MODULATORS OF PHARMACOKINETIC PROPERTIES OF THERAPEUTICS

The present application provides for a compound of Formula IV,

![Formula IV](image)

or a pharmaceutically acceptable salt, solvate, and/or ester thereof, compositions containing such compounds, therapeutic methods that include the administration of such compounds, and therapeutic methods and include the administration of such compounds with at least one additional therapeutic agent.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Ser. No. 60/903,228, entitled "Modulators of Pharmacokinetic Properties of Therapeutics", filed February 23, 2007, and U.S. Provisional Application Ser. No. 60/958,716, entitled "Modulators of Pharmacokinetic Properties of Therapeutics", filed July 6, 2007. The contents of these provisional applications are herein incorporated by reference in their entirety for all purposes.

FIELD OF THE INVENTION

This application relates generally to compounds and pharmaceutical compositions which modify, e.g., improve, the pharmacokinetics of a co-administered drug, and methods of modifying, e.g., improving, the pharmacokinetics of a drug by co-administration of the compounds with the drug.

BACKGROUND OF THE INVENTION

Oxidative metabolism by cytochrome P450 enzymes is one of the primary mechanisms of drug metabolism. It can be difficult to maintain therapeutically effective blood plasma levels of drugs which are rapidly metabolized by cytochrome P450 enzymes. Accordingly, the blood plasma levels of drugs which are susceptible to cytochrome P450 enzyme degradation can be maintained or enhanced by co-administration of cytochrome P450 inhibitors, thereby improving the pharmacokinetics of the drug.

While certain drugs are known to inhibit cytochrome P450 enzymes, more and/or improved inhibitors for cytochrome P450 monoxygenase are desirable. Particularly, it would be desirable to have cytochrome P450 monoxygenase inhibitors which do not have appreciable biological activity other than cytochrome P450 inhibition. Such inhibitors can be useful for minimizing undesirable biological activity, e.g., side effects. In addition, it would be desirable to have P450 monoxygenase inhibitors that lack significant or have a reduced level of protease inhibitor activity. Such inhibitors could be useful for enhancing the effectiveness of antiretroviral drugs, while minimizing the possibility of eliciting viral resistance, especially against protease inhibitors.

SUMMARY OF THE INVENTION

One aspect of the present application is directed to compounds and pharmaceutical compositions which modify, e.g., improve, the pharmacokinetics of a co-administered drug, e.g., by inhibiting cytochrome P450 monoxygenase.

In one embodiment, the present application provides for compounds having a structure according to Formula IV,

![Formula IV](image)

or a pharmaceutically acceptable salt, solvate, and/or ester thereof, wherein, each L₃ is independently an alkylene or substituted alkylene; each A is independently an aryl or substituted aryl; X is heterocyclylalkyl; Y is heterocyclylalkyl or alkyl; G¹ and G² are independently CH or N, with the proviso that G¹ and G² are different; G³ is -NR⁷- or -O-; R¹, R³, R⁵, and R⁷ are each independently selected from the group consisting of H, alkyl, substituted alkyl, arylalkyl, and substituted arylalkyl; R² is independently selected from the group consisting of substituted alkyl, alkoxyalkyl, hydroxyalkyl, trialkylsiloxyalkyl, heterocyclylalkyl, substituted heterocyclylalkyl, aminoalkyl, substituted aminoalkyl, -alkylene-N(R⁴)-C(O)-alkyl, -alkylene-NR⁸-C(O)-N(R⁸), -alkylene-NR⁸-C(=N-R⁹)-N(R⁸), -alkylene-C(=N-R⁹)-N(R⁸), -alkylene-C(O)-OH, -alkylene-C(O)-Oalkyl, and -alkylene-C(O)-N(R⁸);
R^8 and R^9 are each one or more substituents independently selected from the group consisting of H, alkyl, substituted alkyl, halogen, and -CN;
each R^a is independently selected from the group consisting of H, alkyl, and substituted alkyl;
R^b is selected from the group consisting of H, alkyl, substituted alkyl, CN, and -S(O_2)-alkyl; and
each R^c is independently selected from the group consisting of H, alkyl, substituted alkyl, heterocyclyl, substituted heterocyclyl, -S(O_2)-alkyl, -S(O_2)-aryl, and substituted -S(O_2)-aryl.

[0007] In another embodiment, the present application provides for a pharmaceutical composition comprising a compound of Formula I, and a pharmaceutically acceptable carrier or excipient.

[0008] In another embodiment, the present application provides for a pharmaceutical composition comprising a compound of Formula I, at least one additional therapeutic agent, and a pharmaceutically acceptable carrier or excipient.

[0009] In another embodiment, the present application provides for a method for improving the pharmacokinetics of a drug, comprising administering to a patient treated with said drug, a therapeutically effective amount of a compound of Formula I, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.

[0010] In another embodiment, the present application provides for a method for inhibiting cytochrome P450 monooxygenase in a patient comprising administering to a patient in need thereof an amount of a compound of Formula I, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, effective to inhibit cytochrome P450 monooxygenase.

[0011] In another embodiment, the present application provides for a method for treating a viral infection, e.g., HIV, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Formula I, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with a therapeutically effective amount of one or more additional therapeutic agents which are metabolized by cytochrome P450 monooxygenase, and are suitable for treating a viral infection, e.g., HIV.

[0012] In another embodiment, the present application provides for a combination pharmaceutical agent comprising:
a) a first pharmaceutical composition comprising a compound of Formula I, or a pharmaceutically acceptable salt, solvate, and/or ester thereof; and
b) a second pharmaceutical composition comprising at least one additional active agent which is metabolized by cytochrome P450 monooxygenase.

DETAILED DESCRIPTION

[0013] Reference will now be made in detail to certain claims of the invention, examples of which are illustrated in the accompanying structures and formulas. While the invention will be described in conjunction with the enumerated claims, it will be understood that they are not intended to limit the invention to those claims. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalents, which may be included within the scope of the present invention as defined by the claims.

[0014] All documents cited herein are each incorporated by reference in their entirety for all purposes.

Definitions

[0015] Unless stated otherwise, the following terms and phrases as used herein are intended to have the following meanings:

[0016] When trade names are used herein, applicants intend to independently include the tradename product and the active pharmaceutical ingredient(s) of the tradename product.

[0017] As used herein, "a compound of the invention" or "a compound of formula (I)" means a compound of formula (I) or a pharmaceutically acceptable salt, solvate, ester or stereoisomer thereof, or a physiologically functional derivative thereof. Similarly, with respect to isolatable intermediates, the phrase "a compound of formula (number)" means a compound of that formula and pharmaceutically acceptable salts, solvates and physiologically functional derivatives thereof.

[0018] "Alkyl" is hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms. For example, an alkyl group can have 1 to 20 carbon atoms (i.e., C_1-C_20 alkyl), 1 to 10 carbon atoms (i.e., C_1-C_10 alkyl), or 1 to 6 carbon atoms (i.e., C_1-C_6 alkyl). Examples of suitable alkyl groups include, but are not limited to, methyl (Me, -CH_3), ethyl (Et, -CH_2CH_3), 1-propyl (n-Pr, n-propyl, -CH_2CH_2CH_3), 2-propyl (i-Pr, i-propyl, -CH(CH_3)CH_2CH_3), 2-methyl-1-propyl (t-Bu, t-butyl, -CH(CH_3)_2), 1-buty l (n-Bu, n-butyl, -CH_2CH_2CH_2CH_3), 2-buty l (i-Bu, i-butyl, -CH(CH_3)CH_2CH_3), 2-methyl-1-buty l, 2-buty l (s-Bu, s-butyl, -CH(CH_2CH_3)CH_2CH_3), 2-methyl-2-buty l (t-Bu, t-buty l, -CH(CH_3)_2), 1-penty l (n-penty l, -CH_2CH_2CH_2CH_2CH_3), 2-penty l (s-C(CH_3)CH_2CH_2CH_3), 3-penty l (-CH(CH_2CH_2CH_3), 2-methyl-2-buty l (-C(CH_3)CH_2CH_3), 3-methyl-2-buty l (-CH(CH_3)CH_2CH_3), 3-methyl-1-buty l (-CH(CH_3)CH_2CH(CH_3), 2-methyl-1-buty l (-CH(CH_3)CH_2CH(CH_3), 1-hexyl (-CH(CH_3)CH_2CH_2CH_2CH_3), 2-hexyl (-CH(CH_3)CH_2CH_2CH_2CH_3), 3-hexyl (-CH(CH_2CH)(CH_2CH_2CH_3), 2-methyl-2-penty l (-C(CH_3)CH_2CH_2CH_2CH_3), 3-me-
thyl-2-pentyl (-CH(CH3)2CH2CH2CH3), 4-methyl-2-pentyl (-CH(CH3)2CH2CH2CH3), 3-methyl-3-pentyl (-C(CH3)2CH2CH2CH3), 2-methyl-3-pentyl (-CH(CH3)2CH2CH2CH3), 2,3-dimethyl-2-butyl (-C(CH3)2CH2CH2CH3), 3,3-dimethyl-2-butyl (-CH(CH3)2C(CH3)3), and octyl (-CH(CH3)2CH2CH2CH2CH3).

[0019] "Alkoxy" means a group having the formula -O-alkyl, in which an alkyl group, as defined above, is attached to the parent molecule via an oxygen atom. The alkyl portion of an alkoxy group can have 1 to 20 carbon atoms (i.e., C1-C20 alkoxy), 1 to 12 carbon atoms (i.e., C1-C12 alkoxy), or 1 to 6 carbon atoms (i.e., C1-C6 alkoxy). Examples of suitable alkoxy groups include, but are not limited to, methoxy (-O-CH3 or -OMe), ethoxy (-OCH2CH3 or -OEt), t-butoxy (-OC(CH3)3 or -OtBu) and the like.

[0020] "Haloalkyl" is an alkyl group, as defined above, in which one or more hydrogen atoms of the alkyl group is replaced with a halogen atom. The alkyl portion of a haloalkyl group can have 1 to 20 carbon atoms (i.e., C1-C20 haloalkyl), 1 to 12 carbon atoms (i.e., C1-C12 haloalkyl), or 1 to 6 carbon atoms (i.e., C1-C6 haloalkyl). Examples of suitable haloalkyl groups include, but are not limited to, -CF3, -CHF2, -CFH2, -CH2CF3, and the like.

[0021] "Alkenyl" is a hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e., a carbon-carbon, sp2 double bond. For example, an alkenyl group can have 2 to 20 carbon atoms (i.e., C2-C20 alkenyl), 2 to 12 carbon atoms (i.e., C2-C12 alkenyl), or 2 to 6 carbon atoms (i.e., C2-C6 alkenyl). Examples of suitable alkenyl groups include, but are not limited to, ethylene or vinyl (-CH=CH2), allyl (-CH2CH=CH2), cyclopentenyl (-C(CH3)2), and 5-hexenyl (-CH2CH2CH2CH2CH=CH2).

[0022] "Alkynylene" is a hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e., a carbon-carbon, sp3 triple bond. For example, an alkynyl group can have 2 to 20 carbon atoms (i.e., C2-C20 alkynyl), 2 to 12 carbon atoms (i.e., C2-C12 alkynyl), or 2 to 6 carbon atoms (i.e., C2-C6 alkynyl). Examples of suitable alkynyl groups include, but are not limited to, acetylene (-C≡C-), propargyl (-CH2C≡C-), and the like.

Typical alkylene radicals include, but are not limited to, methylene (-CH2-), 1,1-ethyl (-CH(CH3)-), 1,2-ethyl (-CH2CH2-), 1,1-propyl (-CH(CH3)2), 1,2-propyl (-CH2CH(CH3)-), 1,3-propyl (-CH2CH2CH2-), 1,4-butyl (-CH2CH2CH2CH2-), and the like.

[0024] "Alkenylene" refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkene. For example, an alkylene group can have 1 to 20 carbon atoms, 1 to 10 carbon atoms, or 1 to 6 carbon atoms.

Typical alkenylene radicals include, but are not limited to, ethylene (-CH2=CH-), 1,1-ethenyl (-CH=CH-), 1,2-ethenyl (-CH2CH=CH-), 1,3-propynyl (-CH2C≡CH), 1,4-propynyl (-CH2CHC≡CH), 1,4-butynyl (-CH2CH2CHC≡CH), and 5-hexenyl (-CH2CH2CH2CH2CH=CH2).

[0026] "Amino" means an -NH2 or a -NR2 group in which the "R" groups are independently H, alkyl, haloalkyl, hydroxylalkyl, carbocyclyl (substituted or unsubstituted, including saturated or unsaturated cycloalkyl and aryl groups), heterocyclyl (substituted or unsubstituted, including saturated or unsaturated heterocycloalkyl and heteroaryl groups), arylalkyl (substituted or unsubstituted) or arylalkyl (substituted or unsubstituted) groups. Non-limiting examples of amino groups include -NH2, -NH(alkyl), NH(haloalkyl), -NH(carbocyclyl), -NH(heterocyclyl), -N(alkyl), -N(carbocyclyl), -N(heterocyclyl), -N(alkenyl), -N(alkenyl)(alkenyl), -N(alkyl)(heterocyclyl), -N(alkenyl)(heterocyclyl), etc., wherein alkyl, carbocyclyl, and heterocyclyl can be substituted or unsubstituted and as defined and described herein. "Substituted" or "protected" amino means an aminoalkyl as described and defined herein which a H of the amino group is replaced with e.g., acyl groups, for example conventional amine protecting groups such as 9-Fluorenylmethyl carbamate ("Fmoc"), t-Butyl carbamate ("Boc"), Benzyl carbamate ("Cbz"), acetyl, trifluoracetyl, -C(O)-amino, phthalimidyl, triphenylmethyl, p-Toluenesulfonyl ("Tosyl"), methylsulfonyl ("mesy"), etc.

[0027] "Aminoalkyl" means an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with an amino radical as defined and described herein. Non-limiting examples of aminoalkyl groups include -CH2-NH2, -CH2-CH2-NH2, -CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-NH2, etc. "Substituted" or "protected" aminoalkyl means an aminoalkyl as described and defined herein in which the H of the amino group is replaced with e.g., acyl groups, for example conventional amine protecting groups.
Arylalkynyl” refers to an acyclic alkynyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp³ carbon atom, is replaced with an aryl radical. Typical arylalkynyl groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, naphthobenzyl, 2-naphthopheny1ethan-1-yl and the like. The arylalkynyl group can comprise 6 to 20 carbon atoms, e.g., the alkyn moiety is 1 to 6 carbon atoms and the aryl moiety is 6 to 14 carbon atoms.

Arylalkenyl” refers to an acyclic alkenyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp³ carbon atom, is replaced with an aryl radical. The arylalkenyl can include, for example, any of the aryl groups disclosed herein, and the arylalkenyl group can comprise 6 to 20 carbon atoms, e.g., the arylalkenyl moiety is 1 to 6 carbon atoms and the aryl moiety is 6 to 14 carbon atoms.

“Heteroalkyl” refers to an alkyl group where one or more carbon atoms have been replaced with a heteroatom, for example, “substituted alkyl,” “substituted alkenyl,” “substituted aryl,” “substituted arylalkyl,” “substituted heterocyclyl,” and “substituted carbocyclyl” means alkyl, alkylene, aryl, arylalkyl, heterocycle, or a protecting group or prodrug moiety. Alkylene, alkenylene, and alkynylene groups may also be similarly substituted. When the number of carbon atoms is designated for a substituted group, the number of carbon atoms refers to the group, not the substituent (unless otherwise indicated). For example, a C1-4 alkyl group means a heteroalkyl group having 1 to 4 carbon atoms.

The term “substituted” in reference to alkyl, alkenyl, aryl, arylalkyl, heterocyclyl, heteroaryl, carbocyclyl, etc., for example, “substituted alkyl,” “substituted alkenyl,” “substituted aryl,” “substituted arylalkyl,” “substituted heterocyclyl,” and “substituted carbocyclyl” means alkyl, alkenyl, aryl, arylalkyl, heterocyclyl, or carbocyclyl respectively, in which one or more hydrogen atoms are each independently replaced with a non-hydrogen substituent. Typical substituents include, but are not limited to, -X, -R, -OR, -SR, -NR₂, -N'R₃, =NR, -NR, -NCN, -OCN, -SCN, -NC, -NO, -NO₂, -N₂, -N=N, -N=N=N, -OH, -OR, -SH, -SR, -S(O)₂R, -NHR, -NH₂, -NH=NH, -NH=CH, -NH=CH₂, -C=N, -C(=NR)NRR, where each X is independently a halogen: F, Cl, Br, or I; and each R is independently H, alkyl, aryl, arylalkyl, a heterocycle, or a protecting group or prodrug moiety. Alkyl, alkenyl, and arylalkyl groups may also be similarly substituted. When the number of carbon atoms is designated for a substituted group, the number of carbon atoms refers to the group, not the substituent (unless otherwise indicated). For example, a C4,1,4 alkyl, which can be substituted with groups having more the, e.g., 4 carbon atoms.

The term “prodrug” as used herein refers to any compound that when administered to a biological system generates the drug substance, i.e., active ingredient, as a result of spontaneous chemical reaction(s), enzyme catalyzed chemical reaction(s), photolysis, and/or metabolic chemical reaction(s). A prodrug is thus a covalently modified analog or latent form of a therapeutically active compound.

One skilled in the art will recognize that substituents and other moieties of the compounds of Formula I should be selected in order to provide a compound which is sufficiently stable to provide a pharmaceutically useful compound which can be formulated into an acceptably stable pharmaceutical composition. Compounds of Formula I which have such stability are contemplated as falling within the scope of the present invention.

“Heteroalkyl” refers to an alkyl group where one or more carbon atoms have been replaced with a heteroatom, such as, O, N, or S. For example, if the carbon atom of the alkyl group which is attached to the parent molecule is replaced with a heteroatom (e.g., O, N, or S) the resulting heteroalkyl groups are, respectively, an alkoy groups (e.g., -OCH₃, etc.), an amine (e.g., -NHCH₃, -N(CH₃)₂, etc.), or a thioalkyl group (e.g., -SCH₃). If a non-terminal carbon atom of the alkyl group which is not attached to the parent molecule is replaced with a heteroatom (e.g., O, N, or S) the resulting heteroalkyl groups are, respectively, an alkyl ether (e.g., -CH₂CH₂-O-CH₃, etc.), an alkyl amine (e.g., -CH₂NHCH₃, -CH₂-N(CH₃)₂, etc.), or a thioalkyl ether (e.g., -CH₂-S-CH₃). If a terminal carbon atom of the alkyl group is replaced with a heteroatom (e.g., O, N, or S), the resulting heteroalkyl groups are, respectively, a hydroxyalkyl group (e.g., -CH₂OH), an aminoalkyl group (e.g., -CH₂NH₂), or an alkyl thiol group (e.g., -CH₂CH₂-SH). A heteroalkyl group can have, for example, 1 to 20 carbon atoms, 1 to 10 carbon atoms, or 1 to 6 carbon atoms. A C1,1,6 heteroalkyl group means a heteroalkyl group having 1 to 6 carbon atoms.

“Heterocycle” or “heterocyclyl” as used herein includes by way of example and not limitation those heterocycles described in Paquette, Leo A.; Principles of Modern Heterocyclic Chemistry (W.A. Benjamin, New York, 1968), particularly Chapters 1, 3, 4, 6, 7, and 9; The Chemistry of Heterocyclic Compounds, A Series of Monographs” (John Wiley & Sons, New York, 1950 to present), in particular Volumes 13, 14, 16, 19, and 28; and J. Am. Chem. Soc. (1960) 82:5566. In one specific embodiment the invention “heterocycle” includes a “carboxylic acid” as defined herein, wherein one or more
(e.g., 1, 2, 3, or 4) carbon atoms have been replaced with a heteroatom (e.g., O, N, or S). The terms "heterocycle" or "heterocycl" includes saturated rings (i.e., heterocycloalkyls), partially unsaturated rings, and aromatic rings (i.e., heteroaromatic rings). Substituted heterocyclyls include, for example, heterocyclic rings substituted with any of the substituents disclosed herein including carbonyl groups. A non-limiting example of a carbonyl substituted heterocycl is:

![Heterocyclic Structure](image)

[0037] Examples of heterocycles include by way of example and not limitation pyridyl, dihydropyridyl, tetrahydropyridyl (piperidyl), thiazolyl, tetrahydrothiophenyl, sulfur oxidized tetrahydrothiophenyl, pyrimidinyl, furanyl, thienyl, pyrrol, pyrazol, imidazolyl, tetrazol, benzofuranyl, thianaphthalenyl, indol, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, 4-piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, octahydroisoquinolinyl, azocinyl, triazinyl, 6H-1,2,5-thiadiazinyl, 2H,6H-1,5,2-dithiazinyl, thiienyl, thianthrenyl, pyranyl, isobenzofuranyl, chromenyl, xanthenyl, phenoxazinyl, 2H-pyrrolyl, isothiazolyl, isooxazolyl, pyrazinyl, pyridazinyl, indol春夏, indol春夏, quinolinyl, pyrimidinyl, pyrazinyl, pyridazinyl, 2-pyridinyl, 4-pyridinyl, 5-pyridinyl, 6-pyridinyl, 2-pyrazinyl, 3-pyrazinyl, 4-pyrazinyl, 5-pyrazinyl, 6-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 6-pyrimidinyl, 2-pyrazinyl, 3-pyrazinyl, 5-pyrazinyl, 6-pyrazinyl, 2-thiazolyl, 4-thiazolyl, or 5-thiazolyl.

[0038] By way of example and not limitation, carbon bonded heterocycles are bonded at position 2, 3, 4, 5, or 6 of a pyridine, position 3, 4, 5, or 6 of a pyridazine, position 2, 4, 5, or 6 of a pyrimidine, position 2, 3, 5, or 6 of a pyrazine, position 2, 3, 4, or 5 of a furan, tetrahydrofuran, thiophene, pyrrole or tetrahydropyrrole, position 2, 4, or 5 of an oxazole, imidazol or thiazole, position 3, 4, or 5 of an isoazole, pyrazole, or isothiazole, position 2 or 3 of an azidine, position 2, 3, or 4 of an azetidine, position 2, 3, 4, 5, 6, 7, or 8 of a quinoline or position 1, 3, 4, 5, 6, 7, or 8 of an isoquinoline. Still more typically, carbon bonded heterocycles include 2-pyridyl, 3-pyridyl, 4-pyridyl, 5-pyridyl, 6-pyridyl, 3-pyridazinyl, 4-pyridazinyl, 5-pyridazinyl, 6-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 6-pyrimidinyl, 2-pyrazinyl, 3-pyrazinyl, 5-pyrazinyl, 6-pyrazinyl, 2-thiazolyl, 4-thiazolyl, or 5-thiazolyl.

[0039] By way of example and not limitation, nitrogen bonded heterocycles are bonded at position 1 of an aziridine, azetidine, pyrro, pyrrolidinyl, 2-pyrrolinyl, 3-pyrrolidinyl, imidazolyl, imidazolidinyl, 2-imidazolidinyl, 3-imidazolidinyl, pyrazol, pyrazolinyl, 2-pyrazolinyl, 3-pyrazolinyl, pipera, pipera, indo, indole, 1H-indazol, position 2 of an isoindole, or isoindolinyl, position 4 of a morpholin, and position 9 of a carboxazole, or β-carbolin. Still more typically, nitrogen bonded heterocycles include 1-aziridy, 1-azetedyl, 1-pyrrol, 1-imidazol, 1-pyrrolazol, and 1-piperidinyl.

[0040] "Heterocyclyalkyl" refers to an acyclic alky radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with a heterocyclyl radical (i.e., a heterocyclyl-alkene-moiety). Typical heterocyclyl alkyl groups include, but are not limited to heterocyclyl-CH2-, heterocyclyl-CH(CH3)-, heterocyclyl-CH2CH2-, 2-(heterocyclyl)ethan-1-yl, and the like, wherein the "heterocyclyl" portion includes any of the heterocyclyl groups described above, including those described in Principles of Modern Heterocyclic Chemistry. One skilled in the art will also understand that the heterocycly group can be attached to the alkyl portion of the heterocyclyl alkyl by means of a carbon-carbon bond or a carbon-heteroatom bond, with the proviso that the resulting group is chemically stable. The heterocyclylalkyl group comprises 2 to 20 carbon atoms, e.g., the alkyl portion of the heterocyclylalkyl group is 1 to 6 carbon atoms and the heterocyclyl moiety is 1 to 14 carbon atoms. Examples of heterocyclylalkyls include by way of example and not limitation 5-membered sulfur, oxygen, and or nitrogen containing heterocycles such as thiazolylmethyl, 2-thiazolylethan-1-yl, imidazolylmethyl, oxazolylmethyl, thiazolylmethyl, etc., 6-membered sulfur, oxygen, and or nitrogen containing heterocycles such as piperidinymethyl, piperaizinylmethyl, morpholinylmethyl, pyridinylmethyl, pyridylmethyl, pyridylmethyl, pyrazinylmethyl, etc.

[0041] "Heterocyclylalkenyl" refers to an acyclic alkenyl radical in which one of the hydrogen atoms bonded to a carbon
atom, typically a terminal or sp3 carbon atom, but also a sp2 carbon atom, is replaced with a heterocyclyl radical (i.e., a heterocyclyl-alkenylen- moiety). The heterocyclyl portion of the heterocyclyl alkenyl group includes any of the heterocyclyl groups described herein, including those described in Principles of Modern Heterocyclic Chemistry, and the alkenyl portion of the heterocyclyl alkenyl group includes any of the alkenyl groups disclosed herein. One skilled in the art will also understand that the heterocyclyl group can be attached to the alkenyl portion of the heterocyclyl alkenyl by means of a carbon-carbon bond or a carbon-heteroatom bond, with the proviso that the resulting group is chemically stable. The heterocyclylalkenyl group comprises 3 to 20 carbon atoms, e.g., the alkenyl portion of the heterocyclylalkenyl group is 2 to 6 carbon atoms and the heterocyclyl moiety is 1 to 14 carbon atoms.

[0042] "Heterocyclylalkynyl" refers to an acyclic alkylnyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, but also an sp carbon atom, is replaced with a heterocyclyl radical (i.e., a heterocyclyl-alkynylene- moiety). The heterocyclyl portion of the heterocyclyl alkylnyl group includes any of the heterocyclyl groups described herein, including those described in Principles of Modern Heterocyclic Chemistry, and the alkylnyl portion of the heterocyclyl alkylnyl group includes any of the alkylnyl groups disclosed herein. One skilled in the art will also understand that the heterocyclyl group can be attached to the alkylnyl portion of the heterocyclyl alkylnyl by means of a carbon-carbon bond or a carbon-heteroatom bond, with the proviso that the resulting group is chemically stable. The heterocyclylalkynyl group comprises 3 to 20 carbon atoms, e.g., the alkylnyl portion of the heterocyclylalkynyl group is 2 to 6 carbon atoms and the heterocyclyl moiety is 1 to 14 carbon atoms.

[0043] "Heteroaryl" refers to an aromatic heterocyclyl having at least one heteroatom in the ring. Non-limiting examples of suitable heteroatoms which can be included in the aromatic ring include oxygen, sulfur, and nitrogen. Non-limiting examples of heteroaryl rings include all of those listed in the definition of "heterocyclyl", including pyridinyl, pyrrolyl, oxazolyl, indolyl, isoindolyl, purinyl, thienyl, benzofuranyl, benzothiophenyl, carbazolyl, imidazolyl, thiazolyl, isoaxazolyl, pyrazolyl, isothiazolyl, quinolyl, isoquinolyl, pyridyl, pyrimidyl, etc.

[0044] "Carbo cyclic" or "carbocyclic" refers to a saturated (i.e., cycloalkyl), partially unsaturated (e.g., cycloalkenyl, cycloalkadienyl, etc.) or aromatic ring having 3 to 7 carbon atoms as a monocyte, 7 to 12 carbon atoms as a bicycle, and up to about 20 carbon atoms as a polycycle. Monocyclic carbocycles have 3 to 6 ring atoms, still more typically 5 or 6 ring atoms. Bicyclic carbocycles have 7 to 12 ring atoms, e.g., arranged as a bicyclo[4,5], [5,5], [5,6] or [6,6] system, or 9 or 10 ring atoms arranged as a bicyclo[5,6] or [6,6] system, or spiro-fused rings. Non-limiting examples of monocyclic carbocycles include cyclopentyl, cycloheptyl, 1-cyclopent-1-enyl, 1-cyclopent-2-enyl, 1-cyclopent-3-enyl, cyclohexyl, 1-cyclohex-1-enyl, 1-cyclohex-2-enyl, 1-cyclohex-3-enyl, and phenyl. Non-limiting examples of bicyclic carbocycles includes naphthyl.

[0045] "Arylheterealkyl" refers to a heteroalkyl as defined herein, in which a hydrogen atom (which may be attached either to a carbon atom or a heteroatom) has been replaced with an aryl group as defined herein. The aryl groups may be bonded to a carbon atom of the heteroalkyl group, or to a heteroatom of the heteroalkyl group, provided that the resulting arylheterealkyl group provides a chemically stable moiety. For example, an arylheterealkyl group can have the general formulae -alkyl-O-aryl, -alkyl-O-alkylene-aryl, -alkyl-NH-aryl, -alkyl-NH-alkylene-aryl, -alkyl-S-aryl, -alkylene-S-aryl, -alkylene-S-alkylene-aryl, etc. In addition, any of the alkylenes moieties in the general formulare above can be further substituted with any of the substituents defined or exemplified herein.

[0046] "Heteroarylalkylen-" refers to an alkyl group, as defined herein, in which a hydrogen atom has been replaced with a heteroaryl radical as defined herein. Non-limiting examples of heteroaryl alkyl include -CH2-pyridinyl, -CH2-pyrrollyl, -CH2-oxazolyl, -CH2-indolyl, -CH2-isoindolyl, -CH2-purinyl, -CH2-furanyl, -CH2-thi enyl, -CH2-benzofuranyl, -CH2-benzothio phenyl, -CH2-carbazolyl, -CH2-imidazolyl, -CH2-thia zolyl, -CH2-isoaxazolyl, -CH2-pyrazolyl, -CH2-isothiazolyl, -CH2-quino linyl, -CH2-isoquinolyl, -CH2-pyridazyl, -CH2-pyrimidyl, -CH2-pyrazyl, -CH2-pyridinyl, -CH2-pyrimidyl, -CH(3)-ox azolyl, -CH(CH3)-indolyl, -CH(CH3)-isoindolyl, -CH(CH3)-purinyl, -CH(CH3)-furanyl, -CH(CH3)-thi enyl, -CH(CH3)-benzofuranyl, -CH(3)-benzothiophenyl, -CH(3)-carbazolyl, -CH(3)-imidazolyl, -CH(3)-thiazolyl, -CH(3)-oxazolyl, -CH(3)-pyrazolyl, -CH(3)-pyridinyl, -CH(3)-isoaxazolyl, -CH(3)-isothiazolyl, etc.

[0047] The term "optionally substituted" in reference to a particular moiety of the compound of Formula I (e.g., an optionally substituted aryl group) refers to a moiety having 0, 1, 2, or more substituents.

[0048] "Ac" means acetyl (i.e., (C(O)CH3).

[0049] "Ac2O" means acetic anhydride.

[0050] "DCM" means dichloromethane (CH2Cl2).

[0051] "DIBAL" means disobutylaluminum hydride.

[0052] "DMAP" means dimethylaminopyridine.

[0053] "EDC" means 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide.

[0054] "Et" means ethyl.

[0055] "EtOAc" means ethyl acetate.

[0056] "HOBt" means N-hydroxybenzotriazole.

[0057] "Me" means methyl (-CH3).
"MeOH" means methanol.

"MeCN" means acetonitrile.

"Pr" means propyl.

"i-Pr" means isopropyl (-CH(CH₃)₂).

"i-PrOH" means isopropanol.

"rt" means room temperature.

"TFA" means trifluoroacetic acid.

"THF" means tetrahydrofuran.

The term "chiral" refers to molecules which have the property of non-superimposability of the mirror image partner, while the term "achiral" refers to molecules which are superimposable on their mirror image partner.

The term "stereoisomers" refers to compounds which have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space.

"Diastereomer" refers to a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical properties, e.g., melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers may separate under high resolution analytical procedures such as electrophoresis and chromatography.

"Enantiomers" refer to two stereoisomers of a compound which are non-superimposable mirror images of one another.

Stereochemical definitions and conventions used herein generally follow S. P. Parker, Ed., McGraw-Hill Dictionary of Chemical Terms (1984) McGraw-Hill Book Company, New York; and Eliel, E. and Wilen, S., Stereochemistry of Organic Compounds (1994) John Wiley & Sons, Inc., New York. Many organic compounds exist in optically active forms, i.e., they have the ability to rotate the plane of plane-polarized light. In describing an optically active compound, the prefixes D and L or R and S are used to denote the absolute configuration of the molecule about its chiral center(s). The prefixes d and l or (+) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (+) meaning that the compound is levorotatory. A compound prefixed with (+) or d is dextrorotatory. For a given chemical structure, these stereoisomers are identical except that they are mirror images of one another. A specific stereoisomer may also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture. A 50:50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which may occur where there has been no stereoselection or stereospecificity in a chemical reaction or process. The terms "racemic mixture" and "racemate" refer to an equimolar mixture of two enantiomeric species, devoid of optical activity.

Protecting Groups

In the context of the present invention, protecting groups include prodrug moieties and chemical protecting groups.

Protecting groups are available, commonly known and used, and are optionally used to prevent side reactions with the protected group during synthetic procedures, i.e. routes or methods to prepare the compounds of the invention. For the most part the decision as to which groups to protect, when to do so, and the nature of the chemical protecting group "PG" will be dependent upon the chemistry of the reaction to be protected against (e.g., acidic, basic, oxidative, reductive or other conditions) and the intended direction of the synthesis. The PG groups do not need to be, and generally are not, the same if the compound is substituted with multiple PG. In general, PG will be used to protect functional groups such as carboxyl, hydroxyl, thio, or amino groups and to thus prevent side reactions or to otherwise facilitate the synthetic efficiency. The order of deprotection to yield free, deprotected groups is dependent upon the intended direction of the synthesis and the reaction conditions to be encountered, and may occur in any order as determined by the artisan.

Various functional groups of the compounds of the invention may be protected. For example, protecting groups for -OH groups (whether hydroxyl, carboxylic acid, phosphonic acid, or other functions) include "ether- or ester-forming groups". Ether- or ester-forming groups are capable of functioning as chemical protecting groups in the synthetic schemes set forth herein. However, some hydroxyl and thio protecting groups are neither ether- nor ester-forming groups, as will be understood by those skilled in the art, and are included with amides, discussed below.

Ether- and Ester-forming protecting groups

[0075] Ester-forming groups include: (1) phosphonate ester-forming groups, such as phosphonamidate esters, phosphorothioate esters, phosphonate esters, and phosphon-bis-amidates; (2) carboxyl ester-forming groups, and (3) sulphur ester-forming groups, such as sulphonate, sulfate, and sulfinate.

Metabolites of the Compounds of the Invention

[0076] Also falling within the scope of this invention are the in vivo metabolic products of the compounds described herein. Such products may result for example from the oxidation, reduction, hydrolysis, amidation, esterification and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes compounds produced by a process comprising contacting a compound of this invention with a mammal for a period of time sufficient to yield a metabolic product thereof. Such products typically are identified by preparing a radiolabelled (e.g., C¹⁴ or H³) compound of the invention, administering it parenterally in a detectable dose (e.g., greater than about 0.5 mg/kg) to an animal such as rat, mouse, guinea pig, monkey, or to man, allowing sufficient time for metabolism to occur (typically about 30 seconds to 30 hours) and isolating its conversion products from the urine, blood or other biological samples. These products are easily isolated since they are labeled (others are isolated by the use of antibodies capable of binding epitopes surviving in the metabolite). The metabolite structures are determined in conventional fashion, e.g., by MS or NMR analysis. In general, analysis of metabolites is done in the same way as conventional drug metabolism studies well-known to those skilled in the art. The conversion products, so long as they are not otherwise found in vivo, are useful in diagnostic assays for therapeutic dosing of the compounds of the invention even if they possess no anti-infective activity of their own.

Compounds of Formula I

[0077] In one embodiment, the present application provides compounds according to Formula I,

![Formula I](image)

or a pharmaceutically acceptable salt, solvate, and/or ester thereof, wherein, L¹ is selected from the group consisting of -C(R⁶)₂-, -C(O)-, -S(O₂)-, -N(R⁷)-C(O)-, and -O-C(O)-;
L² is a covalent bond, -C(R⁶)₂- or -C(O)-;
each L³ is independently a covalent bond, an alkylene, or substituted alkylene;
each L⁴ is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, -O-, -CH₂-O-, and -NH-;
each A is independently selected from the group consisting of H, alkyl, substituted alkyl, aryl, substituted aryl, heterocyclyl, and substituted heterocyclyl,
with the proviso that when A is H, p is 0;
Z¹ and Z² are each independently -O- or -N(R⁷)-;
Y and X are independently selected from the group consisting of heterocyclyl and heterocyclylalkyl;
each Ar is independently selected from the group consisting of aryl, substituted aryl, heteroaryl, and substituted heteroaryl;
R¹, R³, and R⁵ are each independently selected from the group consisting of H, alkyl, substituted alkyl, arylalkyl, and substituted arylalkyl;
each R² is independently selected from the group consisting of H, alkyl, substituted alkyl, alkoxyalkyl, hydroxyalkyl, arylheteroalkyl, substituted arylheteroalkyl, aryalkyl, substituted aryalkyl, heterocyclylalkyl, substituted heterocyclyl-
lalkyl, aminoalkyl, substituted aminoalkyl, -alkylene-C(O)-OH, -alkylene-C(O)-Oalkyl, -alkylene-C(O)amino, -alkylene-C(O)-alkyl;
R4 and R5 are independently selected from the group consisting of H, alkyl, substituted alkyl, and heteroalkyl;
each R7 is independently selected from the group consisting of H, alkyl, substituted alkyl, heteroalkyl, carbocyclyl, substituted carbocyclyl, heterocyclyl, and substituted heterocyclyl;
R8 and R9 are each one or more substituents independently selected from the group consisting of H, alkyl, substituted alkyl, halogen, aryl, substituted aryl, heterocyclyl, substituted heterocyclyl, and -CN;
m is 1 or 2;
n is 0 or 1; and
each p is independently 0 or 1.

[0078] In another embodiment of the compounds of Formula I, n is 1.

[0079] In another embodiment of the compounds of Formula I, n is 0.

[0080] In another embodiment of the compounds of Formula I, n is 1 and L2 is -CH(R6)-, wherein R6 is selected from the group consisting of H, alkyl, substituted alkyl, and heteroalkyl.

[0081] In another embodiment of the compounds of Formula I, n is 1 and L2 is -CH2-.

[0082] In another embodiment of the compounds of Formula I, n is 1 and L2 is - C(O)-.

[0083] In another embodiment of the compounds of Formula I, n is 1 and Y is heterocyclylalkyl.

[0084] In another embodiment of the compounds of Formula I, n is 1 and Y-R8 is -CH2-(substituted heteroaryl).

[0085] In another embodiment of the compounds of Formula I, n is 1 and Y-R8 is

wherein R8 is alkyl, for example 2-propyl.

[0086] In another embodiment of the compounds of Formula I, n is 1 and X is heterocyclylalkyl.

[0087] In another embodiment of the compounds of Formula I, n is 1 and X is -CH2-heteroaryl.

[0088] In another embodiment of the compounds of Formula I, n is 1 and X-R9 is

[0089] In another embodiment of the compounds of Formula I, n is 1 and Z1 is - N(R7)-.

[0090] In another embodiment of the compounds of Formula I, n is 1 and Z1 is - N(alkyl)- or -N(carbocyclyl)-.

[0091] In another embodiment of the compounds of Formula I, n is 1 and Z1 is -N(CH3)- or -N(cyclopropyl)-.

[0092] In another embodiment of the compounds of Formula I, n is 1 and Z1 is-NH-. 
In another embodiment of the compounds of Formula I, n is 1 and each A is independently aryl or substituted aryl.

In another embodiment of the compounds of Formula I, n is 1 and each A is phenyl.

In another embodiment of the compounds of Formula I, n is 1 and each A is phenyl and each p is 0.

In another embodiment of the compounds of Formula I, n is 1 and R² is H, alkyl, substituted alkyl, or heteroalkyl.

In another embodiment of the compounds of Formula I, n is 1 and R² is 2-propyl, methyl, -CH₂-O-benzyl, -CH(CH₃)(O-t-Bu), or -CH(CH₃)(OH).

In another embodiment of the compounds of Formula I, L¹ is -C(O)-; each A is independently aryl, substituted aryl, alkyl, or substituted alkyl;

R¹ is H or alkyl;
each R² is independently H, alkyl, substituted alkyl, or heteroalkyl;
R³, R⁴, R⁵, and R⁶ are each H;
each R⁷ is independently H, alkyl, or carbocyclyl;
R⁸ is H or alkyl;
R⁹ is H;
X and Y are both heterocyclylalkyl;
Z² is -O-; and
p is 0.

In another embodiment of the compounds of Formula I, each A is phenyl;
R¹ is H or -CH₃;
each R² is H, methyl, ethyl, 2-propyl, -CH₂-O-benzyl, -CH(CH₃)-OH, or -CH(CH₃)(O-t-Bu);
each R⁷ is H, methyl or cyclopropyl;
R⁸ is H or 2-propyl;
X is

and
Y is

In another embodiment, the compounds of Formula I have the following general Formula IA:

[0102] In another embodiment of the compounds of Formula IA, Z¹ is -N(R⁷)-. In a particular embodiment, R⁷ is H. In another particular embodiment, R⁷ is alkyl, for example any of the alkyl groups disclosed herein. In another particular embodiment, R⁷ is heteroalkyl, for example any of the heteroalkyl groups disclosed herein. In another particular embodiment, R⁷ is substituted or unsubstituted carbocyclyl, wherein for example, said carbocyclyl is any of the carbocyclyl
groups disclosed herein. In another particular embodiment, $R^7$ is substituted or unsubstituted heterocyclyl, wherein for example, said heterocyclyl is any of the heterocyclyl groups disclosed herein.

[0104] In another embodiment of the compounds of Formula IA, $Z^1$ is -O-.

[0105] In another embodiment of the compounds of Formula IA, $L^2$ is -C($R^6$)$_2$-, wherein each $R^6$ is H.

[0106] In another embodiment of the compounds of Formula IA, $L^2$ is -C($R^6$)$_2$-, wherein each $R^6$ is independently H or alkyl, and said alkyl includes any alkyl disclosed herein.

[0107] In another embodiment of the compounds of Formula IA, $L^2$ is -C($R^6$)$_2$-, wherein one $R^6$ is H and the other $R^6$ is alkyl, wherein said alkyl includes any alkyl disclosed herein.

[0108] In another embodiment of the compounds of Formula IA, $m$ is 1 and $R^2$ is H.

[0109] In another embodiment of the compounds of Formula IA, $m$ is 1 and $R^2$ is alkyl, wherein said alkyl includes any alkyl disclosed herein.

[0110] In another embodiment of the compounds of Formula IA, $m$ is 1 and $R^2$ is i-propyl.

[0111] In another embodiment of the compounds of Formula IA, $m$ is 1 and $R^2$ is i-butyl.

[0112] In another embodiment of the compounds of Formula IA, $m$ is 1 and $R^2$ is ethyl.

[0113] In another embodiment of the compounds of Formula IA, $m$ is 1 and $R^2$ is methyl.

[0114] In another embodiment of the compounds of Formula IA, $m$ is 2 and each $R^2$ is independently selected from H and alkyl.

[0115] In another embodiment of the compounds of Formula IA, $m$ is 2 and each $R^2$ is H.

[0116] In another embodiment, the compounds of Formula I have the following general Formula IB:

\[
\text{Formula IB.}
\]

[0117] In another embodiment of the compounds of Formula IB, $Z^1$ is -N($R^7$)-. In a particular embodiment, $R^7$ is H. In another particular embodiment, $R^7$ is alkyl, for example any of the alkyl groups disclosed herein. In another particular embodiment, $R^7$ is heteroalkyl, for example any of the heteroalkyl groups disclosed herein. In another particular embodiment, $R^7$ is substituted or unsubstituted carbocyclyl, wherein for example, said carbocyclyl is any of the carbocyclyl groups disclosed herein. In another particular embodiment, $R^7$ is substituted or unsubstituted heterocyclyl, wherein for example, said heterocyclyl is any of the heterocyclyl groups disclosed herein.

[0118] In another embodiment of the compounds of Formula IB, $Z^1$ is -O-.

[0119] In another embodiment of the compounds of Formula IB, $L^2$ is -C($R^6$)$_2$-, wherein each $R^6$ is H.

[0120] In another embodiment of the compounds of Formula IB, $L^2$ is -C($R^6$)$_2$-, wherein each $R^6$ is independently H or alkyl, and said alkyl includes any alkyl disclosed herein.

[0121] In another embodiment of the compounds of Formula IB, $L^2$ is -C($R^6$)$_2$-, wherein one $R^6$ is H and the other $R^6$ is alkyl, wherein said alkyl includes any alkyl disclosed herein.

[0122] In another embodiment of the compounds of Formula IB, $R^8$ and $R^9$ are both H.

[0123] In another embodiment of the compounds of Formula IB, $R^8$ and $R^9$ are independently selected from H and alkyl, wherein said alkyl includes any alkyl disclosed herein.

[0124] In another embodiment, the compounds of Formula I have one of the following structures:
and
including stereoisomers or mixtures of stereoisomers thereof. One skilled in the art will recognize that stereoisomers or mixtures of stereoisomers of the compounds of the present application include enantiomers, diastereomers, and other stereoisomers. For example, for:

contemplated stereoisomers include at least:

and

as well as mixtures of two or more of these stereoisomers.

In still another embodiment of the compounds of Formula I, L₁ is -C(R₆)₂-, -C(O)-, -S(O₂)-, -N(R₇)-C(O)-, or -O-C(O)-. When L₁ is -C(R₆)₂-, each R₆ is independently selected from the group consisting of H, alkyl, substituted alkyl, and heteroalkyl, wherein alkyl, substituted alkyl, and heteroalkyl are as defined and exemplified herein. Non-limiting examples of -C(R₆)₂- include -CH₂-, -CH(alkyl)-, -CH(substituted alkyl)-, -CH(heteroalkyl)-, -C(alkyl)₂-, -C(substituted alkyl)₂-, -C(heteroalkyl)₂-, -C(heteroalkyl)(substituted alkyl)-, -C(alkyl)(heteroalkyl)-, wherein alkyl, substituted alkyl, and heteroalkyl are as defined and exemplified herein. When L₁ is -N(R₇)-C(O)-, R₇ is H, alkyl, substituted alkyl, heteroalkyl, carbocyclyl, substituted carbocyclyl, heterocyclyl, or substituted heterocyclyl, wherein alkyl, substituted alkyl, heteroalkyl, carbocyclyl, substituted carbocyclyl, heterocyclyl, or substituted heterocyclyl are as defined and exemplified herein.

In still another embodiment of the compounds of Formula I, L₂ is -C(R₆)₂- or -C(O)-. When L₂ is -C(R₆)₂-, each R₆ is independently selected from H, alkyl, substituted alkyl or heteroalkyl, where each alkyl, substituted alkyl, or heter-
oalkyl can include any of the alkyl, substituted alkyl, or heteroalkyl groups defined or disclosed herein. Non-limiting examples of -C(R6)2- include-CH-, -CH(CH3)-, -CH(-CH2CH3)-, -CH(-CH2CH2CH3)-, -CH(-CH2CH2CH2CH3)-, -CH(-CH2CH(CH3)2)-, -CH(-CH2CH2CH2CH2CH3)-, -CH(-CH2CH2CH2CH2CH2CH3)-, -CH(-CH2CH2CH2CH2CH2CH2CH3)-, -CH(-CH2CH2CH2CH2CH2CH2CH2CH3)-, -CH(-CH2CH2CH2CH2CH2CH2CH2CH2CH3)-, -CH(-C(CH3)2)-, -C(CH3)2-,

[0127] In still another embodiment of the compounds of Formula I, each L3 is independently a covalent bond, an alkylene or substituted alkylene. When any L3 is an alkylene, non-limiting examples of alkylene includes any of the alkylenes defined or disclosed herein. When any L3 is a substituted alkylene, non-limiting examples of substituted alkylene includes any of the substituted alkylenes defined or disclosed herein. For example, substituted alkylenes include alkylenes substituted with one or more -OH group, alkylenes substituted with one or more ether group, e.g., a -O-Bn group, alkylenes substituted with one or more halogen, or alkylenes substituted with combinations of two or more substituents (e.g., -OH and halogen, halogen and ether, etc.).

