthesized by a Liquid-Solid-Solution chemical synthesis method; and the Ag nanolayer is formed by spin-coating an organic solvent comprising the Ag nanoparticles.

14. The method according to claim 12, characterized in that:

the Ag nanolayer has a thickness between 15 and 60 nm.

15. The method according to claim 12, characterized in that:

the hole transport layer, which has a thickness between 1100 and 1300 nm, is formed by an evaporation method.

16. The method according to any one of claims 12 to 15, characterized in that:

the anode is opaque, and the cathode is semi-transparent.
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3
An opaque anode 20 is formed on a substrate 10 by a patterning process

An Ag nanolayer 30 is formed by spin-coating an organic solvent comprising Ag nanoparticles

A hole transport layer 40 having a thickness between 1100 and 1300 nm is formed by a vacuum evaporation method

A blue phosphorescent light-emitting layer 50 having a thickness between 20 and 40 nm is formed by a vacuum evaporation method

An electron transport layer 90 having a thickness between 25 and 35 nm is formed by a vacuum evaporation method

A cathode 60 having a thickness less than 15 nm is formed by a vacuum evaporation method

A covering layer 80 having a thickness between 50 and 55 nm and a refractive index between 1.8 and 2.0 is formed by a vacuum evaporation method

Fig. 7
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H01L 51/50 (2006.01) i; H01L 51/52 (2006.01) i; H01L 51/56 (2006.01) i; H01L 27/32 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CNPAT, CNKI, DWPPI, SIPOABS: electroluminescent, luminescence, plasma, EL, OLED, organic, light, emit+, blue, phosphorescence, nanometer, particle, Ag, silver, surface, plasmon

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX</td>
<td>CN 104993065 A (BOE TECHNOLOGY GROUP CO., LTD. et al.), 21 October 2015</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>(21.10.2015), claims 1-14, description, paragraphs [0032]-[0103], and figures 1-7</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>CN 101132055 A (TIANJIN UNIVERSITY OF TECHNOLOGY), 27 February 2008</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>(27.02.2008), description, page 2, line 6 to page 3, line 25, and figure 1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>CN 102365767 A (FUJIFILM CORPORATION), 29 February 2012 (29.02.2012),</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>description, paragraphs [0027]-[0062], and figures 1-3</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>CN 102820433 A (KUNSHAN NEW FLAT PANEL DISPLAY TECHNOLOGY CENTER CO., LTD.),</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>12 December 2012 (12.12.2012), description, paragraphs [0038]-[0109], and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 3-6</td>
<td></td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☒ See patent family annex.

* Special categories of cited documents:
 “A” document defining the general state of the art which is not considered to be of particular relevance
 “E” earlier application or patent but published on or after the international filing date
 “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 “O” document referring to an oral disclosure, use, exhibition or other means
 “P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search: 25 April 2016 (25.04.2016)

Date of mailing of the international search report: 04 May 2016 (04.05.2016)

Name and mailing address of the ISA/CN:
State Intellectual Property Office of the P. R. China
No. 6, Xitucheng Road, Jimenqiao
Haidian District, Beijing 100088, China
Facsimile No.: (86-10) 62019451

Authorized officer: LI, Ying
Telephone No.: (86-10) 62089296

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 104993065 A</td>
<td>21 October 2015</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 101132055 A</td>
<td>27 February 2008</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 102365767 A</td>
<td>29 February 2012</td>
<td>KR 20120003439 A</td>
<td>10 January 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2415094 A1</td>
<td>08 February 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012043532 A1</td>
<td>23 February 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2415094 A4</td>
<td>14 August 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5312146 B2</td>
<td>09 October 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010113469 A1</td>
<td>07 October 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102365767 B</td>
<td>17 December 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010238775 A</td>
<td>21 October 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2415094 B1</td>
<td>29 July 2015</td>
</tr>
<tr>
<td>CN 102820433 A</td>
<td>12 December 2012</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)