[0128] In still another embodiment of the compounds of Formula I, each L3 is the same, i.e., each L3 is the same alkylene or substituted alkylene group.

[0129] In still another embodiment of the compounds of Formula I, each L3 is different, i.e., one L3 is an alkylene and the other L3 is a substituted alkylene, one L3 is an alkylene and the other L3 is a different alkylene, or one L3 is a substituted alkylene, and the other L3 is a different substituted alkylene.

[0130] In still another embodiment of the compounds of Formula I, each L4 is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, -O-, -CH2-O-, and -NH-. When L4 is alkylene, said alkylene includes any alkylene defined or exemplified herein. When L4 is substituted alkylene, said substituent includes any alkylene defined or exemplified herein, substituted by one or more substituents as defined herein.

[0131] In still another embodiment of the compounds of Formula I, both L4 groups are the same, i.e. both L4 groups are a covalent bond, both are -O-, both are -CH2-O-, (wherein the CH2 group is attached to either the "A" moiety or the "Ar" moiety of Formula I), both are a substituted or unsubstituted alkylene, or both are -NH-.

[0132] In still another embodiment of the compounds of Formula I, each L4 is different. For example, one L4 is a covalent bond and the other L4 is -O-, one L4 is a covalent bond and the other L4 is -CH2-O- (wherein the CH2 group is attached to either the "A" moiety or the "Ar" moiety of Formula I), one L4 is a covalent bond and the other L4 is -NH-, one L4 is a -O- and the other L4 is -CH2-O- (wherein the CH2 group is attached to either the "A" moiety or the "Ar" moiety of Formula I), one L4 is -O- and the other L4 is -NH-, one L4 is -CH2-O- (wherein the CH2 group is attached to either the "A" moiety or the "Ar" moiety of Formula I) and the other L4 is -NH-, one L4 is a covalent bond and the other L4 is a substituted or unsubstituted alkylene, said L4 is a substituted or unsubstituted alkylene and the other L4 is a substituted alkylene, one L4 is a substituted or unsubstituted alkylene and the other L4 is -NH-, one L4 is substituted or unsubstituted alkylene and the other L4 is -O-, one L4 is a substituted or unsubstituted alkylene and the other L4 is -NH-. When any A is aryl, said aryl includes any aryl defined or exemplified herein. When any A is substituted aryl, said aryl includes any aryl defined or exemplified herein substituted with one or more of any substituent defined or exemplified herein. When any A is alkyl, said alkyl includes any alkyl defined or exemplified herein. When any A is substituted alkyl, said alkyl includes any alkyl defined or exemplified herein substituted with one or more of any substituent defined or exemplified herein. When any A is heterocyclyl, said heterocyclyl includes any heterocyclyl defined or exemplified herein. When any A is substituted heterocyclyl, said heterocyclyl is any heterocyclyl defined or exemplified herein substituted with one or more of any substituent defined or exemplified herein.

[0133] In still another embodiment of the compounds of Formula I, each A is independently H, alkyl, substituted alkyl, aryl, substituted aryl, heterocyclyl, or substituted heterocyclyl, with the proviso that when A is H, p is 0. When any A is alkyl, said alkyl includes any alkyl defined or exemplified herein. When any A is substituted alkyl, said alkyl includes any alkyl defined or exemplified herein substituted with one or more of any substituent defined or exemplified herein. When any A is aryl, said aryl includes any aryl defined or exemplified herein. When any A is substituted aryl, said aryl includes any aryl defined or exemplified herein substituted with one or more of any substituent defined or exemplified herein. When any A is heterocyclyl, said heterocyclyl includes any heterocyclyl defined or exemplified herein. When any A is substituted heterocyclyl, said heterocyclyl is any heterocyclyl defined or exemplified herein substituted with one or more of any substituent defined or exemplified herein.
In still another embodiment of the compounds of Formula I, one A is H and the other A is substituted or unsubstituted heterocyclyl, wherein heterocyclyl is any heterocyclyl defined or exemplified herein, and, when present, the substituents on said heterocyclyl include one or more of any substituent defined or exemplified herein.

In still another embodiment of the compounds of Formula I, one A is substituted or unsubstituted aryl, wherein alkyl and aryl are any alkyl or aryl defined or exemplified herein, and, when present, the substituents on said alkyl or aryl include one or more of any substituents defined or exemplified herein.

In still another embodiment of the compounds of Formula I, X and Y are the same. In a particular embodiment, X is heterocyclylalkyl, e.g. thiazolylmethyl (-CH 2-thiazolyl).

In still another embodiment of the compounds of Formula I, one A is substituted or unsubstituted aryl, and the other A is substituted or unsubstituted heterocyclyl, wherein alkyl and heterocyclyl are any alkyl or heterocyclyl defined or exemplified herein, and, when present, the substituents on said alkyl or heterocyclyl include one or more of any substituents defined or exemplified herein.

In still another embodiment of the compounds of Formula I, Z 1 is -O- or-N(R7)-. When Z1 is -N(R7)-, R7 is H, alkyl, substituted alkyl, heteroalkyl, carbocyclyl, substituted carbocyclyl, heterocyclyl, or substituted heterocyclyl, wherein alkyl, substituted alkyl, heteroalkyl, carbocyclyl, substituted carbocyclyl, heterocyclyl, or substituted heterocyclyl are any alkyl, substituted alkyl, heteroalkyl, carbocyclyl, substituted carbocyclyl, heterocyclyl, or substituted heterocyclyl defined or exemplified herein.

In still another embodiment of the compounds of Formula I, Z 1 and Z2 are the same, e.g., Z1 and Z2 are both -O- or-N(R7)-, wherein Z1 is -N(R7)-, R7 is H, alkyl, substituted alkyl, heteroalkyl, carbocyclyl, substituted carbocyclyl, heterocyclyl, or substituted heterocyclyl, wherein alkyl, substituted alkyl, heteroalkyl, carbocyclyl, substituted carbocyclyl, heterocyclyl, or substituted heterocyclyl are any alkyl, substituted alkyl, heteroalkyl, carbocyclyl, substituted carbocyclyl, heterocyclyl, or substituted heterocyclyl defined or exemplified herein.

In still another embodiment of the compounds of Formula I, Z 1 and Z2 are different, e.g. Z 1 is -O- or-Z 2 is -N(R7)-, Z 1 is -N(R7)- and Z 2 is -O-, or Z 1 and Z 2 are both -N(R7)- but in Z 1 the R 7 is different from the R 7 in Z 2. When either Z 1 of Z 2 is -N(R7)-, R 7 is H, alkyl, substituted alkyl, heteroalkyl, carbocyclyl, substituted carbocyclyl, heterocyclyl, or substituted heterocyclyl, wherein alkyl, substituted alkyl, heteroalkyl, carbocyclyl, substituted carbocyclyl, heterocyclyl, or substituted heterocyclyl are any alkyl, substituted alkyl, heteroalkyl, carbocyclyl, substituted carbocyclyl, heterocyclyl, or substituted heterocyclyl defined or exemplified herein.

In still another embodiment of the compounds of Formula I, Y is heterocyclyl or heterocyclylalkyl, wherein heterocyclyl and heterocyclylalkyl are any heterocyclyl or heterocyclylalkyl defined or exemplified herein. In a particular embodiment, Y is heterocyclylalkyl, e.g. thiazolylmethyl (-CH 2-thiazolyl).

In still another embodiment of the compounds of Formula I, X is heterocyclyl or heterocyclylalkyl, wherein heterocyclyl and heterocyclylalkyl are any heterocyclyl or heterocyclylalkyl defined or exemplified herein. In a particular embodiment, X is heterocyclylalkyl, e.g. thiazolylmethyl.

In still another embodiment of the compounds of Formula I, X and Y are different, e.g., X and Y are different heterocyclyls, X and Y are different heterocyclylalkyls, X is heterocyclyl and Y is heterocyclylalkyl, or X is heterocyclylalkyl and Y is heterocyclyl, wherein heterocyclyl and heterocyclylalkyl are any heterocyclyl or heterocyclylalkyl defined or exemplified herein.

In still another embodiment of the compounds of Formula I, X and Y are the same. In a particular embodiment both X and Y are heterocyclylalkyls, e.g. thiazolylmethyl.

In still another embodiment of the compounds of Formula I, each Ar is aryl, substituted aryl, heteroaryl, or substituted heteroaryl, wherein the aryl or heteroaryl are any aryl or heteroaryl defined or exemplified herein, and, when present, the substituents on the aryl or heteroaryl include one or more of any substituents defined or exemplified herein.

In still another embodiment of the compounds of Formula I, each Ar is the same, e.g., each Ar is an aryl such as phenyl.

In still another embodiment of the compounds of Formula I, each Ar is different, e.g. one Ar is a substituted or unsubstituted aryl and the other Ar is a substituted or unsubstituted heteroaryl, each Ar is a different substituted or unsubstituted aryl, or each Ar is a different substituted or unsubstituted heteroaryl, wherein aryl and heteroaryl are any aryl or heteroaryl defined or exemplified herein, and, when present, the substituents on the aryl or heteroaryl include one or more of any substituents defined or exemplified herein.
In yet another embodiment of the compounds of Formula I, at least one of the \(-L\,\_3\,-A\,\_-(L\,\_4\,-A\,\_r)p\) moieties is an alkyl, wherein alkyl and substituted alkyl include any of the alkyl or substituted alkyls defined or disclosed herein.

In still another embodiment of the compounds of Formula I, \(R\,\_1, \,R\,\_3,\) and \(R\,\_5\) are each H, in another particular embodiment \(R\,\_1, \,R\,\_3,\) and \(R\,\_5\) are each alkyl, e.g. one of the alkyl groups defined or disclosed herein.

In still another embodiment of the compounds of Formula I, \(R\,\_1, \,R\,\_3,\) and \(R\,\_5\) are each different.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is methyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and at least one \(R\,\_2\) is alkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and at least one \(R\,\_2\) is aryl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and each \(R\,\_2\) is independently H.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted alkyl.

In still another embodiment of the compounds of Formula I, \(n\) is 1, \(m\) is 2, and \(R\,\_2\) is H.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted alkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is ethyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is t-butyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is ethyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is i-propyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is methyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted alkyl or substituted heteroalkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is alkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is ethyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is i-propyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is t-butyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is ethyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is i-propyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is t-butyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is ethyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted alkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted heteroalkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is alkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted alkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is ethyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is i-propyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is t-butyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is ethyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is i-propyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is t-butyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted alkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted heteroalkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is ethyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted alkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted heteroalkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is ethyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted alkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted heteroalkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is ethyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted alkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted heteroalkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is ethyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted alkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted heteroalkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is ethyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted alkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted heteroalkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is ethyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted alkyl.

In still another embodiment of the compounds of Formula I, \(n\) and \(m\) are both 1, and \(R\,\_2\) is substituted heteroalkyl.
with one or more of any substituents defined or exemplified herein.

[0174] In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L⁴-Ar)p moieties is an alkylene-heteroaryl-alkylene-heteroaryl group, wherein said alkylene and heteroaryl moieties are any alkylene and heteroaryl moieties defined or exemplified herein, optionally substituted on the alkylene and/or heteroaryl with one or more of any substituents defined or exemplified herein.

[0175] In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L⁴-Ar)p moieties is an alkylene-heteroaryl-alkylene-aryl group, wherein said alkylene, aryl, and heteroaryl moieties are any alkylene, aryl, and heteroaryl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl, and/or heteroaryl with one or more of any substituents defined or exemplified herein.

[0176] In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L⁴-Ar)p moieties is an alkylene-aryl-alkylene group, wherein said alkylene and aryl moieties are any alkylene and aryl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl with one or more of any substituents defined or exemplified herein.

[0177] In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L⁴-Ar)p moieties is an alkylene-aryl-O-aryl group, wherein said alkylene and aryl moieties are any alkylene and aryl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl with one or more of any substituents defined or exemplified herein.

[0178] In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L⁴-Ar)p moieties is an alkylene-aryl-CH₂-O-aryl group, wherein said alkylene and aryl moieties are any alkylene and aryl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl with one or more of any substituents defined or exemplified herein.

[0179] In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L⁴-Ar)p moieties is an alkylene-aryl-OCH₂-aryl group, wherein said alkylene and aryl moieties are any alkylene and aryl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl with one or more of any substituents defined or exemplified herein.

[0180] In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L⁴-Ar)p moieties is an alkylene-aryl-NH-aryl group, wherein said alkylene and aryl moieties are any alkylene and aryl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl with one or more of any substituents defined or exemplified herein.

[0181] In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L⁴-Ar)p moieties is an alkylene-aryl-NH-aryl group, wherein said alkylene and aryl moieties are any alkylene and aryl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl with one or more of any substituents defined or exemplified herein.

[0182] In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L⁴-Ar)p moieties is an alkylene-aryl-O-heterocyclyl group, wherein said alkylene, aryl, and heterocyclyl moieties are any alkylene, aryl, and heterocyclyl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heterocyclyl with one or more of any substituents defined or exemplified herein.

[0183] In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L⁴-Ar)p moieties is an alkylene-aryl-CH₂-O-heterocyclyl group, wherein said alkylene, aryl, and heterocyclyl moieties are any alkylene, aryl, and heterocyclyl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heterocyclyl with one or more of any substituents defined or exemplified herein.

[0184] In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L⁴-Ar)p moieties is an alkylene-aryl-OCH₂-heterocyclyl group, wherein said alkylene, aryl, and heterocyclyl moieties are any alkylene, aryl, and heterocyclyl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heterocyclyl with one or more of any substituents defined or exemplified herein.

[0185] In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L⁴-Ar)p moieties is an alkylene-aryl-NH-heterocyclyl group, wherein said alkylene, aryl, and heterocyclyl moieties are any alkylene, aryl, and heterocyclyl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heterocyclyl with one or more of any substituents defined or exemplified herein.

[0186] In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L⁴-Ar)p moieties is an alkylene-heterocyclyl-aryl group, wherein said alkylene, aryl, and heterocyclyl moieties are any alkylene, aryl, and heterocyclyl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heterocyclyl with one or more of any substituents defined or exemplified herein.

[0187] In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L⁴-Ar)p moieties is an alkylene-heterocyclyl-CH₂-O-aryl group, wherein said alkylene, aryl, and heterocyclyl moieties are any alkylene, aryl, and heterocyclyl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heterocyclyl with one or more of any substituents defined or exemplified herein.

[0188] In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L⁴-Ar)p moieties is an alkylene-heterocyclyl-CH₂-O-aryl group, wherein said alkylene, aryl, and heterocyclyl moieties are any alkylene, aryl,
and heterocyclyl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heteroaryl with one or more of any substituents defined or exemplified herein.

[0189] In yet another embodiment of the compounds of Formula I, at least one of the -L3-A-(L4-Ar)p moieties is an -alkylene-heterocyclyl-OCH2-aryl group, wherein said alkylene, aryl, and heterocyclyl moieties are any alkylene, aryl, and heterocyclyl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heterocyclyl with one or more of any substituents defined or exemplified herein.

[0190] In yet another embodiment of the compounds of Formula I, at least one of the -L3-A-(L4-Ar)p moieties is an -alkylene-heterocyclyl-NH-aryl group, wherein said alkylene, aryl, and heterocyclyl moieties are any alkylene, aryl, and heterocyclyl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heterocyclyl with one or more of any substituents defined or exemplified herein.

[0191] In yet another embodiment of the compounds of Formula I, at least one of the -L3-A-(L4-Ar)p moieties is an -alkylene-heterocyclyl-heterocyclyl group, wherein said alkylene, aryl, and heterocyclyl moieties are any alkylene, aryl, and heterocyclyl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heterocyclyl with one or more of any substituents defined or exemplified herein.

[0192] In yet another embodiment of the compounds of Formula I, at least one of the -L3-A-(L4-Ar)p moieties is an -alkylene-heterocyclyl-0-heterocyclyl group, wherein said alkylene, aryl, and heterocyclyl moieties are any alkylene, aryl, and heterocyclyl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heterocyclyl with one or more of any substituents defined or exemplified herein.

[0193] In yet another embodiment of the compounds of Formula I, at least one of the -L3-A-(L4-Ar)p moieties is an -alkylene-heterocyclyl-CH2-O-heterocyclyl group, wherein said alkylene, aryl, and heterocyclyl moieties are any alkylene, aryl, and heterocyclyl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heterocyclyl with one or more of any substituents defined or exemplified herein.

[0194] In yet another embodiment of the compounds of Formula I, at least one of the -L3-A-(L4-Ar)p moieties is an -alkylene-heterocyclyl-OCH2-heterocyclyl group, wherein said alkylene, aryl, and heterocyclyl moieties are any alkylene, aryl, and heterocyclyl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heterocyclyl with one or more of any substituents defined or exemplified herein.

[0195] In yet another embodiment of the compounds of Formula I, at least one of the -L3-A-(L4-Ar)p moieties is an -alkylene-heterocyclyl-NH-heterocyclyl group, wherein said alkylene, aryl, and heterocyclyl moieties are any alkylene, aryl, and heterocyclyl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heterocyclyl with one or more of any substituents defined or exemplified herein.

[0196] In yet another embodiment of the compounds of Formula I, at least one of the -L3-A-(L4-Ar)p moieties is an -alkylene-aryl-heteroaryl group, wherein said alkylene, aryl, and heteroaryl moieties are any alkylene, aryl, and heteroaryl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heteroaryl with one or more of any substituents defined or exemplified herein.

[0197] In yet another embodiment of the compounds of Formula I, at least one of the -L3-A-(L4-Ar)p moieties is an -alkylene-aryl-O-heteroaryl group, wherein said alkylene, aryl, and heteroaryl moieties are any alkylene, aryl, and heteroaryl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heteroaryl with one or more of any substituents defined or exemplified herein.

[0198] In yet another embodiment of the compounds of Formula I, at least one of the -L3-A-(L4-Ar)p moieties is an -alkylene-aryl-CH2-O-heteroaryl group, wherein said alkylene, aryl, and heteroaryl moieties are any alkylene, aryl, and heteroaryl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heteroaryl with one or more of any substituents defined or exemplified herein.

[0199] In yet another embodiment of the compounds of Formula I, at least one of the -L3-A-(L4-Ar)p moieties is an -alkylene-aryl-OCH2-heteroaryl group, wherein said alkylene, aryl, and heteroaryl moieties are any alkylene, aryl, and heteroaryl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heteroaryl with one or more of any substituents defined or exemplified herein.

[0200] In yet another embodiment of the compounds of Formula I, at least one of the -L3-A-(L4-Ar)p moieties is an -alkylene-aryl-NH-heteroaryl group, wherein said alkylene, aryl, and heteroaryl moieties are any alkylene, aryl, and heteroaryl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heteroaryl with one or more of any substituents defined or exemplified herein.

[0201] In yet another embodiment of the compounds of Formula I, at least one of the -L3-A-(L4-Ar)p moieties is an -alkylene-heteroaryl-aryl group, wherein said alkylene, aryl, and heteroaryl moieties are any alkylene, aryl, and heteroaryl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heteroaryl with one or more of any substituents defined or exemplified herein.

[0202] In yet another embodiment of the compounds of Formula I, at least one of the -L3-A-(L4-Ar)p moieties is an -alkylene-heteroaryl-O-aryl group, wherein said alkylene, aryl, and heteroaryl moieties are any alkylene, aryl, and heteroaryl moieties defined or exemplified herein, optionally substituted on the alkylene and/or aryl and/or heteroaryl with one or more of any substituents defined or exemplified herein.
In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L₄-Ar)ₚ moieties is an -alkylene-heteroaryl-CH₂-aryl group, wherein said alkyne, aryl, and heteroaryl moieties are any alkyne, aryl, and heteroaryl moieties defined or exemplified herein, optionally substituted on the alkyne and/or aryl and/or heteroaryl with one or more of any substituents defined or exemplified herein.

In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L₄-Ar)ₚ moieties is an -alkylene-heteroaryl-CH₂-thiazolyl group, wherein said alkyne, aryl, and heteroaryl moieties are any alkyne, aryl, and heteroaryl moieties defined or exemplified herein, optionally substituted on the alkyne and/or aryl and/or heteroaryl with one or more of any substituents defined or exemplified herein.

In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L₄-Ar)ₚ moieties is an -alkylene-heteroaryl-CH₂-heteroaryl group, wherein said alkyne, aryl, and heteroaryl moieties are any alkyne, aryl, and heteroaryl moieties defined or exemplified herein, optionally substituted on the alkyne and/or aryl and/or heteroaryl with one or more of any substituents defined or exemplified herein.

In yet another embodiment of the compounds of Formula I, at least one of the -L₃-A-(L₄-Ar)ₚ moieties is an -alkylene-heteroaryl-CH₂-aryl group, wherein said alkyne, aryl, and heteroaryl moieties are any alkyne, aryl, and heteroaryl moieties defined or exemplified herein, optionally substituted on the alkyne and/or aryl and/or heteroaryl with one or more of any substituents defined or exemplified herein.

In yet another embodiment of the compounds of Formula I, both -L₃-A-(L₄-Ar)ₚ moieties are -CH₂-phenyl, and X and Y are both -CH₂-thiazolyl.

In yet another embodiment of the compounds of Formula I, both -L₃-A-(L₄-Ar)ₚ moieties are -CH₂-heterocyclyl.

In yet another embodiment of the compounds of Formula I, both -L₃-A-(L₄-Ar)ₚ moieties are -CH₂-phenyl, X and Y are both -CH₂-thiazolyl.

In yet another embodiment of the compounds of Formula I, both -L₃-A-(L₄-Ar)ₚ moieties are -CH₂-heterocyclyl.

In yet another embodiment of the compounds of Formula I, both -L₃-A-(L₄-Ar)ₚ moieties are -CH₂-thiazolyl.
In another embodiment of the compounds of Formula I, each R₂ is independently H or hydroxyalkyl.

In another embodiment of the compounds of Formula I, L₁ is -C(O)-, R₄ is H, both -L₃-A-(L₄-Ar)p groups are substituted or unsubstituted benzyl.

In another embodiment of the compounds of Formula I, both -L₃-A-(L₄-Ar)p moieties are -CH₂-phenyl, X and Y are both -CH₂-thiazolyl, n and m are both 1, and at least one R² is a substituted or unsubstituted heterocyclylalkyl.

In yet another embodiment of the compounds of Formula I, both -L₃-A-(L₄-Ar)p moieties are -CH₂-phenyl, X and Y are both -CH₂-thiazolyl, n and m are both 1, and at least one R² is a substituted or unsubstituted heterocyclylalkyl.

In yet another embodiment of the compounds of Formula I, both -L₃-A-(L₄-Ar)p moieties are -CH₂-phenyl, X and Y are both -CH₂-thiazolyl, n and m are both 1, and L₂ is -CH₂-.
wherein said heterocycl is a 6-membered ring having at least one ring nitrogen atom.

[0252] In another embodiment of the compounds of Formula I, each R2 is independently H or -CH2-heterocycl, wherein said heterocycl is a 6-membered ring having at least one ring nitrogen atom, where the -CH2-moiety thereof is bonded to the ring nitrogen atom.

[0253] In another embodiment of the compounds of Formula I, each R2 is independently H or -CH2-heterocycl, wherein said heterocycl is selected from the group consisting of piperadyl, piperazy, and morpholiny.

[0254] In another embodiment of the compounds of Formula I, each R2 is independently H or -CH2-heterocycl, wherein said heterocycl is selected from the group consisting of piperadyl, piperazy, and morpholiny, and the -CH2-moiety thereof is bonded to a ring nitrogen atom of the heterocycl.

[0255] In another embodiment of the compounds of Formula I, each R2 is independently H or aminoalkyl.

[0256] In another embodiment of the compounds of Formula I, each R2 is independently H or aminoalkyl substituted with an amine protecting group selected from the group consisting of acetyl, alkylsulfonyl, Boc, Cbz, and Fmoc.

[0257] In another embodiment of the compounds of Formula I, each R2 is independently H or ethylacetamidate (-CH2CH2NHCO(O)CH3).

[0258] In another embodiment of the compounds of Formula I, each R2 is independently H or ethyl acetamide, wherein said heterocycl is a 5- or 6-membered ring having at least one ring nitrogen atom.

[0259] In another embodiment of the compounds of Formula I, each R2 is independently H or -CH2-heterocycl, wherein said heterocycl is selected from the group consisting of piperadyl, piperazy, and morpholiny, and the -CH2-moiety thereof is bonded to a ring nitrogen atom of the heterocycl.

[0260] In another embodiment of the compounds of Formula I, each R2 is independently H or -CH2-heterocycl, wherein said heterocycl is selected from the group consisting of piperadyl, piperazy, and morpholiny, and the -CH2-moiety thereof is bonded to a ring nitrogen atom of the heterocycl.

[0261] In another embodiment of the compounds of Formula I, each R2 is independently H or -CH2-heterocycl, wherein said heterocycl is a 5- or 6-membered ring having at least one ring nitrogen atom.

[0262] In another embodiment of the compounds of Formula I, each R2 is independently H or ethylacetamide, wherein said heterocycl is a 5- or 6-membered ring having at least one ring nitrogen atom.

[0263] In another embodiment of the compounds of Formula I, each R2 is independently H or ethyl acetamide, wherein said heterocycl is a 5- or 6-membered ring having at least one ring nitrogen atom.

[0264] In another embodiment of the compounds of Formula I, each R2 is independently H or ethylacetamide, wherein said heterocycl is a 5- or 6-membered ring having at least one ring nitrogen atom.

[0265] In another embodiment of the compounds of Formula I, each R2 is independently H or ethylacetamide, wherein said heterocycl is a 5- or 6-membered ring having at least one ring nitrogen atom.

[0266] In another embodiment of the compounds of Formula I, each R2 is independently H or ethylacetamide, wherein said heterocycl is a 5- or 6-membered ring having at least one ring nitrogen atom.

[0267] In another embodiment of the compounds of Formula I, each R2 is independently H or ethylacetamide, wherein said heterocycl is a 5- or 6-membered ring having at least one ring nitrogen atom.

[0268] In another embodiment of the compounds of Formula I, each R2 is independently H or ethylacetamide, wherein said heterocycl is a 5- or 6-membered ring having at least one ring nitrogen atom.

[0269] In another embodiment of the compounds of Formula I, each R2 is independently H or ethylacetamide, wherein said heterocycl is a 5- or 6-membered ring having at least one ring nitrogen atom.

[0270] In another embodiment of the compounds of Formula I, each R2 is independently H or ethylacetamide, wherein said heterocycl is a 5- or 6-membered ring having at least one ring nitrogen atom.

[0271] In another embodiment of the compounds of Formula I, each R2 is independently H or ethylacetamide, wherein said heterocycl is a 5- or 6-membered ring having at least one ring nitrogen atom.

[0272] In another embodiment of the compounds of Formula I, each R2 is independently H or ethylacetamide, wherein said heterocycl is a 5- or 6-membered ring having at least one ring nitrogen atom.
In still another embodiment of the compounds of Formula IIA, \( R_13 \) is \( \text{H}, \text{C}_1\text{C}_4 \text{alkyl}, -\text{(CH}_2\text{)}_{0-3}\text{CR}_{17}\text{R}_{18}\text{OR}_{19}, -\text{(CH}_2\text{)}_{0-3}\text{CR}_{17}\text{R}_{18}\text{NR}_{20}\text{R}_{21}, -\text{(CH}_2\text{)}_{0-3}\text{CR}_{17}\text{R}_{18}\text{HNCR}_{17}\text{C(O)}\text{NR}_{20}\text{R}_{21}, -\text{(CH}_2\text{)}_{1-3}\text{C(O)R}_{22}, -\text{(CH}_2\text{)}_{1-3}\text{S(O)R}_{22}, \) or \(-\text{(CH}_2\text{)}_{1-3}\text{R}_{23}; \) \( R_{14} \) and \( R_{15} \) are each independently \( \text{H}, \text{C}_1\text{C}_4 \text{alkyl or arylalkyl}; \) \( R_{17} \) and \( R_{18} \) are each independently \( \text{H} \) or \( \text{C}_1\text{C}_3 \text{alkyl}; \) \( R_{19} \) is \( \text{H}, \text{C}_1\text{C}_4 \text{alkyl or arylalkyl}; \) \( R_{20} \) and \( R_{21} \) are each independently \( \text{H}, \text{C}_1\text{C}_3 \text{alkyl,} \text{-C(O)R}_{17} \text{or} \text{-S(O)R}_{17}; \) or \( R_{22} \) and \( R_{23} \), taken together with the nitrogen atom to which they are attached, form an unsubstituted or substituted 5-6 membered heterocyclyl ring containing 1-2 heteroatoms selected from the group consisting of \( \text{N} \) and \( \text{O} \).

In still another embodiment of the compounds of Formula IIA, \( R_{13} \) is \( -\text{(CH}_2\text{)}_{0-3}\text{CR}_{17}\text{R}_{18}\text{NR}_{20}\text{R}_{21}, -\text{(CH}_2\text{)}_{0-3}\text{CR}_{17}\text{R}_{18}\text{HNCR}_{17}\text{C(O)}\text{NR}_{20}\text{R}_{21}, \) or \(-\text{(CH}_2\text{)}_{1-3}\text{R}_{23} \) wherein \( R_{20} \) and \( R_{21} \) form a 5-6 membered heterocyclyl ring containing 1-2 heteroatoms selected from the group consisting of \( \text{N} \) and \( \text{O} \) or \( R_{23} \) is an unsubstituted or substituted 5-6 membered heterocyclyl ring containing 1-2 heteroatoms selected from the group consisting of \( \text{N} \) and \( \text{O} \), and the 5-6 membered heterocyclyl ring is optionally substituted with a \( \text{C}_1\text{C}_2 \text{alkyl} \).

In still another embodiment of the compounds of Formula IIA, \( R_{13} \) is \( \text{-C}_1\text{C}_4 \text{alkylene-NH}_2 \text{group, C}_1\text{C}_4 \text{alkylene-NHP (wherein P is a protecting group such as Boc, Fmoc, Cbz, Ac, trifluoroacetyl, toluenesulfonyl group, benzyl, etc.)}} \), or \( \text{C}_1\text{C}_4 \text{alkylene-N(alkyl)}_2 \text{group} \).

In still another embodiment of the compounds of Formula IIA, \( R_{13} \) is \( -\text{(CH}_2\text{)}_{0-3}\text{CR}_{17}\text{R}_{18}\text{NR}_{20}\text{R}_{21} \). In a particular embodiment, \( R_{13} \) is a \( \text{C}_1\text{C}_4 \text{alkylene-C(O)NH}_2 \text{group or C}_1\text{C}_4 \text{alkylene-C(O)N(alkyl)}_2 \text{group} \).

In still another embodiment of the compounds of Formula IIA, \( R_{13} \) is \( \text{-C}_1\text{C}_4 \text{alkylene-C(O)NH}_2 \text{group or C}_1\text{C}_4 \text{alkylene-C(O)N(alkyl)}_2 \text{group} \). In a particular embodiment, \( R_{13} \) is each independently selected from the groups shown in the Table, below:
In still another embodiment of the compounds of Formula IIA, R11 is substituted or unsubstituted heterocyclyl, R12 is alkyl, R13 is substituted or unsubstituted heterocyclylalkyl, R14 and R15 are each independently substituted or unsubstituted arylalkyl, and R16 is substituted or unsubstituted heterocyclyl.

In still another embodiment of the compounds of Formula IIA, R11 is substituted heterocyclyl, R12 is alkyl, R13 is unsubstituted heterocyclylalkyl, R14 and R15 are both unsubstituted arylalkyl, and R16 is unsubstituted heterocyclyl.

In still another embodiment of the compounds of Formula IIA, R11 is substituted or unsubstituted heterocyclyl, R12 is alkyl, R13 is hydroxyalkyl, R14 and R15 are each independently substituted or unsubstituted arylalkyl, and R16 is substituted or unsubstituted heterocyclyl.

In still another embodiment of the compounds of Formula IIA, R11 is substituted heterocyclyl, R12 is alkyl, R13 is hydroxyalkyl, R14 and R15 are both unsubstituted arylalkyl, and R16 is unsubstituted heterocyclyl.

In still another embodiment of the compounds of Formula IIA, R11 is substituted or unsubstituted heterocyclyl, R12 is alkyl, R13 is protected or unprotected aminoalkyl, R14 and R15 are each independently substituted or unsubstituted arylalkyl, and R16 is substituted or unsubstituted heterocyclyl.

In another embodiment, the compounds of Formula I, or pharmaceutically acceptable salts, solvates, stereoisomers and/or esters thereof, have the following structure IIB:

![Structure IIB](image)

R10a and R10b are each independently H or -C1-4 alkyl; R12 is H or -CH3; R13 is H, -C1-4 alkyl, -(CH2)0-1CR17R18OR19, -(CH2)0-3CR17R18NR20R21, -(CH2)0-3CR17R18NR17C(O)NR20R21, -(CH2)1-3C(O)R22, -(CH2)1-3SR22 or -(CH2)1-3-R23; R14 and R15 are each independently H, -C1-4 alkyl or arylalkyl; R17 and R18 are each independently H or C1-3 alkyl; R19 is H, -C1-4 alkyl or arylalkyl; R20 and R21 are each independently H, -C1-3 alkyl, -C(O)R17 or -S(O)2R17; or R20 and R21, taken together with the nitrogen atom to which they are attached, form an unsubstituted or substituted 5-6 membered heterocyclyl ring containing 1-2 heteroatoms selected from the group consisting of N and O; R22 is H, -C1-3 alkyl, -OR19 or -NR20R21; and R23 is an unsubstituted or substituted 5-6 membered heterocyclyl ring containing 1-2 heteroatoms selected from the group consisting of N and O.

In still another embodiment of the compounds of Formula IIB, R13 is - (CH2)0-3CR17R18NR20R21, -(CH2)0-3CR17R18NR17C(O)NR20R21, or -(CH2)1-3-R23 wherein R20 and R21 form a 5-6 membered heterocyclyl ring containing 1-2 heteroatoms selected from the group consisting of N and O or R23 is an unsubstituted or substituted 5-6 membered heterocyclyl ring containing 1-2 heteroatoms selected from the group consisting of N and O, and the 5-6 membered heterocyclyl ring is optionally substituted with a C1-2 alkyl.

In another embodiment, the compounds of Formula I, or pharmaceutically acceptable salts, solvates, stereoisomers and/or esters thereof, have the following structure IIC:
wherein: R13 is H, -C1-4 alkyl, -(CH2)0-3CR17R18NR20R21, -(CH2)0-3CR17R18NR20R21, -(CH2)1-3C(O)R22 or -(CH2)1-3-R23; R17 and R18 are each independently H or C1-3 alkyl; R19 is H, -C1-4 alkyl or arylalkyl; R20 and R21 are each independently H, -C1-3 alkyl, -C(O)R17 or -S(O)2R17; or R20 and R21, taken together with the nitrogen atom to which they are attached, form a 5-6 membered heterocyclyl ring containing 1-2 heteroatoms selected from the group consisting of N and O; R22 is H, -C1-3alkyl, -OR19 or -NR20R21; and R23 is a 5-6 membered heterocyclyl ring containing 1-2 heteroatoms selected from the group consisting of N and O.

[0285] In still another embodiment of the compounds of Formula IIC, R13 is-(CH2)0-3CR17R18NR20R21, -(CH2)0-3CR17R18NR17C(O)-NR20R21, or -(CH2)1-3-R23 wherein R20 and R21 form a 5-6 membered heterocyclyl ring containing 1-2 heteroatoms selected from the group consisting of N and O or R23 is an unsubstituted or substituted 5-6 membered heterocyclyl ring containing 1-2 heteroatoms selected from the group consisting of N and O, and the 5-6 membered heterocyclyl ring is optionally substituted with a C1-2 alkyl.

[0286] In still another embodiment of the compounds of Formula IIC, R13 is-(CH2)0-3CR17R18NR20R21. In a particular embodiment, R13 is a C1-4alkylene-NH2 group, C1-4alkylene-NHP (wherein P is a protecting group such as Boc, Fmoc, Cbz, Ac, trifluoroacetyl, toluenesulfony group, benzyl, etc.), or C1-4alkylene-N(alkyl)2 group.

[0287] In still another embodiment of the compounds of Formula IIC, R13 is-(CH2)0-3CR17R18NR17C(O)-NR20R21. In a particular embodiment, R13 is a C1-4alkylene-C(O)NH2 group or C1-4alkylene-C(O)N(alkyl)2 group.

[0288] In still another embodiment of the compounds of Formula IIC, R13 is-CH2OH, -CH2CH2NHC(O)CH3 or

[0289] In another embodiment, the compounds of the present invention, or pharmaceutically acceptable salts, solvates, stereoisomers and/or esters thereof, have the following structure IID:
wherein,

L¹ is selected from the group consisting of -C(R⁶)₂-, -C(O)-, -S(O₂)-, -N(R⁷)-C(O)-, and -O-C(O)-;

each L³ is independently a covalent bond, an alkylene, or substituted alkylene; each L⁴ is independently selected
from the group consisting of a covalent bond, alkylene, substituted alkylene, -O-, -CH₂-O-, and -NH-;

each A is independently selected from the group consisting of H, alkyl, substituted alkyl, aryl, substituted aryl,
heterocyclyl, and substituted heterocyclyl;

with the proviso that when A is H, p is 0;

Z¹ and Z² are each independently -O- or -N(R⁷)-;

Y and X are independently selected from the group consisting of heterocyclyl and heterocyclylalkyl;

each Ar is independently selected from the group consisting of aryl, substituted aryl, heteroaryl, and substituted
heteroaryl;

R¹, R³, and R⁵ are each independently selected from the group consisting of H, alkyl, substituted alkyl, arylalkyl,
and substituted arylalkyl;

R² is independently selected from the group consisting of H, alkyl, substituted alkyl, alkoxyalkyl, hydroxyalkyl,
arylheteroalkyl, substituted arylheteroalkyl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, substituted
heterocyclylalkyl, aminoalkyl, substituted aminoalkyl, -alkylene-C(O)-OH, -alkylene-C(O)-alkyl, -alkylene-C(O)amino,
-alkylene-C(O)-alkyl;

R⁴ and R⁶ are independently selected from the group consisting of H, alkyl, substituted alkyl, and heteroalkyl;

each R⁷ is independently selected from the group consisting of H, alkyl, substituted alkyl, heterocyclylalkyl,
substituted carbocyclyl, heterocyclyl, and substituted heterocyclyl;

R⁸ and R⁹ are each one or more substituents independently selected from the group consisting of H, alkyl, substituted
aryl, halogen, aryl, substituted aryl, heterocyclyl, substituted heterocyclyl, and -CN; and each p is independently 0
or 1.

[0290] In another embodiment of the compounds of Formula IID, L¹ is -C(R⁶)₂-.
[0291] In another embodiment of the compounds of Formula IID, L¹ is -CH₂-.
[0292] In another embodiment of the compounds of Formula IID, each L³ is alkylene.
[0293] In another embodiment of the compounds of Formula IID, each L³ is -CH₂-.
[0294] In another embodiment of the compounds of Formula IID, each A is aryl or substituted aryl.
[0295] In another embodiment of the compounds of Formula IID, each A is phenyl or substituted phenyl.
[0296] In another embodiment of the compounds of Formula IID, X is heterocyclylalkyl.
[0297] In another embodiment of the compounds of Formula IID, X is thiazolylmethyl.
[0298] In another embodiment of the compounds of Formula IID, Y is heterocyclylalkyl.
[0299] In another embodiment of the compounds of Formula IID, Y is thiazolylmethyl.
[0300] In another embodiment of the compounds of Formula IID, Z¹ is -N(R⁷)-.
[0301] In another embodiment of the compounds of Formula IID, Z¹ is -NH-.
[0302] In another embodiment of the compounds of Formula IID, Z¹ is -N(alkyl)-.
[0303] In another embodiment of the compounds of Formula IID, Z¹ is -N(CH₃)-.
[0304] In another embodiment of the compounds of Formula IID, Z² is -O-.
[0305] In another embodiment of the compounds of Formula IID, L¹ is -C(R⁶)₂- and X and Y are heterocyclylalkyl.
[0306] In another embodiment of the compounds of Formula IID, L¹ is -CH₂- and X and Y are heterocyclylalkyl.
[0307] In another embodiment of the compounds of Formula IID, L¹ is -CH₂- and X and Y are thiazolylmethyl.
[0308] In another embodiment of the compounds of Formula IID, L¹ is -C(R⁶)₂- and Z¹ is -N(R⁷)-.
[0309] In another embodiment of the compounds of Formula IID, L¹ is -CH₂- and Z¹ is -N(alkyl)-.
[0310] In another embodiment of the compounds of Formula IID, L¹ is -CH₂- and Z¹ is -NH-.
[0311] In another embodiment of the compounds of Formula IID, L¹ is -CH₂- and Z¹ is -N(CH₃)-.
[0312] In another embodiment of the compounds of Formula IID, L¹ is -CH₂- and Z¹ is -NH-.
[0313] In another embodiment of the compounds of Formula IID, L¹ is -CH₂- and Z¹ is -N(alkyl)-.
[0314] In another embodiment of the compounds of Formula IID, each L³ is alkylene and each A is aryl or substituted aryl.
[0315] In another embodiment of the compounds of Formula IID, each L³ is -CH₂- and each A is aryl or substituted aryl.
[0316] In another embodiment of the compounds of Formula IID, each L³-A is benzyl or substituted benzyl.
[0317] In another embodiment of the compounds of Formula IID, X and Y are heterocyclylalkyl and Z¹ is -N(R⁷)-.
[0318] In another embodiment of the compounds of Formula IID, X and Y are thiazolylmethyl and Z¹ is -N(R⁷)-.
[0319] In another embodiment of the compounds of Formula IID, X and Y are thiazolylmethyl and Z¹ is -NH-.
[0320] In another embodiment of the compounds of Formula IID, X and Y are thiazolylmethyl and Z¹ is -N(CH₃)-.
[0321] In another embodiment of the compounds of Formula IID, X and Y are thiazolylmethyl and Z¹ is -NH-.
[0322] In another embodiment of the compounds of Formula IID, X and Y are heterocyclylalkyl and Z² is -O-.
In another embodiment of the compounds of Formula IID, X and Y are thiazolylmethyl and Z² is -O-.

In another embodiment of the compounds of Formula IID, Z¹ is -N(R⁷)⁻ and Z² is -O-.

In another embodiment of the compounds of Formula IID, Z¹ is -N(alkyl)- and Z² is -O-.

In another embodiment of the compounds of Formula IID, Z¹ is -N(CH₃)- and Z² is -O-.

In another embodiment of the compounds of Formula IID, Z¹ is -NH- and Z² is -O-.

In another embodiment of the compounds of Formula IID, L¹ is -C(R¹)²-, X and Y are heterocyclylalkyl, and Z¹ is -N(R⁷)⁻.

In another embodiment of the compounds of Formula IID, L¹ is -CH₂-, X and Y are heterocyclylalkyl, and Z¹ is -N(R⁷)⁻.

In another embodiment of the compounds of Formula IID, L¹ is -CH₂-, X and Y are thiazolylmethyl, and Z¹ is -N(R⁷)⁻.

In another embodiment of the compounds of Formula IID, L¹ is -CH₂-, X and Y are thiazolylmethyl, and Z¹ is -N(alkyl)-.

In another embodiment of the compounds of Formula IID, L¹ is -CH₂-, X and Y are thiazolylmethyl, and Z¹ is -N(CH₃)-.

In another embodiment of the compounds of Formula IID, L¹ is -CH₂-, X and Y are thiazolylmethyl, and Z¹ is -NH-.

In another embodiment of the compounds of Formula IID, L¹ is -C(R⁶)²-; X and Y are heterocyclylalkyl; and Z² is -O-.

In another embodiment of the compounds of Formula IID, L¹ is -CH₂-; X and Y are heterocyclylalkyl; and Z² is -O-.

In another embodiment of the compounds of Formula IID, L¹ is -CH₂-; X and Y are thiazolylmethyl; and Z² is -O-.

In another embodiment of the compounds of Formula IID, L¹ is -CH₂-; each L³ is alkylene; each A is aryl or substituted aryl; X and Y are heterocyclylalkyl; Z¹ is -N(R⁷)⁻; and Z² is -O-.

In another embodiment of the compounds of Formula IID, L¹ is -CH₂-; each L³-A is benzyl or substituted benzyl; X and Y are thiazolymethyl; Z¹ is -N(CH₃)-; Z² is -O-; X is

and

Y is

In another embodiment, the compounds of of the present invention, or pharmaceutically acceptable salts, solvates, stereoisomers and/or esters thereof, have the following structure IV:

wherein,

each L³ is independently an alkylene or substituted alkylene;

each A is independently an aryl or substituted aryl;
X is heterocyclylalkyl;
Y is heterocyclylalkyl or alkyl;
G₁ and G₂ are independently CH or N, with the proviso that G₁ and G₂ are different;
G₃ is -NR₇⁻ or -O⁻;
R₁, R³, R⁵, and R⁷ are each independently selected from the group consisting of H, alkyl, substituted alkyl, arylalkyl, and substituted arylalkyl;
R² is independently selected from the group consisting of substituted alkyl, alkoxyalkyl, hydroxyalkyl, trialkylsiloxy-alkyl, heterocyclylalkyl, substituted heterocyclylalkyl, aminoalkyl, substituted aminoalkyl, -alkylene-N(R₉⁻)-C(O)-alkyl, -alkylene-NR₆⁻-C(O)-N(R₆⁻)(R₇⁻)₂, -alkylene-NR₆⁻-C(N=NR₉⁻)-N(R₉⁻)(R₆⁻)₂, -alkylene-C(O)-OH, -alkylene-C(O)-alkyl, and -alkylene-C(O)-alkyl, and -alkylene-C(O)-N(R₉⁻)(R₆⁻)₂;
R⁸ and R⁹ are each one or more substituents independently selected from the group consisting of H, alkyl, substituted alkyl, halogen, and -CN;
each R₉⁻ is independently selected from the group consisting of H, alkyl, and substituted alkyl;
R⁸ is selected from the group consisting of H, alkyl, substituted alkyl, CN, and -S(O)₂-alkyl; and
each R⁹ is independently selected from the group consisting of H, alkyl, substituted alkyl, heterocyclyl, and -S(O)₂-alkyl.

[0341] In some embodiments of the compounds of Formula IV, each L₃ is alkyline, for example any of those described herein, e.g. -CH₂⁻ and each A is phenyl. In a particular embodiment, both -L₃⁻-A moieties are benzyl.
[0342] In some embodiments of the compounds of Formula IV, X and Y are both heteroaryl (for example, any heteroaryl described herein). In a particular embodiment, both X and Y are thiazolyl.
[0343] In some embodiments of the compounds of Formula IV, G₁ is CH, and G₂ is N. In a particular embodiment, G₂ is N and R₁ is H. In another particular embodiment, G₂ is N, R₁ is H, and G₃ is NR₇⁻. In yet another particular embodiment, G₂ is N, R₁ is H, and G₃ is NCH₃.
[0344] In some embodiments of the compounds of Formula IV, R₂ is substituted or unsubstituted aminoalkyl. In a particular embodiment, R₂ is substituted or unsubstituted aminoalkyl, G₂ is N and R₁ is H, and both X and Y are thiazolyl. In another particular embodiment, R₂ is -CH₂CH₂-NHR₉⁻, wherein R₉⁻ is selected from the group consisting of H, haloalkyl, -C(O)-N(R₉⁻), -C(N=NR₉⁻)-N(R₉⁻)₂, hydroxyalkyl, -C(N(R₉⁻)₂)=CHNO₂, -C(O)-alkyl, G₂ is N and R₁ is H, and both X and Y are thiazolyl. In still another particular embodiment, R₂ is -CH₂CH₂-NH-C(O)-alkyl.
[0345] In specific embodiments, the compounds of Formula IV have the following structures:
and

In other embodiments, the compounds of Formula IV have the following general formula:

wherein said “Heterocyclyl” is substituted or unsubstituted. In a particular embodiment, said “Heterocyclyl” is a substituted or unsubstituted heteroaryl, for example, and of the heteroaryls described herein. In other embodiments, said “Heterocyclyl” is a substituted or unsubstituted heterocycloalkyl, including any heterocycloalkyl described herein. In a particular embodiment, the heterocyclyl is unsubstituted morpholinyl. In a more specific particular embodiment, the heterocyclyl is unsubstituted morpholinyl and R₈ is alkyl.

In other embodiments, the compounds of Formula IV have the following general formula:

In a particular embodiment of the compounds of the above general formula, X and Y are both heteroarylalkyl.

In other specific embodiments, the compounds of Formula IV have the following structures:
In other embodiments, the compounds of Formula IV have the following general formula:

[0349] wherein Q is -OH or -N(R<sub>a</sub>)<sub>2</sub>. In a particular embodiment, Q is -OH. In another particular embodiment, Q is -N(R<sub>a</sub>)<sub>2</sub>. In yet another particular embodiment, Q is -NH-pyridyl, -NH-pyrrolyl, or -NH-S(O<sub>2</sub>)-alkyl. In other specific embodiments, the compounds of the above general formula have the following structures:
In other embodiments, the compounds of Formula IV have the following general formula:

wherein M is substituted or unsubstituted alkyl. In particular embodiments, M is a substituted alkyl, for example hydroxy-
alkyl, substituted hydroxyalkyl, cyanoalkyl, substituted cyanoalkyl, and trialkylsiloxyalkyl. In other particular embodiments, the compounds of the above general formula have the following structures:

[0351] In still other embodiments, the compounds of Formula IV have the following general formula:
In particular embodiments, a compound of the above general formula has the following structure:

In still other embodiments of the compounds of Formula IV, Y is alkyl. In particular embodiments, such compounds have the following general formula:

In specific embodiments, R8-Y- is alkyl, for example any alkyl described herein. In a particular embodiment, R8-Y- is methyl. Specific particular embodiments of the above general structure include the following structures:

In still yet another embodiment, the compound of the present invention has an inhibition activity against P450 at a level equal to or better than the inhibition activity of a compound as represented by an IC50 of less than about 2000 nM, less than about 1500 nM, less than about 1000 nM, less than about 900 nM, less than about 800 nM, less than about 700 nM, less than about 650 nM, less than about 600 nM, less than about 550 nM, less than about 500 nM, less than about 400 nM, less than about 350 nM, less than about 300 nM, less than about 250 nM, less than about 200 nM, less than about 100 nM, or less than about 50 nM.

In still yet another embodiment, the compound of the present invention has an inhibition activity against an isozyme of P450, e.g., 3A in a range represented by IC50 from about 2000 nM to about 100 nM, from about 1000 nM to about 100 nM, from about 900 nM to about 200 nM, from about 800 nM to about 300 nM, from about 700 nM to about 200 nM, from about 600 nM to about 200 nM, from about 500 nM to about 200 nM, from about 700 nM to about 300 nM, from about 600 nM to about 300 nM, from about 700 nM to about 400 nM, from about 600 nM to about 400 nM, from about 400 nM to about 100 nM, from about 300 nM to about 100 nM, or from about 600 nM to about 150 nM.
In still yet another embodiment, the compound of the present invention has an inhibition activity against P450 at a level equal to or better than the inhibition activity of a compound as represented by an IC_{50} of less than about 2000 nM, less than about 1500 nM, less than about 1000 nM, less than about 900 nM, less than about 800 nM, less than about 700 nM, less than about 650 nM, less than about 600 nM, less than about 550 nM, less than about 500 nM, less than about 400 nM, less than about 350 nM, less than about 300 nM, less than about 250 nM, less than about 200 nM, less than about 100 nM, or less than about 50 nM, provided that such compound also does not substantially exhibit biological activities other than its inhibition activity against P450. For example, the compound of the present invention can have a reduced or non-significant activity of protease inhibition, including without any limitation a level of protease inhibition as represented by HIV EC_{50} of greater than about 1000 nM, greater than about 900 nM, greater than about 800 nM, greater than about 700 nM, greater than about 600 nM, greater than about 500 nM, greater than about 400 nM, greater than about 300 nM, greater than about 200 nM, greater than about 100 nM, greater than about 50 nM, greater than about 40 nM, greater than about 30 nM, greater than about 20 nM, greater than about 10 nM, greater than about 5 nM, or greater than about 1 nM.

In yet another embodiment, the compound of the present invention has an inhibition activity specifically against one or more isozymes of P450 including without limitation 1A2, 2B6, 2C8, 2C19, 2C9, 2D6, 2E1, and 3A4, 5, 7, etc. In still yet another embodiment, the compound of the present invention has an inhibition activity specifically against an isozyme of P450 that is involved in metabolizing anti-viral drugs, e.g., indinavir, nelfinavir, ritonavir, saquinavir etc.

In still yet another embodiment, the compound of the present invention has an inhibition activity specifically against one or more isozymes of P450, but not the other(s). For example, the compound of the present invention can have an inhibition activity specifically against P450 3A, but a reduced, insubstantial, or minimum inhibition activity against another isozyme of P450, e.g., P450 2C9.

### Pharmaceutical Formulations

The compounds of this invention are formulated with conventional carriers and excipients, which will be selected in accord with ordinary practice. Tablets will contain excipients, glidants, fillers, binders and the like. Aqueous formulations are prepared in sterile form, and when intended for delivery by other than oral administration generally will be isotonic. All formulations will optionally contain excipients such as those set forth in the Handbook of Pharmaceutical Excipients (1986), herein incorporated by reference in its entirety. Excipients include ascorbic acid and other antioxidants, chelating agents such as EDTA, carbohydrates such as dextrin, hydroxyalkylcellulose, hydroxyalkylmethylcellulose, stearic acid and the like. The pH of the formulations ranges from about 3 to about 11, but is ordinarily about 7 to 10.

While it is possible for the active ingredients to be administered alone it may be preferable to present them as pharmaceutical formulations. The formulations of the invention, both for veterinary and for human use, comprise at least one active ingredient, e.g. a compound of the present invention, together with one or more acceptable carriers and optionally other therapeutic ingredients. The carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and physiologically innocuous to the recipient thereof.

The formulations include those suitable for the foregoing administration routes. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. Techniques and formulations generally are found in Remington's Pharmaceutical Sciences (Mack Publishing Co., Easton, Pa.), herein incorporated by reference in its entirety. Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion. The active ingredient may also be administered as a bolus, electuary or paste.

A tablet is made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent. Molded tablets may be prepared by shaping in a suitable machine a mixture of the powdered active ingredient moistened with an inert liquid diluent. The tablets may optionally be coated or scored and optionally are formulated so as to provide slow or controlled release of the active ingredient.

For administration to the eye or other external tissues e.g., mouth and skin, the formulations are preferably applied as a topical ointment or cream containing the active ingredient(s) in an amount of, for example, 0.075 to 20% w/w (including active ingredient(s) in a range between 0.1% and 20% in increments of 0.1% w/w such as 0.6% w/w, 0.7% w/w, etc.), preferably 0.2 to 15% w/w and most preferably 0.5 to 10% w/w. When formulated in an ointment, the active ingredients may be employed with either a paraffinic or a water-miscible ointment base. Alternatively, the active
ingredients may be formulated in a cream with an oil-in-water cream base. [0365] If desired, the aqueous phase of the cream base may include, for example, at least 30% w/w of a polyhydric alcohol, i.e. an alcohol having two or more hydroxyl groups such as propylene glycol, butane 1,3-diol, mannitol, sorbitol, glycerol and polyethylene glycol (including PEG 400) and mixtures thereof. The topical formulations may desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethyl sulfoxide and related analogs. [0366] The oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner. While the phase may comprise merely an emulsifier (otherwise known as an emulgent), it desirably comprises a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make up the so-called emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations. [0367] Emulgents and emulsion stabilizers suitable for use in the formulation of the invention include Tween® 60, Span® 80, cetostearyl alcohol, benzyl alcohol, myristyl alcohol, glyceryl mono-stearate and sodium lauryl sulfate. [0368] The choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic properties. The cream should preferably be a non-greasy, non-staining and washable product with suitable consistency to avoid leakage from tubes or other containers. Straight or branched chain, mono- or dibasic alkyl esters such as di-isooctadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters known as Crodamol CAP may be used, the last three being preferred esters. These may be used alone or in combination depending on the properties required. Alternatively, high melting point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils are used. [0369] Pharmaceutical formulations according to the present invention comprise one or more compounds of the invention together with one or more pharmaceutically acceptable carriers or excipients and optionally other therapeutic agents. Pharmaceutical formulations containing the active ingredient may be in any form suitable for the intended method of administration. When used for oral use for example, tablets, troches, lozenges, aqueous or oil suspensions, dispersible powders or granules, emulsions, hard or soft capsules, syrups or elixirs may be prepared. Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents including sweetening agents, flavoring agents, coloring agents and preserving agents, in order to provide a palatable preparation. Tablets containing the active ingredient in admixture with non-toxic pharmaceutically acceptable excipient which are suitable for manufacture of tablets are acceptable. These excipients may be, for example, inert diluents, such as calcium or sodium carbonate, lactose, lactose monohydrate, croscarmellose sodium, povidone, calcium or sodium phosphate; granulating and disintegrating agents, such as maize starch, or alginic acid; binding agents, such as cellulose, microcrystalline cellulose, starch, gelatin or acacia; and lubricating agents, such as magnesium stearate, stearic acid or talc. Tablets may be uncoated or may be coated by known techniques including microencapsulation to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate alone or with a wax may be employed. [0370] Formulations for oral use may be also presented as hard gelatin capsules where the active ingredient is mixed with an inert solid diluent, for example calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, such as peanut oil, liquid paraffin or olive oil. [0371] Aqueous suspensions of the invention contain the active ingredients in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients include a suspending agent, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropyl methylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia, and dispersing or wetting agents such as a naturally occurring phosphatide (e.g., lecithin), a condensation product of an alkylene oxide with a fatty acid (e.g., polyoxyethylene stearate), a condensation product of ethylene oxide with a long chain aliphatic alcohol (e.g., heptadecaethylenoxycetanol), a condensation product of ethylene oxide with a partial ester derived from a fatty acid and a hexitol anhydride (e.g., polyoxyethylene sorbitan monooleate). The aqueous suspension may also contain one or more preservatives such as ethyl or n-propyl p-hydroxy-benzoate, one or more coloring agents, one or more flavoring agents and one or more sweetening agents, such as sucrose or saccharin. [0372] Oil suspensions may be formulated by suspending the active ingredient in a vegetable oil, such as arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oral suspensions may contain a thickening agent, such as beeswax, hard paraffin or cetyl alcohol. Sweetening agents, such as those set forth herein, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an antioxidant such as ascorbic acid. [0373] Dispersible powders and granules of the invention suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, a suspending agent, and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those disclosed above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.
The pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, such as olive oil or arachis oil, a mineral oil, such as liquid paraffin, or a mixture of these. Suitable emulsifying agents include naturally-occurring gums, such as gum acacia and gum tragacanth, naturally occurring phosphatides, such as soybean lecithin, esters or partial esters derived from fatty acids and hexitol anhydrides, such as sorbitan monooctanoate, and condensation products of these partial esters with ethylene oxide, such as polyoxyethylene sorbitan monooctanoate. The emulsion may also contain sweetening and flavoring agents. Syrups and elixirs may be formulated with sweetening agents, such as glycerol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, a flavoring or a coloring agent.

The pharmaceutical compositions of the invention may be in the form of a sterile injectable preparation, such as a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned herein. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, such as a solution in 1,3-butane-diol or prepared as a lyophilized powder. Among the acceptable vehicles and solvents that may be employed are water, Ringer’s solution and isotonic sodium chloride solution. In addition, sterile fixed oils may conventionally be employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid may likewise be used in the preparation of injectables.

The amount of active ingredient that may be combined with the carrier material to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. For example, a time-release formulation intended for oral administration to humans may contain approximately 1 to 1000 mg of active material compounded with an appropriate and convenient amount of carrier material which may vary from about 5 to about 95% of the total compositions (weight:weight). The pharmaceutical composition can be prepared to provide easily measurable amounts for administration. For example, an aqueous solution intended for intravenous infusion may contain from about 3 to 500 μg of the active ingredient per milliliter of solution in order that infusion of a suitable volume at a rate of about 30 mL/hr can occur.

Formulations suitable for administration to the eye include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent for the active ingredient. The active ingredient is preferably present in such formulations in a concentration of 0.5 to 20%, advantageously 0.5 to 10% particularly about 1.5% w/w.

Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.

Formulations for rectal administration may be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate.

Formulations suitable for intrapulmonary or nasal administration have a particle size for example in the range of 0.1 to 500 μm (including particle sizes in a range between 0.1 and 500 μm in increments such as 0.5 μm, 1 μm, 30 μm, 35 μm, etc.), which is administered by rapid inhalation through the nasal passage or by inhalation through the mouth so as to reach the alveolar sacs. Suitable formulations include aqueous or oily solutions of the active ingredient. Formulations suitable for aerosol or dry powder administration may be prepared according to conventional methods and may be delivered with other therapeutic agents such as compounds heretofore used in the treatment or prophylaxis of infections as described herein.

Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.

Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.

The formulations are presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injection, immediately prior to use. Extemporaneous injection solutions and suspensions are prepared from sterile powders, granules and tablets of the kind previously described. Preferred unit dosage formulations are those containing a daily dose or unit daily sub-dose, as herein above recited, or an appropriate fraction thereof, of the active ingredient.

It should be understood that in addition to the ingredients provided by the present invention the formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavoring agents.
The invention further provides veterinary compositions comprising at least one active ingredient, e.g., a compound of the present invention together with a veterinary carrier.

Veterinary carriers are materials useful for the purpose of administering the composition and may be solid, liquid or gaseous materials which are otherwise inert or acceptable in the veterinary art and are compatible with the active ingredient. These veterinary compositions may be administered orally, parenterally or by any other desired route.

Compounds of the invention can also be formulated to provide controlled release of the active ingredient to allow less frequent dosing or to improve the pharmacokinetic or toxicity profile of the active ingredient. Accordingly, the invention also provided compositions comprising one or more compounds of the invention formulated for sustained or controlled release.

The effective dose of an active ingredient depends at least on the nature of the condition being treated, toxicity, whether the compound is being used prophylactically (lower doses) or against an active disease or condition, the method of delivery, and the pharmaceutical formulation, and will be determined by the clinician using conventional dose escalation studies. The effective dose can be expected to be from about 0.0001 to about 100 mg/kg body weight per day. Typically, from about 0.01 to about 10 mg/kg body weight per day. More typically, from about 0.01 to about 5 mg/kg body weight per day. More typically, from about 0.05 to about 0.5 mg/kg body weight per day. For example, the daily candidate dose for an adult human of approximately 70 kg body weight will range from 1 mg to 1000 mg, or between 5 mg and 500 mg, and may take the form of single or multiple doses.

In yet another embodiment, the present application discloses pharmaceutical compositions comprising a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, and a pharmaceutically acceptable carrier or excipient.

In yet another embodiment, the present application discloses pharmaceutical compositions comprising a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with at least one additional therapeutic agent, and a pharmaceutically acceptable carrier or excipient.

According to the present invention, the therapeutic agent used in combination with the compound of the present invention can be any agent having a therapeutic effect when used in combination with the compound of the present invention. For example, the therapeutic agent used in combination with the compound of the present invention can be any agent that is accessible to oxidative metabolism by cytochrome P450 enzymes, especially cytochrome P450 monoxygenase, e.g., 1A2, 2B6, 2C8, 2C19, 2C9, 2D6, 2E1, 3A4, 5, 7, etc.

In another example, the therapeutic agent used in combination with the compound of the present invention can be any anti-viral agent, e.g., anti-HIV, anti-HCV, etc., anti-bacterial agent, anti-fungal agent, immuno-modulator, e.g., immunosuppressant, anti-neoplastic agent, chemotherapeutic agent, agents useful for treating cardiovascular conditions, neurological conditions, etc.

In yet another example, the therapeutic agent used in combination with the compound of the present invention can be any proton pump inhibitor, anti-epileptics, NSAID, oral hypoglycemic agent, angiotensin II, sulfonylureas, beta blocker, antidepressant, antipsychotics, or anesthetics, or a combination thereof.

In yet another example, the therapeutic agent used in combination with the compound of the present invention can be any 1) macrolide antibiotics, e.g., clarithromycin, erythromycin, telithromycin, 2) anti-arrhythmics, e.g., quinidine=>3-OH, 3) benzodiazepines, e.g., alprazolam, diazepam=>30H, midazolam, triazolam, 4) immune modulators, e.g., cyclosporine, tacrolimus (FK506), 5) HIV antivirals, e.g., indinavir, nelfinavir, ritonavir, saquinavir, 6) prokinetic, e.g., cisapride, 7) antihistamines, e.g., astemizole, chlorpheniramine, terfenidine, 8) calcium channel blockers, e.g., amlodipine, diltiazem, felodipine, lercanidipine, nifedipine, nisoldipine, nitrendipine, verapamil, 9) HMG CoA reductase inhibitors, e.g., atorvastatin, cerivastatin, lovastatin, simvastatin, or 10) steroid 6beta-OH, e.g., estradiol, hydrocortisone, progesterone, testosterone.

In still yet another example, the therapeutic agent used in combination with the compound of the present invention can be any alfentanil, aprepitant, aripiprazole, buspirone, cafergot, caffeine, TMU, cilostazol, cocaine, codeine-N-demethylation, dapsone, dextromethorphan, docetaxel, domperidone, eplerenone, fentanyl, finasteride, gleevec, haloperidol, irinotecan, LAAM, lidocaine, methadone, nateglinide, ondansetron, pimozone, propranolol, quetiapine, quinine, salmeterol, sildenafil, sirolimus, tamoxifen, taxol, terfenadine, trazodone, vincristine, zaleplon, or zolpidem or a combination thereof.

In one embodiment, the present application discloses pharmaceutical compositions comprising a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with at least one additional therapeutic agent selected from the group consisting of HIV protease inhibiting compounds, HIV non-nucleoside inhibitors of reverse transcriptase, HIV nucleoside inhibitors of reverse transcriptase, HIV integrase inhibitors, non-nucleoside inhibitors of HCV, CCR5 inhibitors, and combinations thereof, and a pharmaceutically acceptable carrier or excipient.

In another embodiment, the present application provides pharmaceutical compositions comprising a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with at least one additional therapeutic agent selected from the group consisting of ampenavir, atazanavir, fosamprenavir, indinavir,
lopinavir, ritonavir, nevirapin, saquinavir, tipranavir, brecanavir, darunavir, TMC-126, TMC-114, mozenavir (DMP-450),
JE-2147 (AG1776), L-756423, RO0334649, KNI-272, DPC-681, DPC-684, GW56345, DPC-083, DPC-961, DPC-963, MIV-150,
TMC-120, TMC-278 (rilpivirene), BILR 355 BS, VRX 840773, UK-453061, RDEA806, zidovudine, emtricitabine, didanosine,
edaciviride, efavirenz, nevirapine, (+) calanolide A, etravirine, GW56345, DPC-083, DPC-961, DPC-963, MIV-150, TMC-120,
TMC-278 (rilpivirene), BILR 355 BS, VRX 840773, UK-453061, RDEA806, zidovudine, emtricitabine, didanosine, stavudine,
zalcitabine, lamivudine, abacavir, amdoxovir, elvucitabine, alovudine, MIV-210, Racivir (~-FTC), D-4DFC, phosphazide,
fozivudine tidoxil, apricitabine AVX754, amdoxovir, KP-1461, and fosalvudine tidoxil (formerly HDP 99.0003),
tenofoviro disproxil fumarate, adefoviro dipivoxil, GS-9131, curcumin, derivatives of curcumin, choric acid, derivatives of
chioric acid, 3,5-dicaffeoylquinic acid, derivatives of 3,5-dicaffeoylquinic acid, aurantricarboxylic acid, derivatives of
aurtricarboxylic acid, caffeic acid phenethyl ester, derivatives of caffeic acid phenethyl ester, tyrophostin, derivatives of
tyrophostin, quercetin, derivatives of quercetin, S-1360, zintevir (AR-177), L-870812, L-870810, MK-0518 (raltegravir),
elvitegravir, BMS-538158, GSK364735C, BMS-707035, MK-2048, BA 011, enfuvirtide, sifuvirtide, FB006M, TRI-1144,
AM0-070, SPO1A, BMS-488043, BlockAide/ CR, immunitin, benzimidazole derivatives, benzo-1,2,4-thiadiazine derivatives,
phenylalanine derivatives, aplaviroc, vicriviroc, and maraviroc, cyclosporine, FK-506, rapamycin, taxol, taxotere,
clarithromycin, A-77003, A-80987, MK-639, saquinavir, VX-478, AG1343, DMP-323, XM-450, BILA 2011 BS, BILA 1096 BS,
BILA 2185 BS, BMS 186,318, LB71262, SC-52151, SC-629 (N,N-dimethylglycyl-N-(2-hydroxy-3-(((4-methoxyphenyl)sulphonyl)(2-methylpropyl)amino)-1 -(phenylmethyl)propyl)-3-methyl-L-valinamide),
KNI-272, CGP 53437, CGP 57813 and U-103017 and a pharmaceutically acceptable carrier or exipient.

[0398] In still another embodiment, the present invention provides pharmaceutical compositions comprising a
compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with
two or three additional therapeutic agents. For example, a compound of the present invention, or a pharmaceutically
acceptable salt, solvate, and/or ester thereof, is combined with two or three additional therapeutic agents selected from
the classes of HIV protease inhibitors, HIV non-nucleoside inhibitors of reverse transcriptase, HIV nucleoside
inhibitors of reverse transcriptase, HIV nucleotide inhibitors of reverse transcriptase, and HIV integrase inhibitors. The two or three
additional therapeutic agents can be different therapeutic agents selected from the same class of therapeutic agents,
or they can be selected from different classes of therapeutic agents. The compounds of the present invention in such
ternary or quaternary combinations can include any of the compounds of Formula I disclosed herein, for example a
components of Formula IIA-D or Formula IV. In a particular embodiment, the pharmaceutical compositions of the present
invention comprises a compound of Formula IV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof,
combined with two or three additional therapeutic agents selected from the classes of HIV protease inhibitors, HIV non-
nucleoside inhibitors of reverse transcriptase, HIV nucleoside inhibitors of reverse transcriptase, HIV nucleotide
inhibitors of reverse transcriptase, and HIV integrase inhibitors. In a still more particular embodiment, the pharmaceutical
composition of the present invention comprises Example P, S, or X, or a pharmaceutically acceptable salt, solvate, and/or ester
thereof, in combination with two or three additional therapeutic agents selected from the classes of HIV protease inhibitors,
HIV non-nucleoside inhibitors of reverse transcriptase, HIV nucleoside inhibitors of reverse transcriptase, HIV nucleotide
inhibitors of reverse transcriptase, and HIV integrase inhibitors. For example, such combinations can comprise Example
P, S, or X, or a pharmaceutically acceptable salt, solvate, and/or ester thereof in combination with two or three additional
therapeutic agents, or additional therapeutic agents selected from the group consisting of tenofoviro disproxil fumarate,
GS-9131, emtricitabine, elvitegravir, efavirenz, atazanavir, darunavir, raltegravir, and rilpivirine (or pharmaceutically acceptable salts, solvates, and/or esters thereof).

[0399] Specific embodiments of ternary combinations comprise, for example, Example P/tenofovir disproxil fumarate/
gS-9131, Example P/tenofovir disproxil fumarate/emtricitabine, Example P/tenofovir disproxil fumarate/elvitegravir, Example
P/tenofovir disproxil fumarate/efavirenz, Example P/tenofovir disproxil fumarate/atazanavir, Example P/tenofovir disproxil
fumarate/darunavir, Example P/tenofovir disproxil fumarate/raltegravir, Example P/tenofovir disproxil fumarate/ritipivine,
Example P/GS-9131/emtricitabine, Example P/GS-9131/elvitegravir, Example P/GS-9131/efavirenz, Example P/GS-9131/atazanavir,
Example P/GS-9131/darunavir, Example P/GS-9131/raltegravir, Example P/emtricitabine/efavirenz, Example P/emtricitabine/
emtricitabine/atazanavir, Example P/emtricitabine/darunavir, Example P/emtricitabine/elvitegravir, Example P/emtricitabine/
elvitegravir, Example P/elvitegravir/efavirenz, Example P/elvitegravir/atazanavir, Example P/elvitegravir/darunavir, Example
P/elvitegravir/raltegravir, Example P/elvitegravir/ritipivine, Example P/efavirenz/atazanavir, Example P/efavirenz/darunavir,
Example P/efavirenz/raltegravir, Example P/efavirenz/ritipivine, Example P/efavirenz/darunavir, Example P/efavirenz/atazanavir,
Example P/efavirenz/darunavir, Example P/efavirenz/raltegravir, Example P/efavirenz/ritipivine, Example P/efavirenz/darunavir,
Example P/efavirenz/atazanavir, Example P/efavirenz/darunavir, Example P/efavirenz/raltegravir, Example P/efavirenz/ritipivine,
Example P/efavirenz/darunavir, Example P/efavirenz/atazanavir, Example P/efavirenz/darunavir, Example P/efavirenz/raltegravir,
Example P/efavirenz/ritipivine, Example P/efavirenz/darunavir, Example P/efavirenz/atazanavir, Example P/efavirenz/darunavir,
Example P/efavirenz/raltegravir, Example P/efavirenz/ritipivine, Example P/efavirenz/darunavir, Example P/efavirenz/atazanavir,
Example P/efavirenz/darunavir, Example P/efavirenz/raltegravir, Example P/efavirenz/ritipivine, Example P/efavirenz/darunavir,
In one embodiment, the compounds of the present invention can be used alone, e.g., for inhibiting cytochrome P450 monooxygenase. In another embodiment, the compounds of the present invention are used in combination with other active therapeutic ingredients or agents. Preferably, the other active therapeutic ingredients or agents are metabolized or accessible to the oxidative metabolism by cytochrome P450 enzymes, e.g., monooxygenase enzymes such as 1A2, 2B6, 2C8, 2C19, 2C9, 2D6, 2E1, 3A4,5,7, etc.

Combinations of the compounds of the present invention are typically selected based on the condition to be treated, cross-reactivities of ingredients and pharmaco-properties of the combination. For example, when treating an infection (e.g., HIV or HCV), the compositions of the invention are combined with anti-infective agents (such as those described herein).

One or more compounds of the invention (herein referred to as the active ingredients) are administered by any route appropriate to the condition to be treated. Suitable routes include oral, rectal, nasal, topical (including buccal and sublingual), vaginal and parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural), and the like. It will be appreciated that the preferred route may vary with for example the condition of the recipient. An advantage of the compounds of this invention is that they are orally bioavailable and can be dosed orally.

Combination Therapy

In one embodiment, the compounds of the present invention can be used alone, e.g., for inhibiting cytochrome P450 monooxygenase. In another embodiment, the compounds of the present invention are used in combination with other active therapeutic ingredients or agents. Preferably, the other active therapeutic ingredients or agents are metabolized or accessible to the oxidative metabolism by cytochrome P450 enzymes, e.g., monooxygenase enzymes such as 1A2, 2B6, 2C8, 2C19, 2C9, 2D6, 2E1, 3A4,5,7, etc.

In another embodiment, non-limiting examples of suitable combinations include combinations of one or more compounds of the present invention with one or more anti-viral agents, e.g., anti-HIV, anti-HCV, etc., anti-bacterial agents, anti-fungal agents, immuno-modulators, e.g., immunsuppressant, anti-neoplastic agents, chemotherapeutic agents, agents useful for treating cardiovascular conditions, neurological conditions, etc.

In another embodiment, non-limiting examples of suitable combinations include combinations of one or more compounds of the present invention with one or more proton pump inhibitors, anti-epileptics, NSAIDs, oral hypoglycemic agents, angiotensin II, sulfonylureas, beta blockers, antidepressants, antipsychotics, or anesthetics, or a combination thereof.

In yet another embodiment, non-limiting examples of suitable combinations include combinations of one or more compounds of the present invention with one or more 1) macroide antibiotics, e.g., clarithromycin, erythromycin, telithromycin, 2) anti-arhythmic, e.g., quinidine=>3-OH, 3) benzodiazepines, e.g., alprazolam, diazepam=>30H, midazolam, triazolam, 4) immune modulators, e.g., cyclosporine, tacrolimus (FK506), 5) HIV antivirals, e.g., indinavir, nelfinavir, ritonavir, saquinavir, 6) prokinetic, e.g., cisapride, 7) antihistamines, e.g., astemizole, chlorpheniramine, terfenidine, 8) calcium channel blockers, e.g., amlodipine, diltiazem, felodipine, lercanidipine, nifedipine, nisoldipine, ni-
trendipine, verapamil, 9) HMG CoA reductase inhibitors, e.g., atorvastatin, cerivastatin, lovastatin, simvastatin, or 10) steroid βeta-OH, e.g., estradiol, hydrocortisone, progesterone, testosterone.

[0408] In still yet another embodiment, non-limiting examples of suitable combinations include combinations of one or more compounds of the present invention with one or more compounds selected from the group consisting of alfentanil, aprepitant, aripiprazole, buspirone, cafegrot, caffeine═⇒TMU, cilostazol, cocaine, codeine-N-demethylation, dapsone, dextromethorphan, docetaxel, domperidone, eplerenone, fentanyl, finasteride, gleevec, haloperidol, irinotecan, LAAM, lidocaine, methadone, nateglinide, odanestrone, pimozone, propranolol, quetiapine, quinine, salmeterol, sildenafil, sirolimus, tamoxifen, taleronadine, trazodone, vincristine, zaleplon, and zolpidem or a combination thereof.

[0409] In still yet another embodiment, non-limiting examples of suitable combinations include combinations of one or more compounds of the present invention with one or more HIV protease inhibiting compounds, HIV non-nucleoside inhibitors of reverse transcriptase, HIV nucleoside inhibitors of reverse transcriptase, HIV integrase inhibitors, gp41 inhibitors, CXCR4 inhibitors, gp120 inhibitors, CCR5 inhibitors, and other drugs for treating HIV, interferons, ribavirin analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV, non-nucleoside inhibitors of HCV, and other drugs for treating HCV.

More specifically, one or more compounds of the present invention may be combined with one or more compounds selected from the group consisting of 1) amprenavir, atazanavir, fosamprenavir, indinavir, lopinavir, ritonavir, nelfinavir, saquinavir, tipranavir, brecanavir, darunavir, TMC-126, TMC-114, mozenavir (DMP-450), JE-2147 (AG1776), L-756423, RO0334649, KNI-272, DPC-884, GW640385X, DG17, GS-8374, PPL-100, DG835, and AG 1659, 2) a HIV non-nucleoside inhibitor of reverse transcriptase, e.g., capravirine, emivirine, delavirdine, efavirenz, nevirapine, (+) calanolide A, etravirine, GW5634, DPC-083, DPC-961, DPC-963, MIV-150, and TMC-120, TMC-278 (ripivirine), efavirenz, BLR 355 BS, VRX 840773, UK-450361, and RDEA806, 3) a HIV nucleoside inhibitor of reverse transcriptase, e.g., zidovudine, emtricitabine, didanosine, stavudine, zalcitabine, lamivudine, abacavir, amdoxovir, elvucitabine, alvudine, MAV-210, raciriv (±-FTC), D-d4fc, emtricitabine, phosphazide, fozivudine tidoxil, apricitabine (AVX754), GS-7340, KP-1461, and fosfuvudine tidoxil (formerly HDP 99.0003), 4) a HIV nucleoside inhibitor of reverse transcriptase, e.g., tenofovir disoproxil fumurate and adefovir dipivoxil, 5) a HIV integrase inhibitor, e.g., curcumin, derivatives of curcic acid, derivatives of choric acid, 3,5-dicaffeoylquinic acid, derivatives of 3,5-dicaffeoylquinic acid, aurintricarboxylic acid, derivatives of aurintricarboxylic acid, caffeic acid phenethoxy ester, derivatives of caffeic acid phenethyl ester, typhostin, derivatives of typhostin, quercetin, derivatives of quercetin, S-1360, zintevir (AG1776), L-870812, and L-870810, MK-0518 (raltegravir), elvitegravir, BMS-538473C, BMS-700735, MK-2048, and BA 011, 6) a gp41 inhibitor, e.g., enfuvirtide, sifuvirtide, F2006M, and TRI-1144, 7) a CXCR4 inhibitor, e.g., AMD-070, 8) an entry inhibitor, e.g., SP01A, 9) a gp120 inhibitor, e.g., BMS-488043 or BlockAide/CR, 10) a GPD and NADH-oxidase inhibitor, e.g., immunitin, 11) a CCR5 inhibitor, e.g., aplaviroc, vicriviroc, maraviroc, PRO-140, INCB15050, PF-232798 (Fizer), and CCR5mAb004, 12) other drugs for treating HIV, e.g., BAS-100, SPI-452, REP 9, SP-01A, TNX-355, DES6, ODN-93, ODN-112, VGV-1, PA-457 (bevirimat), Ampligen, HGR214, Cytolin, VXG-410, KD-247, AMZ 0026, CYT 99007A-221 HIV, DEBIO-025, BAY 50-4798, MDX010 (ipilimumab), PBS 119, ALG 889, and PA-1050040 (PA-040), 13) an interferon, e.g., pegylated rIFN-alpha 2b, pegylated rIFN-alpha 2a, rIFN-alpha 2b, rIFN-alpha 2a, consensus IFN alpha (infergen), feron, reaferon, integmax alpha, rIFN-beta, interferon + actimmune, IFN-omega with DUROS, albuferon, locetron, Albuferon, Rebif, Oral interferon alpha, IFNalpha-2b XL, ALI-005, PEG-Infergen, and Pegylated IFN-beta, 14) a ribavirin analog, e.g., rebeto, copegus, viramidine (taribavirin), 15) a NS5b polymerase inhibitor, e.g., NM-283, valopicitabine, R1626, PSI-6130 (R1656), HCV-796, BILB 1941, XTL-2125, MK-0608, NM-107, R7128 (R4048), VCH-759, PF-868554, and GSK625433, 16) A NS3 protease inhibitor, e.g., SCH-503034 (SCH-7), VX-950 (telaprevir), BILN-2065, BMS-605339, and ITMN-191, 17) an alpha-glucosidase 1 inhibitor, e.g., MX-3253 (celgosivir), UT-231B, 18) hepatoprotectants, e.g., IDN-6556, ME 3738, LB-84451, and MitoQ, 19) a non-nucleoside inhibitor of HCV, e.g., benzimidazole derivatives, benzo-1,2,4-thiadiazine derivatives, phenylalanine derivatives, A-831, GS-9190, and A-689; and 20) other drugs for treating HCV, e.g., zadaxin, nitazoxanide (alinea), BIVN-401 (virostat), PYY-17 (altirex), KPE02030002, action (CPG-10101), KRN-7000, caviar, GI-5005, ANA-975, XTL-6865, ANA 971, NOV-205, tarvacin, EHC-18, NIM811, DEBIO-025, VXG-410C, EMZ-702, AVI 4065, Batuvuximab, Oguflanide, and VX-497 (merimepodib).

[0411] It is also contemplated that the compounds of the present invention can be used with any other active therapeutic agent or ingredient which is appreciably metabolized by cytochrome P450 monooxygenase enzymes, e.g., cytochrome P450 monoxygenase 3A, thereby reducing the amount or rate at which the other active therapeutic agent or ingredient is metabolized, whereby the pharmacokinetics of the other active therapeutic agent or ingredient is improved. Such improvements can include elevating the blood plasma levels of the other therapeutic agent or ingredient or maintaining a more therapeutically effective blood plasma level of the other therapeutic active agent or ingredient -- compared to blood plasma levels of the other therapeutic agent or ingredient administered without the compound of the present invention.

[0412] It is also possible to combine any compound of the invention with one or more other active therapeutic agents in a unitary dosage form for simultaneous or sequential administration to a patient. The combination therapy may be
administered as a simultaneous or sequential regimen. When administered sequentially, the combination may be administered in two or more administrations.  

Co-administration of a compound of the invention with one or more other active therapeutic agents generally refers to simultaneous or sequential administration of a compound of the invention and one or more other active therapeutic agents, such that therapeutically effective amounts of the compound of the invention and one or more other active therapeutic agents are both present in the body of the patient.

Co-administration includes administration of unit dosages of the compounds of the invention before or after administration of unit dosages of one or more other active therapeutic agents, for example, administration of the compounds of the invention within seconds, minutes, or hours of the administration of one or more other active therapeutic agents. For example, a unit dose of a compound of the invention can be administered first, followed within seconds or minutes by administration of a unit dose of one or more other active therapeutic agents. Alternatively, a unit dose of one or more other therapeutic agents can be administered first, followed by administration of a unit dose of a compound of the invention within seconds or minutes. In some cases, it may be desirable to administer a unit dose of a compound of the invention first, followed, after a period of hours (e.g., 1-12 hours), by administration of a unit dose of one or more other active therapeutic agents. In other cases, it may be desirable to administer a unit dose of one or more other active therapeutic agents first, followed, after a period of hours (e.g., 1-12 hours), by administration of a unit dose of a compound of the invention.

The combination therapy may provide "synergy" and "synergistic effect", i.e. the effect achieved when the active ingredients used together is greater than the sum of the effects that results from using the compounds separately. A synergistic effect may be attained when the active ingredients are: (1) co-formulated and administered or delivered simultaneously in a combined formulation; (2) delivered by alternation or in parallel as separate formulations; or (3) by some other regimen. When delivered in alternation therapy, a synergistic effect may be attained when the compounds are administered or delivered sequentially, e.g., in separate tablets, pills or capsules, or by different injections in separate syringes. In general, during alternation therapy, an effective dosage of each active ingredient is administered sequentially, i.e. serially, whereas in combination therapy, effective dosages of two or more active ingredients are administered together.

In yet another embodiment, the present application provides a method for improving the pharmacokinetics of a drug which is metabolized by cytochrome P450 monoxygenase, comprising administering to a patient treated with said drug, a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.

In yet another embodiment, the present application provides a method for improving the pharmacokinetics of a drug which is metabolized by cytochrome P450 monoxygenase, comprising administering to a patient treated with said drug, a therapeutically effective amount of a combination comprising said drug and a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.

In yet another embodiment, the present application provides a method for increasing blood plasma levels of a drug which is metabolized by cytochrome P450 monoxygenase 3A, comprising administering to a patient treated with said drug, a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.

In yet another embodiment, the present application provides a method for increasing blood plasma levels of a drug which is metabolized by cytochrome P450 monoxygenase, comprising administering to a patient treated with said drug, a therapeutically effective amount of a combination comprising said drug and a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.

In yet another embodiment, the present application provides a method for increasing blood plasma levels of a drug which is metabolized by cytochrome P450 monoxygenase, comprising administering to a patient treated with said drug, a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.

In yet another embodiment, the present application provides a method for increasing blood plasma levels of a drug which is metabolized by cytochrome P450 monoxygenase, comprising administering to a patient treated with said drug, a therapeutically effective amount of a combination comprising said drug and a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.

In yet another embodiment, the present application provides a method for inhibiting cytochrome P450 monoxygenase in a patient comprising administering to a patient in need thereof an amount of a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, effective to inhibit cytochrome P450.
monooxygenase.

[0424] In yet another embodiment, the present application provides a method for inhibiting cytochrome P450 monooxygenase 3A in a patient comprising administering to a patient in need thereof an amount of a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, effective to inhibit cytochrome P450 monooxygenase 3A.

[0425] In yet another embodiment, the present application provides a method for inhibiting cytochrome P450 monooxygenase comprising contacting cytochrome P450 monooxygenase with an amount of a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, effective to inhibit cytochrome P450 monooxygenase.

[0426] In yet another embodiment, the present application provides a method for inhibiting cytochrome P450 monooxygenase 3A comprising contacting cytochrome P450 monooxygenase 3A with an amount of a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, effective to inhibit cytochrome P450 monooxygenase 3A.

[0427] In yet another embodiment, the present application provides a method for treating an HIV infection comprising administering to a patient in need thereof a therapeutically effective amount of one or more additional therapeutic agents selected from the group consisting of amprenavir, atazanavir, fosamprenavir, indinavir, lopinavir, ritonavir, nelfinavir, saquinavir, tipranavir, brecanavir, darunavir, TMC-126, TMC-114, mozenavir (DMP-450), JE-2147 (AG1776), L-756423, ROO334649, KNI-272, DPC-681, DPC-684, and GW640385X, DG17, PPL-100, DG35, AG 1859, capravirine, emivirine, delavirdine, efavirenz, nevirapine, (+) calanolide A, etravirine, GW5634, DPC-083, DPC-961, DPC-963, MIV-150, TMC-120, TMC-278 (rilpivirine), efavirenz, BLR 35 BS, VRX 840773, UK-453061, RDEA806, zidovudine, emtricitabine, didanosine, stavudine, zalcitabine, lamivudine, abacavir, amdoxovir, elacuvitabine, alavudine, MIV-210, racivir (+-FTC), D-d4FC, emtricitabine, phosphazide, fozivudine tidoxil, apricitabine (AVX754), amdoxovir, KP-1461, fosalvudine tidoxil (formerly HDP 99.0003), tenofovir disoproxil fumarate, adefovir dipivoxil, curcumín, derivatives of curcumín, chioric acid, derivatives of chioric acid, 3,5-dicaffeoylquinic acid, derivatives of 3,5-dicaffeoylquinic acid, aurintricarboxylic acid, derivatives of aurintricarboxylic acid, caffeic acid phenethyl ester, derivatives of caffeic acid phenethyl ester, tyrophostin, derivatives of tyrophostin, quercetin, derivatives of quercetin, S-1360, zintevir (AR-177), L-870812, L-870810, MK-0518 (raltegravir), elvitegravir, BMS-538158, GSK364735C, BMS-707035, MK-2048, and BA 011, enfuvirtide, sifuvirtide, FB006M, and TRI-1144, AMD-070, an entry inhibitor, SP01A, BMS-488043, BlockAide/CR, a G6PD and NADH-oxidase inhibitor, immunitin, aplaviroc, vicriviroc, maraviroc, maraviroc, PRO-140, INCB15050, PF-232798 (Pfizer), CCR5Ab004, BAS-100, SPI-452, REP 9, SP-01A, TNX-355, DES6, ODN-93, ODN-112, GV-1, PA-457 (bevirimat), Ampligen, HRG214, Cytolin, VXG-410, KD-247, AMZ 0026, CYT 99007A-221 HIV, DEBIO-025, BAY 50-4798, MDX010 (ipilimumab), PBS 119, ALG 889, and PA-1050040 (PA-040), enfuvirtide, sifuvirtide, FB006M, and TRI-1144.

[0428] In yet another embodiment, the present application provides a method for treating an HCV infection comprising administering to a patient in need thereof a therapeutically effective amount of one or more additional therapeutic agents selected from the group consisting of pegylated rIfN-alpha 2b, pegylated rIfN-beta 2a, rIfN-alpha 2b, rIfN-alpha 2a, consensus IFN alpha (infergen), feron, reaferon, intermax alpha, rIfN-beta, infergen + actimmune, IFN-omega with DUROS, loctrer, albuferon, refib, Oral infergen alpha, IFNalpha-2b XL, AVI-005, PEG-Infergen, and pegylated IFN-beta, rebetol, copenus, viramidine (tarbivirnin), NM-283, valopicitabine, R1626, PSI-6130 (R1656), HCV-796, BILB 1941, XTL-2215, MK-0608, NM-107, R7128 (R4048), VCH-759, PF-868554, GSK625433, SCH-503034 (SCH-7), VX-950 (telaprevir), BILN-2065, BMS-605339, ITMN-191, MX-3253 (celgosivir), UT-231B, IDN-6556, ME 3738, LB-84451, MitoQ benzimidazole derivatives, benzo-1,2,4-thiadiazine derivatives, phe-707035, MK-2048, and BA 011, enfuvirtide, sifuvirtide, FB006M, and TRI-1144.

[0429] In yet another embodiment, the present application provides a method for treating an HCV infection comprising administering to a patient in need thereof a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with a therapeutically effective amount of one or more additional therapeutic agents selected from the group consisting of pegylated rIfN-alpha 2b, pegylated rIfN-alpha 2a, rIfN-alpha 2b, rIfN-alpha 2a, consensus IFN alpha (infergen), feron, reaferon, intermax alpha, rIfN-beta, infergen + actimmune, IFN-omega with DUROS, loctrer, albuferon, refib, Oral interferon alpha, IFNalpha-2b XL, AVI-005, PEG-Infergen, and pegylated IFN-beta, rebetol, copenus, viramidine (tarbivirnin), NM-283, valopicitabine, R1626, PSI-6130 (R1656), HCV-796, BILB 1941, XTL-2215, MK-0608, NM-107, R7128 (R4048), VCH-759, PF-868554, GSK625433, SCH-503034 (SCH-7), VX-950 (telaprevir), BILN-2065, BMS-605339, ITMN-191, MX-3253 (celgosivir), UT-231B, IDN-6556, ME 3738, LB-84451, MitoQ benzimidazole derivatives, benzo-1,2,4-thiadiazine derivatives, phenylalanine derivatives, A-831, A-689, zadinaxin, nitazoxanide (alinea), BIVN-401 (virostat), PYN-17 (altirex), KPE02003002, action (CPG-10101), KRN-7000, civacir, GI-5005, ANA-975, XTL-8685, ANA 971, NOV-205, tarvacin, EHC-18, NIM811, DEBIO-025, VXG-410C, EMZ-702, AVI 4065, Bavituximab, Ogulfanide, and VX-497 (merimepodib).

[0430] In still yet another embodiment, the present application provides for the use of a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, for the preparation of a medicament for inhibiting cytochrome P450 monooxygenase in a patient.

[0431] In still yet another embodiment, the present application provides for the use of a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, for the preparation of a medicament for treating an HIV infection.
In still yet another embodiment, the present application provides for the use of a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, for the preparation of a medicament for increasing blood plasma levels of the drug which is metabolized by cytochrome P450 monooxygenase.

In still yet another embodiment, the present application provides for the use of a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, for the preparation of a medicament for improving the pharmacokinetics of a drug which is metabolized by cytochrome P450 monooxygenase.

Examples

Preparation of Example A

Scheme 1

Example A

Compound 2

To a solution of Compound 1 (ritonavir) (1.8 g, 2.5 mmol) in 1,2-dichloroethane (15 mL) was added 1,1'-thiocarbonyldiimidazole (890 mg, 5.0 mmol). The mixture was heated at 75°C for 6 hours and cooled to 25°C. Evaporation under reduced pressure gave a white solid. Purification by flash column chromatography (stationary phase: silica gel; eluent: EtOAc) gave Compound 2 (1.6 g). m/z: 831.1 (M+H)+.

Example A

To the refluxing solution of tributyltin hydride (0.78 mL, 2.9 mmol) in toluene (130 mL) was added a solution of Compound 2 (1.6 g, 1.9 mmol) and 2,2'-azobisisobutyronitrile (31 mg, 0.19 mmol) in toluene (30 mL) over 30 minutes. The mixture was heated at 115°C for 6 hours and cooled to 25°C. Toluene was removed under reduced pressure. Purification by flash column chromatography (stationary phase: silica gel; eluent: hexane/EtOAc = 1/10) gave Example A (560 mg). m/z: 705.2 (M+H)+. 1H-NMR (CDCl3) δ 8.79 (1 H, s), 7.82 (1 H, s), 7.26-7.05 (10 H, m), 6.98 (1 H, s), 6.28 (1 H, m), 6.03 (1 H, m), 5.27 (1 H, m), 5.23 (2 H, s), 4.45-4.22 (2 H, m), 4.17 (1 H, m), 3.98 (1 H, m), 3.75 (1 H, m), 3.25...
(1 H, m), 2.91 (3 H, s), 2.67 (4 H, m), 2.36 (1 H, m), 1.6-1.2 (10 H, m), 0.85 (6 H, m).

Preparation of Example B

[0437]

**Scheme 2**

![Diagram of Scheme 2](image)

Example B

[0438] To a solution of Compound 1 (ritonavir) (98 mg, 0.136 mmol) in dichloromethane (4 mL) was added Dess-Martin periodinane (61 mg, 0.143 mmol). The mixture was stirred at room temperature for 6 hours. The mixture was then partitioned between dichloromethane and brine, the dichloromethane layer was separated, dried and evaporated to dryness. Purification with CombiFlash® (stationary phase: silica gel; eluent: 40-80% EtOAc/Hexane gradient) gave Example B as a white solid. Example B was further purified by trituration with MeOH/hexane to give 83 mg of a white solid. m/z: 719 (M+H)+.

Preparation of Example C

[0439]

**Scheme 3**

![Diagram of Scheme 3](image)

Compound 3

[0440] Compound 3 was prepared according to the procedures of T. Med. Chem. 1998, 41, 602, herein incorporated by reference in its entirety for all purposes.

Compound 4

[0441] A flask was charged with cyclopropylamine (8.2 mL, 117.8 mmol) at room temperature. A solution of Compound 3 (1 g, 4.71 mmol) in MeCN (8.5 mL) was added dropwise over 5 min. to produce a clear yellow solution that was allowed to stand at room temperature overnight. Volatiles were removed *in vacuo*, and the resulting residue was purified via silica gel chromatography (gradient elution, 0 to 50% EtOAc/hexane) to afford 0.65 g (70%) of 4 as a yellow liquid (LC/MS m/z 197 (M+H)+; 218 (M+Na)+).
Compound 5

[0442] Compound 5 was purchased from Aldrich or alternatively prepared according to the procedures of J. Org. Chem. 1994, 59, 1937, herein incorporated by reference in its entirety for all purposes.

Compound 6

[0443] To a solution of Compound 4 in DCM (3 mL) at room temperature was added 5 (0.1 mL, 0.695 mmol). The resulting clear solution was allowed to stand at room temperature for 2 h. The solvent was removed in vacuo, and the residue was chromatographed directly using silica gel chromatography (gradient elution, 0 to 50% EtOAc/hexane) to produce 0.218 g (89%) of 6 (LC/MS m/z 354 (M+H)+; 729 (2M + Na)+) as a colorless glass.

Compound 7

[0444] Compound 6 was taken up in THF (5 mL) at room temperature, and LiOH (1 M in H2O) was added. The resulting reaction mixture was then stirred vigorously for 1.5 h. The reaction mixture was acidified with 1 M HCl to a pH of 3 (monitored using pH test strips). The acidified reaction mixture was then extracted several times with EtOAc. The combined organic phases were washed with brine, dried over anhydrous Na2SO4, and concentrated in vacuo to produce 0.20 g (quantitative yield) of 7 (LC/MS m/z 340 (M+H)+) as a colorless film. This material was used without further purification.

Scheme 5

IV. EDC, HOBr, DIPEA, THF

Example C

[0445] Compounds 7 (0.034 g, 0.100 mmol) and 8, (0.034 g, 0.083 mmol) were diluted in THF (2 mL) at room temperature. To the resulting solution were added N,N-diisopropylethylamine (0.022 mL, 0.125 mmol), EDC (0.018 mL, 0.099 mmol) and HOBr (0.013 g, 0.099 mmol). The solution was then allowed to stand overnight at room temperature. The solvent was removed in vacuo and the residue was taken up in MeCN (0.5 mL) and passed through an Acrodisc LC13 PVDF filter (0.45 μM) prior to purification by preparatory HPLC to afford 0.043 g (71%) of Example C as a fluffy white solid. (1H-NMR (300 MHz, CDCl3) δ 8.79 (s, 1H); 7.82 (s, 1H); 7.27-7.02 (m, 10 H); 6.81 (s, 1H); 5.97 (br d, J = 8.7 Hz, 1H); 5.76 (br d, J = 7.2 Hz, 1H); 5.21 (dt, J = 7.5, 12.6 Hz, 2H); 5.02, br d, J = 8.4 Hz, 1H); 4.58 (s, 2H); 4.16 (m, 1H); 3.99 (br t, J = 6.6 Hz, 1H); 3.79 (m, 1H); 3.27 (pent, J = 6.6 Hz, 1H); 2.85-2.50 (m, 3H); 2.23 (m, 1H); 1.82 (br s, 2H); 1.60-1.22 (m, 4H); 1.36 (d, J = 6.6 Hz, 6H); 0.91 (d, J = 6.6 Hz, 3H); 0.90-0.7 (m, 4H); 0.80 (d, J = 6.6 Hz, 3H); LC/MS m/z 731 (M+).
Preparation of Examples D-I

[0446]

Scheme 6

Compound 9

[0447] Compound 9 was prepared according to the procedures of T. Med. Chem. 1998, 41, 602.

Compound 10

[0448] The structures of Compound 10 were prepared according to the procedures of T. Med. Chem. 1998, 41, 602.

Compound 11

[0449] The structures of Compound 11 were purchased from Aldrich or prepared according to the procedures of T. Org. Chem. 1994, 59, 1937.

Compound 12

[0450] Method 1: To a solution of Compound 9 (0.8 mmol) in THF (2 mL) was added a carbamate of Compound 10 (0.6 mmol), followed by DMAP (16 mg) and triethylamine (0.25 mL). The resulting mixture was heated at 70°C for two hours and diluted with EtOAc. The organic phase was separated, and washed sequentially with saturated aqueous Na₂CO₃, water, and brine, then concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 1/1 - 1/3 hexanes/EtOAc gradient) gave compounds of Structure 12.

[0451] Method 2: To a solution of Compound 9 (2.4 mmol) in CH₂Cl₂ (2 mL) was added an isocyanate of Compound 11 (2 mmol). The resulting mixture was stirred for 4 hours and concentrated. Purification of the residue by flash column chromatography (silica gel, hexane/EtOAc 1/1 - 1/3) gave structures of Compound 12.

Compound 13

[0452] To a solution of structures of Compound 12 (1.8 mmol) in dioxane (8 mL) and water (8 mL) was added sodium hydroxide (3.6 mmol). The resulting reaction mixture was stirred for 1 hour and acidified with HCl in dioxane (3.6 mmol). The reaction mixture was extracted with EtOAc and the organic phase was dried with anhydrous MgSO₄. Concentration
of the dried organic phase gave structures of Compound 13.

**Scheme 7**

![Scheme 7](image)

**Compound 16**

[0453] To a solution of Compound 15 (obtained commercially from Molekula) (17 mmol) in DCM (40 mL) was added Compound 14 (19 mmol), followed by triethylamine (26 mmol). The resulting reaction mixture was stirred for 12 hours and concentrated under reduced pressure. The reaction mixture was diluted with EtOAc and washed sequentially with saturated aqueous Na₂CO₃, water, and brine. The solvent was removed under reduced pressure. Purification of the residue by flash column chromatography (silica gel, eluent: hexanes/EtOAc = 1/1) gave Compound 16 (4.7 g).
Compound 17

[0454] Compound 17 was prepared according to the procedures of Tetrahedron 1997, 53, 4769, herein incorporated by reference in its entirety for all purposes.

Compound 18

[0455] Compound 18 was prepared according to the procedures of T. Org. Chem. 1987, 52, 3759, herein incorporated by reference in its entirety for all purposes.

Compound 19

[0456] A suspension of Compound 18 (7.4 mmol) in THF (200 mL) was heated under reflux until a clear solution was obtained. The solution was cooled to -78°C and n-butyllithium (14.8 mmol) was added dropwise to provide a solution of the dianion of sulfone 18.

[0457] To a DIBAL-H solution (7.8 mmol) at 0°C was added a solution of MeOH (7.8 mmol) in THF (5 mL). The mixture
was stirred for 5 minutes and cooled to -78°C. A solution of Compound 17 (6.6 mmol) in THF (5 mL) was added to the above DI-BAL-H/MeOH solution, and the resulting reaction mixture was stirred for another 5 minutes. The resulting solution of aldehyde complexes was transferred to solution of the dianion of sulfone 18. The resulting mixture was stirred at -78°C for 30 minutes, quenched with an aqueous solution of NH₄Cl, and warmed to 25°C. The mixture was then extracted with EtOAc, and concentrated to give Compound 19 as a mixture of diastereomers. (m/z 737.3 (M+Na)+.

Example 20

[0458] To a solution of Compound 19 in DCM (20 mL) was added Ac₂O (1.5 mL), followed by pyridine (3 mL). The resulting mixture was stirred for 12 hours and concentrated. The concentrate was dissolved in MeOH (30 mL) and cooled to 0°C. NaH₂PO₄ (4.9 g) was added to the solution, followed by freshly prepared Na-Hg (6%, 6 g). The resulting mixture was warmed to 25°C and stirred for 12 hours. Water (50 mL) was then added, and the mixture was filtered and concentrated. The concentrate was diluted with EtOAc and washed with brine. The organic phase was concentrated. Purification by flash column chromatography (silica gel, eluent: hexanes/EtOAc = 10/1) gave Compound 20 (1.4 g).

Compound 21

[0459] To liquid ammonia (25 mL) at -33°C was added a solution of Compound 20 (1.4 g) in THF (2.5 mL). Sodium was slowly added until the blue color of the solution persisted. The resulting mixture was stirred for 1 hour. Solid NH₄Cl (6 g) was then added slowly, the mixture was warmed to 25°C, and the ammonia was evaporated. The mixture was diluted with EtOAc, and washed sequentially with water and brine. The solvent was removed under reduced pressure. Purification of the resulting residue by flash column chromatography (silica gel, eluent: hexanes/EtOAc = 5/1) gave Compound 21 (1.15 g).

Compound 22

[0460] A mixture of Compound 21 (1.15 g) and 10%Pd/C (160 mg) in MeOH (20 mL) was hydrogenated for 12 hours. CELITE was added and the resulting mixture was stirred for 5 minutes. The mixture was then filtered and concentrated to give an intermediate (1 g). The intermediate (700 mg) was dissolved in DCM (20 mL) and TFA (4 mL), and the resulting mixture was stirred for 4 hours, then concentrated under reduced pressure. The concentrated mixture was diluted with EtOAc, and washed sequentially with saturated aqueous Na₂CO₃, water, and brine. Concentration of the washed EtOAc mixture gave Compound 22 (420 mg).

Compound 8

[0461] To a solution of Compound 22 (1.57 mmol) in CH₂CN (16 mL) was added Compound 16 (1.57 mmol), followed by diisopropylethylamine (3.14 mmol). The resulting mixture was stirred for 12 hours. The mixture was then diluted with EtOAc, and washed sequentially with saturated aqueous Na₂CO₃, water, and brine. Purification by reverse-phase HPLC (Phenomenex Synergi® Comb-HTS column, eluent: 25% - 100% CH₃CN in water) gave Compound 8 (460 mg).

Example D

[0462] To the solution of Compound 13a (R= H; 0.08 mmol) and Compound 8 (0.06 mmol) in THF (1 mL) were added HOBt (15 mg), EDC (26 mg), and diisopropylethylamine (0.25 mL). The mixture was stirred for 12 hours and concentrated. Purification by reverse-phase HPLC (Phenomenex Synergi® Comb-HTS column, eluent: 25% - 100% CH₃CN in water) gave Example D (27 mg). m/z 663.1 (M+H)+. ¹H-NMR (CDCl₃) δ 8.79 (1 H, s), 7.83 (1 H, s), 7.25-7.04 (10 H, m), 6.98 (1 H, s), 6.25 (1 H, m), 5.25 (3 H, m), 4.40 (2 H, s), 4.12 (1 H, m), 3.8 (3 H, m), 3.22 (1 H, m), 2.95 (3 H, m), 2.70 (4 H, m), 1.60 (4 H, m), 1.26 (6 H, d, J = 7 Hz).

Example E

[0463] Example E was prepared following the procedure for Example D (30 mg), except that Compound 13b was used instead of Compound 13a. m/z 677.1 (M+H)+.

Example F

[0464] Compound F was prepared following the procedure for Example D (40 mg), except that Compound 13c was used instead of Compound 13a. m/z 691.2 (M+H)+. ¹H-NMR (CDCl₃) δ 8.80 (1 H, s), 7.83 (1 H, s), 7.25-7.06 (10 H, m),
Example G

[0465] Example G was prepared following the procedure for Example D (84 mg), except that Compound 13d was used instead of Compound 13a. m/z 783.2 (M+H)+.

Example H

[0466] Example H was prepared following the procedure for Example D (90 mg), except that Compound 13e was used instead of Compound 13a. m/z 763.2 (M+H)+.

Example I

[0467] Example H (24 mg) was dissolved in TFA (2 mL) and the mixture was stirred for 12 hours, then concentrated. Purification by reverse phase HPLC (Phenomenex Synergi® Comb-HTS column, eluent: 25% - 100% CH3CN in water) gave Example I (14 mg). m/z 707.2 (M+H)+. 1H-NMR (CDCl3) δ 8.82 (1 H, s), 7.85 (1 H, s), 7.26-7.04 (10 H, m), 7.0 (1 H, s), 5.25 (2 H, s), 4.86 (1 H, m), 4.56 (1 H, m), 4.37 (2 H, m), 4.13 (1 H, m), 4.06 (1 H, m), 3.86 (1 H, m), 3.32 (1 H, m), 2.99 (3 H, s), 2.8-2.6 (4 H, m), 1.6-1.4 (4 H, m), 1.37 (6 H, m), 1.15 (3 H, m).

Preparation of Example T

[0468] Compound 23 was prepared following the procedure for Compound 13, with the exception that methyl 3-isocyanatopropionate was used instead of Compound 11.

Example J

[0469] Example J was prepared following the procedure for Example D (37 mg), except that Compound 23 was used instead of Compound 13a. m/z 677.2 (M+H)+.

Preparation of Example K

[0471]
Example K

Compound 3a

[0472] Compound 5a was prepared following the literature procedure of Synthesis 823, 1976, herein incorporated by reference in its entirety for all purposes.

Compound 3b

[0473] To the solution of Compound 3a (700 mg, 3.9 mmol) in THF (10 mL) was added water (69 µL, 3.9 mmol), followed by triphenylphosphine (1.06 g, 4.0 mmol). The mixture was stirred for 12 hours. Solvents were removed and the mixture was dried to give Compound 3b, which was used for next step without further purification.

Compound 3c

[0474] To a solution of triphosgene (110 mg, 0.37 mmol) in CH₂Cl₂ (2 mL) at 0°C was added a solution of Compound 3b (1 mmol) and iPrNEt₂ (0.38 mL, 2.2 mmol) in CH₂Cl₂ (3.5 mL) over 30 minutes period. The mixture was stirred for 30 minutes, and a solution of amino N-methyl leucine methyl ester HCl salt (182 mg, 1 mmol) and iPrNEt₂ (0.34 mL, 2.2 mmol) in CH₂Cl₂ (2 mL) was added. The mixture was stirred for 12 hours, and diluted with EtOAc. The solution was washed with sat. Na₂CO₃ (2x), water (2x), and brine, and dried over Na₂SO₄. Concentration and purification with silica gel flash column gave Compound 5c (300 mg).

Compound 3d

[0475] Compound 3d was prepared following the procedure for Compound 13, with the exception that Compound 3c was used instead of Compound 12.
Example K

[0476] Example K was prepared following the procedure for Example D (7 mg), except that Compound 3d was used instead of Compound 13a. m/z 705.2 (M+H)+. 1H-NMR (CDCl3) δ 8.8 (1 H, m), 7.86 (1 H, s), 7.26-6.8 (11 H, m), 6.10 (1 H, m), 5.5-5.10 (4 H, m), 4.46 (2 H, m), 4.2-3.75 (3 H, m), 3.25 (1 H, m), 2.82/2.4 (3 H), 2.8-2.5 (4 H, m), 2.17 (1 H, m), 1.7-1.2 (10 H, m), 0.8 (6 H, m).

Preparation of Example L

[0477]

Scheme 11

Example L

[0478] To a solution of Compound 22 (1.57 mmol) in CH3CN (16 mL) was added Compound 16 (3.14 mmol), followed by triethylamine (4.71 mmol). The resulting mixture was stirred for 12 hours. The reaction mixture was diluted with EtOAc and washed sequentially with saturated aqueous Na2CO3, water, and brine. The solvent was removed under reduced pressure. Purification of the residue by flash column chromatography (silica gel, eluent: hexanes/EtOAc = 1/1) gave Example L (460 mg). m/z 551.2 (M+H)+. 1H-NMR (CDCl3) δ 8.81 (2 H, s), 7.85 (2 H, s), 7.26-7.0 (10 H, m), 5.24 (4 H, s), 4.50 (2 H, m), 3.87 (2 H, m), 2.73 (4 H, m), 1.4-1.2 (4 H, m).

Alternate Preparation of Compound 22

[0479]
Compound 25

[0480] Compound 25 was prepared following the literature procedure described in T. Org. Chem. 1996, 61, 444 (herein incorporated by reference in its entirety), except that the L-isomer was prepared instead of the D-isomer.

Compound 26

[0481] A mixture of Compound 25 (7.4 g) and 1,1'-thiocarbonyldiimidaxole (4.5 g) in THF (260 mL) was heated at 65 °C for 54 hours. Solvent was removed from the mixture under reduced pressure. Purification by flash column chromatography (silica gel, hexanes/EtOAc = 1/1) gave Compound 26 (7.33 g).

Compound 27

[0482] The mixture of Compound 26 (7.3 g) and triethylphosphite (100 mL) was heated at 160 °C for 4 hours. Excess reagents were removed under reduced pressure. Purification by flash column chromatography (silica gel, hexanes/EtOAc = 3/1) gave Compound 27 (5 g).

Compound 22

[0483] A mixture of Compound 27 (250 mg) in i-PrOH/EtOAc (5mL/5mL) was hydrogenated for 14 hours in the presence of 10%Pd/C (75 mg). CELITE was added to the mixture, and the mixture was stirred for 5 minutes. Filtration and evaporation of solvents gave Compound 22 (116 mg).

[0484] The skilled practitioner will recognize that the procedure outlined in Scheme 12 can be used to prepare a variety of 1,4-substituted 1,4-diamines analogous to Compound 22. For example, an amine-protected 2,3-dihydroxy-1,4-diamine analogous to Compound 25 can be prepared:
wherein \( L^3, A, Ar, \) and \( P \) are as defined herein, and protecting group "\( P \)" is any amine protecting group described in Protective Groups in Organic Synthesis, Theodora W. Greene and Peter G. M. Wuts (John Wiley & Sons, Inc., New York, 1999, ISBN 0-471-16019-9), which is herein incorporated by reference in its entirety for all purposes.

The analogs of Compound 25 can then be transformed, according to the methods outlined in Scheme 12, to form analogs of Compound 26:

![Analogs of Compound 26](image)

Analogs of Compound 26:

analogs of Compound 27:

![Analogs of Compound 27](image)

Analogs of Compound 27:

and

analogs of Compound 22:

![Analogs of Compound 22](image)

Analogs of Compound 22.

Preparation of Examples M and N

[0485]
Compound 29

[0486] Compound 28 was prepared using a procedure similar to that used to prepare Compound 6 (described in Scheme 4) except that Compound 9 was used instead of Compound 4.

[0487] To a solution of Compound 28 (0.757 g, 2.31 mmol) in THF (9 mL) at room temperature was added freshly prepared 1M LiOH (4.6 mL, 4.6 mmol). After 1.5 h, 1 M HCl (7 mL, 7 mmol) was added and the reaction mixture extracted thoroughly with EtOAc (5X 15mL). The combined organic layers were dried over anhydrous Na₂SO₄ and the volatiles removed in vacuo to afford 0.677 g (93%) of Compound 29 as a colorless glassy solid (LC/MS m/z 314.0 (M+H)+) that was used in the following procedures without further purification.

Scheme 14

Compound 30

[0488] Compound 30 was purchased from Aldrich Chemical Co., and used without further purification.

Compound 31

[0489] To a solution of Compound 30 (8.25 g, 80 mmol) in MeOH (50 mL), was added benzaldehyde (8.1 mL, 80 mmol) and the resulting solution was allowed to stir at room temperature. After 2 h, the reaction mixture was cooled to 0°C and NaBH₄ (3.33 g, 88 mmol) was added in portions. After allowing the reaction mixture to warm to room temperature over 2 h, glacial acetic acid (2 mL) was added. The resulting viscous solution was concentrated in vacuo. EtOAc and H₂O (50 mL each) were added and the aqueous phase was extracted with EtOAc. The combined organic phases were
washed with saturated NaHCO₃, brine, and concentrated in vacuo. The resulting material was taken up in THF (25 mL) and H₂O (25 mL) at room temperature and Boc₂O (15.1 g, 69.2 mmol) was added to produce an opaque suspension that was stirred vigorously for 2 h at room temperature. THF was removed in vacuo, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine and dried over anhydrous MgSO₄ and concentrated in vacuo. Chromatography on SiO₂ (3/1 Hex/EtOAC) afforded 18.5 g (79%) of Compound 31 as a colorless oil (LC/MS m/z 293.9 (M+H)+).

Compound 32

- [0490] Compound 31 (5.95 g, 20.3 mmol) and Et₂N (9.9 mL, 71 mmol) were diluted in DMSO (65 mL) and allowed to age at room temperature for 30 min before cooling to 0°C. Pyridine-SO₃ was added in one portion and the reaction mixture was maintained at 5°C to prevent freezing. After 45 min, the reaction mixture was poured into iced water and extracted with EtOAc. The combined organic layers were washed with saturated NaHCO₃, H₂O, and dried over anhydrous MgSO₄ prior to concentration in vacuo. The resulting clear yellow solution was allowed to age at -78°C for 1 h. The reaction was quenched with solid NaOH until homogeneous bilayers resulted. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with MeOH (6 mL) was added and after 10 min, the reaction was poured into brine. Addition of water produced a bilayer that was stirred vigorously for 2 h at room temperature. THF was removed in vacuo, and the aqueous phase was repeatedly extracted with CH₂Cl₂. The combined organic layers were dried over anhydrous Na₂SO₄. Concentration in vacuo produced 9.57 g (95%) of Compound 32 as a colorless oil (LC/MS m/z 689.3 (M+Na)+) that was used in the following procedures without further purification.

Compound 33

- [0491] A suspension of Compound 33 (6.23 g, 16.6 mmol) in THF (500 mL) was heated under reflux until a homogeneous solution was obtained. The solution was cooled to -78°C and 1.6 M n-BuLi (19.7 mL, 31.5 mmol) was introduced to produce a clear yellow solution. Meanwhile, DIBAL-OMe was prepared by dilution of DIBAL-H (1M in hexanes, 18.1 mL, 18.1 mmol) in THF (8 mL) and cooling to 0°C prior to addition of MeOH (0.73 mL, 18.1 mmol). This solution was allowed to age while Compound 32 (4.39 g, 15.1 mmol) was diluted in THF (15 mL) and cooled to -78°C. The DIBAL-OMe solution was cannulated to the solution of Compound 32 and allowed to age for 5 min prior to cannulation to the sulfur diion solution. The resulting clear yellow solution was allowed to age at -78°C for 1 h. The reaction was quenched by addition of saturated NH₄Cl (100 mL) at -78°C and allowed to warm to room temperature. Water was added until all precipitated solids were dissolved and the layers separated. The THF layer was concentrated in vacuo while the aqueous layer was extracted with EtOAc. The recombined organic layers were washed with brine, and the resulting emulsion was treated with solid NaOH until homogeneous bilayers resulted. The aqueous layer was extracted with EtOAc and the combined organics dried over anhydrous Na₂SO₄. Concentration in vacuo produced 9.57 g (95%) of Compound 33 as an amorphous white solid (LC/MS m/z: 689.3 (M+Na)+) that was used in the following procedures without further purification.

Compound 34

- [0492] Crude Compound 34 was suspended in CH₂Cl₂ (65 mL) followed by addition of pyridine (6.7 mL, 83 mmol) and acetic anhydride (3.5 mL, 36.5 mmol). The resulting solution was allowed to age at room temperature overnight. MeOH (6 mL) was added and after 10 min, the reaction was poured into brine. Addition of water produced a bilayer that was separated and the aqueous phase was repeatedly extracted with CH₂Cl₂. The combined organic layers were dried over anhydrous MgSO₄ and concentrated in vacuo to produce 8.95 g (88%) of a white solid that was immediately taken up in MeOH (100 mL). Na₂HPO₄ (11.4 g, 80.3 mmol) was added and the resulting slurry was cooled to 0°C prior to addition of Na-Hg (6%, 14.5 g, 37.8 mmol). After aging at room temperature overnight, H₂O (30 mL) was added and the reaction was filtered through a celite pad. MeOH was removed in vacuo and the reaction mixture was filtered through a pad of celite, the filtrate was washed several times with MeOH, and the combined organic layers were concentrated in vacuo to afford 1.45 g (83%) of Compound 34 as a colorless oil (LC/MS m/z: 531.2 (M+Na)+) that was used in the following procedures without further purification.
Compound 37

Compound 36 (0.528 g, 1.03 mmol) was diluted in THF (3 mL) and added to liquefied ammonia (approx. 20 mL) at -35°C. Small pieces of Na were added until a blue color persisted. After 1.5 h, solid NH₄Cl was added in portions until the remaining Na was destroyed and the ammonia was allowed to escape at ambient temperature. Water and EtOAc (20 mL each) were added, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo to afford 0.395 g (91%) of Compound 37 as an amorphous white solid that was used without further purification in the following procedures (LC/MS m/z: 421.1 (M+H)+; 443.2 (M+Na)+).

Compound 38

Compound 37 (0.362 g, 0.861 mmol) was diluted in CH₂Cl₂ (3.2 mL). Trifluoroacetic acid (0.8 mL) was added and the clear solution was allowed to age overnight. Following concentration in vacuo, the residue was azeotroped with toluene several times to remove residual TFA. 0.382 g (99%) of the bis-trifluoroacetate salt of Compound 38 was collected as a colorless oil that was used without further purification (LC/MS m/z: 221.1(M+H)+).

Compounds 39 and 40

Compound 38 (0.382 g, 0.852 mmol) was diluted in MeCN (10 mL) and N,N-diisopropylethylamine (0.60 mL, 3.41 mmol) was added, followed by a solution of Compound 16 in MeCN (1.5 mL). The clear, yellow solution was allowed to age at room temperature for 4h and the volatiles were removed in vacuo. The residue was taken up in a 3/1 CHCl₃/IPA mixture of anhydrous Na₂SO₄/anhydrous Na₂CO₃ and concentrated in vacuo. Chromatography on SiO₂ (0-20% MeOH/CH₂Cl₂) afforded 0.043 g (14%) of Compound 39 as a colorless film (LC/MS m/z: 362.1 (M+H)+) and 0.105 g (34%) of Compound 40 as a colorless film (LC/MS m/z: 362.1 (M+H)+).

Example M

A flask was charged with Compound 39 (0.048 g, 0.133 mmol) and Compound 29 was added as a 0.2 M solution in THF (0.8 mL, 1.60 mmol). THF (1 mL) was added, followed by DIPEA (0.026 mL, 0.145 mmol), HOBt (0.022 g, 0.160 mmol) and finally EDC (0.028 mL, 0.160 mmol). The clear, colorless solution was allowed to age overnight. Volatiles were removed in vacuo and the residue chromatographed on SiO₂ (0-20% MeOH/CH₂Cl₂) fractions containing the desired compound were concentrated in vacuo and submitted to preparatory LC/MS purification to afford 0.018 g (20%) of Example M as a colorless film LC/MS m/z: 657.2 (M+H)+; ¹H-NMR (CDCl₃, 300 MHz) δ 8.95 (s, 1H); 7.88 (br s, 1H); 7.27-7.04 (m, 5H); 7.04 (s, 1H); 6.60-6.20 (m, 2H); 5.22 (m, 2H); 5.12 (d, J = 9.3 Hz, 1H); 4.50 (m, 2H); 4.01 (br
Example N

Example N was prepared using procedures similar to those used to prepare Example M, using the following reagents: Compound 40 (0.055 g, 0.152 mmol); Compound 29 (0.92 mL of 0.2 M THF solution, 0.183 mmol); THF (1 mL); DIPEA (0.040 mL, 0.228 mmol); HOBt (0.025 g, 0.182 mmol); EDC (0.032 mL, 0.182 mmol). 0.087 g (87%) of Example N was isolated as a colorless film (LC/MS m/z: 657.2 (M+H)+; 1H-NMR CDCl3, 300 MHz) δ 8.84 (s, 1H); 7.86 (s, 1H); 7.27-7.04 (m, 5H); 7.04 (s, 1H); 6.28 (br s, 1H); 6.12 (br s, 1H); 5.25 (m, 2H); 5.11 (d, J = 9.0 Hz, 1H); 4.62-4.32 (m, 2H); 4.19 (m, 1H); 4.01 (m, 1H); 3.53 (m, 1H); 3.10-2.90 (m, 3H); 2.72 (d, J = 6.0 Hz, 2H); 2.29 (m, 1H); 1.65-1.18 (m, 8H); 1.39 (d, J = 6.9 Hz, 6H); 1.00-0.78 (m, 9H).

Preparation of Examples O and P

Compound 41

Compound 41 was prepared following the procedure described in J. Org. Chem. 1996, 61, 444-450.

Compound 42

A mixture of Compound 41 (1.73 g, 3 mmol) and 1,1'-thiocarbonyldiimidazole (1.14 g, 6.1 mmol) in THF (60 mL) was heated at 65°C for 72 hours. Solvent was removed under reduced pressure. The mixture was diluted with EtOAc, and washed successively with 1N HCl, water, and brine, and dried over MgSO4. Purification by flash column chromatography (silica gel, hexanes/EtOAc = 1/1) gave Compound 42 (980 mg). m/z: 611.1 (M+H)+.

Compound 43

A mixture of Compound 42 (980 mg) and triethyl phosphite (10 mL) was heated at 160°C for 14 hours. The excess reagents were removed under reduced pressure. Recrystallization from a mixture of hexanes (11 mL) and EtOAc (3.6 mL) gave Compound 57 (580 mg). m/z: 557.3 (M+Na)+.
A mixture of Compound 43 (580 mg) in i-PrOH/EtOAc (12 mL/12 mL) was hydrogenated under high pressure (100 psi) for 24 hours in the presence of 10%Pd/C (200 mg). Celite was added and the mixture was stirred for 5 minutes. Filtration and evaporation gave Compound 44 (285 mg). m/z: 269.1 (M+H)+.

The skilled practitioner will recognize that the procedure outlined in Scheme 16 can be used to prepare a variety of 1,4-substituted 1,4-diamines analogous to Compound 44. For example, an amine-protected 2,3-dihydroxy-1,4-diamine analogous to Compound 41 can be prepared:

wherein L^3, A, Ar, and P are as defined herein, and protecting group "P" is any amine protecting group described in Protective Groups in Organic Synthesis, Theodora W. Greene and Peter G. M. Wuts (John Wiley & Sons, Inc., New York, 1999, ISBN 0-471-16019-9). The analogs of Compound 41 can then be transformed, according to the methods outlined in Scheme 16, to form analogs of Compound 42:

analogs of Compound 43:

and

analogs of Compound 44:
It will also be recognized that stereochemical configurations other than those shown (i.e., enantiomers or diasteriomers) can be prepared by the selection of analogs of Compound 41 having the appropriate stereochemical configuration at the chiral centers.

Scheme 17

To the solution of Compound 45 (950 mg, 3.5 mmol) in CH₃CN (36 mL) at 0°C was added Compound 16 (892 mg, 3.2 mmol), followed by diisopropylethylamine (1.2 mL, 7 mmol). The mixture was stirred for 12 hours at 25°C. The mixture was diluted with EtOAc, and washed successively with saturated Na₂CO₃, water, and brine. Purification by flash column chromatography (silica gel, 100% EtOAc to CH₂Cl₂/MeOH = 4/1) gave Compound 46 (770 mg). m/z: 410.1 (M+H)⁺.

The skilled practitioner will recognize that the procedure outlined in Scheme 17 can be used to prepare a variety of compounds analogous to Compound 46. For example, 1,4-diamines analogous to Compound 44 can be prepared as discussed above:

The analogs of Compound 44 can then be reacted with analogs of Compound 16:
Analogs of Compound 16,

(wherein Z², X, and R³ are as defined herein) to form analogs of Compound 46:

[0509] It will also be recognized that stereochemical configurations other than those shown (i.e., enantiomers or diasteriomers) can be prepared by the selection of analogs of Compound 44 having the appropriate stereochemical configuration at the chiral centers.
Compound 47

[0510] Compound 47 is commercially available from TCI.

Compound 48

[0511] To a solution of Compound 9 (500 mg, 3 mmol) in CH$_2$Cl$_2$ (3 mL) was added Compound 47 (500 mg, 2.5 mmol). The mixture was stirred for 14 hours. Purification by flash column chromatography (hexanes/EtOAc = 1/1.5) gave Compound 48 (242 mg). m/z: 372.1 (M+H)$^+$. 

Compound 49

[0512] To a solution of Compound 48 (240 mg, 0.65 mmol) in dioxane (4 mL) and water (4 mL) was added sodium hydroxide (40 mg, 1 mmol). The mixture was stirred for 1 hour and acidified with 4 N HCl in dioxane (0.25 mL, 1 mmol). The mixture was extracted with EtOAc and organic phase was dried with MgSO$_4$. Concentration gave Compound 49 (200 mg). m/z: 356.2 (M-H)$^+$. 

I. CH$_2$Cl$_2$/25 °C; II. a. NaOH/dioxane/H$_2$O; b. HCl; III. amine 46/EDC/HOBt; IV. a. TFA; b. NaOH
Example O

[0513] To a solution of corresponding acid 49 (30 mg, 0.08 mmol) and Compound 46 (22 mg, 0.05 mmol) in THF (1 mL) were added HOBt (15 mg, 0.11 mmol), EDC (20 μL, 0.11 mmol), and disopropylethylamine (0.2 mL). The mixture was stirred for 12 hours and concentrated. Purification by flash column chromatography (hexanes/EtOAc =1/5 to 0/100) gave Example O (17 mg). m/z: 749.3 (M+H)*.

Example P

[0514] To Example O (17 mg) was added TFA (2 mL). The mixture was stirred for 3 hours and concentrated. The mixture was diluted with THF (2 mL) and 1.0 N NaOH solution was added until pH 11. The mixture was stirred for 10 minutes, and extracted with EtOAc. The organic phase was washed with water and brine. Purification by flash column chromatography (EtOAc) gave Example P (12 mg). 1H-NMR (CDCl3) δ 8.76 (1 H, s), 7.79 (1 H, s), 7.25-6.9 (11 H, m), 6.51 (1 H, broad), 5.42 (1 H, m), 5.18 (2 H, m), 4.42 (2 H, m), 4.22 (1 H, m), 4.10 (1 H, m), 3.95 (1 H, m), 3.79 (1 H, m), 3.58 (1 H, m), 3.23 (1 H, m), 2.93 (3 H, s), 2.9-2.5 (4 H, m), 1.6-1.2 (10 H, m); m/z: 693.2 (M+H)*.

Preparation of Examples Q, R, and S

[0515]
Compound 50

[0516] Compound 50 is commercially available from Chem Impex International, and used without further purification.
Compound 51

[0517] Compound 50 (7.0 g, 26.0 mmol) was dissolved in CH₂Cl₂ (330 mL) and 1.1-carbonyldiimidazole (4.22 g, 26.0 mmol) was added, followed by i-Pr₂NEt (19 mL, 104 mmol). The solution was stirred at 25°C for 12 hours. Compound 9 (4.44 g, 26.0 mmol) was dissolved in 20 mL of CH₂Cl₂ and added to the reaction mixture. The solution was stirred at 25°C for 7 hours. The solvent was removed in vacuo and the residue was diluted with ethyl acetate and washed with water and brine. The organic layers were dried (Na₂SO₄), filtered, and evaporated. Purification by Combiflash® (stationary phase: silica gel; eluent: 66-100% EtOAc/Hexane gradient) gave Compound 51 (7.34 g). m/z: 429.0 (M+H)+.

Compound 52

[0518] Compound 51 (7.34 g, 17.13 mmol) was dissolved in THF (90 mL) and 1M aqueous LiOH (35 mL) was added. The mixture was stirred at 25°C for 0.5 hour. The reaction was quenched with 1M HCl (51 mL) and the mixture was adjusted to pH 2. The mixture was extracted with ethyl acetate. The organic layers were dried over Na₂SO₄, filtered, and evaporated to provide Compound 52 (7.00 g). The recovered Compound 52 was used in the next step without further purification. m/z: 415.0 (M+H)+.

[0519] The skilled practitioner will recognize that the procedure outlined in Scheme 19 can be used to prepare a variety of compounds analogous to Compounds 51 and 52. For example, amines analogous to Compound 9 can be reacted with the appropriate amino ester analogous to Compound 50:

\[
\text{R}^8\text{-Y-NH} \quad + \quad \text{HN}^\text{O}^\text{Me} \quad \text{R}^7\text{R}^1\text{Y-N-CO-OMe} \\
\text{Compd 9 Analog} \quad \text{Compd 50 Analog}
\]

to form compounds analogous to Compound 51, which are further reacted to form compounds analogous to Compound 52:

\[
\begin{align*}
\text{R}^8\text{-Y-N-CO-OMe} \quad \overset{\text{II}}{\rightarrow} \quad \text{R}^8\text{-Y-N-CO-OH} \\
\text{Compd 51 Analogs} \quad \text{Compd 52 Analogs}
\end{align*}
\]

wherein R₁, R₂, R₇, R₈ and Y are as defined herein.

[0520] It will also be recognized that stereochemical configurations other than those shown (i.e., enantiomers or diastereomers) can be prepared by the selection of analogs of Compound 50 having the appropriate stereochemical configuration at the chiral center.

Example Q

[0521] Compound 52 (2.57 g, 6.21 mmol) was dissolved in THF (67 mL). Compound 8 (2.10 g, 5.13 mmol) was added, followed by HOBt (1.04 g, 7.70 mmol), i-Pr₂NEt (3.67 mL, 20.52 mmol), and EDC (1.82 mL, 10.26 mmol). The mixture was stirred at 25°C for 12 hours. The solvent was removed under reduced pressure. The residue was diluted with ethyl acetate and washed sequentially with saturated aqueous Na₂CO₃, water, and brine. The organic phase was dried over Na₂SO₄, filtered, and evaporated. Purification by flash column chromatography (stationary phase: silica gel; eluent: 5% iPrOH/CH₂Cl₂) gave Example Q (3.02 g). m/z: 806.2 (M+H)+.

Example R

[0522] Example Q (3.02 g, 3.74 mmol) was suspended in 4.0 N HCl/dioxane solution (30 mL) and stirred at 25°C for
3 hours. Solvent was removed under reduced pressure and Et₂O was poured into the reaction mixture. The resulting suspension was stirred vigorously for 1.5 hours. The solid was allowed to settle and the ether layer was decanted. Washing of the precipitate with Et₂O was repeated two more times. The product was dried *in vacuo* to afford a white solid (3.18 g, quantitative yield). Saturated aqueous Na₂CO₃ solution was added to above solid (3.18 g) with stirring until solid disappeared. The aqueous solution was extracted with ethyl acetate. The organic phases were dried over Na₂SO₄, filtered, and evaporated to afford Example R as a yellow foam (2.44 g, 81%). The recovered Example R was used without further purification in the next step. m/z: 706.1 (M+H)+.

Example S

Method I:

[0523] Example R (1.00 g, 1.42 mmol) was dissolved in DMF (20 mL) and bromoethyl ether (196 μL, 1.56 mmol) was added dropwise, followed by NaHCO₃ (0.239 g, 2.84 mmol). The reaction mixture was stirred at 25°C for 2 hours. The solution was heated to 65°C and stirred for 12 hours. The solvent was removed under reduced pressure. The residue was diluted with EtOAc and washed sequentially with water and brine. The organic phase was dried over Na₂SO₄ filtered, and evaporated. Purification by reverse-phase HPLC (Phenomenex Synergi® Comb-HTS column, eluent: 5-95% CH₃CN/water) gave Compound 70 (580 mg, 53%). ¹H NMR (CDCl₃) δ 8.98 (s, 1H); 7.90 (s, 1H); 7.75 (m, 1H); 7.40-7.00 (m, 11H), 6.55 (br s, 1H); 5.58 (m, 1H); 5.28, 5.19 (d, J=14 Hz, 2H); 4.70-4.37 (m, 3H); 3.99 (m, 5H); 3.76 (br s, 1H); 3.65-3.30 (m, 3H); 2.97 (m, 5H); 2.90-2.60 (m, 6H); 2.28 (br s, 1H); 1.91 (br s, 1H); 1.60-1.30 (m, 10H). m/z: 776.2 (M+H)+

Method II:

[0524] Compound 54

![Scheme 20](image-url)

I. NaIO₄, H₂O

Compound 54

[0525] Compound 54 was prepared following the procedure described in J. Med. Chem. 1993, 36, 1384 (herein incorporated by reference in its entirety for all purposes).

[0526] To solution of Compound 53 (0.550 g, 5.28 mmol) (Sigma-Aldrich) in H₂O (8.8 mL) at 0°C was added NaIO₄ (1.016 g, 4.75 mmol). The mixture was allowed to slowly warm to 25°C and stirred for 12 hours. Solid NaHCO₃ was added to the reaction mixture until pH 7. CHCl₃ (16 mL) was added and the mixture was allowed to stir for 5 minutes. The mixture was filtered and the solid was washed with CHCl₃ (6 mL). The combined H₂O/CHCl₃ solution was used directly in the next step without further purification.
Example S

[0527] To a solution of Example R (70 mg, 0.1 mmol) in CH$_3$CN (5 mL) was added sodium cyanoborohydride (50 mg) in water (5 mL). To the above mixture was added a solution of dialdehyde Compound 54 (0.6 mmol) in CHCl$_3$/H$_2$O (4 mL/1 mL). The mixture was stirred for 12 hours, and basified with saturated Na$_2$CO$_3$ solution. The mixture was extracted with EtOAc, and organic phase was washed with water and brine, and dried over Na$_2$SO$_4$. Purification by reverse-phase HPLC (Phenomenex Synergi® Comb-HTS column) gave Example S (57 mg).

Method III

[0528]
Compound 55

[0529] Compound 51 (0.28 g, 0.66 mmol) was dissolved in CH$_2$Cl$_2$ (4 mL) and TFA (1 mL) was added dropwise. The reaction was allowed to stir at 25°C for 1 hour. The solvent was removed under reduced pressure to afford Compound 55 (0.39 g). m/z: 329.0 (M+H)$^+$. 

Compound 56

[0530] To a solution of Compound 55 (0.39 g, 0.89 mmol) in CH$_3$CN (45 mL) was added NaBH$_3$CN (0.45 g, 7.12 mmol) and H$_2$O (45 mL). A solution of Compound 54 (0.55 g, 5.34 mmol) in CHCl$_3$/H$_2$O (40 mL) was added. The mixture was stirred at 25°C for 12 hours. The reaction mixture was made basic with saturated aqueous Na$_2$CO$_3$ and extracted sequentially with ethyl acetate and dichloromethane. The combined organic layers were washed sequentially with H$_2$O and brine, dried over Na$_2$SO$_4$, filtered, and evaporated. Purification by Combiflash® (stationary phase: silica gel; eluent: 0-10% MeOH/CH$_2$Cl$_2$ gradient) gave Compound 56 (0.17 g). m/z: 399.1 (M+H)$^+$. 

Compound 57

[0531] Compound 56 (377 mg, 0.95 mmol) was dissolved in THF (4 mL) and 1M aqueous LiOH (1.90 mL) was added. The mixture was stirred at 25°C for 1 hour. The reaction was neutralized with 1M HCl. THF was removed under reduced pressure and the aqueous solution was lyophilized to afford Compound 57 (365 mg). The material was used directly in the next step without further purification. m/z: 385.1 (M+H)$^+$.
Example S

Example S (185 mg, 57%) was prepared following the same procedure as for Example Q, except that Compound 57 (160 mg, 0.42 mmol) was used instead of Compound 52. mass m/z: 776.2 (M+H)+.

The skilled practitioner will recognize that the procedure outlined in Scheme 22 can be used to prepare a variety of compounds analogous to Compounds 55-57:

\[ \text{Cmpd 51 Analogs} \xrightarrow{\text{I}} \text{Cmpd 55 Analogs} \]
\[ \xrightarrow{\text{II}} \text{Cmpd 56 Analogs} \xrightarrow{\text{III}} \text{Cmpd 57 Analogs} \]

I. TFA, CH2Cl2; II. Ex. R, NaBH3CN, H2O/CH3CN; III. LiOH, THF/H2O

wherein \( R^7, R^8 \) and \( Y \) are as defined herein.

It will also be recognized that stereochemical configurations other than those shown (i.e., enantiomers or diastereomers) can be prepared by the selection of analogs of Compound 51 having the appropriate stereochemical configuration at the chiral center.

Method IV
To a solution of Compound 122 (33 g, 112 mmol) (see Scheme 69) in ethanol (366 mL) at 0°C was added a solution of sodium hydroxide (4.7 g, 117 mmol) in water (62 mL). The mixture was stirred for one hour at 25°C, and solvents were removed under reduced pressure. The mixture was coevaporated with ethanol (3x400 mL), and dried at 60°C for two hours under high vacuum to give a white solid. To the solution of above solid in DMF (180 mL) was added benzyl bromide (16.2 mL, 136 mmol). The mixture was stirred for 16 hours under darkness, and was quenched with water (300 mL). The mixture was extracted with EtOAc (4x300 mL). The combined organic phase was washed with water (5x) and brine, and dried over Na₂SO₄. Concentration gave Compound 59 (48 g), which was used in the next step without further purification.

A mixture of Compound 59 (33 g, 74 mmol) in DMSO (225 mL) and Et₃N (36 mL) was stirred for 30 minutes. The mixture was cooled to 0-10°C, SO₃-pyridine (45 g) was added, and the stirring was continued for 60 minutes. Ice (300 g) was added, and the mixture was stirred for 30 minutes. EtOAc (300 mL) was added and sat. Na₂CO₃ was added until pH was 9-10. The organic phase was separated from the aqueous phase, and the aqueous phase was extracted with EtOAc (2x300 mL). The combined organic phases were washed with sat Na₂CO₃ (2x), water (3x), and brine. The mixture was dried over Na₂SO₄ and concentrated to give Compound 60 (32 g), which was used directly in next step without further purification.

To a solution of Compound 60 (32 g) in CH₃CN (325 mL) was added morpholine (12.9 mL, 148 mmol), with a water bath around the reaction vessel, followed by HOAc (8.9 mL, 148 mmol), and NaBH(OAc)₃ (47 g, 222 mmol). The mixture was stirred for 12 hours. CH₃CN was removed under reduced pressure, and the mixture was diluted with EtOAc (300 mL). Sat. Na₂CO₃ was added until the pH was 9-10. The organic phase was separated from the aqueous phase, and the aqueous phase was extracted with EtOAc (2x300 mL). The combined organic phases were washed with sat Na₂CO₃ (2x), water (3x), and brine (1x). The mixture was dried over Na₂SO₄. The resulting residue was concentrated and purified by silica gel column chromatography (EtOAc to DCM/iPrOH =10/1) to give Compound 61 (30 g).

To a solution of Compound 61 (26.5 g, 56 mmol) in ethanol (160 mL) at 0°C was added a solution of sodium hydroxide (2.5 g, 62 mmol) in water (30 mL). The mixture was stirred for one hour at 25°C, and solvents were removed.
under reduced pressure. The mixture was diluted with water (200 mL), and was washed with CH₂Cl₂ (6x100 mL). The water phase was acidified with 12 N HCl (5.2 mL), and was dried under reduced pressure to give Compound 57 (22 g).

Example S

[0540] Compound 57 was converted to Example S using the procedure described in Method III, above.

Preparation of Compounds T and U

Example T

Method I

[0541] The hydrochloride salt of Example R (100 mg, 0.13 mmol) was suspended in CH₂Cl₂ (2 mL) and dissolved by addition of iPr₂NEt (69 μL). Acetyl chloride (11 μL) was added dropwise and the mixture was allowed to stir at 25°C for 4 hours. The solvent was removed in vacuo. Purification of the residue by flash column chromatography (stationary phase: silica gel; eluent: 8% iPrOH/CH₂Cl₂) gave Example T (39 mg, 40%). m/z: 748.2 (M+H)+. ¹H NMR (CDCl₃) δ 8.85 (s, 1H); 7.87 (s, 1H); 7.73 (s, 1H); 7.40-7.00 (m, 13H); 6.45 (br s, 1H); 5.70 (m, 1H); 5.32, 5.22 (dAB, J=13 Hz, 2H); 4.51 (s, 2H); 4.20-3.90 (m, 4H); 3.78 (m, 1H); 3.38 (m, 2H); 3.20-2.50 (m, 8H); 1.95 (s, 4H); 1.82 (m, 2H); 1.41 (m, 6H).

Method II

[0542] Saturated aqueous Na₂CO₃ solution was added to the hydrochloride salt of Example R (3.18 g, 3.46 mmol) while stirring until the solid disappeared. The aqueous solution was extracted with ethyl acetate. The organic phases were dried over Na₂SO₄, filtered, and evaporated to afford Example R as a yellow foam (2.44g, 81%). This material was used without further purification in the next step. m/z: 706.1 (M+H)+.

Example T

Method II

[0543] Saturated aqueous Na₂CO₃ solution was added to the hydrochloride salt of Example R (3.18 g, 3.46 mmol) while stirring until the solid disappeared. The aqueous solution was extracted with ethyl acetate. The organic phases were dried over Na₂SO₄, filtered, and evaporated to afford Example R as a yellow foam (2.44g, 81%). This material was used without further purification in the next step. m/z: 706.1 (M+H)+.

[0544] Example R (300 mg, 0.43 mmol) was dissolved in THF (5.5 mL). Acetic acid (37 μL, 0.64 mmol) was added, followed by HOBt (85 mg, 0.64 mmol), iPr₂NEt (304 μL, 1.70 mmol), and EDC (151 μL, 0.85 mmol). The reaction mixture was allowed to stir at 25°C for 12 hours. The solvent was removed under reduced pressure. The residue was diluted with EtOAc and washed sequentially with saturated aqueous Na₂CO₃, water, and brine. The organic phase was dried over Na₂SO₄, filtered, and evaporated. Purification by Combiflash® (stationary phase: silica gel; eluent: 10% MeOH/CH₂Cl₂) gave Example T (249 mg, 77%). m/z: 748.2 (M+H)+.
Example U

[0545] Example R (100 mg, 0.13 mmol) was suspended in CH$_2$Cl$_2$ (2 mL) and dissolved by addition of iPr$_2$NEt (69 μL). Methanesulfonyl chloride (12 μL) was added dropwise and the mixture was allowed to stir at 25°C for 4 hours. The solvent was removed in vacuo. Purification of the residue by flash column chromatography (stationary phase: silica gel; eluent: 8% iPrOH/CH$_2$Cl$_2$) gave Example U (55 mg, 54%). m/z: 784.2 (M+H)$^+$. $^1$H NMR (CDCl$_3$) $\delta$ 8.90 (s, 1H); 7.88 (s, 1H); 7.40-7.00 (m, 12H); 6.54 (br s, 1H); 6.19 (br s, 1H); 5.25 (s, 2H); 4.53 (s, 2H); 4.38 (m, 1H); 4.12 (m, 1H); 3.79 (m, 1H); 3.48 (m, 1H); 2.99 (s, 3H); 2.90 (m, 3H); 2.73 (m, 6H); 2.00 (m, 1H); 1.79 (m, 1H); 1.60-1.18 (m, 10H).

[0546]

Preparation of Examples V, W, X and Y

[0547] Example V (692 mg) was prepared following the same procedure used for preparing Example Q, except that Compound 46 was used instead of Compound 8. m/z: 806.2 (M+H)$^+$. 

Scheme 25

Example V

[0547] Example V (692 mg) was prepared following the same procedure used for preparing Example Q, except that Compound 46 was used instead of Compound 8. m/z: 806.2 (M+H)$^+$. 

Compounds:
Ex. X: X=NHAc
Ex. Y: X=NHMs
Example W

[0548] Example W (770 mg, quantitative yield) was prepared following the same procedure for Example R except that Example V was used instead of Example Q. m/z: 706.2 (M+H)+. 1H NMR (CD3OD) b 9.86 (s, 1H); 8.23 (s, 1H); 7.66 (s, 1H); 7.40-7.00 (m, 10H); 5.29, 5.17 (d, J=13 Hz, 2H); 4.80-4.60 (m, 2H); 4.18 (s, 2H); 4.26 (m, 2H); 3.67 (br s, 1H); 3.55 (m, 2H); 3.03 (m, 3H); 2.90-2.60 (m, 8H); 2.53 (s, 2H); 2.00-1.80 (m, 2H); 1.85-1.30 (m, 10H).

Example X

Method I

[0549] Example X (107 mg, 55%) was prepared following the Method I procedure for Example T except that Example W was used instead of Example R. m/z: 748.2 (M+H)+. 1H NMR (CDCl3) b 8.80 (s, 1H); 7.85 (s, 1H); 7.40 (m, 1H); 7.38-7.00 (m, 10H); 6.94 (s, 1H); 6.30 (m, 2H); 5.75 (m, 1H); 5.30, 5.23 (d, J=13 Hz, 2H); 4.54, 4.46 (d, J=8 Hz, 2H); 4.20-3.90 (m, 2H); 3.74 (br s, 1H); 3.46 (br s, 1H); 3.28 (m, 1H); 2.98 (s, 3H); 2.83 (m, 3H); 2.72 (m, 1H); 2.62 (m, 1H); 2.05-1.20 (m, 15H).

Method II

[0550] Example X (205 mg, 65%) was prepared following the Method II procedure for Example T except that Example W was used instead of Example R. m/z: 748.2 (M+H)+.

Example Y

[0551] Example Y (106 mg, 50%) was prepared following the same procedure for Example U, except that Example W was used instead of Example R. m/z: 784.2 (M+H)+. 1H NMR (CDCl3) b 8.81 (s, 1H); 7.85 (s, 1H); 7.40-7.05 (m, 10H); 6.98 (s, 1H); 6.22 (br s, 1H); 5.78 (s, 1H); 5.25 (m, 4H); 4.29 (m, 2H); 4.33 (br s, 1H); 4.12 (br s, 1H); 3.77 (br s, 1H); 3.10 (br s, 1H); 2.98 (s, 3H); 2.90 (s, 3H); 2.73 (m, 6H); 2.00-1.20 (m, 12H).

Preparation of Examples Z-AD

[0552]
Compound 62

Tert-butyl 2-aminoethylcarbamate (62) is commercially available from Aldrich, and was used without further purification.

Compound 63

To a solution of Compound 62 (2.0 mmol) in CH$_3$CN (15 mL) was added Compound 16 (1.82 mmol), followed by the addition of N,N-diisopropylethylamine (0.61 mL). The mixture was stirred at 25°C for 12 hours. The solvent was removed in vacuo, and the residue was diluted with ethyl acetate and washed sequentially with saturated aqueous Na$_2$CO$_3$, water, and brine. The organic layers were dried with Na$_2$SO$_4$, filtered, and evaporated. Purification by Combiflash® (stationary phase: silica gel; eluent: 25-100% EtOAc/hexane gradient) gave Compound 63. m/z: 301.9 (M+H)$^+$.  

Compound 64

To a solution of Compound 63 (1.05 mmol) in EtOAc (3 mL) was added 4N HCl/dioxane solution (1.1 mL). The mixture was allowed to stir at 25°C for 12 hours. The solvent was removed under reduced pressure, and Compound 64 was obtained as a white powder. This material was used in the next step without further purification. m/z: 216.0 (M+H)$^+$.  

Example Z

Compound 64 (70 mg, 0.29 mmol) was dissolved in THF (2.2 mL). Compound 29 (91 mg, 0.29 mmol) was added to the reaction flask as a 1.0 M solution in THF, followed by HOBt (59 mg, 0.44 mmol), N,N-diisopropylethylamine (207 µL, 1.16 mmol), and EDC (103 µL, 0.58 mmol). The reaction was allowed to stir for 12 hours at 25°C and concentrated under reduced pressure. The residue was diluted with EtOAc and washed sequentially with saturated aqueous Na$_2$CO$_3$, water, and brine. The organic layers were dried with Na$_2$SO$_4$, filtered, and evaporated. Purification by Combiflash® (stationary phase: silica gel; eluent: 0-10% MeOH/CH$_2$Cl$_2$ gradient) gave Example Z (54 mg, 38%). m/z: 497.1 (M+H)$^+$.  
$^1$H NMR (CDCl$_3$) δ 8.78 (s, 1H); 7.83 (s, 1H); 6.99 (s, 1H); 6.80 (br s, 1H); 6.22 (br s, 1H); 5.87 (br s, 1H); 5.25 (s, 2H).
Example AA

[0557] Example AA was prepared following the procedures for steps I-III (Scheme 20) for Example Z, with the exception that tert-butyl 3-aminopropylcarbamate was used instead of tert-butyl 2-aminoethylcarbamate (Compound 62). After Combiflash® purification, 38 mg (34%) of Example AA was obtained. m/z: 511.1 (M+H)+. 1H NMR (CDCl3) δ 8.78 (s, 1H); 7.84 (s, 1H); 7.60 (br s, 1H); 5.80 (m, 1H); 5.26 (m, 2H); 4.44 (s, 2H); 4.09 (m, 1H); 3.40-3.10 (m, 5H); 2.97 (s, 3H); 2.20 (m, 1H); 1.60 (m, 2H); 1.36 (d, J=7 Hz, 6H); 0.96 (d, J=7 Hz, 6H).

Example AB

[0558] Example AB was prepared following the procedures for steps I-III (Scheme 20) for Example Z, with the exception that tert-butyl 1-piperazinecarboxylate was used instead of tert-butyl 2-aminoethylcarbamate (Compound 62). After Combiflash® purification, 64 mg (45%) of Example AB was obtained. m/z: 523.1 (M+H)+. 1H NMR (CDCl3) δ 8.82 (s, 1H); 7.89 (s, 1H); 6.96 (s, 1H); 5.93 (br s, 1H); 5.35 (s, 2H); 4.62 (m, 1H); 4.50 (m, 2H); 3.80-3.40 (m, 8H); 3.34 (m, 1H); 3.00 (s, 3H); 1.97 (m, 1H); 1.40 (d, J=7 Hz, 6H); 0.96, 0.93 (d, J=7 Hz, 6H).

Example AC

[0559] Example AC was prepared following the procedures for steps I-III (Scheme 20) for Example Z, with the exception that tert-butyl 4-amino-1-piperidinocarboxylate was used instead of tert-butyl 2-aminoethylcarbamate (Compound 62). After Combiflash® purification, 60 mg (44%) of Example AC was obtained. m/z: 537.1 (M+H)+. 1H NMR (CDCl3) δ 8.82 (s, 1H); 7.87 (s, 1H); 6.97 (s, 1H); 5.82 (br s, 1H); 5.30 (m, 3H); 4.80-4.40 (m, 5H); 4.03 (m, 1H); 3.72 (br s, 1H); 3.34 (m, 1H); 3.18 (m, 1H); 3.01 (s, 3H); 2.79 (m, 1H); 2.20-1.90 (m, 4H); 1.40 (d, J=7 Hz, 6H); 0.97, 0.90 (d, J=7 Hz, 6H).

Example AD

[0560] Example AD was prepared following the procedures I-III for Example Z, with the exception that tert-butyl 4-piperidinylcarbamate was used instead of tert-butyl 2-aminoethylcarbamate (Compound 62). After Combiflash® purification, 49 mg (36%) of Example AD was obtained. m/z: 537.1 (M+H)+. 1H NMR (CDCl3) δ 8.78 (s, 1H); 7.87 (s, 1H); 7.01 (s, 1H); 6.33 (br s, 1H); 6.11 (br s, 1H); 5.32 (s, 2H); 4.47 (s, 2H); 4.20-3.80 (m, 4H); 3.35 (m, 1H); 3.10-2.80 (m, 6H); 2.21 (m, 2H); 1.90 (m, 2H); 1.40 (d, J=7 Hz, 6H); 0.97 (d, J=7 Hz, 6H).

Preparation of Examples AE-AG

[0561]
Compound 65 is commercially available from Chem Impex International, and was used without further purification.

Compound 66 (956 mg, 4.0 mmol) was dissolved in CH$_2$Cl$_2$ (45 mL) and 1,1-carbonyldiimidazole (648 mg,
4.0 mmol) was added, followed by i-Pr₂NEt (2.8 mL, 16 mmol). The solution was stirred at 25°C for 12 hours. Compound 9 (679 mg, 4.0 mmol) was dissolved in CH₂Cl₂ (5 mL) and added to the reaction. The mixture was allowed to stir for 5 hours. Then, the solvent was removed under reduced pressure. The residue was diluted with ethyl acetate and filtered through celite. The ethyl acetate was then removed in vacuo. Purification by flash column chromatography (stationary phase: silica gel; eluent: EtOAc) gave Compound 66 (841 mg). m/z: 400.0 (M+H)*.

Compound 67

[0564] Compound 66 (841 mg, 2.11 mmol) was dissolved in THF (9 mL) and 2N aqueous NaOH was added. The solution was stirred at 25°C for 2 hours. The reaction was adjusted to pH 2 with 1N HCl. The mixture was extracted with ethyl acetate, dried over Na₂SO₄, filtered, and evaporated. Compound 67 (772 mg) was used directly in the next step without further purification. m/z: 386.0 (M+H)*.

Example AE

[0565] Compound 67 (569 mg, 1.48 mmol) was dissolved in THF (17 mL). Compound 8 (970 mg, 2.37 mmol) was added, followed by HOBt (300 mg, 2.22 mmol), i-Pr₂NEt (1.06 mL, 5.92 mmol), and EDC (0.52 mL, 2.96 mmol). The mixture was stirred at 25°C for 36 hours. The solvent was removed under reduced pressure. The resulting residue was diluted with ethyl acetate and washed sequentially with saturated aqueous Na₂CO₃, water, and brine. The organic phase was dried over Na₂SO₄, filtered, and evaporated. Purification by flash column chromatography (stationary phase: silica gel; eluent: 8% iPrOH/CH₂Cl₂) gave Example AE (3.02 g). m/z: 777.2 (M+H)*.

Example AF

[0566] Example AE (100 mg, 0.13 mmol) was dissolved in neat TFA (3 mL). The mixture was stirred at 25°C for 2 hours. The solvent was removed under reduced pressure. Purification by reverse-phase HPLC (Phenomenex Synergi® Comb-HTS column, eluent: 5-95% CH₃CN/H₂O gradient) gave Example AF (20 mg, 21%). m/z: 721.2 (M+H)*. ¹H NMR (CDCl₃) b 8.92 (s, 1H); 7.91 (s, 1H); 7.40-7.00 (m, 11H); 6.41 (br r s, 1H); 6.12 (br s, 1H); 5.40-5.00 (m, 3H); 4.70-4.50 (m, 3H); 4.05 (br s, 1H); 3.81 (br s, 1H); 3.51 (br s, 1H); 2.97 (s, 3H); 2.90-2.60 (m, 6H); 1.41 (d, J=7 Hz, 10H).

Example AG

[0567] Example AF (70 mg, 0.10 mmol) was dissolved in dioxane (0.5 mL). DMF (83 μL), pyridine (25 μL, 0.29 mmol), di-tert-butyldicarbonate (27 mg, 0.13 mmol), and ammonium bicarbonate (15 mg, 0.19 mmol) were added. The mixture was stirred at 25°C for 48 hours, then diluted with ethyl acetate and washed sequentially with water and brine. The organic phase was dried over Na₂SO₄, filtered, and evaporated. Purification by reverse-phase HPLC (Phenomenex Synergi® Comb-HTS column, eluent: 5-95% CH₃CN/H₂O gradient) gave Example AG (35 mg, 50%). ¹H NMR (CDCl₃) b 8.80 (s, 1H); 7.84 (s, 1H); 7.40-7.00 (m, 10H); 7.08 (s, 1H); 6.83 (m, 1H); 6.65 (m, 1H); 5.40-5.10 (m, 4H); 4.60-4.40 (m, 3H); 4.06 (m, 1H); 3.79 (m, 1H); 3.36 (m, 1H); 2.97 (s, 3H); 2.90-2.60 (m, 6H); 2.45 (m, 1H); 1.70-1.20 (m, 10H).

Preparation of Compounds 68 and 69

[0568]
Compound 15 is commercially available from Molekula, and was used without further purification.

**Compound 68**

[0569] Compound 15 (6.81 g, 59.1 mmol) was dissolved in CH$_3$CN (340 mL) and methanesulfonyl chloride (7.03 mL, 65.1 mmol) was added, followed by triethylamine (9.03 mL, 65.1 mmol). After the mixture was stirred for 20 min, 40% wt. methylamine/water (516 mL) was added to the reaction mixture. The solution was stirred for 12 hours at 25°C. Solvent was removed under reduced pressure and the residue was partitioned between saturated aqueous Na$_2$CO$_3$ and CH$_2$Cl$_2$. The organic phase was separated, dried over Na$_2$SO$_4$, filtered, and evaporated. Purification by flash chromatography (stationary phase: silica gel; eluent: 0-10% MeOH/CH$_2$Cl$_2$ gradient) gave Compound 68 (5.07 g). m/z: 128.9 (M+H)$^+$. 

**Compound 69**

[0570] Compound 15 (10.0 g, 80 mmol) was dissolved in CH$_3$CN (500 mL) and methanesulfonyl chloride (7.0 mL, 88 mmol) was added, followed by triethylamine (12.3 mL, 88 mmol). After the mixture was stirred for 2h, cyclopropylamine (140 mL, 2000 mmol) in CH$_3$CN (500 mL) was added to the reaction mixture. The solution was stirred for 36 hours at 25°C. Solvent was removed under reduced pressure and the slurry was partitioned between saturated aqueous Na$_2$CO$_3$ and 3:1 CH$_2$Cl$_2$:i-PrOH. The organic phase was separated, dried over Na$_2$SO$_4$, filtered, and evaporated. Compound 69 (12.81 g) was used in the next step without further purification. m/z: 155.0 (M+H)$^+$. 

**Preparation of Examples AH and AI**

[0571] Compound 15 (10.0 g, 80 mmol) was dissolved in CH$_3$CN (500 mL) and methanesulfonyl chloride (7.0 mL, 88 mmol) was added, followed by triethylamine (12.3 mL, 88 mmol). After the mixture was stirred for 2h, cyclopropylamine (140 mL, 2000 mmol) in CH$_3$CN (500 mL) was added to the reaction mixture. The solution was stirred for 36 hours at 25°C. Solvent was removed under reduced pressure and the slurry was partitioned between saturated aqueous Na$_2$CO$_3$ and 3:1 CH$_2$Cl$_2$:i-PrOH. The organic phase was separated, dried over Na$_2$SO$_4$, filtered, and evaporated. Compound 69 (12.81 g) was used in the next step without further purification. m/z: 155.0 (M+H)$^+$. 

**Scheme 29**
Compound 68 (1.00 g, 7.80 mmol) was dissolved in THF (25 mL) and Compound 10e (2.51 g, 7.09 mmol) was added, followed by N,N-dimethaminopyridine (200 mg, 1.63 mmol), and triethylamine (4.34 mL, 31.2 mmol). The mixture was allowed to stir at 60 °C for 6 hours. Solvent was removed under reduced pressure. The residue was diluted with ethyl acetate and washed sequentially with saturated aqueous Na$_2$CO$_3$, H$_2$O, and brine. The organic layer was dried over Na$_2$SO$_4$, filtered, and evaporated. The resulting residue was purified by Combiflash® (stationary phase: silica gel; eluent: 20-100% EtOAc/Hexane gradient) to give Compound 70 (2.14 g). m/z: 343.9 (M+H)$^+$. 

Compound 71

Compound 70 (2.14 g, 6.23 mmol) was dissolved in THF (25 mL) and 1M aqueous LiOH (12.5 mL) was added. The mixture was stirred at 25°C for 2 hours. The reaction was quenched with 1M HCl (15 mL) and the mixture was adjusted to pH 2. The mixture was extracted with ethyl acetate. The organic layers were dried over Na$_2$SO$_4$, filtered, and evaporated to provide Compound 71 (1.96 g). This material was used in the next step without further purification. 

Example AH

Compound 71 (43 mg, 0.13 mmol) was dissolved in THF (1.5 mL). Compound 8 (50 mg, 0.12 mmol) was added, followed by HOBt (24 mg, 0.18 mmol), iPr$_2$NEt (86 μL, 0.48 mmol), and EDC (42 μL, 0.24 mmol). The mixture was stirred at 25°C for 12 hours. The solvent was removed under reduced pressure, and the resulting residue was diluted with ethyl acetate and washed sequentially with saturated aqueous Na$_2$CO$_3$, water, and brine. The organic phase was dried over Na$_2$SO$_4$, filtered, and evaporated. Purification by flash column chromatography (stationary phase: silica gel; eluent: 1-10% MeOH/CH$_2$Cl$_2$ gradient) gave Example AH (66 mg). m/z: 721.2 (M+H)$^+$.
Example AH (66 mg, 0.09 mmol) was dissolved in TFA and allowed to stir at 25 °C for 3 hours. The solvent was removed under reduced pressure and the residue was diluted with THF (3 mL) and 2N aqueous NaOH was added until pH 12. The mixture was allowed to stir for 20 min and extracted with EtOAc. The organic layer was washed sequentially with water and brine, dried over Na2SO4, filtered, and evaporated. Purification by flash chromatography (stationary phase: silica gel; eluent: 0-20% i-PrOH/CH2Cl2 gradient) gave Example AI (71 mg, 97%). m/z: 665.2 (M+H)+.

1H NMR (CDCl3) δ 8.84 (s, 1H); 8.80 (s, 1H); 7.85 (s, 1H); 7.79 (s, 1H); 7.40-7.00 (m, 10H); 6.69 (m, 1H); 5.34 (m, 1H); 5.24 (s, 2H); 4.86 (m, 2H); 4.73, 4.59 (d, J=16 Hz, 2H); 4.30 (s, 1H); 4.15 (m, 2H); 3.86 (br s, 1H); 2.88 (s, 3H); 2.85-2.60 (m, 4H); 2.01 (s, 1H); 1.58 (s, 2H); 1.44 (s, 2H); 1.09 (d, J= 6 Hz, 3H).

Preparation of Examples AJ and AK

[0578] Compound 47

Compound 47 is commercially available from TCI America, and was used without further purification.
Compound 72

[0579] Compound 72 was prepared following procedure for Compound 48 (Method II), except that Compound 68 was used instead of Compound 9.

Compound 73

[0580] Compound 73 was prepared following procedure for Compound 49, except that Compound 72 was used instead of Compound 48.

Example AJ

[0581] Example AJ (70 mg) was prepared following the same procedure used to prepare Example AH, with the exception that Compound 73 (41 mg, 0.13 mmol) was used instead of Compound 71. m/z: 707.2 (M+H)^+.

Example AK

[0582] Example AK (43 mg, 67%) was prepared following the same procedure used to prepare Example AI, with the exception that Example AJ (70 mg, 0.10 mmol) was used instead of Example AH. m/z: 651.2 (M+H)^+. ^1H NMR (CDCl3) b 8.83 (s, 2H); 7.84 (s, 1H); 7.79 (s, 1H); 7.40-7.00 (m, 10H); 6.65 (br s, 1H); 5.47 (br s, 1H); 5.24 (s, 2H); 4.90 (m, 1H); 4.82-4.50 (m, 2H); 4.30-4.00 (m, 3H); 3.84 (br s, 1H); 3.49 (m, 1H); 2.87 (s, 3H); 2.75 (br s, 5H); 1.60-1.20 (m, 4H).

Preparation of Examples AL and AM

[0583]
Compound 74

[0584] Compound 69 (1.56 g, 10.1 mmol) was dissolved in CH₂Cl₂ (10 mL). Compound 47 (1.7 g, 8.5 mmol) in CH₂Cl₂ (20 mL) was added, followed by iPr₂NEt (3.02 mL, 16.9 mmol). The reaction was stirred at 25 °C for 12 hours. The solvent was removed under reduced pressure. The residue was diluted with ethyl acetate and washed sequentially with water and brine, dried over Na₂SO₄, filtered, and evaporated. Purification by Combiflash® (stationary phase: silica gel; eluent: 50-100% EtOAc/hexane gradient) gave Compound 74 (2.92 g). m/z: 356.0 (M+H)+.

Compound 75

[0585] Compound 74 (0.97 mmol) was taken up in THF (3 mL) and treated with freshly prepared 1M LiOH (2 mmol) and stirred vigorously for 1 h. The reaction was quenched with 1M HCl (2.5 mmol) and extracted with EtOAc (3 X 15 mL). The combined organics were washed with brine (25 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuo to produce 0.331 g (quant) of Compound 75 as a colorless film (m/z 342.0 (M+H)+).

Example AL

[0586] Example AL (2.20 g) was prepared following the same procedure used to prepare Example AH, with the exception that Compound 75 (2.00 g, 4.88 mmol) was used instead of Compound 71. m/z: 733.2 (M+H)+.
Example AM

[0587] Example AM (1.88 g, 92%) was prepared following the same procedure used to prepare Example Al, with the exception that Example AL (2.20 g, 3.01 mmol) was used instead of Example AH. m/z: 677.2 (M+H)+. 1H NMR (CDCl3)
b 8.79 (s, 1H); 8.72 (s, 1H); 7.82 (s, 1H); 7.77 (s, 1H); 7.40-7.00 (m, 10H); 6.59 (m, 1H); 6.31 (m, 1H); 5.23 (s, 2H); 5.00 (m, 1H); 4.72, 4.60 (d, J=15 Hz, 2H); 4.18 (s, 2H); 4.03 (m, 1H); 3.84 (br s, 1H); 3.48 (m, 1H); 2.85-2.60 (m, 4H); 2.37 (br s, 2H); 1.58 (s, 2H); 1.41 (s, 2H); 0.93 (m, 2H); 0.76 (m, 2H).

Scheme 32

Compound 76

[0588] Compound 76 (m/z 117.0 (M+H)+ of diamine) was prepared using a procedure similar to that used to prepare Compound 22 (described in Scheme 12) except that CBZ-L-alininol was used instead of CBZ-L-phenylalinol and Step III was performed with 1 M HCl added.

Compound 77

[0589] Compound 77 (m/z 145.0 (M+H)+ of diamine) was prepared using a procedure similar to that used to prepare Compound 76 except that (S)-(+-)2-CBZ-amino-1-butanol was used instead of CBZ-L-alininol.

Compound 78

[0590] Compound 76 (7.93 mmol) is added to a solution of NaOH (16.7 mmol) in H2O (5 mL) that is cooled to 0 °C and diluted with MeCN (40 mL). DIPEA is added (2.1 mL, 11.9 mmol). Compound 16 (7.9 mmol) is taken up in MeCN (40 mL) and added to the reaction solution dropwise via an addition funnel over 1 h. The resulting solution is allowed to warm to room temperature overnight. The solvent is removed in vacuo and the residue taken up in 3/1 CHCl3/IPA (50 mL). The resulting solution is washed with sat. Na2CO3 (50 mL) and water is added until the aqueous layer is homogeneous. The aqueous layer is extracted with 3/1 CHCl3/IPA (3 X 25 mL). The combined organics are washed with saturated Na2CO3 (50 mL), water (50 mL) and brine (50 mL) and are dried over anhydrous Na2SO4. The solvent is removed in vacuo and the residue purified by column chromatography on SiO2 (100% EtOAc, then 0 to 20% MeOH/DCM) to produce 0.63 g (31%) of 78 as an off-white solid. (m/z 258.0 (M+H)+).

Compound 79

[0591] Compound 79 (m/z 286.1 (M+H)+) was prepared following the procedure for Compound 78 except that Compound 77 was used instead of Compound 76.
Example AN

[0592] Example AN (68 mg) was prepared following the same procedure used to prepare Example AH, with the exceptions that Compound 49 (68 mg, 0.19 mmol) was used instead of Compound 71, and Compound 79 (50 mg, 0.18 mmol) was used instead of Compound 8. m/z: 625.2 (M+H)*.

Example AO

[0593] Example AO (66 mg, 76%) was prepared following the same procedure used to prepare Example AI, with the exception that Example AN (43 mg, 0.13 mmol) was used instead of Example AH. m/z: 569.2 (M+H)*. 1H NMR (CDCl₃) b 8.85 (s, 1H); 7.89 (s, 1H); 7.08 (s, 1H); 6.81 (m, 1H); 5.29 (s, 1H); 4.87 (m, 1H); 4.63, 4.48 (d, J=16 Hz, 2H); 4.31 (m, 1H); 4.11 (m, 1H); 3.76 (m, 2H); 3.44 (m, 2H); 3.02 (m, 4H); 1.60-1.20 (m, 14H); 1.00-0.70 (m, 6H).

Preparation of Examples AP and AQ

[0594]
Compound 13e

[0595] Compound 13e (1.39 g) was prepared following the same procedure used to prepare Compound 71, with the exception that Compound 12e (1.53 g, 3.97 mmol) was used instead of Compound 70 m/z: 372.0 (M+H)+.

Example AP

[0596] Example AP (87 mg) was prepared following the same procedure used to prepare Example AH, with the exception that Compound 13e (71 mg, 0.19 mmol) was used instead of Compound 71, and Compound 79 (50 mg, 0.18 mmol) was used instead of Compound 8. m/z: 639.2 (M+H)+.

Compound AQ

[0597] Example AQ (61 mg, 76%) was prepared following the same procedure used to prepare Example AI, with the exception that Example AP (87 mg, 0.14 mmol) was used instead of Example AH. m/z: 583.2 (M+H)+. 1H NMR (CDCl3) b 8.81 (s, 1H); 7.87 (s, 1H); 7.01 (s, 1H); 6.87 (m, 1H); 6.52 (s, 1H); 5.28 (m, 2H); 4.47 (m, 1H); 4.59, 4.43 (dAB, J=16 Hz, 2H); 4.45 (m, 1H); 4.17 (br s, 1H); 3.75 (br s, 1H); 3.52 (br s, 1H); 3.35 (br s, 1H); 3.01 (m, 3H); 2.07 (br s, 1H); 1.60-1.10 (m, 17H); 1.00-0.70 (m, 6H).

Preparation of Example AR

[0598]
Compound 80

Compound 80 is commercially available from Chem Impex International, and was used without further purification.

Compound 81

Compound 80 (2.0 g, 11.0 mmol) was dissolved in CH₂Cl₂ (170 mL) and 1,1-carbonyldiimidazole (1.78 g, 11.0 mmol) was added, followed by iPr₂NEt (7.83 mL, 43.8 mmol). The solution was allowed to stir at 25°C for 12 hours. Compound 9 (1.86 g, 11.0 mmol) was dissolved in 20 mL of CH₂Cl₂ and added to the reaction mixture. The solution was stirred at 25°C for 12 hours. The solvent was removed in vacuo and the residue was diluted with ethyl acetate and washed with water and brine. The organic layers were dried over Na₂SO₄, filtered, and evaporated. Purification by Combi-flash® (stationary phase: silica gel; eluent: 66-100% EtOAc/Hexane gradient) gave Compound 81 (0.252 mg). m/z: 343.0 (M+H)+.

Compound 82

Compound 82 (0.252 g, 0.74 mmol) was dissolved in THF (4 mL) and 1M aqueous LiOH (1.48 mL) was added. The mixture was stirred at 25°C for 3 hours. The reaction was quenched with 1M HCl (2 mL) and the mixture was adjusted to pH 2. The mixture was extracted with ethyl acetate. The organic layers were dried over Na₂SO₄, filtered, and evaporated to afford Compound 82 (0.18 g). This material was used in the next step without further purification. m/z: 329.1 (M+H)+.

Example AR

Compound 82 (182 mg, 0.55 mmol) was dissolved in THF (7.15 mL). Compound 46 (225 mg, 0.55 mmol) was added, followed by HOBt (112 mg, 0.83 mmol), iPr₂NEt (393 µL, 2.20 mmol), and EDC (194 µL, 1.10 mmol). The mixture was stirred at 25°C for 12 hours. The solvent was removed under reduced pressure. The residue was diluted ethyl
acetate and washed sequentially with saturated aqueous Na₂CO₃, water, and brine. The organic phase was dried over Na₂SO₄, filtered, and evaporated. Purification by flash column chromatography (stationary phase: silica gel; eluent: 5-10% MeOH/CH₂Cl₂ gradient) gave Example AR (208 mg, 53%). m/z: 720.2 (M+H)+. ¹H NMR (CDCl₃) b 8.80 (s, 1H); 7.84 (s, 1H); 6.83 (m, 1H); 6.65 (br s, 1H); 5.99 (m, 1H); 5.40-5.10 (m, 4H); 4.52 (m, 3H); 4.06 (m, 1H); 3.79 (m, 1H); 3.34 (m, 1H); 2.97 (s, 3H); 2.90-2.60 (m, 5H); 2.50-2.40 (br s, 1H); 1.80-1.20 (m, 10H).

Preparation of Example AS

[0603]

Scheme 36

I. DIPEA, CH₂Cl₂; II. LiOH, THF/H₂O; III. Cmpd. 8, HOBT, EDC, DIPEA, THF

Compound 85a

[0604] Compound 85a was prepared following the same procedure as Compound 4, except that 4-chloromethylthiazole (purchased from TCI America) was used instead of Compound 3, and methylamine was used instead of isopropylamine.

Compound 83

[0605] To compound 85a (0.40 g, 3.12 mmol) in CH₂Cl₂ (9 mL) was added N,N-diisopropylethylamine (1.04 mL, 5.85 mmol), followed by Compound 5 (280 µL, 1.95 mmol). The reaction mixture was stirred for 3.5 hours at 25 °C. Solvent was removed under reduced pressure. Purification by Combiflash® (stationary phase: silica gel; eluent: 90-100% EtOAc/Hexane gradient) gave Compound 83 (0.51 g). m/z: 286.0 (M+H)+.

Compound 84

[0606] Compound 83 (0.51 g, 1.77 mmol) was dissolved in THF (10 mL) and 1M aqueous LiOH (3.54 mL) was added. The mixture was stirred at 25°C for 2 hours. The reaction was quenched with 1M HCl (4.8 mL) and the mixture was adjusted to pH 2. The mixture was extracted with ethyl acetate. The organic layers were dried over Na₂SO₄, filtered, and evaporated to afford Compound 84 (0.430 g). This material was used in the next step without further purification. m/z: 272.0 (M+H)+.
Example AS

Compound 84 (150 mg, 0.55 mmol) was dissolved in THF (7.15 mL). Compound 8 (225 mg, 0.55 mmol) was added, followed by HOBT (112 mg, 0.83 mmol), iPr2NEt (393 μL, 2.20 mmol), and EDC (198 μL, 1.11 mmol). The mixture was stirred at 25°C for 12 hours. The solvent was removed under reduced pressure. The residue was diluted ethyl acetate and washed sequentially with saturated aqueous Na2CO3, water, and brine. The organic phase was dried over Na2SO4, filtered, and evaporated. Purification by flash column chromatography (stationary phase: silica gel; eluent: 7% i-PrOH/CH2Cl2) gave Example AS (219 mg, 60%). m/z: 663.1 (M+H)+. 1H NMR (CDCl3): δ 8.87 (s, 1H); 8.76 (s, 1H); 7.84 (s, 1H); 7.40-7.00 (m, 10H); 6.22 (br s, 1H); 5.73 (br s, 1H); 5.22 (m, 2H); 4.50 (m, 2H); 4.16 (br s, 1H); 4.05 (br s, 1H); 3.75 (m, 1H); 2.93 (s, 3H); 2.90-2.60 (m, 5H); 2.90 (m, 1H); 2.31 (m, 1H); 1.60-1.30 (m, 4H); 1.00-0.80 (m, 6H).

Preparation of Example AT

Compound 87 (386 mg) was prepared from Compound 86 following the same procedure used to prepare Compound 7 from Compound 6, except that Compound 68 was used instead of Compound 4. m/z 286.0 (M+H)+

Preparation of Example AU
Compound 85b

[0611] Compound 85b was prepared following the same procedure as Compound 4, except that 4-chloromethylthiazole (obtained from TCI America) was used instead of Compound 3.

Compound 88

[0612] Compound 88 (341 mg) was prepared following the same procedure used to prepare Compound 83, with the exception that Compound 85b (300 mg, 1.95 mmol) was used instead of Compound 85a. m/z: 312.0 (M+H)+.

Compound 89

[0613] Compound 89 (341 mg) was prepared following the same procedure for 84, with the exception that Compound 88 (293 mg, 0.99 mmol) was used instead of Compound 83. m/z: 298.0 (M+H)+.

Example AU

[0614] Example AU (226 mg, 64%) was prepared following the same procedure used to prepare Example AS, with the exception that Compound 89 (150 mg, 0.51 mmol) was used instead of Compound 84. m/z: 689.1 (M+H)+. 1H NMR (CDCl3) δ 8.87 (s, 1H); 8.74 (s, 1H); 7.83 (s, 1H); 7.40-7.00 (m, 10H); 6.21 (m, 1H); 5.73 (m, 1H); 5.29 (m, 1H); 5.17 (m, 2H); 4.88 (d, J=16 Hz, 1H); 4.47 (d, J=16 Hz, 1H); 4.18 (m, 1H); 3.75 (br s, 1H); 2.90-2.60 (m, 6H); 2.51 (br s, 1H); 2.31 (m, 1H); 1.60-1.30 (m, 4H); 1.00-0.80 (m, 10H).

Preparation of Example AV

[0615]
Compound 90

[0616] Compound 90 (190 mg) was prepared following the procedure used to prepare Compound 4, except that 4-(chloromethyl)-2-methylthiazole was used instead of Compound 3. m/z 141.1 (M−H)

Compound 91

[0617] Compound 91 (400 mg) was prepared following the same procedure used to prepare Compound 6 except that Compound 90 was used instead of Compound 4. m/z 300.0 (M+H)⁺

Compound 92

[0618] Compound 92 (188 mg) was prepared following the same procedure as Compound 7 except that Compound 91 was used instead of Compound 6. m/z 284.0 (M−H)⁻

Example AV

[0619] Example AV (107 mg) was prepared following the procedure used to prepare Example C, except Compound 92 was used instead of Compound 7. 1H NMR (CDCl₃) 8 8.76 (s, 1H), 7.78 (s, 1H), 7.27-7.07 (m, 10H), 6.93 (s, 1H), 6.25 (m, 2H), 5.39 (m, 1H), 5.19 (m, 2H), 4.37-4.32 (m, 2H), 4.06 (m, 1H), 3.81 (br s, 1H), 2.83 (m, 4H), 2.65 (br s, 7H), 2.28-2.22 (m, 1H), 1.51-1.37 (m, 4H), 0.82 (m, 6 H): m/z 677.2 (M+H)⁺

Preparation of Example AW

[0620]
Compound 93

[0621] Compound 93 is commercially available from TCI, and was used without further purification.

Compound 94

[0622] To a solution of Compound 93 (500 mg, 3.76 mmol) in methanol (20 mL) was added thionyl chloride (0.5 mL, 6.6 mmol) dropwise. The mixture was stirred at 60 °C for 20 minutes, and concentrated in vacuo to give Compound 94.

Compound 95

[0623] To a stirred solution of Compound 94 (3.7 mmol) and diisopropylethylamine (1.4 mL, 8.3 mmol) in dichloromethane (50 mL) was added CDI (609 mg, 3.7 mmol). The mixture was stirred for 12 hours. Compound 9 was added, and the mixture was stirred for an additional 12 hours. Concentration and purification by flash column chromatography (0-100% EtOAc/hexane) gave Compound 95 (100 mg). m/z 344.3 (M+H)+

Compound 96

[0624] Compound 96 (39 mg) was prepared following the same procedure used to prepare Compound 7 except that Compound 95 was used instead of Compound 6. m/z 328.3 (M-H)−

Example AW

[0625] Example AW (107 mg) was prepared following the procedure for Example C, except that Compound 96 was used instead of Compound 7. 1H NMR (CDCl₃) δ 8.79 (s, 1H), 7.82 (s, 1H), 7.27-7.09 (m, 10H), 6.95 (s, 1H), 6.23 (m, 1H), 6.14 (s, 1H), 5.22 (s, 3H), 4.45 (m, 2H), 4.35-4.0 (m, 3H), 3.8 (m, 1H), 3.6 (m, 1H), 3.25 (s, 3H), 3.21 (m, 2H), 2.95 (s, 3H), 2.8-2.6 (m, 4 H), 2.0-1.4 (m, 4 H), 1.25 (m, 4 H), 1.05 (m, 4H); m/z 721.3 (M+H)+

Preparation of Examples AX and AY

[0626]
Example AX

To a solution of Example I (650 mg, 1.00 mmol) in DMSO (3.5 mL) was added triethylamine (0.5 mL). The mixture was stirred for 30 minutes. Pyridine SO₃ was added to the mixture at 50°C then stirred for 60 minutes. The mixture was poured on to ice-water, then stirred for 30 minutes. The mixture was diluted with EtOAc and washed with water, sat. NaHCO₃, and brine. Concentration gave Example AX. m/z 705.2 (M+H)⁺

Example AY

To a stirred solution of Example AX (70 mg, 0.099 mmol) and methylamine (1.5 mL, 2M) in MeOH (1.5 mL) was added AcOH (119 mg, 1.99 mmol). The mixture was stirred for 2 hours. NaBH(OAc)₃ (94 mg) was added, and the mixture was stirred for 2 hours. Concentration and purification by prep. HPLC gave Example AY (30 mg). ᵃH NMR (CDCl₃) δ 8.79 (s, 1H), 7.82 (s, 1H), 7.27-7.09 (m, 10H), 6.95 (s, 1H), 6.23 (m, 1H), 6.14 (s, 1H), 5.22 (s, 2 H), 4.45 (m, 1 H), 4.35-4.0 (m, 4 H), 3.8 (m, 1 H), 3.6 (m, 1 H), 3.21 (m, 1 H), 2.95 (s, 3 H), 2.93 (s, 3H), 2.8-2.6 (m, 4 H), 2.0-1.4 (m, 4 H), 1.25 (m, 4 H), 1.05 (m, 4H): m/z 720.3 (M+H)⁺

Preparation of Example AZ

[0629]
Example AZ

Compound AZ (61 mg) was prepared following the procedure for Example C, except that Compound 87 was used instead of Compound 7 and Compound 79 was used instead of Compound 8. 1H NMR (CDCl₃) δ 8.77 (s, 1H), 8.72 (s, 1H), 7.78 (s, 1H), 7.71 (s, 1H), 6.23 (d, 1H), 5.28-5.24 (m, 2H), 4.85 (d, 1H), 4.71-4.57 (m, 2H), 4.08-4.03 (m, 1H), 3.78 (br s, 1H), 3.51 (br s, 1H), 2.87 (s, 3H), 2.33 (br s, 1H), 2.13-2.06 (m, 1H), 1.49-1.33 (m, 8H), 0.93-0.80 (m, 12 H): m/z 539.2 (M+H)^+}

Preparation of Examples BA and BB

[0631]
Compound 97

[0632] Compound 97 is commercially available from TCI, and was used as received.

Compound 98

[0633] To a stirred solution of Compound 97 (1 g, 2.2 mmol) and diisopropylethylamine (1.6 mL, 8.9 mmol) in dichloromethane (26 mL) was added CDI (362 mg, 2.2 mmol). The mixture was stirred for 12 hours. Compound 9 was added, and the mixture was stirred for 12 additional hours. Concentration and purification by flash column chromatography (0-8%: MeOH/DCM) gave Compound 98 (1.2 g). m/z 608.1 (M+H)+

Example BA

[0634] Compound 99 (1.2 g) was prepared following the same procedure used to prepare Compound 67, with the exception that Compound 98 was used instead of Compound 66. m/z 592.2 (M-H)-

Example BA

[0635] Example BA (111 mg) was prepared following the procedure used to prepare Example C, except that Compound 99 was used instead of Compound 7. m/z 986.1 (M+H)+
Example BB

[0636] To a stirred solution of Example BA (111 mg, 0.113 mmol) and TFA (1.4 mL) was added Et₃SiH (0.1 mL). The mixture was stirred for 60 minutes, then concentrated and partitioned with EtOAc and sat. NaHCO₃, followed by extraction with EtOAc (2X) and drying over Na₂SO₄. Concentration and purification by flash column chromatography (0-15%: MeOH/DCM) gave Example BB (50 mg).

1H-NMR (CDCl₃) δ 8.75 (s, 1 H), 7.79 (s, 1 H), 7.42 (s, 1 H), 7.22-7.12 (m, 9H), 6.99-6.96 (m, 2H), 6.86 (s, 1H), 6.71 (m, 2H), 5.51 (br s, 1 H), 5.17 (m, 2H), 4.57-4.52 (m, 1 H), 4.39-4.35 (m, 2 H), 4.07 (m, 1 H), 3.74 (br s 1 H), 3.28-3.19 (m, 1H), 3.09-2.76 (m, 6 H), 3.65-2.58 (m, 3 H), 1.49 (m, 2 H), 1.36-1.20 (m, 8 H); m/z 743.2 (M+H)+

Preparation of Example BC

[0637]

Scheme 44

Example BC

[0638] Example BC (95 mg) was prepared following the procedure used to prepare Example C, except that Compound 29 was used instead of Compound 7, and Compound 78 was used instead of Compound 8. 1H NMR (CDCl₃) δ 8.75 (s, 1H), 7.80 (s, 1H), 6.93 (s, 1H), 6.28 (d, 1H), 6.18 (m, 1H), 5.26-5.21 (m, 3H), 4.47-4.30 (m, 2H), 4.11-4.00 (m, 1H), 3.91 (br s, 1H), 3.59 (br s, 1H), 3.28 (m, 1H), 2.97-2.90 (m, 3H), 2.26-2.19 (m, 1H), 1.39-1.24 (m, 10H), 1.09-1.01 (m, 6 H), 0.94-0.86 (m, 6 H); m/z 553.1 (M+H)+

Preparation of Examples BD and BE

[0639]
Example BD

Example BD (148 mg) was prepared following the procedure used to prepare Example C, except that Compound 13e was used instead of Compound 7, and Compound 78 was used instead of amine 8. m/z 611.1 (M+H)⁺

Example BE

Example BD (148 mg, 0.242 mmol) was dissolved in TFA (3 mL) and allowed to stir at 25 °C for 3 hours. The solvent was removed under reduced pressure and the residue was diluted with THF (3 mL) and 2N aqueous NaOH was added until pH 10. The mixture was allowed to stir for 20 min and extracted with EtOAc. The organic layer was washed sequentially with water and brine, dried over Na₂SO₄, filtered, and evaporated. Purification by flash chromatography (0-10% MeOH/CH₂Cl₂) gave Example BE (109 mg). "H NMR (CDCl₃) δ 8.75 (s, 1H), 7.80 (s, 1H), 6.97-6.94 (d, 1H), 6.90 (s, 1H), 6.32 (br s, 1H), 5.26-5.22 (m, 2H), 5.12 (d, 1H), 4.51-4.39 (m, 3H), 4.25-4.22 (m, 2H), 3.87 (br s, 1H), 3.62 (br s, 1H), 3.27-3.18 (m, 1H), 2.94 (s, 3H), 1.41-1.31 (m, 10H), 1.13-1.00 (m, 9H). m/z: 555.1 (M+H)⁺.

Preparation of Example BF

Example BD (148 mg) was prepared following the procedure used to prepare Example C, except that Compound 13e was used instead of Compound 7, and Compound 78 was used instead of amine 8. m/z 611.1 (M+H)⁺
Compound 100

[0643] Compound 100 was prepared using the same method used to prepare Compound 122, except that Compound 9 was replaced with Compound 68 (see Scheme 70).

Compound 101

[0644] Compound 100 (108 mg, 0.423 mmol) was dissolved in THF (2 mL), then 847 µL of 1 M LiOH/H2O was added. After stirring overnight, 843 µL of 1 N HCl was added. Concentration gave Compound 101.

Example BF

[0645] Example BF (24 mg) was prepared following the procedure used to prepare Example C, except that Compound 101 was used instead of Compound 7. 1H NMR (CDCl3) δ 8.77 (s, 1H), 8.73 (s, 1H), 7.80 (s, 1H), 7.74 (s, 1H), 7.27-7.10 (m, 10H), 6.55-6.52 (d, 1H), 5.84 (d, 1H), 5.21-5.19 (m, 3H), 4.77-4.53 (m, 2H), 4.39 (br s, 1H), 4.11-3.99 (m, 2H), 3.81 (br s, 1H), 3.58 (m, 2H), 2.86 (s, 3H), 2.81-1.72 (m, 5H), 2.04 (m, 1H), 1.85 (m, 1H), 1.66-1.37 (m, 6H): m/z 665.2 (M+H)+

Preparation of Example BG

[0646]
Example BG

Example R (102 mg, 0.137 mmol) was dissolved in THF (2 mL), then 2 mL of ethyltrifluoroacetate was added. Then 1.3 eq of Mel and excess Cs₂CO₃ were added. After stirring for 1 day, the mixture was partitioned with EtOAc and sat. Na₂CO₃, extracted with EtOAc (2X), and dried over Na₂SO₄. Purification by flash chromatography (0-20% MeOH/CH₂Cl₂) gave Example BG (6.5 mg). ¹H NMR (CD₃OD) δ 9.94 (s, 1H), 8.27 (s, 1H), 7.73 (s, 1H), 7.30-7.10 (m, 10H), 5.29, 5.17 (d 2H), 4.72 (s, 3H), 4.29 (m, 1H), 4.15 (br s, 1H), 3.83 (br s, 1H), 3.61 (m, 2H), 3.07 (s, 3H), 2.93 (m, 2H), 2.82-2.70 (m, 4H), 2.68-2.58 (m, 2H), 2.42 (s, 3H), 2.05 (m, 2H), 1.70-1.40 (m, 10H). m/z: 720.2 (M+H)+.

Preparation of Example BH

Example BH (78 mg) was prepared following the procedure used to prepare Example C, except that Compound 87 was used instead of Compound 7, and Compound 46 was used instead of Compound 8. ¹H NMR (CDCl₃) δ 8.73 (s,
Preparation of Examples BI and BJ

Example BI

Example BI (1.78 g) was prepared following the procedure used to prepare Example C, except that Compound 99 was used instead of Compound 7, and Compound 46 was used instead of Compound 8. m/z 986.1 (M+H)+

Example BJ

Example BJ (728 mg) was prepared following the procedure used to prepare Example BB, except that Example BI was used instead of Example BA. 1H-NMR (CDCl3) δ 8.75 (s, 1 H), 7.79 (s, 1 H), 7.42 (s, 1 H), 7.22-7.12 (m, 9H), 6.99-6.96 (m, 2H), 6.86 (s, 1H), 6.71 (m, 2H), 5.51 (br s, 1 H), 5.17 (m, 2H), 4.57-4.52 (m, 1 H), 4.39-4.35 (m, 2 H), 4.07 (m, 1 H), 3.74 (br s 1 H), 3.28-3.19 (m, 1H), 3.09-2.76 (m, 6 H), 3.65-2.58 (m, 3 H), 1.49 (m, 2 H), 1.36-1.20 (m, 8 H); m/z 743.2 (M+H)+

Preparation of Compounds 104-115

Example 99
Compound 102

[0654] Compound 102 is commercially available from Aldrich Chemical Co., and was used without further purification.

Compound 103

[0655] Compound 102 (5.5 mmol) was suspended in MeCN (55 mL) and DIPEA (8.25 mmol) was added. Carbonyl diimidazole (5.5 mmol) was diluted in MeCN (20 mL) and the solution added slowly to the reaction mixture over 45 min. The resulting mixture was allowed to age overnight. Compound 9 (5.5 mmol) was diluted in MeCN (10 mL) and treated with DIPEA (8.25 mmol) before being added to the reaction mixture, which was then allowed to age overnight. The volatiles were removed in vacuo and the residue taken up in EtOAc (50 mL) and washed with 1M HCl (50 mL). The layers were separated and the aqueous layer extracted with EtOAc (3 X 50 mL). The combined organic layers were washed with sat. Na2CO3 until the pH of the washes was ~ pH 8. A brine wash (30 mL) was followed by drying over anhydrous MgSO4. Following concentration in vacuo, the residue was purified on SiO2 (0-65% EtOAc/hex) to provide 0.340 g (20%) of Compound 103 as an amorphous white solid \((m/z 314.0 (M+H)^+).\)

Compound 104

[0656] Compound 103 (1.1 mmol) was diluted in THF (5 mL) and treated with freshly prepared 1M LiOH (2.2 mmol). The biphasic reaction was stirred vigorously for 2 h before being quenched with 1M HCl (3 mmol). The reaction was extracted with EtOAc (5 X 15 mL) and the combined organics were washed with brine (30 mL), dried over anhydrous Na2SO4 and concentrated to provide 0.282 g (86%) of Compound 104 as an amorphous white powder that was used with further purification 1H-NMR (CDCl3, 300 MHz): 7.06 (s, 1H); 4.37 (s, 1H); 3.28 (p, \(J = 6.9\) Hz, 1H); 3.00 (s, 3H); 1.62 (s, 6H); 1.39 (d, \(J = 6.9\) Hz, 6H).

Scheme 50

Scheme 51
Compound 105

[0657] Compound 105 is commercially available from Aldrich Chemical Co., and was used without further purification.

Compound 106

[0658] Racemic Compound 105 (12.2 mmol) was diluted in MeOH (100 mL). HCl/dioxane solution (4M, 25 mmol) was added and the solution was refluxed overnight. Volatiles were removed \textit{in vacuo} to produce 2.60 g (97%) of Compound 106 as a racemic mixture. The foamy white solid was used without further purification (m/z 147.0 (M+H)\(^+\)).

Compound 107

[0659] Compound 106 (5 mmol) was diluted in MeCN (65 mL) and treated with DIPEA (25 mmol). The resulting solution was added slowly via addition funnel to a solution of CDI (5 mmol) in MeCN (30 mL) and allowed to age overnight. Compound 9 (5 mmol) and DIPEA (3 mmol) were added to the reaction solution which was allowed to age overnight. The volatiles were removed \textit{in vacuo} and the residue was taken up in EtOAc and sat. Na\(_2\)CO\(_3\) (30 mL each). The aqueous layer was extracted with EtOAc (3 X 25 mL) and the combined organics were washed with brine (50 mL) and dried over anhydrous MgSO\(_4\). Following concentration \textit{in vacuo}, purification by column chromatography on SiO\(_2\) (0-10% MeOH/DCM) provided 0.36 g (21%) of racemic Compound 107 as a yellow oil (m/z 343.1 (M+H)\(^+\)).

Compound 108

[0660] Compound 107 (1.05 mmol) was taken up in THF (5 mL) and treated with freshly prepared 1M LiOH solution (2.1 mmol). The solution was stirred vigorously for 2 h and quenched with 1M HCl (2.1 mmol). The volatiles were removed \textit{in vacuo}, and the resulting oil was azeotroped with toluene until a quantitative yield of racemic Compound 108 was produced as an amorphous white solid that was used without further purification (m/z 329.1 (M+H)\(^+\)).

Compound 109

[0661] Compound 109 is commercially available from Bachem, and was used as received.

Compound 110

[0662] Compound 109 (4.1 mmol) was diluted in DCM (5 mL) and treated with N-methylmorpholine (8.2 mmol). This solution was added slowly to a DCM (5 mL) solution of 4-nitrophenyl chloroformate (4.1 mmol) at 0 °C. The reaction was then allowed to warm to room temperature overnight. The volatiles were removed \textit{in vacuo} and the residue was taken up in EtOAc and sat. Na\(_2\)CO\(_3\). The aqueous layer was extracted with EtOAc (3 X 10 mL) and the combined
organics were washed with brine (30 mL) prior to being dried over anhydrous Na$_2$SO$_4$. Following concentration in vacuo, the residue was purified by column chromatography on SiO$_2$ (0-25% EtOAc/Hex) to produce 0.75 g (51%) of Compound **110** as an amorphous white solid ($m/z$ 354.8 (M+H)$^+$).

**Compound 110**

**[0663]** Compound **110** (1.1 mmol) was diluted in THF (3.5 mL). Compound **9** (1.4 mmol) was diluted in THF (3 mL), treated with Et$_3$N (2.8 mmol) and transferred to the reaction solution. DMAP (0.11 mmol) was added and the reaction was heated to 70 °C for 2 h. After cooling to room temperature, EtOAc (10 mL) and sat. Na$_2$CO$_3$ were added. The aqueous phase was extracted with EtOAc (3 X 10 mL) and the combined organics were washed with saturated Na$_2$CO$_3$, H$_2$O, and brine (15 mL each). After drying over anhydrous MgSO$_4$, volatiles were removed in vacuo and the residue was purified by column chromatography on SiO$_2$ (0-50% EA/hex) to produce 0.346 g (82%) of Compound **111** ($m/z$ 386.0 (M+H)$^+$).

**Compound 111**

**[0664]** Compound **111** (0.88 mmol) was taken up in THF (4 mL) and treated with freshly prepared 1M LiOH (1.8 mmol). The reaction mixture was stirred vigorously for 1.5 h and quenched with 1M HCl (2.5 mmol). The reaction mixture was extracted with EtOAc (3 X 10 mL), and the combined organics were washed with brine (30 mL) and dried over anhydrous Na$_2$SO$_4$. Concentration in vacuo produced 0.300 g (92%) of Compound **112** as a colorless film that was used without further purification ($m/z$ 372.0 (M+H)$^+$).

**Compound 112**

**[0665]** Compound **113** is commercially available from Chem-Impex, and was used without further purification.

**Compound 113**

**[0666]** Compound **113** (3.2 mmol) was diluted in THF (15 mL). TMSCHN$_2$ (3.2 mmol) was added slowly, followed by MeOH (5 mL). The solution rapidly became colorless, and heavy evolution of gas was observed. After aging overnight, the volatiles were removed in vacuo and the residue purified by column chromatography on SiO$_2$ (0-50% EtOAc/hex) to produce 0.805 g (52%) of Compound **114** ($m/z$ 505.2 (M+Na)$^+$).

**Compound 114**

**[0667]** Compound **114** (1.7 mmol) was diluted in DMF (4 mL) and piperidine (1 mL) was added. After 30 min, the volatiles were removed in vacuo and the residue was purified by column chromatography on SiO$_2$ (0-5% MeOH/DCM) to provide 0.414 (94%) of Compound **115** as an amorphous white solid ($m/z$ 261.0 (M+H)$^+$).

**Preparation of Example BK**

**[0668]**
Compound BK and Compound 29 (0.91 mmol) were combined in THF (7 mL). HOBt (0.91 mmol), DIPEA (1.05 mmol) and EDC (0.91 mmol) were added consecutively at room temperature and the reaction was allowed to age overnight. The volatiles were removed in vacuo and the residue taken up in 3/1 CHCl₃/IPA and sat. Na₂CO₃ (15 mL each). The aqueous layer was extracted with 3/1 CHCl₃/IPA (3 X 10 mL) and the combined organics were washed with sat. Na₂CO₃, water, and brine (15 mL each). Following drying over anhydrous MgSO₄, the volatiles were removed in vacuo and the residue was purified by column chromatography on SiO₂ (0-10% MeOH/DCM) to produce 8.5 mg (2%) of Compound BK m/z 581.2 (M+H)+; ¹H-NMR (CDCl₃, 300 MHz): 8.91 (s, 1H); 7.89 (s, 1H); 7.15 (s, 1H); 6.52-6.0 (br m, 2H); 5.26 (s, 2H); 5.18 (br d, J = 8.1 Hz, 1H); 4.55 (s, 2H); 4.06 (br s, 1H); 3.79 (br s, 1H); 3.48 (m, 2H); 3.09 (s, 3H, minor rotamer); 3.01 (s, 3H, major rotamer); 2.34 (m, 1H); 1.60-1.30 (m, 8H); 1.42 (d, J = 6.9 Hz, 6H); 0.98 (t, J = 7.2 Hz, 6H); 0.86 (m, 6H).

Preparation of Example BL

Compound 79 (0.70 mmol) and Compound 29 (0.91 mmol) were combined in THF (7 mL). HOBt (0.91 mmol), DIPEA (1.05 mmol) and EDC (0.91 mmol) were added consecutively at room temperature and the reaction was allowed to age overnight. The volatiles were removed in vacuo and the residue was purified by column chromatography on SiO₂ (0-10% MeOH/DCM) to produce 8.5 mg (2%) of Compound BK m/z 581.2 (M+H)+; ¹H-NMR (CDCl₃, 300 MHz): 8.91 (s, 1H); 7.89 (s, 1H); 7.15 (s, 1H); 6.52-6.0 (br m, 2H); 5.26 (s, 2H); 5.18 (br d, J = 8.1 Hz, 1H); 4.55 (s, 2H); 4.06 (br s, 1H); 3.79 (br s, 1H); 3.48 (m, 2H); 3.09 (s, 3H, minor rotamer); 3.01 (s, 3H, major rotamer); 2.34 (m, 1H); 1.60-1.30 (m, 8H); 1.42 (d, J = 6.9 Hz, 6H); 0.98 (t, J = 7.2 Hz, 6H); 0.86 (m, 6H).
Example BL

Example BL was prepared in a similar fashion to Example BK using Compound 104 (0.26 mmol) and Compound 8 (0.29 mmol) to produce 0.087 g (64%) of Example BL as an amorphous white solid m/z 691.3 (M+H)+; 1H-NMR (CDCl3, 300 MHz): 8.82 (s, 1H); 7.82 (s, 1H); 7.30-7.10 (m, 11H); 7.06 (s, 1H); 6.54 (d, J = 9.6 Hz, 1H); 5.89 (d, J = 8.4 Hz, 1H); 5.22 (s, 1H); 5.07 (m, 1H); 4.45 (AB d, J = 16.5 Hz, 1H); 4.37 (AB d, J = 15.6 Hz, 1H); 4.07 (m, 1H); 3.68 (m, 1H); 3.40 (m, 1H); 3.06 (s, 3H, minor rotamer); 2.89 (s, 3H, major rotamer); 2.90-2.54 (m, 4H); 1.60-1.25 (m, 16H).

Preparation of Example BMa and BMb

Example BMa and BMb were prepared in a similar fashion to Compound BK using racemic Compound 108 (0.36 mmol) and Compound 8 (0.28 mmol). The enantiomeric products were separated by preparatory HPLC (Chiralcel OD-H (250 X 4.6 mm, 70:30 Heptane/IPA, 30 min) to produce 0.008 g (4%) of enantiomer BMa (HPLC RT = 11.71 min) m/z 720.3 (M+H)+; 1H-NMR (CDCl3, 300 MHz): 8.73 (s, 1H); 7.78 (s, 1H); 7.41 (br s, 1H); 7.30-7.00 (m, 11H); 6.94 (s, 1H); 5.40 (br s, 1H); 5.18 (br s, 2H); 4.56 (AB d, J = 15 Hz, 1H); 4.48 (AB d, J = 16 Hz, 1H); 4.39 (br s, 1H); 4.05 (br s, 1H); 3.73 (br s, 1H); 3.25 (s, 3H, minor rotamer); 3.23 (m, 1H); 2.98 (s, 3H, major rotamer); 2.82-2.30 (m, 10H); 1.60-1.20 (m, 6H); 1.32 (d, J = 7 Hz, 6H) and 0.010 g (5%) of enantiomer BMb (HPLC RT = 15.41 min). (m/z 720.3 (M+H)+; 1H-NMR (CDCl3, 300 MHz): 8.78 (s, 1H); 7.83 (s, 1H); 7.38 (br d, J = 8 Hz, 1H); 7.30-7.7.05 (m, 11H); 7.02 (s, 1H); 5.52 (d, J = 9 Hz, 1H); 5.25 (AB d, J = 13 Hz, 1H); 5.21 (AB d, J = 13 Hz, 1H); 4.85-4.62 (m, 2H); 4.44 (d, J = 16 Hz, 1H); 3.99 (br s, 1H); 3.78 (br s, 1H); 3.37 (br s, 3H, minor rotamer); 3.26 (m, 1H); 3.07 (s, 3H, major rotamer); 2.77 (s, 6H); 2.86-2.60 (m, 4H); 1.6-1.3 (m, 6H); 1.35 (d, J = 7 Hz, 6H).

Preparation of Examples BN and BO

Example BN and BO were prepared in a similar fashion to Compound BK using racemic Compound 108 (0.36 mmol) and Compound 8 (0.28 mmol). The enantiomeric products were separated by preparatory HPLC (Chiralcel OD-H (250 X 4.6 mm, 70:30 Heptane/IPA, 30 min) to produce 0.008 g (4%) of enantiomer BMa (HPLC RT = 11.71 min) m/z 720.3 (M+H)+; 1H-NMR (CDCl3, 300 MHz): 8.73 (s, 1H); 7.78 (s, 1H); 7.41 (br s, 1H); 7.30-7.00 (m, 11H); 6.94 (s, 1H); 5.40 (br s, 1H); 5.18 (br s, 2H); 4.56 (AB d, J = 15 Hz, 1H); 4.48 (AB d, J = 16 Hz, 1H); 4.39 (br s, 1H); 4.05 (br s, 1H); 3.73 (br s, 1H); 3.25 (s, 3H, minor rotamer); 3.23 (m, 1H); 2.98 (s, 3H, major rotamer); 2.82-2.30 (m, 10H); 1.60-1.20 (m, 6H); 1.32 (d, J = 7 Hz, 6H) and 0.010 g (5%) of enantiomer BMb (HPLC RT = 15.41 min). (m/z 720.3 (M+H)+; 1H-NMR (CDCl3, 300 MHz): 8.78 (s, 1H); 7.83 (s, 1H); 7.38 (br d, J = 8 Hz, 1H); 7.30-7.7.05 (m, 11H); 7.02 (s, 1H); 5.52 (d, J = 9 Hz, 1H); 5.25 (AB d, J = 13 Hz, 1H); 5.21 (AB d, J = 13 Hz, 1H); 4.85-4.62 (m, 2H); 4.44 (d, J = 16 Hz, 1H); 3.99 (br s, 1H); 3.78 (br s, 1H); 3.37 (br s, 3H, minor rotamer); 3.26 (m, 1H); 3.07 (s, 3H, major rotamer); 2.77 (s, 6H); 2.86-2.60 (m, 4H); 1.6-1.3 (m, 6H); 1.35 (d, J = 7 Hz, 6H).
Example BN

Example BN was prepared in a similar fashion to Example BK using Compound 112 (0.78 mmol) and Compound 8 (0.60 mmol) to produce 0.227 g (50%) of Compound BN as colorless film. \(m/z\) 763.3 (M+H)+.

Example BO

Example BO was prepared in a similar fashion to Example AM using Example BN (0.29 mmol) to produce 0.149 g (72%) of Example BO as an amorphous white solid. \(m/z\) 707.3 (M+H)+. 1H-NMR (CDCl3, 300 MHz): 8.82 (s, 1H); 7.84 (s, 1H); 7.26-7.03 (m, 11H); 6.99 (s, 1H); 6.69 (d, \(J = 9.6\), 1H); 6.42 (br s, 1H); 6.42 (br d, \(J = 5.27\) Hz, 1H); 4.82 (AB d, \(J = 13\) Hz, 1H); 4.51 (AB d, \(J = 16\) Hz, 1H); 2.25 (m, 3H); 2.99 (s, 3H); 2.81-2.60 (m, 3H); 2.54-2.42 (m, 1H); 1.64-1.12 (m, 3H); 1.37 (d, \(J = 7\) Hz, 1H); 1.11 (d, \(J = 6\) Hz, 3H).

Preparation of Examples BP-BR

[0677]
Example BP

Example BP was prepared in a similar fashion to Example BK using Compound 52 (0.22 mmol) and Compound 78 (0.20 mmol) to produce 0.091 g (71%) of Example BP as colorless film (m/z 654.2 (M+H)+).

Example BO

Example BP (0.14 mmol) was treated with 4M HCl in dioxane (2 mL) to produce a white precipitate within 5 min. The solvents were removed, and the solid was taken up in MeOH. Concentration in vacuo afforded 0.083 g (99%) of the HCl salt of Example BQ as a colorless film (m/z 554.1 (M+H)+); 1H-NMR (CD3OD, 300 MHz): 10.03 (s, 1H); 8.41 (s, 1H); 7.81 (s, 1H); 5.48 (s, 2H, minor rotamer); 5.35 (s, 2H, major rotamer); 4.74 (s, 2H); 4.34 (br s, 1H); 3.90 (br s, 1H); 3.78-3.54 (m, 2H); 3.20-2.98 (m, 5H); 2.20 (br s, 1H); 2.07 (br s, 1H); 1.60-1.4 (m, 10H); 1.12 (m, 6H).

Example BR

Example BQ (0.11 mmol) was taken up in MeOH (1.5 mL). Formaldehyde (37% in H2O, 13.4 mmol) was added and aged 10 min. NaHB(OAc)3 (0.324 mmol) was added, and the reaction mixture was allowed to age at room temperature overnight. More formaldehyde (13.4 mmol) and NaHB(OAc)3 (0.324 mmol) were added and allowed to age an additional 6 h at room temperature. The solvents were removed in vacuo and the product was isolated by preparatory HPLC to produce 0.058 g (77%) of the TFA salt of Example BR as an amorphous solid. m/z 582.3 (M+H)+; 1H-NMR (CD3OD, 300 MHz): 9.07 (s, 1H); 7.91 (s, 1H); 7.25 (s, 1H); 5.47 (s, 2H, minor rotamer); 5.28 (s, 2H, major rotamer); 4.59 (AB d, J = 16 Hz, 1H); 4.53 (AB d, J = 16 Hz, 1H); 4.31 (dd, J = 9.2, 5 Hz, 1H); 3.88 (m, 1H); 3.59 (m, 1H); 3.32 (m, 1H); 3.20 (m, 2H); 2.98 (s, 3H); 2.89 (br s, 6H); 2.23 (m, 1H); 2.00 (m, 1H); 1.44 (m, 4H); 1.37 (d, J = 7 Hz, 6H); 1.10 (m, 6H).

Preparation of Examples BS and BT
Compound 116

Compound 116 was prepared in a similar fashion to Compound 75 using Compound 4 (0.76 mmol) and Compound 47 (0.64 mmol) to produce 0.218 g (90%) of Compound 116 as a foamy white solid (m/z 384.1 (M+H)+).

Example BS

Example BS was prepared in a similar fashion to Example BK using Compound 116 (0.28 mmol) and Compound 8 (0.25 mmol) to produce 0.139 g (72%) of Example BS as a colorless film (m/z 775.3 (M+H)+).

Example BT

Example BT was prepared in a similar fashion to Example AM using Example BS (0.18 mmol) to produce 0.080 g (62%) of Example BT as an amorphous white solid. m/z 719.3 (M+H)+; 1H-NMR (CDCl3, 300 MHz): 8.79 (s, 1H); 7.82 (s, 1H); 7.27-7.0 (m, 10H); 6.98-6.82 (m, 1H); 6.85 (s, 1H); 6.44 (br s, 1H); 5.30 (s, 2H, minor rotamer); 5.22 (s, 2H, major rotamer); 5.04 (br s, 1H); 4.62 (AB d, J = 15 Hz, 1H); 4.54 (AB d, J = 15 Hz, 1H); 4.27 (br s, 1H); 4.11 (br s, 1H); 3.97 (br d, J = 10 Hz, 1H); 3.82 (br s, 1H); 3.57 (br s, 1H); 3.40-3.10 (m, 2H); 2.80-2.60 (m, 4H); 2.55 (m, 1H); 1.54 (m, 2H); 1.46-1.30 (m, 2H); 1.35 (d, J = 7 Hz, 6H); 0.94-0.72 (m, 4H).

Preparation of Examples BU and BV

[0685]
Compound 117

[0686] Compound 117 was prepared in a similar fashion to Compound 13d except that Compound 4 (1.5 mmol) and the L-enantiomer of Compound 10d (1.15 mmol) were used to ultimately produce 0.328 g (88%) of Compound 190 as a foamy white solid (m/z 398.1 (M+H)+).

Example BU

[0687] Example BU was prepared in a similar fashion to Example AL using Compound 117 (0.33 mmol) and Compound 8 (0.30 mmol) to produce 0.196 g (84%) of Example BU as an amorphous white solid (m/z 789.3 (M+H)+).

Example BV

[0688] Example BV was prepared in a similar fashion to Example AM using Example BU (0.29 mmol) to produce 0.140 g (77%) of Example BV as an amorphous white solid. m/z 733.3 (M+H)+; 1H-NMR (CDCl3, 300 MHz): 8.80 (s, 1H); 7.84 (s, 1H); 7.27-7.10 (m, 10H); 6.70-6.10 (m, 1H); 6.86 (s, 1H); 6.20 (br d, J = 7 Hz, 1H); 5.24 (s, 2H); 4.81 (br d, J = 7 Hz, 1H); 4.82 (s, 2H); 4.34 (br d, J = 7 Hz, 1H); 4.16 (br s, 1H); 4.07 (br d, J = 6 Hz, 1H); 3.86 (br s, 1H); 3.38 (br s, 1H); 2.69 (m, 6H); 1.62-1.50 (m, 2H); 1.38 (m, 6H); 1.13 (d, J = 6 Hz, 3H); 0.98-0.76 (m, 4H).

Preparation of Examples BW and BX

[0689]
Example BW

Example BW was prepared in a similar fashion to Example BK using Compound 75 (0.27 mmol) and Compound 46 (0.24 mmol) to provide 0.154 g (86%) of Example BW as an amorphous white solid (m/z 733.3 (M+H)+).

Example BX

Example BX was prepared in a similar fashion to Example AM using Example BW (0.21 mmol) to provide 0.091 g (98%) of the TFA salt of Example BX as an amorphous white solid. m/z 677.5 (M+H)+. 1H-NMR (CDCl3, 300 MHz): 8.83 (s, 1H); 8.77 (s, 1H); 7.84 (s, 1H); 7.77 (s, 1H); 7.27-7.00 (m, 10H); 6.62 (d, J = 9 Hz, 1H); 6.44 (d, J = 6 Hz, 1H); 5.35 (d, J = 10 Hz, 1H); 5.24 (s, 2H); 4.69 (AB d, J = 15 Hz, 1H); 4.62 (AB d, J = 16 Hz, 1H); 4.14 (br m, 2H); 3.96-3.78 (m, 2H); 3.51 (dd, J = 11, 4.5 Hz, 1H); 3.38 (br s, 1H); 2.82-2.58 (m, 4H); 2.41 (m, 1H); 1.70-1.24 (m, 4H); 1.20-0.88 (m, 2H); 0.88-0.54 (m, 2H).

Preparation of Examples BY and BZ

[0692]
Compound 118

[0693] Compound 118 was prepared in a similar fashion to Compound 104 except that Compound 115 (0.40 mmol) was used instead of Compound 102, which was reacted with Compound 9 (0.48 mmol) to ultimately provide 0.075 g (89%) of Compound 118 as a foamy white solid (m/z 443.4 (M+H)+).  

Example BY

[0694] Example BY was prepared in a similar fashion to Example BM using Compound 118 (0.17 mmol) and Compound 8 (0.15 mmol) to produce 0.079 g (62%) of Example BY as an amorphous white solid (m/z 834.3 (M+H)+).  

Example BZ

[0695] Example BZ was prepared in a similar fashion to Example BQ using Example BY (0.095 mmol) to provide 0.082 g (99%) of the HCl salt of Example BZ as an amorphous white solid m/z 734.2 (M+H)+; 1H-NMR (DMSO-d6, 300 MHz): 8.08 (s, 1H); 7.86 (br m, 3H); 7.58 (d, J = 9 Hz, 1H); 7.25-7.00 (m, 11H); 6.32 (br s, 1H); 5.16 (s, 2H); 4.99 (br m, 4H); 4.48 (AB d, J = 15 Hz, 1H); 4.43 (AB d, J = 15 Hz, 1H); 4.02 (m, 1H); 3.89 (m, 1H); 3.63 (m, 1H); 3.22 (hep, J = 7 Hz, 1H); 2.87 (s, 3H); 2.76-2.56 (m, 4H); 1.58-1.15 (m, 10H); 1.29 (d, J = 7 Hz, 6H).

Preparation of Example CA

[0696]
Example CA

[0697] Example R (0.11 mmol) was diluted in DCM (1 mL) and treated with 4-morpholinecarbonyl chloride (0.13 mmol) and DIPEA (0.16 mmol). After 2 h, volatiles were removed in vacuo and the residue was purified by column chromatography on SiO2 (0-20% MeOH/DCM) to afford 0.068 g (76%) of Example CA as an amorphous white solid m/z 819.1 (M+H)+. 1H-NMR (CDCl3, 300 MHz): 8.82 (s, 1H); 7.85 (s, 1H); 7.27-7.07 (m, 12H); 6.94 (s, 1H); 6.26 (br s, 1H); 5.73 (d, J = 8 Hz, 1H); 5.28 (AB d, J = 13 Hz, 1H); 5.22 (AB d, J = 13 Hz, 1H); 4.50 (AB d, J = 16 Hz, 1H); 4.44 (AB d, J = 16 Hz, 1H); 4.17 (m, 1H); 3.98 (br s, 1H) 3.76 (br s, 1H); 3.68 (br s, 1H); 3.60 (m, 4H); 3.40 (m, 4H); 3.32 (m, 4H); 2.97 (s, 3H); 2.87 (dd, J = 13, 5 Hz, 2H); 2.73, (m, 2H); 2.57 (m, 2H); 1.79 (m, 2H); 1.60-1.20 (m, 6H); 1.37 (d, J = 7 Hz, 6H).

Preparation of Compound CB

[0698]
Example CB

Example AF (0.15 mmol) was diluted in THF (1 mL) and treated with morpholine (0.61 mmol), HOBt (0.18 mmol) and finally EDC (0.18 mmol). The reaction mixture was allowed to age overnight. The reaction mixture was then diluted in EtoAc and sat. Na₂CO₃. The aqueous layer was extracted with EtoAc and the combined organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated in vacuo. The resulting residue was purified via preparatory HPLC to provide 0.024 g (20%) of Example CB as an amorphous white solid. m/z 790.4 (M+H)+; H-NMR (CDCl₃, 300 MHz): 8.81 (s, 1H); 7.84 (s, 1H); 7.27-7.10 (m, 10H); 6.96 (s, 1H); 6.78 (d, J = 8 Hz, 1H); 6.67 (s, 1H); 5.36 (d, J = 9 Hz, 1H); 5.27 (AB d, J = 13 Hz, 1H); 5.20 (AB d, J = 13 Hz, 1H); 4.59 (s, 1H); 4.51 (s, 2H); 4.02 (m, 1H); 3.80-3.30 (m, 10H); 2.98 (s, 3H); 2.90-2.45 (m, 6H); 1.52 (m, 2H); 1.39 (d, J = 7 Hz, 6H); 1.32 (m, 2H).

Preparation of Compound CC

[0700]
Example CC

[0701] Example CC was prepared in a similar fashion to Example CB except that N-methylpiperazine (0.16 mmol) was reacted with Compound AF (0.10 mmol) instead of morpholine and DIPEA (0.19 mmol) was added to produce 0.009 g (11%) of Example CC as an amorphous white solid m/z 803.4 (M+H)+; 1H-NMR (CDCl₃, 300 MHz): 8.80 (s, 1H); 7.84 (s, 1H); 7.27-7.10 (m, 11H); 6.78 (m, 2H); 5.27 (AB d, J = 13 Hz, 1H); 5.21 (AB d, J = 13 Hz, 1H); 4.59 (m, 1H); 4.49 (AB d, J = 16 Hz, 4.44 (AB d, J = 16 Hz, 1H); 4.01 (m, 1H); 3.90-3.40 (m, 4H); 3.27 (hep, J = 7 Hz, 1H); 3.10-2.90 (m, 1H); 2.97 (s, 3H); 2.90-2.30 (m, 11H); 1.60-1.25 (m, 6H); 1.37 (d, J = 7 Hz, 6H).

Preparation of Example CD

[0702]
Example CD

[0703] To a solution of Example R (30.5 mg, 0.043 mmol) in methanol (1.5 mL) was added formaldehyde (1 mL, 37% in H₂O). After stirring for 10 minutes, NaBH(OAc)₃ (49 mg, 0.23 mmol) was added and the resulting mixture was stirred for 10 h. The reaction was monitored with LC/MS. When LC/MS indicated the absence of starting material Example R, the reaction mixture was evaporated to dryness, and filtered through a cotton plug. The crude product was then purified through CombiFlash (10% MeOH/CH₂Cl₂) to give 29.7 mg of Example CD. ¹H-NMR (CDCl₃, 500 MHz): 8.78 (s, 1H); 7.83 (s, 1H); 7.12-7.22 (m, 10H); 6.85 (s, 1H); 5.83 (d, 1H, J = 8.5 Hz), 5.23 (d, 2H, J = 13.1 Hz); 4.49 (d, 2H, J = 16.5 Hz); 4.29 (m, 1H); 3.75 (m, 1H); 3.30 (m, 1H); 2.93 (s, 1H); 2.87 (dd, 1H, J₁ = 5.5 Hz, J₂ = 13.5 Hz); 2.72 (m, 2H); 2.66 (dd, J₁ = 7.3 Hz, J₂ = 13.3 Hz), 2.47 (br s, 1H), 2.36 (br s, 1H), 2.23 (s, 6H), 1.91 (m, 2H), 1.56 (m, 2H), 1.40 (d, 6H, J = 6.8 Hz). m/z 734 (M+H)+; 756 (M+Na)+;

Preparation of Example CE

[0704]

Scheme 67

[0705] Compound 119 is commercially available from Aldrich, and was used as received.
A mixture of Compound 119 (200 mg, 0.91 mmol), Compound 8 (373.7 mg, 0.91 mmol), EDC (212 mg, 1.37 mmol), HOBt (160.3 mg, 1.19 mmol) and iPr2NEt (794.7 μL, 4.56 mmol) in THF was stirred for 10 h at room temperature. The mixture was then evaporated to a small volume and purified by CombiFlash (eluted with 1 to 10% MeOH/CH2Cl2). The fractions containing the target Compounds were collected and re-purified by CombiFlash (40-100% EtOAc/hexanes) to give 449 mg of Compound 120 as oil. (m/z 611.0 (M+H)^+).

Example CE

Compound 120 (449 mg, 0.74 mmol) was treated with HCl/dioxane (3 mL). The resulting mixture was evaporated to dryness and lyophilized to provide 373.6 mg of a white solid.

To a solution of the above white compound (52.5 mg, 0.096 mmol) in CH2Cl2 (10 mL) was added Compound 9 (19.8 mg, 0.096 mmol), CDI (15.6 mg, 0.096 mmol) followed by iPr2NEt (33.4 μL, 0.192 mmol). The mixture was stirred for 20 h before it was evaporated to dryness. The mixture was added CH2Cl2, then filtered through a cotton plug. The filtrate was evaporated to dryness and purified with CombiFlash. The fractions with Example CE was collected and re-purified on the TLC to give 15.1 mg of Example CE. 1H-NMR (CDCl3, 300 MHz): 8.79 (s, 1H); 7.82 (s, 1H); 7.09-7.27 (m, 10H), 6.94 (s, 1H); 6.25 (d, 2H, J = 8.7 Hz); 5.23 (s, 2H); 5.17 (br s, 1H); 4.3 (dAB, 2H, J = 15.5 Hz); 4.28 (m, 1H); 4.13 (m, 1H); 3.76 (m, 2H); 3.49 (m, 1H), 3.34 (m, 1H), 2.87 (s, 3H); 2.72 (m, 4H), 1.75 (m, 2H), 1.54 (m, 2H); 1.39 (d, 5H, J = 6.9 Hz). m/z 707 (M+H)^+; 729 (M+Na)^+.

Preparation of Example CF

Example CF was prepared using the same method as Example CE, except that Compound 9 was replaced with Compound 68. 1H-NMR (CDCl3, 300 MHz): 8.79 (s, 1H); 7.82 (s, 1H); 7.12-7.27 (m, 10H); 6.15 (d, 1H, J = 8.7 Hz); 5.39 (d, 1H, J = 6.8 Hz); 5.06 (d, J = 9.1 Hz, 1H); 4.64 (dAB, 2H, J = 15.5 Hz); 4.28 (m, 1H); 4.134 (m, 1H); 3.79 (m, 1H); 3.70 (m, 1H); 3.34 (m, 1H); 3.28 (s, 3H); 2.87 (s, 3H); 2.72 (m, 4H), 1.57 (m, 2H); 1.50 (m, 2H). (m/z 665.2 (M+H)^+; 687.3 (M+Na)^+).

Preparation of Compound CG

Example CF was prepared using the same method as Example CE, except that Compound 9 was replaced with Compound 68. 1H-NMR (CDCl3, 300 MHz): 8.79 (s, 1H); 7.82 (s, 1H); 7.73 (s, 1H); 7.12-7.27 (m, 10H); 6.15 (d, 1H, J = 8.7 Hz); 5.39 (d, 1H, J = 6.8 Hz); 5.21 (s, 2H); 5.06 (d, J = 9.1 Hz, 1H); 4.64 (dAB, 2H, J = 15.5 Hz); 4.28 (m, 1H); 4.134 (m, 1H); 3.79 (m, 1H); 3.70 (m, 1H); 3.34 (m, 1H); 3.28 (s, 3H); 2.87 (s, 3H); 2.72 (m, 4H), 1.57 (m, 2H); 1.50 (m, 2H). (m/z 665.2 (M+H)^+; 687.3 (M+Na)^+).
Compound 121

[0712] Compound 121 is commercially available from Aldrich, and was used as received.

Compound 122

[0713] To a suspension of Compound 121 (2.05 g, 11.3 mmol) in CH$_2$Cl$_2$ (40 mL) was added iPr$_2$NEt (5.87 mL, 33.9 mmol) followed by CDI (1.86 g, 11.3 mmol). The resulting mixture was stirred at room temperature for 6 h, then Compound 9 (2.33 g, 11.3 mmol) was added. The resulting mixture was stirred for another 10 h before it was evaporated to dryness. The mixture was re-dissolved in CH$_2$Cl$_2$ and the solid was removed by filtration. The filtrate was evaporated to dryness and purified by CombiFlash (eluted with 20-80% EtOAc/hexanes) to give 3.2 g of Compound 207 as a pale yellow oil. m/z 298.0 (M+H)$^+$.  

Compound 123

[0714] To a solution of Compound 122 (3.2 g, 10.8 mmol) in THF (100 mL) was added freshly prepared 1M LiOH (10.8 mmol). The biphasic reaction was stirred vigorously at room temperature for 16 h before being quenched with 1M HCl. The pH of the mixture was adjusted to 2.5-3, and then evaporated to a small volume. The mixture was partitioned between CH$_2$Cl$_2$ and brine (50 mL), the aqueous layer was separated and extracted with CH$_2$Cl$_2$ twice. The combined CH$_2$Cl$_2$ layers were dried over anhydrous Na$_2$SO$_4$ and concentrated to give 3.37 g of Compound 123 a pale yellow oil that is used with further purification. m/z 316.0 (M+H)$^+$, 338 (M+Na)$^+$.  

Example CG

[0715] Example CG was prepared following the same procedure for Example C instead that Compound 123 was used instead of Compound 7. 1H-NMR (CDCl$_3$, 500 MHz): 8.80 (s, 1H); 7.83 (s, 1H), 7.11-7.26 (m, 10H), 6.96 (s, 1H); 7.12-7.27 (m, 10H); 6.52 (br s, 1H), 6.40 (br s, 1H), 5.23 (s, 2H), 5.20 (m, 1H), 4.44 (d$_{AB}$, 2H, $J$=15.5 Hz), 4.39 (m, 1H), 4.11 (m, 1H), 3.80 (m, 1H), 3.61 (m, 2H), 3.28 (sep, 1H, $J$=7.0 Hz); 2.94 (s, 3H), 2.79 (dd, 1H, $J1$=6.1 Hz, $J2$=13.4 Hz); 2.71 (m, 3H), 1.93 (m, 1H), 1.71 (m, 1H), 1.54 (m, 1H), 1.38 (d, 6H, $J$=7.0 Hz) 1.37 (m, 1H). (: )$^+$; m/z 707.3 (M+H)$^+$, 729.2 (M+Na)$^+$.  

Preparation of Compound 100

[0716]
Compound 100 was prepared using the same method used to prepare Compound 122, except that Compound 9 was replaced with Compound 68.

Preparation of Example CH

[0717]
To a solution of Compound 29 (135 mg, 0.43 mmol) and Compound 22 (116 mg, 0.43 mmol) in THF (5 mL) were added HOBt (70 mg, 0.52 mmol), EDC (94 μL, 0.52 mmol), and diisopropylethylamine (150 μL, 0.83 mmol). The mixture was stirred for 12 hours and concentrated. Purification by reverse HPLC gave Compound 124 (70 mg) and Compound 125 (120 mg). Compound 124: 1H-NMR (CDCl3) δ 7.2-7.1 (10 H, m), 7.0 (2 H, s), 6.45 (2 H, m), 6.15 (2 H, m), 4.45 (4 H, s), 4.1 (2 H, m), 3.96 (2 H, m), 3.3 (2 H, m), 2.98 (6 H, s), 2.7 (4 H, m), 2.1 (2 H, m), 1.6-1.3 (16 H, m), 0.90 (12 H, m). m/z 859.3 (M+H)+; Compound 125: m/z 564.3 (M+H)+

Compounds 124 and 125

Scheme 71

I. EDC/HOBt/iPr2NEt/THF; II. HCHO/NaBH(OAc)3/HOAc/CH3CN; III. Cmpd. 16/iPr2NEt/CH3CN
To a solution of Compound 125 (120 mg, 0.21 mmol) in CH₃CN (1 mL) was added 37% formaldehyde solution (17 µL, 0.23 mmol), followed by HOAc (24 µL, 0.42 mmol). The mixture was stirred for 2 hours, and NaBH(OAc)₃ (140 mg, 0.63 mmol) was added. The mixture was stirred for 2 additional hours and diluted with EtOAc. The organic phase was washed with saturated Na₂CO₃ solution, water, and brine, and dried over Na₂SO₄. Concentration gave Compound 126, which was used in the next step without further purification. m/z 578.3 (M+H)⁺

Example CH

Example CH (26 mg) was prepared following the procedure used to prepare Example L, except that Compound 126 was used instead of Compound 22. ¹H-NMR (CDCl₃) δ 8.91 (1 H, m), 7.82 (1 H, m), 7.2-7.0 (11 H, m), 6.4 (1 H, m), 6.2 (1 H, m), 5.23-5.05 (2 H, m), 4.44 (2 H, s), 4.44 (1 H, m), 4.2 (1 H, m), 3.95 (1 H, m), 3.32 (1 H, m), 2.98 (3 H, s), 2.8-2.5 (7 H, m), 2.15 (1 H, m), 1.7-1.2 (10 H, m), 0.88 (6 H, m). m/z 719.3 (M+H)⁺

Preparation of Example Cl

Compound 127

Compound 127 (110 mg) was prepared following the procedure used to prepare Compound 126, except that Compound 8 was used instead of Compound 125. m/z 424.4 (M+H)⁺

Example Cl

Example Cl (7 mg) was prepared following the procedure used to prepare Example C, except that Compounds 127 and 29 were used instead of Compounds 8 and 7. ¹H-NMR (CDCl₃) δ 9.0 (1 H, s), 8.92 (1 H, s), 7.4-7.0 (11 H, m), 5.25 (2 H, m), 4.6-4.0 (5 H, m), 3.4 (1 H, m), 3.1-2.6 (10 H, m), 1.9 (1 H, m), 1.8 (10 H, m), 0.9 (6 H, m); m/z 719.2 (M+H)⁺

Preparation of Compound CJ

[0725]
To a solution of Compound 21 (100 mg) in dichloromethane (5 mL) was added TFA (1 mL). The mixture was stirred for 3 hours, and excess reagents were evaporated. The oil was diluted with EtOAc, and then was washed with saturated Na₂CO₃ solution (2x), water (2x), and brine, and dried over Na₂SO₄. Concentration gave Compound 128 (46 mg). m/z 267.1 (M+H)+

Compound 129

Compound 129 (44 mg) was prepared following the procedure for Compound 8, except that Compound 128 was used instead of Compound 22. m/z 408.10 (M+H)+

Example CT

Example CJ (55 mg) was prepared following the procedure for Example C, except that Compounds 129 and 29 were used instead of Compounds 8 and 7. ¹H-NMR (CDCl₃) δ 8.81 (1 H, s), 7.85 (1 H, s), 7.2-7.0 (11 H, m), 6.4 (1 H, m), 6.12 (1 H, m), 5.44 (2 H, m), 5.26 (2 H, s), 4.85 (1 H, m), 4.70 (1 H, m), 4.4 (3 H, m), 4.06 (1 H, m), 3.25 (1 H, m), 2.98 (3 H, s), 2.78 (4 H, m), 2.21 (1 H, m), 1.38 (6 H, m), 0.88 (6 H, m); m/z 703.2 (M+H)+

Preparation of Compounds CK and CL

[0729]
Example CK

[0730] Example CK (88 mg) was prepared following the procedure used to prepare Example C, except that Compound 49 was used instead of Compound 7. m/z 749.2 (M+H)⁺

Example CL

[0731] A mixture of Example CK (85 mg) and TFA (5 mL) was stirred for 3 hours. Excess TFA was evaporated and the mixture was dried under high vacuum. The mixture was dissolved in THF (5 mL), and 1.0 N sodium hydroxide solution was added until the pH was 11. The solution was stirred for 10 minutes, and extracted with EtOAc. The organic phase was washed with water, brine, and dried over Na₂SO₄.

[0732] Concentration and purification by flash column chromatography (EtOAc) gave Example CL (66 mg). ¹H-NMR (CDCl₃) δ 8.81 (1 H, s), 7.84 (1 H, s), 7.30-6.96 (11 H, m), 5.22 (2 H, s), 4.90 (1 H, m), 4.45 (1 H, m), 4.35-4.0 (4 H, m), 3.8 (1 H, m), 3.6 (1 H, m), 3.21 (1 H, m), 2.95 (3 H, s), 2.8-2.6 (4 H, m), 2.0-1.4 (4 H, m), 1.25 (6H, m). m/z 693.2 (M+H)⁺.

Preparation of Example CM

[0733]
**Compound 130**

[0734] Compound 130 is commercially available from (TCI), and was used as received.

**Compound 131**

[0735] To the solution of Compound 130 (510 mg, 3 mmol) in methanol (12 mL) at 0°C was added thionyl chloride (0.5 mL, 6.6 mmol), dropwise. The mixture was stirred at 0°C for 30 minutes and brought to reflux for 3 hours. Concentration gave Compound 131 as a white solid.

**Compound 132**

[0736] To a stirred solution of Compound 131 (3 mmol) and diisopropylethylamine (2 mL, 12 mmol) in dichloromethane (35 mL) was added CDI (486 mg, 3 mmol). The mixture was stirred for 12 hours. Compound 9 was added, and the mixture was stirred for 12 additional hours. Concentration and purification by flash column chromatography (CH$_2$Cl$_2$/iPrOH = 10/1) gave Compound 132 (414 mg), m/z 380.0 (M+H)$^+$

**Compound 133**

[0737] Compound 133 was prepared following the procedure for Compound 67, except that Compound 132 was used instead of Compound 66. m/z 364.0(M-H)$^-$

**Example CM**

[0738] Example CM (600 mg) was prepared following the procedure for Example C, except Compound 133 was used instead of Compound 7. $^1$H-NMR (CDCl$_3$) b 9.18 (1 H, s), 8.35 (1 H, s), 7.95 (1 H, s), 7.6 (1 H, m), 7.3-7.0 (11 H, m), 5.22 (2 H, m), 4.70 (1 H, m), 4.50 (2 H, m), 4.05 (1 H, m), 3.86 (3 H, s), 3.80 (2 H, m), 3.55 (1 H, m), 3.10 (1 H, m), 2.90
Preparation of Examples O, P, CN, and CO

Example O

Example O (17 mg) was prepared following the procedure for Example C, except Compounds 46 and 49 were used instead of Compounds 8 and 7. m/z 749.3 (M+H)+

Example CN

Example CN (22 mg) was prepared following the procedure used to prepare Example C, except Compounds 46 and 13e were used instead of Compounds 8 and 7. m/z 763.2 (M+H)+

Example P

Example P (12 mg) was prepared following the procedure used to prepare Example CL, except Example O was used instead of Example CK. 1H-NMR (CDCl3) δ 8.76 (1H, s), 7.79 (1H, s), 7.25-6.9 (11 H, m), 6.51 (1 H, broad), 5.42 (1H, m), 5.18 (2H, m), 4.42 (2H, m), 4.22 (1H, m), 4.10 (1H, m), 3.95 (1H, m), 3.79 (1H, m), 3.58 (1H, m), 3.23 (1H, m), 2.93 (3H, s), 2.9-2.5 (4H, m), 1.6-1.2 (10H, m); m/z: 693.2 (M+H)+

Compound CO

Example CO (13 mg) was prepared following the procedure used to prepare Example CL, except Example CN was used instead of Compound CK. 1H-NMR (CDCl3) δ 8.85 (1H, m), 7.88 (1H, m), 7.3-7.0 (11H, m), 6.55 (1H, m),
6.24 (1 H, m), 5.45 (1 H, m), 5.23 (2 H, m), 4.6 (2 H, m), 4.2 (1 H, m), 4.0 (2 H, m), 3.7 (1 H, m), 3.5 (1 H, m), 3.02 (3 H, s), 2.70 (4 H, m), 1.6-1.0 (13 H, m); m/z: 707.3 (M+H)+. Preparation of Examples CP-CS

Scheme 77

I. Cmpd. 16/iPr₂NEt; II. Cmpd. 13d or 49/EDC/HOBt; III. a. TFA; b. NaOH/THF

**Compound 134**

[0744] Compound 134 was prepared using procedure described for Compound 76, except that CBZ-D-alaninol was used instead of CBZ-L-alaninol.

**Compound 135**

[0745] Compound 135 was prepared following the procedure used to prepare Compound 8, except Compound 134 was used instead of Compound 22.

**Example CP**

[0746] Example CP (12 mg) was prepared following the procedure used to prepare Example C, except Compounds 135 and 49 were used instead of Compounds 8 and 7. m/z 597.2 (M+H)+.

**Example CO**

[0747] Example CQ (11 mg) was prepared following the procedure used to prepare Example C, except Compounds 135 and 13d were used instead of Compounds 8 and 7. m/z 611.2 (M+H)+.
Example CR

Example CR (7 mg) was prepared following the procedure used to prepare Example P, except that Example CP was used instead of Example O. \(^1\)H-NMR (CDCl\(_3\)) \(\delta\) 8.82 (1 H, s), 7.88 (1 H, s), 7.02 (1 H, s), 6.92 (1 H, m), 5.28 (2 H, s), 5.10 (1 H, m), 4.5 (2 H, m), 4.15 (2 H, m), 3.88 (1 H, m), 3.8-3.5 (2 H, m), 3.35 (1 H, m), 3.0 (3 H, s), 1.5-1.0 (16 H, m); m/z: 541.1 (M+H)\(^+\).

Example CS

Example CS (8 mg) was prepared following the procedure used to prepare Example CO, except that Example CQ was used instead of Example CN. \(^1\)H-NMR (CDCl\(_3\)) \(\delta\) 8.83 (1 H, s), 7.88 (1 H, s), 6.98 (1 H, s), 6.81 (1 H, m), 6.58 (1 H, m), 5.28 (2 H, s), 5.18 (1 H, m), 4.4-4.3 (2 H, m), 4.03 (1 H, m), 3.85 (1 H, m), 3.58 (2 H, m), 3.3 (1 H, m), 2.99 (3 H, s), 1.5-0.98 (19 H, m); m/z: 555.2 (M+H)\(^+\).

Preparation of Examples CT-CV

[0750]

Scheme 78

\[
\text{H}_2\text{N} \xrightarrow{\text{I}} \text{R} \xrightarrow{\text{II}} \text{H}_2\text{N} \xrightarrow{\text{III}} \text{R}
\]

\[
\text{CT} \quad X = \text{CH}_2\text{CH}_2; \quad R = \text{H} \\
\text{CU} \quad X = \text{CH}_2\text{CH}_2; \quad R = \text{Bn} \\
\text{CV} \quad X = \text{CH}_2; \quad R = \text{Bn}
\]

I. PhCHO/NaBH\(_4\); II. Cmpd 16/iPr\(_2\)NEt; II. Cmpd 13d/EDC/HOBt;

Compound 136

[0751] Compounds 136a-c are commercially available (Sigma-Aldrich).

Compound 137

[0752] To a solution of Compound 136 (20 mmol) in methanol (25 mL) was added benzaldehyde (40 mmol) dropwise. The mixture was stirred for 2 hours and was cooled to 0 \(^\circ\)C. Sodium borohydride (44 mmol) was added in portions. The mixture was warmed to 25 \(^\circ\)C and stirred for 2 hours. Acetic acid (10 mL) was added and the mixture was stirred for 10 minutes. Methanol was removed and the mixture was partitioned between EtOAc and 3 N NaOH solution. The organic layer was separated and water phase was extracted with EtOAc (2x). The combined organic layers was washed with water, brine, and dried over Na\(_2\)SO\(_4\). Concentration gave Compound 137.
Compound 138

[0753] Compound 138 was prepared following the procedure used to prepare Compound 8, except that Compound 137 was used instead of Compound 22.

Example CT

[0754] Example CT (70 mg) was prepared following the procedure used to prepare Example C, except that Compounds 29 and 138a was used instead of Compounds 7 and 8. $^1$H-NMR (CDCl$_3$) $\delta$ 8.79 (1 H, s), 7.86 (1 H, s), 6.97 (1 H, s), 6.49 (1 H, m), 6.15 (1 H, m), 5.28 (2 H, s), 5.20 (1 H, m), 4.44 (2 H, m), 4.05 (1 H, m), 3.25 (5 H, m), 3.0 (3 H, s), 2.24 (1 H, m), 1.8-1.45 (4 H, m), 1.38 (6 H, m), 0.97 (6 H, m); m/z: 525.2 (M+H)$^+$. 

Example CU

[0755] Example CU (140 mg) was prepared following the procedure used to prepare Example C, except that Compounds 29 and 138b was used instead of Compounds 7 and 8. $^1$H-NMR (CDCl$_3$) $\delta$ 8.78 (1 H, s), 7.85 (1 H, m), 7.4-7.05 (10 H, m), 6.93 (1 H, s), 5.90 (1 H, m), 5.35 (2 H, s), 4.9-4.6 (2 H, m), 4.6-4.4 (4 H, m), 4.2 (1 H, m), 3.4-3.05 (5 H, m), 3.0 (3 H, s), 2.0 (1 H, m), 1.8-1.3 (10 H, m), 0.90 (6 H, m); m/z: 705.2(M+H)$^+$. 

Example CV

[0756] Example CV (145 mg) was prepared following the procedure used to prepare Example C, except that Compounds 29 and 138c was used instead of Compounds 7 and 8. $^1$H-NMR (CDCl$_3$) $\delta$ 8.76 (1 H, m), 7.86 (1 H, m), 7.4-7.02 (10 H, m), 6.97 (1 H, m), 5.75 (1 H, m), 5.38 (2 H, m), 4.95-4.3 (6 H, m), 4.15 (1 H, m), 3.4-3.0 (5 H, m), 3.0 (3 H, s), 2.2-1.6 (3 H, m), 1.4 (6 H, m), 0.88 (6 H, m); m/z: 691.2(M+H)$^+$. 

Preparation of Example CW

[0757] 

![Image of structure CW]

[0758] Example CW could be prepared, e.g. by reacting Compound 8 with a compound having the following structure:

![Image of structure LG]

where "LG" is a leaving group such as a halogen. Such compounds could be prepared by one-carbon degradation of the corresponding carboxylic acid or ester (e.g., Compounds 28 or 29) by known methods such as the Hunsdieker reaction or the Kochi reaction or similar methods. 

Preparation of Example CX

[0759]
Example R

[0760] Example R (hydrochloride salt) was synthesized following the procedure described in WO 2008/010921 A2 (herein incorporated by reference in its entirety for all purposes) or as described above.

Example CX

[0761] To a suspension of Example R (hydrochloride salt) (150 mg, 0.2 mmol) in THF (2 mL) was added diisopropyl-ethylamine (70 µl, 0.4 mmol). The mixture was stirred until a clear solution was obtained. To this solution was added trimethylsilyl isocyanate (30 µl, 0.22 mmol) dropwise, and the mixture was stirred for 12 hours. The solvent was removed and the mixture was coevaporated twice with 5 mL of MeOH. Purification with preparative thin layer chromatography (preparative TLC) gave Example CX (86 mg). m/z: 749.2 (M+H)+. 1H NMR (CD3OD) δ 8.99 (s, 1H); 7.83 (s, 1H); 7.72 (m, 1H); 7.30-7.00 (m, 11H); 5.22 (s, 2H); 4.54 (s, 2H); 4.19 (s, 1H); 4.07 (m, 1H); 3.75 (m, 1H); 3.28 (m, 1H); 3.30-2.90 (m, 2H); 2.97 (s, 3H); 2.71 (m, 4H); 1.79 (m, 2H); 1.50 (m, 4H); 1.38 (d, 6H, J=7 Hz).

Preparation of Example CY

[0762]
To a solution of Example R (hydrochloride salt) (269 mg, 0.36 mmol) in pyridine (3 mL) was added diformylhydrazine (95 mg, 1.1 mmol), followed by chlorotrimethylsilane (2.7 mL) and triethylamine (0.34 mL). The mixture was heated at 100 °C for 14 hours, and solvents were removed. The mixture was quenched with water, and extracted three times with EtOAc. The organic layer was dried over Na₂SO₄ and concentrated to give a white solid. Purification by HPLC and preparative TLC (5% MeOH in dichloromethane) gave Example CY (5 mg). m/z: 758.3 (M+H)⁺. ¹H NMR (CD₃OD) b 8.98 (s, 1H); 8.50 (s, 2H); 7.83 (s, 1H); 7.30-7.00 (m, 11H); 5.21 (s, 2H); 4.54 (m, 2H); 4.11 (m, 4H); 3.76 (m, 1H); 3.28 (m, 1H); 2.95 (s, 3H); 2.69 (m, 4H); 2.04 (m, 2H); 1.70-1.20 (m, 10H).
Example CZ

To a suspension of Example R (hydrochloride salt) (200 mg, 0.27 mmol) and sodium bicarbonate (92 mg, 1.1 mmol) in DMF (2 mL) was added a solution of methyl 4-bromobutyrate (74 μL, 0.54 mmol) in DMF (1 mL). The mixture was heated at 65 °C for 20 hours and the solvent was removed under reduced pressure. The mixture was quenched with water, and extracted with EtOAc. The organic layer was washed three times with water, twice with sodium carbonate solution, and once with brine, and dried over Na₂SO₄. Concentration followed by purification using HPLC gave Example CZ as a white solid (23 mg). m/z: 774.3 (M+H)+. ¹H NMR (CD₃OD) δ 8.99 (s, 1H); 7.84 (s, 1H); 7.30-7.00 (m, 11H); 5.22 (s, 2H); 4.55 (m, 2H); 4.09 (m, 2H); 3.90-3.60 (m, 1H); 3.55-3.10 (m, 5H); 2.98 (s, 3H); 2.71 (m, 4H); 2.37 (m, 2H); 2.04 (m, 2H); 1.81 (m, 2H); 1.70-1.20 (m, 10H).

Preparation of Example DA

[0766]
Example DA

[0767] To a suspension of Example R (hydrochloride salt) (250 mg, 0.34 mmol) in acetic acid (0.73 mL) was added sodium acetate (153 mg, 1.9 mmol), followed by 2,5-dimethoxyTHF (44 μL, 0.34 mmol). The mixture was heated at 125 °C for 90 minutes, and the solvent was removed under reduced pressure. The residue was quenched with saturated sodium bicarbonate solution and extracted with EtOAc. The organic layer was washed sequentially with saturated NaHCO₃ solution, water, and brine, and dried over Na₂SO₄. Concentration and purification by HPLC gave a white solid, which was further purified by preparative TLC to give Example DA (25 mg). m/z: 756.3 (M+H)+. ¹H NMR (CD₃OD) δ 8.96 (s, 1H); 7.82 (s, 1H); 7.30-7.00 (m, 11H); 6.62 (s, 2H); 6.02 (s, 2H); 5.20 (s, 2H); 4.51 (s, 2H); 4.20-3.95 (m, 2H); 3.88 (m, 2H); 3.75 (m, 1H); 3.26 (m, 1H); 2.93 (s, 3H); 2.70 (m, 4H); 2.01 (m, 2H); 1.70-1.20 (m, 10H).

Preparation of Example DB

[0768]
To Example R (220 mg, 0.34 mmol) in propanol (1.9 mL) was added aqueous ammonia (39 mg, 0.34 mmol, 28-30%). The mixture was stirred for 5 minutes. To the above mixture was added a solution of glyoxal (53 mg, 0.37 mmol, 40%wt) and formaldehyde (30 mg, 0.37 mmol, 37%wt) in propanol (3.7 mL) dropwise. The mixture was heated at 80 °C for 5 hours. The solvent was removed under reduced pressure, and the residue was diluted with EtOAc. The organic layer was washed with water and brine, and dried over Na₂SO₄. Concentration of the organic layer and purification by HPLC gave Example DB as a white powder (101 mg). m/z: 757.3 (M+H)+. ¹H NMR (CD₃OD) δ 8.97 (s, 1H); 7.82 (s, 1H); 7.60 (s, 1H); 7.30-7.00 (m, 12H); 6.96 (s, 1H); 5.20 (s, 2H); 4.53 (m, 2H); 4.20-3.90 (m, 4H); 3.76 (m, 1H); 3.28 (m, 1H); 2.95 (s, 3H); 2.70 (m, 4H); 2.02 (m, 2H); 1.70-1.20 (m, 10H).

Preparation of Example DC

[0770]
Example DC

[0771] To a solution of Example R (220 mg, 0.34 mmol) in dichloromethane (1.5 mL) was added succinic anhydride (41 mg, 0.41 mmol). The mixture was heated at 45 °C for 12 hours. The solvent was removed and a white solid was dried under high vacuum. To this solid was added sodium acetate (10 mg, 0.12 mmol), followed by acetic anhydride (1.5 mL). The mixture was heated at 85 °C for 1 hour, and the solvent was removed under reduced pressure. The residue was diluted with EtOAc, and was washed sequentially with water, saturated NaHCO$_3$, water, and brine, and dried over Na$_2$SO$_4$. Concentration gave Example DC (190 mg). m/z: 788.2 (M+H)$^+$. $^1$H NMR (CD$_3$OD) $\delta$ 8.99 (s, 1H); 7.84 (s, 1H); 7.30-7.00 (m, 11H); 5.22 (s, 2H); 4.70-4.40 (m, 2H); 4.20-3.90 (m, 2H); 3.75 (m, 1H); 3.54 (m, 1H); 3.42 (m, 1H); 3.28 (m, 1H); 2.98 (s, 3H); 2.67 (m, 8H); 2.00 (m, 1H); 1.81 (m, 1H); 1.70-1.20 (m, 10H).

Preparation of Example DD

[0772]
Example DD

To a solution of Example R (220 mg, 0.34 mmol) in DMF (3 mL) was added sodium carbonate (100 mg), followed by 2,2,2-trifluoroethyl trichloromethanesulfonate (112 µl, 0.68 mmol). The mixture was stirred for 3 days and the solvent was removed under reduced pressure. The residue was diluted with EtOAc. The organic layer was sequentially washed twice with saturated sodium carbonate solution, once with water, and once with brine, and dried over Na₂SO₄. Concentration and purification by flash column chromatography (9% MeOH in dichloromethane) gave Example DD (109 mg). m/z: 788.2 (M+H)+. ¹H NMR (CD3OD) δ 8.98 (s, 1H); 7.82 (s, 1H); 7.62 (d, 1H, J=9 Hz); 7.30-7.00 (m, 11H); 6.85 (d, 1H, J=9 Hz); 5.20 (m, 2H); 4.54 (s, 2H); 4.23 (m, 1H); 4.11 (m, 1H); 3.77 (m, 1H); 3.31 (m, 2H); 3.12 (q, 2H, J=10 Hz); 2.95 (m, 3H); 3.80-2.50 (m, 6H); 1.77 (m, 2H); 1.70-1.20 (m, 10H). ¹⁹F NMR (CD3OD) δ -73.28 (t, 1H, J=10 Hz).

Preparation of Example DE

[0774]
Example DE

To a clear solution of dimethyl N-cyanodithioiminocarbonate (50 mg, 0.34 mmol) in ethanol (0.5 mL) was added slowly a solution of Example R (220 mg, 0.34 mmol) in ethanol (2.5 mL). The mixture was stirred for 12 hours. To the above mixture was added a solution of methylamine in EtOH (1.6 mL, 33%wt). The mixture was stirred for 6 hours, and solvents were removed under reduced pressure. Purification by HPLC gave Example DE (92 mg). m/z: 787.3 (M+H)⁺.

1H NMR (CD3OD) δ 8.98 (s, 1H); 7.83 (s, 1H); 7.30-7.00 (m, 11H); 5.21 (s, 2H); 4.51 (s, 2H); 4.18 (m, 1H); 4.09 (m, 1H); 3.77 (m, 1H); 3.28 (m, 2H); 3.16 (m, 1H); 2.97 (s, 3H); 2.80 (s, 3H); 2.715 (m, 4H); 1.84 (m, 1H); 1.70 (m, 1H); 1.65-1.20 (m, 10H).

Preparation of Examples DF-DG

[0776]
Example DF

[0777] To a solution of Example R (220 mg, 0.34 mmol) in DMF (1 mL) was added sodium carbonate (72 mg, 0.68 mmol), followed by a solution of 2-bromoethanol (24 µL, 0.34 mmol) in DMF (0.4 mL). The mixture was heated at 70 °C for 12 hours. Concentration under high vacuum gave Example DF. m/z: 750.2

Example DG

[0778] To a suspension of Example DF (0.34 mmol) in THF (3.4 mL) was added carbonyldiimidazole (CDI) (83 mg, 0.51 mmol), followed by DMAP (4 mg). The mixture was heated at 70 °C for 3 hours, and the solvent was removed. The residue was diluted with EtOAc, and was washed with water and brine, and dried over Na₂SO₄. Concentration and purification with preparative TLC gave Example DG (83 mg). m/z: 776.2 (M+H)+. ¹H NMR (CD₃OD) δ 8.98 (s, 1H); 7.83 (s, 1H); 7.67 (m, 1H); 7.30-7.00 (m, 11H); 6.87 (m, 1H); 6.49 (m, 1H); 5.21 (s, 2H); 4.70-4.40 (m, 2H); 4.34 (t, 2H, J=8 Hz); 4.18 (m, 1H); 4.06 (m, 1H); 3.76 (m, 1H); 3.60 (t, 2H, J=8 Hz); 3.24 (m, 3H); 2.97 (s, 3H); 2.71 (m, 4H); 1.86 (m, 2H); 1.70-1.20 (m, 10H).

Preparation of Example DH

[0779]
Example W

Example W was synthesized following the procedure described in WO2008/010921 A2, and as described above in Scheme 25.

Example DH

Example DH (100 mg) was prepared following the procedure used to prepare example CY, except that Example W was used instead of Example R. $^1$H NMR (CD$_3$OD): $\delta$ 8.97 (s, 1H), 8.40 (s, 2H), 7.81 (s, 1H), 7.15 (m, 10H), 5.20 (s, 2H), 4.54 (m, 2H), 4.20 (m, 1H), 4.07 (m, 1H), 3.87 (m, 3H), 3.24 (m, 1H), 2.95 (s, 3H), 2.85 (m, 1H), 2.60 (m, 3H), 1.81 (m, 2H), 1.60-1.43 (m, 4H), 1.33 (d, J=7.2 Hz, 6H). Mass Spectrum ($m/e$): (M+H)$^+$ 758.2, (M-H)$^- 755.9.

Preparation of Example DI

Example DI
Example DI

Example DI (28 mg) was prepared following the procedure used to prepare Example CZ, except that compound W (160 mg) was used instead of Example R. m/z: 774.2 (M+H)⁺. ¹H NMR (CD3OD) δ 8.97 (1 H, s), 7.81 (1 H, s), 7.24-7.02 (11 H, m), 5.20 (2 H, s), 4.54 (2 H, m), 4.18 (1 H, m), 4.0 (1 H, m), 3.75 (1 H, m), 3.20 (4 H, m), 3.01 (1 H, m), 2.99 (3 H, s), 2.8-2.5 (4 H, m), 2.38 (2 H, m), 2.04 (2 H, m), 1.62-1.40 (6 H, m), 1.31 (6 H, m).

Preparation of Example DT

Scheme 90

Example DJ (28 mg) was prepared following the procedure used to prepare Example CZ, except that compound W (160 mg) was used instead of Example R. m/z: 774.2 (M+H)⁺. ¹H NMR (CD3OD) δ 8.97 (1 H, s), 7.81 (1 H, s), 7.24-7.02 (11 H, m), 5.20 (2 H, s), 4.54 (2 H, m), 4.18 (1 H, m), 4.0 (1 H, m), 3.75 (1 H, m), 3.20 (4 H, m), 3.01 (1 H, m), 2.99 (3 H, s), 2.8-2.5 (4 H, m), 2.38 (2 H, m), 2.04 (2 H, m), 1.62-1.40 (6 H, m), 1.31 (6 H, m).
Example DJ

Example DJ (44 mg) was prepared following the procedure used to prepare Example DB, except that Example W (160 mg) was used instead of Example R. m/z: 757.3 (M+H)+. 1H NMR (CD3OD) δ 8.97 (1 H, s), 7.83 (1 H, s), 7.50 (1 H, s), 7.25-7.04 (11 H, m), 6.99-6.96 (2 H, m), 5.20 (2 H, s), 4.52 (2 H, m), 4.20 (1 H, m), 4.03 (1 H, m), 3.78 (3 H, m), 3.22 (1 H, m), 2.95 (3 H, s), 2.9-2.4 (4 H, m), 1.8 (2 H, m), 1.7-1.4 (4 H, m), 1.31 (6 H, m).

Preparation of Examples DK-DL

Example DK was prepared following the procedure used to prepare Example DF, except that Example W (160 mg) was used instead of Example R.

Example DL (28 mg) was prepared following the procedure used to prepare Example DG, except that Example DK was used instead of Example DF. m/z: 776.2 (M+H)+. 1H NMR (CD3OD) δ 8.97 (1 H, s), 7.81 (1 H, s), 7.25-7.05 (11 H, m), 5.20 (2 H, s), 4.55 (2 H, m), 4.31 (2 H, m), 4.2-4.0 (2 H, m), 3.75 (1 H, m), 3.44 (2 H, m), 3.3-3.0 (3 H, m), 2.98...
Preparation of Examples DM(a-c)

Scheme 92

Compound 8 was synthesized following the procedure described in WO2008/010921 A2, and as described above.
Compounds 138a/138b/138c

[0791] Compounds 138a, 138b, and 138c were obtained from Aldrich.

Compound 139a

[0792] To a solution of acid 138a (266 mg, 1.0 mmol) and amine 8 (409 mg, 1.0 mmol) in THF (10 mL) were added HOBt (203 mg, 1.5 mmol), EDC (294 µL, 2.0 mmol), and diisopropylethylamine (0.835 mL, 4.0 mmol). The mixture was stirred for 12 hours and the solvents were removed. The residue was diluted with EtOAc. The organic phase was washed three times with saturated Na2CO3 solution, twice with water, and once with brine, and dried over Na2SO4. Concentration and purification by flash column chromatography (0%-10% MeOH in dichloromethane) gave Compound 139a (509 mg). m/z: 658.1 (M+H)+.

Compound 139b

[0793] Compound 139b (543 mg) was prepared following the procedure used to prepare Compound 139a, except that Compound 138b was used instead of Compound 138a. m/z: 658.1 (M+H)+.

Compound 139c

[0794] Compound 139c (587 mg) was prepared following the procedure used to prepare Compound 139a, except that Compound 138c was used instead of Compound 138a. m/z: 658.2 (M+H)+.

Compound 140a

[0795] To Compound 139a (500 mg) was added 10 mL of HCl/dioxane solution (4N, 40 mmol). The mixture was stirred for 1 hour, and the solvents were removed. The residue was diluted with diethyl ether, and stirred for 1 hour. The diethyl ether layer was decanted. The solid was washed with diethyl ether (2x) and dried under vacuum. The resulting Compound 140a was a brown powder (520 mg). m/z: 558.3 (M+H)+.

Compound 140b

[0796] Compound 140b (476 mg) was prepared following the procedure used to prepare Compound 140a, except that Compound 139b was used instead of Compound 139a. m/z: 558.2 (M+H)+.

Compound 140c

[0797] Compound 140c (536 mg) was prepared following the procedure used to prepare Compound 140a, except that Compound 139c was used instead of Compound 139a. m/z: 558.3 (M+H)+.

Compound 9

[0798] Compound 9 was synthesized following the procedure described in WO2008/010921 A2.

Example DM(a)

[0799] To the stirred solution of Compound 140a (520 mg, 0.75 mmol) and diisopropylethylamine (0.52 mL, 3.0 mmol) in dichloromethane (6 mL) was added CDI (122 mg, 0.75 mmol). The mixture was stirred for 12 hours. To this mixture was added a solution of Compound 9 (128 mg, 0.75 mmol) in dichloromethane (2 mL), and the mixture was stirred for 5 additional hours. The solvents were removed, and the residue was diluted with EtOAc. The organic layer was washed twice with water and once with brine, and dried over Na2SO4. Concentration and purification by HPLC gave Example DM(a) (270 mg). m/z: 754.3 (M+H)+. 1H NMR (CD3OD) δ 8.97 (s, 1H); 8.41 (m, 1H); 7.82 (s, 1H); 7.70 (m, 2H); 7.30-7.00 (m, 11H); 6.99 (s, 1H); 5.21 (s, 2H); 4.56 (m, 1H); 4.48 (s, 2H); 4.02 (m, 1H); 3.72 (m, 1H); 3.28 (m, 1H); 3.15-2.90 (m, 2H); 2.93 (s, 3H); 2.68 (m, 4H); 1.60-1.30 (m, 10H).

Example DM(b)

[0800] Example DM(b) (36 mg) was prepared following the procedure used to prepare Example DM(a), except that
Compound 140b was used instead of Compound 140a. m/z: 754.3 (M+H)+. \(^1\)H NMR (CD\(_3\)OD) \(\delta\) 8.97 (s, 1H); 8.38 (m, 2H); 7.83 (s, 1H); 7.68 (m, 1H); 7.33 (m, 1H); 7.30-7.00 (m, 10H); 6.96 (s, 1H); 5.21 (s, 2H); 4.45 (m, 3H); 4.01 (m, 1H); 3.72 (m, 1H); 3.28 (m, 1H); 3.15-2.90 (m, 2H); 2.90 (s, 3H); 2.68 (m, 4H); 1.60-1.30 (m, 10H).

Example DM(c)

[0801] Example DM(c) (283 mg) was prepared following the procedure used to prepare Example DM(a), except that Compound 140c was used instead of Compound 140a. m/z: 754.3 (M+H)+. \(^1\)H NMR (CD\(_3\)OD) \(\delta\) 8.97 (s, 1H); 8.39 (d, 2H, \(J=6\) Hz); 7.82 (s, 1H); 7.27 (d, 2H, \(J=6\) Hz); 7.30-7.00 (m, 10H); 6.94 (s, 1H); 5.21 (s, 2H); 4.53 (m, 1H); 4.45 (s, 2H); 4.03 (m, 1H); 3.74 (m, 1H); 3.32 (m, 1H); 3.10-2.90 (m, 2H); 2.90 (s, 3H); 2.72 (m, 4H); 1.60-1.30 (m, 10H).

Preparation of Example DN

[0802]

Compound 141 was obtained from TCI.

Compound 142

To a solution of Compound 141 (1.0 g, 6.4 mmol) in methanol (20 mL) at 0 °C was added thionyl chloride (1.0 mL, 14.2 mmol) dropwise. The mixture was stirred at 0 °C for 30 minutes and brought to reflux for 3 hours. Concentration gave Compound 142 as a white solid.
Compound 143

[0805] Compound 143 (1.68 g) was prepared following the procedure used to prepare Example DM(a), except that Compound 142 was used instead of Compound 140a. m/z: 366.0 (M+H)*.

Compound 144

[0806] To a solution of Compound 143 (1.68 g, 4.8 mmol) in MeOH/H₂O (20 mL/20 mL) at 0 °C was added sodium hydroxide (229 mg, 5.74 mmol). The mixture was stirred for 1 hour and the solvents were removed under reduced pressure. Hydrochloric acid in dioxane (1.5 mL, 4 N, 6 mmol) was added, and the mixture was evaporated and dried under high vacuum. Compound 144 was obtained as a white solid (1.8 g).

Example DN

[0807] Example DN (260 mg) was prepared following the procedure used to prepare Compound 139a, except that Compound 144 was used instead of Compound 138a. m/z: 743.2 (M+H)*. ¹H NMR (CDCl₃) δ 8.78 (1 H, s), 7.81 (1 H, s), 7.44 (1 H, s), 7.39 (1 H, s), 7.3-7.0 (10 H, m), 6.95 (2 H, m), 6.7 (1 H, br), 6.2 (1 H, m), 5.3 (1 H, m), 5.2 (2 H, m), 4.5-4.2 (5 H, m), 4.1 (1 H, m), 3.70 (1 H, m), 3.22 (1 H, m), 2.96 (3 H, s), 2.8-2.5 (4 H, m), 1.5-1.2 (10 H, m).

Preparation of Example DO

[0808]

Scheme 94

Compound 46

[0809] Compound 46 was synthesized following the procedure described in WO2008/010921 A2.

Example DO

[0810] Example DO (215 mg) was prepared following the procedure used to prepare Compound 139a, except that Compounds 144 and 46 were used instead of Compounds 8 and 138a. m/z: 743.2 (M+H)*. ¹H NMR (CD₃OD) δ 8.97 (s, 1H); 7.82 (s, 1H); 7.45 (s, 1H); 7.30-7.00 (m, 13H); 6.19 (s, 1H); 5.20 (s, 2H); 4.60-4.40 (m, 2H); 4.21 (m, 2H); 4.09 (m, 1H); 3.25 (m, 1H); 2.93 (s, 3H); 2.90-2.50 (m, 5H); 1.70-1.20 (m, 10H).
**Preparation of Examples DP-DT**

[0811]

**Scheme 95**

Example AF

[0812] Example AF was synthesized following the procedure described in WO2008/010921 A2, and as described above in Scheme 27.

Example DP

[0813] Example DP (23 mg) was prepared following the procedure used to prepare Compound 139a, except that Example AF and 2-aminopyridine were used instead of Compounds 8 and 138a. m/z: 797.2 (M+H)+. 1H NMR (DMSO-d6) δ 10.45 (1H, s), 9.06 (1 H, s), 8.31 (1 H, m), 8.04 (1 H, m), 7.85 (1 H, m), 7.75 (1 H, m), 7.55 (1 H, m); 7.2-7.0 (13 H, m), 6.54 (1 H, m), 5.12 (2 H, s), 4.52 (1 H, m), 4.43 (2 H, s), 3.93 (1 H, m), 3.58 (1 H, m), 3.17 (1 H, m), 2.85 (3 H, s), 2.8-2.4 (6 H, m), 1.36 (4 H, m), 1.25 (6 H, m).

Example DQ

[0814] Example DQ (32 mg) was prepared following the procedure used to prepare Compound 139a, except that Example AF and 3-aminopyridine were used instead of Compounds 8 and 138a. m/z: 797.2 (M+H)+. 1H NMR (DMSO-d6) δ 10.39 (1H, s), 9.06 (1 H, s), 8.88 (1 H, s), 8.36 (1 H, m), 8.18 (1 H, m), 7.85 (1 H, s), 7.54 (2 H, m), 7.2-7.0 (12 H, m), 6.60 (1 H, m), 5.14 (2 H, s), 4.55 (1 H, m), 4.45 (2 H, s), 4.0-3.5 (2 H, m), 3.19 (1 H, m), 2.86 (3 H, s), 2.8-2.4 (6 H, m), 1.37 (4 H, m), 1.26 (6 H, m).
Example DR

[0815] Example DR (30 mg) was prepared following the procedure used to prepare Compound 139a, except that Example AF and 4-aminopyridine were used instead of Compounds 8 and 138a. m/z: 797.3 (M+H)+. 1H NMR (DMSO-d6) δ 11.24 (1 H, s), 9.05 (1 H, s), 8.61 (2 H, d, J = 6.3 Hz), 7.96 (2 H, d, J = 6.3 Hz), 7.84 (1 H, s), 7.58 (1 H, m), 7.2-7.0 (12 H, m), 6.65 (1 H, m), 5.14 (2 H, s), 4.6 (1 H, m), 4.46 (2 H, s), 3.9 (1 H, m), 3.4 (1 H, m), 3.20 (1 H, m), 2.87 (3 H, s), 2.7-2.4 (6 H, m), 1.37 (4 H, m), 1.25 (6 H, m).

Example DS

[0816] Example DS (50 mg) was prepared following the procedure used to prepare Compound 139a, except that Example AF and 1-aminopyrrolidine were used instead of Compounds 8 and 138a. m/z: 789.2 (M+H)+. 1H NMR (DMSO-d6) δ 9.06 (1 H, s), 8.63 (1 H, s), 8.26 (1 H, s), 7.85 (1 H, s), 7.55 (1 H, m), 7.35 (1 H, m), 7.2-7.0 (10 H, m); 6.40 (1 H, m), 5.15 (2 H, s), 4.55-4.30 (3 H, m), 3.85 (1 H, m), 3.63 (1 H, m), 3.4-3.1 (5 H, m), 2.86 (3 H, s), 2.8-2.4 (6 H, m), 1.66 (4 H, m), 1.4-1.2 (10 H, m).

Example DT

[0817] Example DT (50 mg) was prepared following the procedure used to prepare Compound 139a, except that Example AF and methanesulfonamide were used instead of Compounds 8 and 138a. m/z: 798.2 (M+H)+. 1H NMR (DMSO-d6) δ 11.65 (1 H, s), 9.10 (1 H, s), 7.88 (1 H, s), 7.50 (1 H, m), 7.2-7.0 (12 H, m), 6.6 (1 H, m), 5.15 (2 H, s), 4.5-4.4 (3 H, m), 4.0-3.4 (2 H, m), 3.20 (1 H, m), 3.15 (3 H, s), 2.85 (3 H, s), 2.7-2.4 (6 H, m), 1.4-1.2 (10 H, m).

Preparation of Examples DU(a-c)

[0818]
Compound 122 was synthesized following the procedure described in WO2008/010921 A2, and as described above in Scheme 69.

Compound 145

To a solution of Compound 122 (1.0 g, 4 mmol) in dichloromethane (5 mL) was added ethyl alcohol (1.5 mL, 25.6 mmol), followed by iodotrimethylsilane (2 mL, 14.3 mmol). The mixture was stirred for 6 hours and the mixture was used directly for the next step. m/z: 453.9 (M+H)+.

Compound 146a

To a solution of Compound 145 (1 mmol) in dichloromethane (2 mL) was added a solution of (R)-3-hydroxypyrrolidine (435 mg, 5 mmol) in dichloromethane (1 mL). The mixture was stirred for 12 hours and the solvents were removed under reduced pressure. Purification by flash column chromatography (0-20% MeOH in dichloromethane) gave Compound 146a (230 mg). m/z: 413.1 (M+H)+.
[0822] Compound 146b (200 mg) was prepared following the procedure used to prepare Compound 146a, except that compound (S)-3-hydroxypyrrolidine was used instead of compound (R)-3-hydroxypyrrolidine. m/z: 413.1 (M+H)*.

[0823] Compound 146c (380 mg) was prepared following the procedure used to prepare Compound 146a, except that compound 4-hydroxypiperidine was used instead of compound (R)-3-hydroxypyrrolidine. m/z: 427.1 (M+H)*.

[0824] Compound 147a (250 mg) was prepared following the procedure used to prepare Compound 144, except that Compound 146a was used instead of Compound 143.

[0825] Compound 147b (210 mg) was prepared following the procedure used to prepare Compound 144, except that Compound 146b was used instead of Compound 143.

[0826] Compound 147c (400 mg) was prepared following the procedure used to prepare Compound 144, except that Compound 146c was used instead of Compound 143.

Example DU(a)

[0827] Example DU(a) (250 mg) was prepared following the procedure used to prepare Compound 139a, except that Compound 147a was used instead of Compound 138a. m/z: 776.3 (M+H)*. 1H NMR (CD3OD) δ 8.97 (1 H, s), 7.81 (1 H, s), 7.25-7.05 (11 H, m), 5.19 (2 H, m), 4.54 (2 H, m), 4.25 (1 H, m), 4.2-4.1 (2 H, m), 3.75 (1 H, m), 3.22 (1 H, m), 2.94 (3 H, s), 2.8-2.7 (6 H, m), 2.5-2.3 (4 H, m), 2.1-1.8 (2 H, m), 1.7-1.4 (6 H, m), 1.37 (6 H, m).

Example DU(b)

[0828] Example DU(b) (253 mg) was prepared following the procedure used to prepare Compound 139a, except that compound 147b was used instead of Compound 138a. m/z: 776.3 (M+H)*. 1H NMR (CD3OD) δ 8.97 (1 H, s), 7.81 (1 H, s), 7.22-7.05 (11 H, m), 5.18 (2 H, m), 4.5 (2 H, m), 4.25 (1 H, m), 4.2-4.1 (2 H, m), 3.78 (1 H, m), 3.25 (1 H, m), 2.95 (3 H, s), 2.8-2.6 (6 H, m), 2.6-2.3 (4 H, m), 2.1-1.8 (2 H, m), 1.8-1.4 (6 H, m), 1.37 (6 H, m).

Example DU(c)

[0829] Example DU(c) (450 mg) was prepared following the procedure used to prepare Compound 139a, except that Compound 147c was used instead of Compound 138a. m/z: 790.3 (M+H)*. 1H NMR (CD3OD) δ 8.97 (1 H, s), 7.81 (1 H, s), 7.25-7.05 (11 H, m), 5.20 (2 H, m), 4.54 (2 H, m), 4.2-4.0 (2 H, m), 3.75 (1 H, m), 3.58 (1 H, m), 3.25 (1 H, m), 2.97 (3 H, s), 2.8-2.6 (6 H, m), 2.25 (2 H, m), 2.08 (2 H, m), 1.9-1.6 (4 H, m), 1.6-1.4 (6 H, m), 1.38 (6 H, m).

Preparation of Example DV

[0830]
Example DV

A mixture of Example DU(c) (230 mg, 0.29 mmol) and triethylamine (0.14 mL) in DMSO (1 mL) was stirred at 25 °C for 30 minutes, and then was cooled to 5-10 °C. Sulfur trioxide pyridine complex (0.17 g) was added to above reaction mixture and the mixture was stirred for 1 hour at 5-10 °C. The mixture was poured into ice water, and stirred for 20 minutes, and was extracted with EtOAc. The organic phase was washed twice with water, twice with saturated NaHCO₃ solution, twice with water, and once with brine, and dried over Na₂SO₄. Concentration and purification by flash column chromatography (0-20% MeOH in dichloromethane) gave Example DV (67 mg). m/z: 788.3 (M+H)+. 1H NMR (CDCl₃) δ 8.78 (1 H, s), 7.81 (1 H, s), 7.3-7.1 (10 H, m), 6.90 (1 H, s), 6.5 (1 H, br), 5.35 (1 H, m), 5.22 (2 H, s), 4.4-4.0 (4 H, m), 3.78 (1 H, m), 3.23 (1 H, m), 2.93 (3 H, s), 2.8-2.5 (8 H, m), 2.4-2.2 (6 H, m), 2.0-1.4 (6 H, m), 1.32 (6 H, m).

Preparation of Example DW

[0832]
Example DW

Example DW (78 mg) was prepared following the procedure used to prepare Example DV, except that Example DU(a) was used instead of Example DU(c). m/z: 774.3 (M+H)+. 1H NMR (CDCl3) δ 8.78 (1 H, s), 7.82 (1 H, s), 7.3-7.0 (10 H, m), 6.89 (1 H, s), 6.55 (1 H, br), 5.40 (1 H, m), 5.21 (2 H, s), 4.5-4.2 (3 H, m), 4.15 (1 H, m), 3.78 (1 H, m), 3.23 (1 H, m), 3.1-2.9 (4 H, m), 2.9 (3 H, s), 2.8-2.5 (6 H, m), 2.40 (2 H, m), 1.90 (2 H, m), 1.55 (2 H, m), 1.38 (8 H, m).

Preparation of Examples DX(a-f)

Example DW
Compound 60 was synthesized following the procedure described in WO2008/010921 A2, and as described above in Scheme 23.

Compound 148a

[0835] Compound 60 was synthesized following the procedure described in WO2008/010921 A2, and as described above in Scheme 23.

Compound 148a

[0836] To a solution of Compound 60 (800 mg, 2 mmol) in CH$_3$CN (8 mL) was added a solution of 1-acetylpiperazine (512 mg, 4 mmol) in CH$_3$CN (1 mL), followed by HOAc (240 ul, 4 mmol) and NaBH(OAc)$_3$ (1.33 g, 6 mmol). The mixture was stirred for 12 hours and was diluted with EtOAc. The organic phase was washed with saturated Na$_2$CO$_3$ solution, water, and brine, and dried over Na$_2$SO$_4$. Concentration and purification by flash column chromatography (0-12% iPrOH in dichloromethane) gave Compound 148a (250 mg). m/z: 516.1 (M+H)$^+$. 
Compound 148b

[0837] Compound 148b (530 mg) was prepared following the procedure used to prepare Compound 148a, except that 1-ethylsulfonylepiperazine was used instead of 1-acetylpiperazine. m/z: 566.1 (M+H)^+.

Compound 148c

[0838] Compound 148c (384 mg) was prepared following the procedure used to prepare Compound 148a, except that 4-trifluoromethylpiperidine was used instead of 1-acetylpiperazine. m/z: 541.2 (M+H)^+.

Compound 148d

[0839] Compound 148d (342 mg) was prepared following the procedure used to prepare Compound 148a, except that 4, 4-difluoropiperidine was used instead of 1-acetylpiperazine. m/z: 509.1 (M+H)^+.

Compound 148e

[0840] Compound 148e (320 mg) was prepared following the procedure used to prepare Compound 148a, except that 4-fluoropiperidine was used instead of 1-acetylpiperazine. m/z: 491.1 (M+H)^+.

Compound 148f

[0841] Compound 148f (389 mg) was prepared following the procedure used to prepare Compound 148a, except that 3,3-difluoropiperidine was used instead of 1-acetylpiperazine. m/z: 509.1 (M+H)^+.

Example 149a

[0842] To a solution of Compound 148a (250 mg, 0.48 mmol) in ethyl alcohol (3 mL) was added 1.0 N sodium hydroxide solution (0.53 mL, 0.53 mmol). The mixture was stirred for 1 hour and the solvents were removed under reduced pressure. 4.0 N Hydrochloric acid in dioxane (0.13 mL, 0.52 mmol) was added, and the mixture was evaporated. Coevaporation with DMF (2x100 mL) gave Compound 149a, which was used without further purification in the next step.

Example 149b

[0843] Compound 149b was prepared following the procedure used to prepare Compound 149a, except that Compound 148b was used instead of Compound 148a.

Example 149c

[0844] Compound 149c was prepared following the procedure used to prepare Compound 149a, except that Compound 148c was used instead of Compound 148a.

Example 149d

[0845] Compound 149d was prepared following the procedure used to prepare Compound 149a, except that Compound 148d was used instead of Compound 148a.

Example 149e

[0846] Compound 149e was prepared following the procedure used to prepare Compound 149a, except that Compound 148e was used instead of Compound 148a.

Example 149f

[0847] Compound 149f was prepared following the procedure used to prepare Compound 149a, except that Compound 148f was used instead of Compound 148a.
Example DX(a)

Example DX(a) (90 mg) was prepared following the procedure used to prepare Compound 139a, except that Compound 149a was used instead of Compound 138a. m/z: 817.3 (M+H)^+. ^1H NMR (CDCl₃) δ 8.78 (1 H, s), 7.81 (1 H, s), 7.3-7.0 (10 H, m), 6.90 (1 H, s), 6.40 (1 H, m), 5.40 (1 H, m), 5.22 (2 H, s), 4.6-4.3 (2 H, m), 4.3-4.1 (2 H, m), 3.78 (1 H, m), 3.5-3.2 (5 H, m), 2.92 (3 H, s), 2.9-2.6 (4 H, m), 2.4-2.2 (6 H, m), 2.07 (3 H, s), 1.9 (2 H, m), 1.6-1.3 (10 H, m).

Example DX(b)

Example DX(b) (150 mg) was prepared following the procedure used to prepare Compound 139a, except that Compound 149b was used instead of Compound 138a. m/z: 867.3 (M+H)^+. ^1H NMR (CDCl₃) δ 8.78 (1 H, s), 7.81 (1 H, s), 7.3-7.0 (10 H, m), 6.92 (1 H, s), 6.4 (1 H, br), 5.35 (1 H, br), 5.2 (2 H, s), 4.6-4.0 (4 H, m), 3.78 (1 H, m), 3.3-3.1 (5 H, m), 2.92 (5 H, m), 2.8-2.6 (4 H, m), 2.5-2.2 (6 H, m), 1.90 (2 H, m), 1.6-1.3 (13 H, m).

Example DX(c)

Example DX(c) (427 mg) was prepared following the procedure used to prepare Compound 139a, except that Compound 149c was used instead of Compound 138a. m/z: 842.2 (M+H)^+. ^1H NMR (CDCl₃) δ 8.77 (1 H, s), 7.80 (1 H, s), 7.3-7.0 (10 H, m), 6.88 (1 H, s), 6.40 (1 H, br), 5.50 (1 H, br), 5.20 (2 H, m), 4.7-4.3 (2 H, m), 4.18 (2 H, m), 3.75 (1 H, m), 3.23 (1 H, m), 3.05-2.8 (4 H, m), 2.8-2.6 (4 H, m), 2.25 (2 H, m), 2.0-1.65 (6 H, m), 1.6-1.2 (14 H, m).

Example DX(d)

Example DX(d) (390 mg) was prepared following the procedure used to prepare Compound 139a, except that Compound 149d was used instead of Compound 138a. m/z: 810.2 (M+H)^+. ^1H NMR (CDCl₃) δ 8.78 (1 H, s), 7.81 (1 H, s), 7.4-7.0 (10 H, m), 6.89 (1 H, s), 6.40 (1 H, br), 5.40 (1 H, br), 5.22 (2 H, m), 4.6-4.3 (2 H, m), 4.22 (2 H, m), 3.78 (1 H, m), 3.24 (1 H, m), 3.0-2.6 (7 H, m), 2.5-2.2 (6 H, m), 2.0-1.7 (6 H, m), 1.6-1.2 (10 H, m).

Example DX(e)

Example DX(e) (160 mg) was prepared following the procedure used to prepare Compound 139a, except that Compound 149e was used instead of Compound 138a. m/z: 792.3 (M+H)^+. ^1H NMR (CDCl₃) δ 8.77 (1 H, s), 7.81 (1 H, s), 7.3-7.0 (10 H, m), 6.87 (1 H, s), 6.45 (1 H, br), 5.55 (1 H, br), 5.20 (2 H, m), 4.9-4.3 (3 H, m), 4.3-4.1 (2 H, m), 3.75 (1 H, m), 3.25 (1 H, m), 3.1-2.8 (5 H, m), 2.8-2.6 (4 H, m), 2.6-2.1 (6 H, m), 2.0-1.4 (8 H, m), 1.37 (6 H, m).

Example DX(f)

Example DX(f) (480 mg) was prepared following the procedure used to prepare Compound 139a, except that Compound 149f was used instead of Compound 138a. m/z: 810.2 (M+H)^+. ^1H NMR (CDCl₃) δ 8.77 (1 H, s), 7.80 (1 H, s), 7.3-7.0 (10 H, m), 6.93 (1 H, br), 6.84 (1 H, s), 6.40 (1 H, br), 5.50 (1 H, br), 5.20 (2 H, m), 4.5-4.3 (2 H, m), 4.3-4.1 (2 H, m), 3.75 (1 H, m), 3.24 (1 H, m), 3.05-2.8 (5 H, m), 2.8-2.6 (4 H, m), 2.5-2.2 (6 H, m), 2.0-1.75 (4 H, m), 1.7-1.37 (10 H, m).

Preparation of Example DY

[0854]
Compound 150 was obtained from Aldrich.
Compound 151

[0856] To a suspension of Compound 150 (25 g, 137 mmol) in THF (400 mL) was added triethylamine (21 mL, 151 mmol), followed by Boc₂O (31.5 g, 144 mmol). The mixture was stirred for 48 hours, and the solvents were removed. The residue was diluted with EtOAc, and washed twice with saturated sodium carbonate solution, once with water, and once with brine, and dried over Na₂SO₄. Concentration gave Compound 151 (25 g).

Compound 152

[0857] To a solution of Compound 151 (2.0 g, 10 mmol) in MeOH (20 mL) at 0 °C was added 4.4 N sodium methoxide solution in methanol (0.46 mL, 2 mmol). The mixture was stirred for 45 minutes, and quenched with saturated NH₄Cl solution. The solvent was evaporated, and the residue was diluted with EtOAc. The organic phase was washed with saturated NH₄Cl solution, water, and brine, and dried over Na₂SO₄. Concentration gave Compound 152 (2.6 g).

Compound 153

[0858] Compound 153 (1.9 g) was prepared following the procedure used to prepare Example DV, except that Compound 152 was used instead of Example DU(c).

Compound 154

[0859] Compound 154 (1.65 g) was prepared following the procedure used to prepare Compound 148a, except that Compound 153 and 4-thiomorpholine were used instead of Compound 60 and 1-acetylpirperazine.

Compound 155

[0860] To a solution of Compound 154 (1.55 g, 4.86 mmol) in acetone/water (270 mL/70 mL) was added 4-methylmorpholine N-oxide (1.25 g, 10 mmol), followed by OsO₄/tBuOH solution (6.8 mL, 2.5%). The mixture was stirred for 12 hours and the solvents were removed under reduced pressure. Purification by flash column chromatography (60-100% EtAOc in hexanes) gave Compound 155 (1.44 g).

Compound 156

[0861] Compound 156 was prepared following the procedure used to prepare Compound 140a, except that Compound 155 was used instead of Compound 139a.

Compound 157

[0862] Compound 157 (660 mg) was prepared following the procedure used to prepare Example DM(a), except that Compound 156 was used instead of Compound 140a. m/z: 447.0 (M+H)+.

Compound 158

[0863] Compound 158 was prepared following the procedure used to prepare Compound 144, except that Compound 157 was used instead of Compound 143. m/z: 433.1 (M+H)+.

Example DY

[0864] Example DY (350 mg) was prepared following the procedure used to prepare Compound 139a, except that Compound 158 was used instead of Compound 138a. m/z: 824.2 (M+H)+. ¹H NMR (CDCl₃) δ 8.80 (1 H, s), 7.82 (1 H, s), 7.2-7.0 (10 H, m), 6.96 (1 H, s), 6.71 (1 H, br), 6.4 (1 H, br), 5.21 (2 H, m), 5.15 (1 H, br), 4.5-4.1 (4 H, m), 3.80 (1 H, m), 3.22 (1 H, m), 3.0-2.8 (11 H, m), 2.8-.2.6 (4 H, m), 2.47 (2 H, m), 2.0-1.7 (2 H, m), 1.6-1.3 (10 H, m).

Preparation of Examples DZ-EA

[0865]
To a solution of Compound 60 (1.6 mmol) in EtOH/H2O (1.6 mL/1.6 mL) was added ammonium carbonate (600 mg, 6.4 mmol), followed by sodium cyanide (158 mg). The mixture was heated at 90 °C for 16 hours and cooled to 25 °C. 1 N hydrochloric acid was added until pH = 3-4. The residue was diluted with EtOAc, and washed with water and brine. The organic phase was dried over Na2SO4 and concentrated to give Compounds 159 and 160, which were used without further purification in the next step.

Examples DZ/EA

Examples DZ (80 mg) and EA (60 mg) were prepared following the procedure used to prepare Compound 139a, except that Compounds 159 and 160 were used instead of Compound 138a. Example DZ: m/z: 732.3 (M+H)+. 1H NMR (CDCl3) δ 8.75 (1 H, m), 7.80 (1 H, m), 7.3-7.0 (10 H, m), 6.95 (1 H, m), 6.8 (1 H, br), 6.40 (1 H, br), 5.8 (1 H, br), 5.20 (2 H, m), 4.40 (2 H, m), 4.2-3.8 (3 H, m), 3.78 (1 H, m), 3.23 (1 H, m), 2.95 (3 H, m), 2.8-2.3 (6 H, m), 1.6-1.3 (10 H, m). Example EA: m/z: 775.2 (M+H)+. 1H NMR (CDCl3) δ 8.81 (1 H, s), 8.0 (1 H, br), 7.9 (1 H, s), 7.8 (1 H, s), 7.85 (1 H, br), 7.3-7.0 (11 H, m), 6.3 (1 H, br), 5.4-5.1 (3 H, m), 4.6-4.3 (2 H, m), 4.2-3.8 (2 H, m), 3.8-3.4 (1 H, m), 3.3 (1 H, m), 3.1-2.9.
Preparation of Example EB

[0868]

Scheme 102

I. morpholine/NaBH(OAc)$_3$/HOAc; II. HCl; III. a. CDI; b. cmpd 3b; IV. a. NaOH; b. HCl; V. EDC/HOBt/cmpd 8

Compound 161

[0869] Compound 161 (11 g) was prepared following the procedure used to prepare Compound 148a, except that Compounds 153 and morpholine were used instead of Compounds 60 and 1-acetylpiperazine. m/z: 303.0 (M+H)$^+$.  

Compound 162

[0870] Compound 162 (10.4 g) was prepared following the procedure used to prepare Compound 140a, except that Compound 161 was used instead of Compound 139a. m/z: 203.1 (M+H)$^+$.  

(3 H, m), 2.8-2.4 (4 H, m), 2.15 (2 H, m), 1.7-1.2 (10 H, m).
Example 3b

[0871] Compound 3b was synthesized following the procedure described in WO2008/010921 A2, and as described above in Scheme 10.

Example 163

[0872] Compound 163 (540 mg) was prepared following the procedure used to prepare Example DM(a), except that Compounds 162 and 36 were used instead of Compounds 140a and 9. m/z: 385.1 (M+H)+.

Example 164

[0873] Compound 164 (780 mg) was prepared following the procedure used to prepare Compound 144, except that Compound 163 was used instead of Compound 143. m/z: 371.0 (M+H)+.

Example EB

[0874] Example EB (210 mg) was prepared following the procedure used to prepare Compound 139a, except that Compound 164 was used instead of Compound 138a. m/z: 762.2 (M+H)+. 1H NMR (DMSO-d6) δ 9.06 (1 H, s), 7.85 (1 H, s), 7.7 (1 H, br), 7.2-7.0 (12 H, m), 6.55 (1 H, br), 6.20 (1 H, br), 5.18 (2 H, s), 4.23 (2 H, m), 4.15 -3.8 (2 H, m), 3.65 (1 H, m), 3.55 (4 H, m), 3.2 (1 H, m), 2.7-2.4 (6 H, m), 2.3-2.0 (6 H, m), 1.5-1.2 (10 H, m).

Preparation of Compound 166

[0875]

Scheme 103

![Scheme 103]

I. NaOH/H2O; II. bis(4-nitrophenyl) carbonate/ Et3N

Compound 3

[0876] Compound 3 was synthesized following the procedure described in WO2008/010921 A2.

Compound 165

[0877] To a suspension of Compound 3 (2.65 g, 12.5 mmol) in water (10 mL) was added sodium hydroxide (1.5 g, 38 mmol). The mixture was heated at 90 °C for 12 hours and cooled to 25 °C. The mixture was extracted with EtOAc. The organic layer was washed with brine and dried over Na2SO4. Purification by flash column chromatography (50% EtOAc in hexanes) gave Compound 165 (810 mg).

Compound 166

[0878] To a solution of Compound 165 (810 mg, 5.2 mmol) in DCM (12 mL) was added bis(4-nitrophenyl) carbonate (1.73 g, 5.7 mmol), followed by triethylamine (1.1 mL, 7.8 mmol). The mixture was stirred for 14 hours, and the solvents were removed. The residue was diluted with EtOAc, and washed twice with saturated sodium carbonate, followed by water, and then brine, and was dried over Na2SO4. Concentration and purification by flash column chromatography (20% EtOAc in hexanes) gave Compound 166 (1.4 g).
Compound 167

Compound 167 was prepared following the procedure used to prepare Compound 144, except that Compound 161 was used instead of Compound 143.
Compound 168

[0881] Compound 168 (1.2 g) was prepared following the procedure used to prepare Compound 139a, except that Compound 167 was used instead of Compound 138a. m/z: 680.3 (M+H)+.

Compound 169

[0882] To a solution of Compound 168 (1.2 g, 1.8 mmol) in MeOH (10 mL) was added 4 N hydrochloric acid (4.4 mL, 17.6 mmol). The mixture was stirred for 6 hours, and the solvents were removed. The residue was basified with 2 N sodium hydroxide solution (pH = 11), and extracted with EtOAc. The organic layer was washed with brine and dried over Na2SO4. Concentration gave Compound 169 (1.0 g).

Example EC

[0883] To a solution of Compound 169 (116 mg, 0.2 mmol) in CH3CN (2 mL) was added Compound 166 (71 mg, 0.22 mmol), followed by triethylamine (71 μL, 0.4 mmol). The mixture was stirred for 48 hours, and was diluted with EtOAc. The organic layer was washed with saturated sodium carbonate solution, water, and brine, was dried over Na2SO4. Purification by flash column chromatography (0-15% iPrOH in DCM) gave compound 1073 (130 mg). m/z: 763.3 (M+H)+.

1H NMR (CDCl3) δ 8.75 (1 H, s), 7.78 (1 H, s), 7.67 (1 H, br), 7.3-7.0 (11 H, m), 6.22 (1 H, m), 5.24 (2 H, s), 5.10 (1 H, br), 4.28-4.10 (2 H, m), 3.8 (1 H, m), 3.6 (4 H, m), 3.32 (1 H, m), 2.9-2.6 (4 H, m), 2.4-2.1 (6 H, m), 1.8 (2 H, m), 1.6 (2 H, m), 1.4 (8 H, m).

Preparation of Compound 173

[0884] Compound 170 was obtained from Aldrich.

Compound 171

[0885] Hydrogen sulfide gas was passed through a solution of Compound 170 (1.8 mL, 20 mmol) in pyridine (100 mL) and triethylamine (4.4 mL) for 5 hours. The solution was purged with nitrogen for 10 minutes, and the solvents were removed. The residue was coevaporated three times with 10 mL of ethyl alcohol. Purification by flash column chromatography (10% iPrOH in DCM) gave Compound 171 (2.0 g).

Compound 172

[0886] To a solution of Compound 171 (2 g, 17 mmol) in acetone (30 mL) was added 1,3-dichloroacetone (2.1 g, 17 mmol), followed by MgSO4 (2.0 g, 17 mmol). The mixture was refluxed for 12 hours and cooled to 25 °C. The mixture was filtered. Concentration gave Compound 172. m/z: 191.9 (M+H)+.

Compound 173

[0887] To a solution of 40% methylamine in water (36 mL) was added a solution of Compound 172 (17 mmol) in water (10 mL). The mixture was stirred for 1 hour, and concentrated under reduced pressure. Purification by flash column chromatography (10% MeOH in DCM) gave Compound 173. m/z: 187.0 (M+H)+.
Preparation of Compound 177

To a solution of Compound 151 (10.5 g, 50 mmol) in ethyl alcohol (160 mL) was added sodium hydroxide solution (2.1 g, 52.5 mmol, 30 mL). The mixture was stirred for 1 hour, and the solvent was removed under reduced pressure. The residue was coevaporated three times with 200 mL of ethyl alcohol. The white solid was dried at 60 °C for 2 hours under high vacuum. To this solid was added DMF (80 mL), followed by benzyl bromide (7.3 mL, 61 mmol). The mixture was stirred for 12 hours in darkness and diluted with EtOAc. The organic phase was washed five times with water followed once with brine, and was then dried over Na₂SO₄. Concentration gave Compound 174 (15 g).

Compound 175

Compound 175 was prepared following the procedure used to prepare Example DV, except that Compound 174 was used instead of Example DU(c).

Compound 176

Compound 176 was prepared following the procedure used to prepare Compound 148a, except that Compound 175 and morpholine were used instead of Compound 60 and 1-acetylpiperazine.

Compound 177

Compound 177 (3.4 g) was prepared following the procedure used to prepare example 140a, except that Compound 176 was used instead of Compound 139a. m/z: 279.1 (M+H)^+.

Preparation of Example ED
Compound 178

[0895] Compound 178 (300 mg) was prepared following the procedure used to prepare Example DM(a), except that Compounds 173 and 177 were used instead of Compounds 140a and 9. m/z: 491.3 (M+H)+.

Compound 179

[0896] Compound 179 was prepared following the procedure used to prepare Compound 149a, except that Compound 178 was used instead of Compound 148a.

Example ED

[0897] Example ED (370 mg) was prepared following the procedure used to prepare Compound 139a, except that Compound 179 was used instead of Compound 138a. m/z: 792.3 (M+H)+. 1H NMR (CD3OD) δ 8.98 (1 H, s), 7.83 (1 H, s), 7.20-7.08 (11 H, m), 5.20 (2 H, m), 4.55 (2 H, m), 4.3-4.0 (4 H, m), 3.75 (3 H, m), 3.4 (2 H, m), 3.2-3.0 (4 H, m), 2.99 (3 H, s), 2.70 (4 H, m), 2.1-1.8 (2 H, m), 1.7-1.4 (10 H, m).

Preparation of Example EE

[0898]
Compound 180

[0899] Compound 180 was obtained from Aldrich.

Compound 181

[0900] Compound 181 (1.6 g) was prepared following the procedure used to prepare Compound 139a, except that Compounds 180 and 9 were used instead of Compounds 8 and 138a. m/z: 327.9 (M+H)+.

Compound 182

[0901] To a suspension of sodium hydride (52 mg, 60%, 1.3 mmol) in DMF (4 mL) was added a solution of Compound 181 (327 mg, 1 mmol) in DMF (1 mL). The mixture was stirred for 90 minutes, and a solution of 2-morpholineethylbromide (212 mg, 1.1 mmol) in DMF (1 mL) was added dropwise. The mixture was stirred for 12 hours, and quenched with water. The aqueous phase was extracted three times with EtOAc. The combined organic phases were washed five times with water and once with brine, and dried over Na2SO4. The dried organic phases were concentrated and purified by flash column chromatography (0-10% MeOH in DCM) to give Compound 182 (267 mg). m/z: 441.1 (M+H)+.

Compound 183

[0902] Compound 183 (175 mg) was prepared following the procedure used to prepare Compound 169, except that Compound 182 was used instead of Compound 168. m/z: 341.2 (M+H)+.

Example EE

[0903] To a solution of triphosgene (56 mg, 0.19 mmol) in DCM (1 mL) at 0 °C was added a solution of Compound 8 (210 mg, 0.51 mmol) and DIPEA (194 μL) in DCM (1.8 mL). The mixture was stirred for 30 minutes, and a solution of Compound 183 (175 mg, 0.51 mmol) and DIPEA (194 μL) in DCM (1 mL) was added. The mixture was warmed to 25 °C and stirred for 12 hours. The mixture was diluted with EtOAc, and washed twice with saturated sodium carbonate, once with water, and once with brine, and was dried over Na2SO4. The dried organic phases were concentrated and
puriﬁed by ﬂash column chromatography (15% iPrOH in DCM) gave Example EE (150 mg). m/z: 776.3 (M+H)^+. \(^1\)H NMR (CD\(_3\)OD) \(\delta\) 8.97 (1 H, s), 7.82 (1 H, s), 7.25-7.05 (11 H, m), 5.21 (2 H, s), 4.6 (2 H, m), 4.3-4.1 (2 H, m), 3.95 (1 H, m), 3.75 (1 H, s), 3.47 (4 H, m), 3.3 (5 H, m), 3.06/2.94 (3 H, s), 2.7 (4 H, m), 2.30 (4 H, m), 1.6-1.2 (10 H, m).

Preparation of Examples EF-EH

[0904]

\textbf{Scheme 109}

\begin{center}
\begin{tikzpicture}
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (a) at (0,0) {
    \begin{tikzcd}
      \text{ClH-H}_2\text{N} & \text{NHBOC} \\
      184 & 185 & 186 \\
    \end{tikzcd}
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (b) at (2,0) {
    I \rightarrow \\
    N + N \rightarrow \text{OH} \\
    \text{NHBOC} \\
    \text{EF} \\
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (c) at (2,2) {
    \begin{tikzcd}
      185 & \text{OH} \\
      \text{NHBOC} \\
    \end{tikzcd}
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (d) at (4,2) {
    \text{V} \\
    \text{CHO} \\
    54 \\
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (e) at (0,-2) {
    \begin{tikzcd}
      \text{NHBOC} \\
      \text{EF} \\
    \end{tikzcd}
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (f) at (2,-2) {
    \begin{tikzcd}
      \text{NHBOC} \\
      \text{EG} \\
    \end{tikzcd}
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (g) at (4,-2) {
    \begin{tikzcd}
      \text{NHBOC} \\
      \text{EH} \\
    \end{tikzcd}
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (h) at (0,0) {
    \begin{tikzcd}
      \text{ClH-H}_2\text{N} & \text{NHBOC} \\
      184 & 185 & 186 \\
    \end{tikzcd}
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (i) at (2,0) {
    I \rightarrow \\
    N + N \rightarrow \text{OH} \\
    \text{NHBOC} \\
    \text{EF} \\
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (j) at (2,2) {
    \begin{tikzcd}
      185 & \text{OH} \\
      \text{NHBOC} \\
    \end{tikzcd}
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (k) at (4,2) {
    \text{V} \\
    \text{CHO} \\
    54 \\
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (l) at (0,-2) {
    \begin{tikzcd}
      \text{NHBOC} \\
      \text{EF} \\
    \end{tikzcd}
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (m) at (2,-2) {
    \begin{tikzcd}
      \text{NHBOC} \\
      \text{EG} \\
    \end{tikzcd}
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (n) at (4,-2) {
    \begin{tikzcd}
      \text{NHBOC} \\
      \text{EH} \\
    \end{tikzcd}
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (o) at (0,0) {
    \begin{tikzcd}
      \text{ClH-H}_2\text{N} & \text{NHBOC} \\
      184 & 185 & 186 \\
    \end{tikzcd}
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (p) at (2,0) {
    I \rightarrow \\
    N + N \rightarrow \text{OH} \\
    \text{NHBOC} \\
    \text{EF} \\
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (q) at (2,2) {
    \begin{tikzcd}
      185 & \text{OH} \\
      \text{NHBOC} \\
    \end{tikzcd}
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (r) at (4,2) {
    \text{V} \\
    \text{CHO} \\
    54 \\
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (s) at (0,-2) {
    \begin{tikzcd}
      \text{NHBOC} \\
      \text{EF} \\
    \end{tikzcd}
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (t) at (2,-2) {
    \begin{tikzcd}
      \text{NHBOC} \\
      \text{EG} \\
    \end{tikzcd}
  };
  \node [anchor=base,inner sep=0pt,outer sep=0pt] (u) at (4,-2) {
    \begin{tikzcd}
      \text{NHBOC} \\
      \text{EH} \\
    \end{tikzcd}
  };
\end{tikzpicture}
\end{center}

1. a. CDI/DIPEA; b. MeNH\_2; II.a. NaOH/THF/H\_2O; b. HCl; 
III. cmpd 8/EDC/HOBI/ DIPEA; IV. a. TFA/DCM; b. NaOH; 
V. NaBH(OAc)\_3/HOAc

[0905] Compound 184 was obtained from Aldrich.

[0906] Compound 185 (291 mg) was prepared following the procedure used to prepare Example DM(a), except that Compound 184 and methylamine were used instead of Compounds 140a and 9. m/z: 289.9 (M+H)^+. 
Compound 186

[0907] Compound 186 was prepared following the procedure used to prepare Compound 144, except that Compound 185 was used instead of Compound 143. m/z: 275.9 (M+H)+.

Example EF

[0908] Example EF (102 mg) was prepared following the procedure used to prepare Compound 139a, except that Compound 186 was used instead of Compound 138a. m/z: 667.1 (M+H)+.

Example EG

[0909] Example EG (144 mg) was prepared following the procedure used to prepare Compound 169, except that Example EF was used instead of Compound 168 m/z: 567.2 (M+H)+.

Compound 54

[0910] Compound 54 was synthesized following the procedure described in WO2008/010921 A2.

Example EH

[0911] Example EH (25 mg) was prepared following the procedure used to prepare Compound 148a, except that Example EG and Compound 54 were used instead of Compound 60 and 1-acetylpiperazine. m/z: 637.3 (M+H)+. 1H NMR (CDCl3) δ 9.00 (br s, 1H); 7.94 (br s, 1H); 7.72 (br s, 1H); 7.40-7.00 (m, 10H); 5.49 (m, 1H); 5.25 (s, 2H); 4.47 (m, 1H); 4.30 (m, 1H); 4.02 (br s, 1H); 3.65 (m, 2H); 3.41 (m, 2H); 2.76 (m, 9H); 2.25-1.70 (m, 4H); 1.70-1.40 (m, 6H).

Preparation of Example EI-ET

[0912]
Compound 187 was obtained from Aldrich.

Compound 188 (897 mg) was prepared following the procedure used to prepare Example DM(a), except that Compound 187 was used instead of Compound 140a. m/z: 298.0 (M+H)*.
Compound 189

**[0915]** Compound 189 (1.24 g) was prepared following the procedure used to prepare Compound 174, except that Compound 188 was used instead of Compound 151. m/z: 406.1 (M+H)*.

Compound 190

**[0916]** Compound 190 (712 mg) was prepared following the procedure used to prepare Example DV, except that Compound 189 was used instead of Example DU(c). m/z: 404.0 (M+H)*.

Compound 191

**[0917]** Compound 191 (384 mg) was prepared following the procedure used to prepare Compound 148a, except that Compound 190 and morpholine were used instead of Compound 60 and 1-acetylpiperazine. m/z: 475.1 (M+H)*.

Compound 192

**[0918]** Compound 192 (900 mg) was prepared following the procedure used to prepare Compound 149a, except that Compound 191 was used instead of Compound 148a. m/z: 385.0 (M+H)*.

Example EI

**[0919]** Example EI (151 mg) was prepared following the procedure used to prepare Compound 139a, except that Compound 192 was used instead of Compound 138a. m/z: 776.2 (M+H)*. 1H NMR (CD3OD) δ 8.97 (1 H, s), 7.82 (1 H, s), 7.3-7.1 (11 H, m), 5.2 (2 H, s), 4.5 (2 H, m), 4.18 (2 H, m), 3.78 (1 H, m), 3.59 (4 H, m), 3.23 (1 H, m), 2.97 (3 H, s), 2.8-2.5 (4 H, m), 2.5-2.1 (6 H, m), 1.9-1.6 (2 H, m), 1.6-1.3 (10 H, m).

Example EJ

**[0920]** Example EI was purified with HPLC (chiral cel OD-H column by Chiral Technologies Inc, heptane/iPrOH = 70/30) to give Example EJ. m/z: 776.2 (M+H)*. 1H NMR (CDCl3) δ 8.98 (s, 1H); 7.90 (s, 1H); 7.75 (m, 1H); 7.40-7.00 (m, 15H), 6.55 (br s, 1H); 5.92 (br s, 1H); 7.75 (d, 1H); 5.28, 5.19 (d AB, J=14 Hz, 2H); 4.70-4.37 (m, 3H); 3.99 (m, 5H); 3.76 (br s, 1H); 3.65-3.30 (m, 3H); 2.97 (m, 5H); 2.90-2.60 (m, 7H); 2.28 (br s, 2H); 1.91 (br s, 2H); 1.6-1.3 (m, 12H).

Preparation of Example EK

**[0921]**
Compound 193

[0922] Compound 193 was synthesized following the procedure from J. Med. Chem., 41(4), 1998, 602-617 (herein incorporated by reference in its entirety for all purposes).

Compound 194

[0923] Compound 193 (1.4 g, 7 mmol) was dissolved in anhydrous THF (7 mL) and added dropwise over 1 hour into a 1 M LiAlH₄ solution in THF stirring at 0 °C under nitrogen gas. The reaction mixture was then allowed to warm to room temperature and stirred for 1 hour, at which time HPLC showed that reaction was complete. The reaction mixture was cooled in an ice bath and methanol was slowly added. Aqueous potassium sodium tartarate solution was then added. The organic solution was extracted with ethyl acetate and then dried over anhydrous sodium sulfate and concentrated under reduced pressure to give Compound 194 (1 g, 91%), which was used in the next reaction without further purification.

Compound 195

[0924] Compound 194 (1 g, 6.37 mmol) was dissolved in anhydrous toluene (6 mL). To the resulting solution was added PCl₅ (1.3 g, 6.37 mmol). After the reaction mixture was stirred for 1 hour, the reaction was complete. Solid sodium bicarbonate was added to the reaction mixture, which was then diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution, followed by saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to yield Compound 195 (0.91 g, 81%).

Compound 196

[0925] Compound 195 (0.91 g, 5.2 mmol) was dissolved in 2 M methylamine in methanol (15 mL). The reaction mixture
was stirred for 15 hours, then concentrated under reduced pressure. The resulting oil was dissolved in dilute aqueous HCl solution to give a solution with a pH of 2. The solution was then washed with ethyl acetate. The aqueous layer was concentrated under reduced pressure. The residue was purified by preparative HPLC to give Compound 196 (0.6 g, 56%).

Example EK

[0926] Example EK (14 mg) was prepared following the procedure used to prepare Example DM(a), except that Compounds 169 and 196 were used instead of Compounds 140a and 9. 1H NMR (CD3OD): δ 8.98 (s, 1H), 7.82 (s, 1H), 7.55 (s, 1H), 7.19 (m, 10H), 5.21 (m, 2H), 4.68 (m, 2H), 4.20 (m, 1H), 4.15 (m, 1H), 3.79 (m, 1H), 5.64 (m, 4H), 3.25 (m, 1H), 2.98 (s, 3H), 2.73 (m, 4H), 2.23-2.40 (m, 6H), 1.90-1.70 (m, 2H), 1.51 (m, 4H), 1.36 (d, J=6.9 Hz, 6H). Mass Spectrum (m/e): (M+H)+ 776.3, (M-H)- 773.9

Preparation of Example EL

[0927]

Scheme 112

Example EL

[0928] Example W (71 mg, 0.1 mmol) and 1,1-bis(methylthio)-2-nitroethylene (17 mg, 0.1 mmol) was dissolved in anhydrous DMF (2 mL). The resulting mixture was stirred at room temperature for 90 minutes, followed by another 16 hours at 40 °C. An additional 10% of 1,1-bis(methylthio)-2-nitroethylene was added and the mixture was stirred at 60 °C for 8 hours. A solution of 2 M methylamine in methanol (1.2 mL, 2.4 mmol) was added and the mixture was stirred for 3 hours at room temperature. The mixture was diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product obtained was purified by flash silica gel column chromatography (3-10% MeOH in DCM). Final purification with C18-reverse phase prep HPLC gave Example EL (55 mg, 68%). 1H NMR (CD3OD): δ 8.97 (s, 1H), 7.81 (s, 1H), 7.16 (m, 10H), 6.66 (s, 1H), 5.20 (s, 2H), 4.54 (m, 2H), 4.17 (m, 2H), 3.80 (m, 1H), 3.35 (s, 3H), 3.23 (m, 1H), 3.00-2.80 (m, 9H), 2.63 (m, 3H), 1.60-1.43 (m, 6H), 1.33 (d, J=7.2 Hz, 6H). Mass Spectrum (m/e): (M+H)+ 806.3, (M-H)- 804.1.
Compound 122 (460 mg, 1.5 mmol) was dissolved in anhydrous DCM. To the resulting solution was added EtOH (540 μL, 9.28 mmol), followed by TMS-I (663 μL, 4.6 mmol) dropwise. The mixture was stirred for 2 hours at room temperature. Additional TMS-I (200 μL) was added and the mixture was stirred for 1 hour. The reaction mixture was concentrated under reduced pressure. The residue was dissolved in EtOH and concentrated under reduced pressure. The residue was again dissolved in another portion of EtOH. The resulting oil was dissolved in anhydrous DMSO (5 mL). KCN was added, and the resulting mixture was stirred at room temperature for 16 hours. The mixture was diluted with ethyl acetate and washed sequentially with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting Compound 197 (228 mg, 47%) was used in the next step without further purification.
Example EM

[0931] Compound 197 (228 mg, 0.7 mmol) was dissolved in anhydrous THF (5 mL). EDC (202 mg, 1.05 mmol) and HOBt (162 mg, 1.05 mmol) were added to the reaction mixture along with anhydrous DMF (3 mL) and TEA (294 μL, 2.11 mmol). The mixture was stirred for 90 minutes, then diluted with EtOAc and washed sequentially with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified with flash silica gel column chromatography (0-10% MeOH in DCM). Final purification with C18-reverse phase prep HPLC gave Example EM (291 mg, 58%). 1H NMR (CD3OD): δ 8.97 (s, 1H), 7.83 (s, 1H), 7.17 (m, 10H), 5.22 (s, 2H), 4.53 (s, 2H), 4.23 (m, 1H), 4.06 (m, 1H), 3.77 (m, 1H), 3.27 (m, 1H), 2.96 (s, 3H), 2.72 (m, 4H), 2.37 (m, 2H), 1.88 (m, 2H), 1.52 (m, 4H), 1.38 (d, J=7.2 Hz, 6H). Mass Spectrum (m/e): (M+H)+ 716.2, (M-H)-713.9.

Example EN

[0932] Example EM (120 mg, 0.168 mmol) was dissolved in anhydrous MeOH (5 mL) and concentrated under reduced pressure. This process was repeated twice with fresh portions of MeOH. The residue was dissolved in MeOH (5 mL) and stirred in an ice bath under nitrogen gas. HCl gas was bubbled into the MeOH solution for 5-10 minutes to saturate the solution. The reaction vessel was sealed and the reaction mixture was stirred at 0 °C for 8 hours. The reaction mixture was then concentrated under reduced pressure at room temperature. The residue was dissolved in EtOAc and washed twice with 10% aqueous sodium carbonate solution, followed by saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was dissolved in 2-methoxy ethanol (5 mL). Sulfamide (161 mg, 1.68 mmol) was added to the solution, which was stirred at 80 °C for 8 hours and then at room temperature for 16 hours. The reaction mixture was concentrated under reduced pressure. The residue was dissolved in EtOAc and washed with saturated aqueous sodium bicarbonate solution, followed by saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude material was purified with flash silica gel column chromatography (0-10% MeOH in DCM). Final purification with C18-reverse phase prep HPLC gave Example EN (16 mg, 12%). 1H NMR (CD3OD): δ 8.98 (s, 1H), 7.83 (s, 1H), 7.67 (m, 1H), 7.16 (m, 10H), 6.82 (m, 1H), 5.21 (s, 2H), 4.53 (m, 2H), 4.15 (m, 2H), 3.77 (m, 1H), 3.28 (m, 1H), 2.96 (s, 3H), 2.68 (m, 4H), 2.21 (m, 2H), 1.88 (m, 2H), 1.45 (m, 4H), 1.35 (d, J=7.2 Hz, 6H). Mass Spectrum (m/e): (M+H)+ 812.1, (M-H)- 810.0.

Preparation of Example EO

[0933]
Compound 68

[0934] Compound 68 was synthesized following the procedure described in WO2008/010921 A2.

Example EO

[0935] Example EO (39 mg) was prepared following the procedure used to prepare Example DM(a), except that Compounds 68 and 169 were used instead of Compounds 140a and 9. \(^1\)H NMR (CD\(_3\)OD): \(\delta\) 8.98 (s, 1H), 8.93 (s, 1H), 7.82 (s, 2H), 7.19 (m, 10H), 5.21 (s, 2H), 4.60 (m, 2H), 4.20 (m, 1H), 4.10 (m, 1H), 3.77 (m, 1H), 3.64 (m, 4H), 2.93 (s, 3H), 2.74 (m, 4H), 2.38-2.28 (m, 6H), 1.84-1.70 (m, 2H), 1.50 (m, 4H). Mass Spectrum (m/e): (M+H)+ 734.3, (M-H)- 731.9

Preparation of Example EP-EQ

[0936]
Compound 198 was obtained from Aldrich.

Compound 199

Compound 198 (205 mg, 1 mmol) was mixed with Compound 46 (446 mg, 1 mmol) and HOBt (230 mg, 1.5 mmol) in anhydrous DMF (5 mL). EDC (230 mg, 1.2 mmol) was then added. The resulting mixture was stirred for 30 minutes. DIPEA (348 μL, 2 mmol) was added. The mixture was stirred for 2 hours, then diluted with EtOAc, washed sequentially with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude material was purified with flash silica gel column chromatography (0-100% EtOAc in DCM) to give Compound 199 (345 mg, 58%).

Compound 200

Compound 199 (345 mg, 0.58 mmol) was dissolved in a small amount of MeOH. A solution of 4 N HCl in dioxane (5 mL) was added. The resulting mixture was stirred for 1 hour and concentrated under reduced pressure. The residue was dissolved in EtOAc and washed sequentially with saturated aqueous sodium bicarbonate solution and saturated...
aqueous sodium chloride solution. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was dissolved in anhydrous DCM (10 mL). Pyridine (163 μL, 2 mmol) and t-butyldimethylsilyl chloride (166 mg, 1.1 mmol) were added. The resulting mixture was stirred for 15 hours. More pyridine (163 μL) and TBS-Cl (60 mg) were added. The resulting mixture was stirred for another 24 hours. The mixture was concentrated under reduced pressure. The residue was dissolved in EtOAc and washed sequentially with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude material was purified by flash silica gel column chromatography (0-5% MeOH in DCM) to give Compound 200 (248 mg, 69%).

Example EP

[0940] Example EP was prepared following the procedure used to prepare Example DM(a), except that Compounds 200 and 68 were used instead of Compounds 140a and 9.

Example EQ

[0941] To Example EP was added 4 N HCl in dioxane (4 mL). The mixture was stirred for 1 hour and the solvent was evaporated. The residue was diluted with EtOAc, and washed sequentially with saturated aqueous sodium carbonate, water, and brine. The organic layer was dried over Na2SO4, then concentrated. The residue was purified by flash column chromatography (10% iPrOH in DCM) to give Example EQ (35 mg). 1H NMR (CD3OD): δ 8.97 (s, 1H), 8.89 (s, 1H), 7.81 (s, 2H), 7.70 (m, 1H), 7.19 (m, 10H), 6.92 (m, 1H), 5.20 (s, 2H), 4.73 (t, 2H), 4.22 (t, 1H), 4.13 (m, 1H), 3.78 (m, 1H), 3.56 (d, J=5.4Hz, 2H), 3.31 (m, 1H), 2.94 (s, 3H), 2.67 (m, 4H), 1.45 (m, 4H). Mass Spectrum (m/e): (M+H)+ 651.2, (M-H)- 648.8.

IC50 Determinations for Human Liver Cytochrome P450

Materials and General Methods

[0942] Pooled (n ≥ 15 donors) human hepatic microsomal fraction was obtained from BD-Gentest (Woburn, MA) who also supplied hydroxy-terfenadine, 4'-hydroxydiclofenac and NADPH regenerating system. Ritonavir was prepared from commercial Norvir® oral solution (Abbott Laboratories, Abbott Park, IL). Other reagents were from Sigma-Aldrich (St. Louis, MO) and included terfenadine, fexofenadine, BRL 15572, diclofenac and mefenamic acid.

[0943] Incubations were performed in duplicate in 50 mM potassium phosphate buffer, pH 7.4 with NADPH regenerating system used as described by the manufacturer. The final microsomal protein concentrations had previously been determined to be within the linear range for activity and resulted in less than 20% consumption of substrate over the course of the incubation. The final substrate concentrations used were equal to the apparent Km values for the activities determined under the same conditions. Inhibitors were dissolved in DMSO, and the final concentration of DMSO, from both substrate and inhibitor vehicles, was 1% (v/v). Incubations were performed at 37°C with shaking and were initiated by addition of substrate. Aliquots were then removed at 0, 7 and 15 minutes. Samples were quenched by treatment with an acetonitrile, formic acid, water (94.8%/0.2%/5%, v/v/v) mixture containing internal standard. Precipitated protein was removed by centrifugation at 3000 rpm for 10 min and aliquots of the supernatant were then subjected to LC-MS analysis.

[0944] The LC-MS system consisted of a Waters Acquity UPLC, with a binary solvent manager and a refrigerated (8°C) sample organizer and sample manager, interfaced to a Micromass Quattro Premier tandem mass spectrometer operating in electrospray ionization mode. The column was a Waters Acquity UPLC BEH C18 2.1 x 50 mm, 1.7 μm pore size. Mobile phases consisted of mixtures of acetonitrile, formic acid and water, the composition for mobile phase A being 1%/0.2%/98.8% (v/v/v) and that for mobile phase B being 94.8%/0.2%/5% (v/v/v). The injection volumes were 5 μL and the flow rate was 0.8 mL/min. Concentrations of metabolites were determined by reference to standard curves generated with authentic analytes under the same conditions as the incubations.

[0945] IC50 values (the concentration of inhibitor reducing CYP3A activity by 50%) were calculated by non-linear regression using GraphPad Prism 4.0 software and a sigmoidal model.

CYP3A Inhibition Assay

[0946] The potencies of the compounds as inhibitors of human hepatic cytochromes P450 of the CYP3A subfamily (particularly CYP3A4) were assessed using terfenadine oxidase, a well-characterized CYP3A-selective activity described in Ling, K.-H.J., et al Drug Metab. Dispos. 23, 631-636, (1995) and Jurima-Romet, et al Drug Metab. Dispos. 22, 849-857, (1994). The final concentrations of microsomal protein and terfenadine substrate were 0.25 mg/mL and 3 μM, respectively. Metabolic reactions were terminated by treatment with seven volumes of quench solution containing 0.1 μM BRL 15572.
as internal standard. A further 8 volumes of water were added before centrifugation and aliquots of the supernatant were removed for analysis.

For LC-MS analysis chromatographic elution was achieved by a series of linear gradients starting at 20% B and holding for 0.1 minutes, then increasing to 80% B over 1.5 minutes, holding for 0.4 minutes and then returning to the starting conditions for 0.05 min. The system was allowed to re-equilibrate for at least 0.25 minutes prior to the next injection. The mass spectrometer was operated in positive ion mode and the following precursor ([M+H]+)/product ion pairs were monitored and quantified using MassLynx 4.0 (SP4, 525) software: hydroxy-terfenadine 488.7/452.4, fexofenadine 502.7/466.4 and BRL 15572 407.5/209.1. Terfenadine oxidase activity was determined from the sum of hydroxy-terfenadine and carboxy-terfenadine (fexofenadine) metabolites.

CYP2C9 Inhibition Assay

The potencies of the compounds as inhibitors of human hepatic CYP2C9 were assessed using diclofenac 4'-hydroxylase, an activity specific for this enzyme, as described in Leeman, T., et al Life Sci. 52, 29-34, (1992). The final concentrations of microsomal protein and diclofenac substrate were 0.08 mg/mL and 4 μM, respectively. Metabolic reactions were terminated by treatment with three volumes of quench solution containing 1 μM mefenamic acid as internal standard. After centrifugation a further 4 volumes of water were added. Aliquots of the supernatant were then subjected to LC-MS analysis.

For LC-MS analysis chromatographic elution was achieved by a series of linear gradients starting at 20% B and holding for 0.3 minutes, then increasing to 99% B over 1.2 minutes, holding for 0.5 minutes and then returning to the starting conditions for 0.25 min. The system was allowed to re-equilibrate for at least 0.25 minutes prior to the next injection. The mass spectrometer was operated in negative ion mode and the following precursor ([M-H]-)/product ion pairs were monitored and quantified: 4'-hydroxy-diclofenac 312.4/294.2 and mefenamic acid 242.4/224.2.

Biological Assays Used for the Characterization of HIV Protease Inhibitors HIV-1 Protease Enzyme Assay (K_i)

The assay is based on the fluorimetric detection of synthetic hexapeptide substrate cleavage by HIV-1 protease in a defined reaction buffer as initially described by M.V. Toth and G.R.Marshall, Int. T. Peptide Protein Res. 36, 544 (1990) (herein incorporated by reference in its entirety for all purposes).

The assay employed (2-aminobenzoyl)Thr-Ile-Nle-(p-nitro)Phe-Gln-Arg as the substrate and recombinant HIV-1 protease expressed in E.Coli as the enzyme. Both of the reagents were supplied by Bachem California, Inc. (Torrance, CA; Cat. no. H-2992). The buffer for this reaction was 100 mM ammonium acetate, pH 5.3, 1 M sodium chloride, 1 mM ethylenediaminetetraacetic acid, 1 mM dithiothreitol, and 10% dimethylsulfoxide.

To determine the inhibition constant K_i, a series of solutions were prepared containing identical amount of the enzyme (1 to 2.5 nM) and the inhibitor to be tested at different concentrations in the reaction buffer. The solutions were subsequently transferred into a white 96-well plate (190 μl each) and preincubated for 15 min at 37 °C. The substrate (100 μM) was added into each well to reach a final substrate concentration of 800 μM and 10 μl of 800 μM substrate was added into each well to reach a final substrate concentration of 40 μM. The real-time reaction kinetics was measured at 37 °C using a Gemini 96-well plate fluorimeter (Molecular Devices, Sunnyvale, CA) at λ(Ex) = 330 nm and λ(Em) = 420 nm. Initial velocities of the reactions with different inhibitor concentrations were determined and the K_i value (in picomolar concentration units) was calculated by using EnzFitter program (Biosoft, Cambridge, U.K.) according to an algorithm for tight-binding competitive inhibition described by Ermoliev J., Lin X., and Tang J., Biochemistry 36, 12364 (1997).

HIV-1 Protease Enzyme Assay (IC50)

As for the K_i assay, above, the IC50 assay is based on the fluorimetric detection of synthetic hexapeptide substrate cleavage by HIV-1 protease in a defined reaction buffer as initially described by M.V. Toth and G.R.Marshall, Int. T. Peptide Protein Res. 36, 544 (1990).

The assay employed (2-aminobenzoyl)Thr-Ile-Nle-(p-nitro)Phe-Gln-Arg as the substrate and recombinant HIV-1 protease expressed in E.Coli as the enzyme. Both of the reagents were supplied by Bachem California, Inc. (Torrance, CA; Cat. nos. H-2992 and H-9040, respectively). The buffer for this reaction was 100 mM ammonium acetate, pH 5.5, 1 M sodium chloride, 1 mM ethylenediaminetetraacetic acid, and 10% dimethylsulfoxide.

To determine the IC50 value, 170 μl of reaction buffer was transferred into the wells of a white 96-well microtiter plate. A series of 3-fold dilutions in DMSO of the inhibitor to be tested was prepared, and 10 μl of the resulting dilutions was transferred into the wells of the microtiter plate. 10 μl of a 20-50 nM enzyme stock solution in reaction buffer was added to each well of the 96-well plate to provide a final enzyme concentration of 1-2.5 nM. The plates were then preincubated for 10 minutes at 37°C. The substrate was solubilized in 100% dimethylsulfoxide at a concentration of 400 μM and 10 μl of the 400 μM substrate was added into each well to reach a final substrate concentration of 20 μM. The
Anti-HIV-1 Cell Culture Assay (EC50)

[0956] The assay is based on quantification of the HIV-1-associated cytopathic effect by a colorimetric detection of the viability of virus-infected cells in the presence or absence of tested inhibitors. HIV-1-induced cell death was determined using a metabolic substrate 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) which is converted only by intact cells into a product with specific absorption characteristics as described by Weislow OS, Kiser R, Fine DL, Bader J, Shoemaker RH and Boyd MR, T. Natl. Cancer Inst. 81, 577 (1989) (herein incorporated by reference in its entirety for all purposes).

[0957] MT2 cells (NIH AIDS reagent program, Cat # 237) maintained in RPMI-1640 medium supplemented with 5% fetal bovine serum and antibiotics were infected with the wild-type HIV-1 strain IIIB (Advanced Biotechnologies, Columbia, MD) for 3 hours at 37 °C using the virus inoculum corresponding to a multiplicity of infection equal to 0.01. The infected cells in culture media were distributed into a 96-well plate (20,000 cells in 100 μl/well), and incubated in the presence of a set of solutions containing 5-fold serial dilutions of the tested inhibitor (100 μM/well) for 5 days at 37 °C. Samples with untreated infected and untreated mock-infected control cells were also distributed to the 96-well plate and incubated under the same conditions.

[0958] To determine the antiviral activity of the tested inhibitors, a substrate XTT solution (6 mL per assay plate) at a concentration of 2 mg/mL in a phosphate-buffered saline pH 7.4 was heated in water-bath for 5 min at 55 °C before 50 μl of N-methylphenazonium methasulfate (5 μg/mL) was added per 6 mL of XTT solution. After removing 100 μl media from each well on the assay plate, 100 μl of the XTT substrate solution was added to each well. The cells and the XTT solution were incubated at 37 °C for 45 to 60 min in a CO2 incubator. To inactivate the virus, 20 μl of 2% Triton X-100 was added to each well. Viability, as determined by the amount of XTT metabolites produced, was quantified spectrophotometrically by the absorbance at 450 nm (with subtraction of the background absorbance at 650 nm). Data from the assay was expressed as the percentage absorbance relative to untreated control and the fifty percent effective concentration (EC50) was calculated as the concentration of compound that affected an increase in the percentage of XTT metabolite production in infected, compound treated cells to 50% of that produced by uninfected, compound-free cells.

Anti-HIV-1 Cell Culture Assay (EC50) in presence of 40% Human Serum or Human Serum Proteins

[0959] This assay is almost identical to the Anti-HIV-1 Cell Culture Assay described above, except that the infection was made in the presence or absence of 40% human serum (Type AB Male Cambrex 14-498E) or human serum proteins (Human α-acid Glycoprotein, Sigma G-9885; Human Serum Albumin, Sigma A1653, 96-99%) at physiological concentration. The HIV-1-induced cell death was determined as described above, except that the infected cells distributed in the 96-well plate were incubated in 80% Human Serum (2X concentration) or in 2 mg/mL Human α-acid Glycoprotein + 70 mg/mL HSA (2X concentration) rather than in culture media.

Cytotoxicity Cell Culture Assay (CC50)

[0960] The assay is based on the evaluation of cytotoxic effect of tested compounds using a metabolic substrate 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) as described by Weislow OS, Kiser R, Fine DL, Bader J, Shoemaker RH and Boyd MR, T. Natl. Cancer Inst. 81, 577 (1989). This assay is almost identical to the previous assay described (Anti-HIV-1 Cell Culture Assay), except that the cells were not infected. The compound induced cell death (or growth reduction) was determined as previously described.

[0961] MT-2 cells maintained in RPMI-1640 medium supplemented with 5% fetal bovine serum and antibiotics were distributed into a 96-well plate (20,000 cells in 100 μl/well) and incubated in the presence or absence of 5-fold serial dilutions of the tested inhibitor (100 μl/well) for 5 days at 37 °C. Controls included untreated infected and infected cells protected by 1 μM of P4405 (Podophyllotoxin, Sigma Cat # P4405).

[0962] To determine cytoxicity, an XTT solution (6 mL per assay plate) at a concentration of 2 mg/mL in phosphate-buffered saline pH 7.4 was heated in the dark in a water-bath for 5 min at 55 °C before 50 μl of N-methylphenazonium methasulfate (5 μg/mL) was added per 6 mL of XTT solution. After removing 100 μl media from each well on the assay plate, 100 μl of the XTT substrate solution was added to each well. The cells and the XTT solution were incubated at 37 °C for 45 to 60 min in a CO2 incubator. To inactivate the virus, 20 μl of 2% Triton X-100 was added to each well. Viability, as determined by the amount of XTT metabolites produced, is quantified spectrophotometrically by the absorb-
ance at 450 nm (with subtraction of the background absorbance at 650 nm). Data from the assay is expressed as the percentage absorbance relative to untreated control, and the fifty percent cytotoxicity concentration (EC50) was calculated as the concentration of compound that effected an increase in the percentage of cell growth in compound treated cells to 50% of the cell growth provided by uninfected, compound-free cells.

[0963] Experimental data based on representative Examples A-EQ demonstrate that the compounds of Formula (IV) of the present invention can have a CYP450 3A4 inhibition activity in a range represented by an IC50 from about 100 nM to about 4700 nM, and a CYP450 2C9 inhibition activity in a range represented by an IC50 from about 100 nM to about 10,000 nM.

[0964] Experimental data based on representative Examples A-EQ demonstrate that the compounds of Formula (IV) of the present invention can have a protease inhibition activity in a range represented by HIV EC50 from about 140 nM to greater than about 30000 nM.

[0965] Experimental data based on representative Examples P, S, and T have a CYP450 3A4 inhibition activity in a range represented by an IC50 from about 80-150 nM, a CYP450 2C9 inhibition activity in a range represented by an IC50 from about 1000-10,000 nM, and a protease inhibition activity in a range represented by HIV EC50 greater than about 30,000 nM.

[0966] Embodiments of the invention

1. A compound of formula IV,

![Formula IV](image)

or a pharmaceutically acceptable salt, solvate, and/or ester thereof, wherein, each L3 is independently an alkylene or substituted alkylene;

each A is independently an aryl or substituted aryl;

X is heterocyclylalkyl;

Y is heterocyclylalkyl or alkyl;

G1 and G2 are independently CH or N, with the proviso that G1 and G2 are different;

G3 is -NR7- or -O-;

R1, R3, R5, and R7 are each independently selected from the group consisting of H, alkyl, substituted alkyl, arylalkyl, and substituted arylalkyl;

R2 is independently selected from the group consisting of substituted alkyl, alkoxyalkyl, hydroxyalkyl, trialkylsiloxyalkyl, heterocyclylalkyl, substituted heterocyclylalkyl, aminocycloalkyl, substituted aminoalkyl, -alkylene-N(R7)-alkyl, -alkylene-NR7-C(O)-alkyl, -alkylene-NR7-C(O)-N(R7)2, -alkylene-NR7-C(=N-R8)-N(R7)2, -alkylene-C(=N-R8)-N(R7)2, -alkylene-C(O)-OH, -alkylene-C(O)-Oalkyl, and -alkylene-C(O)-N(R7)2;

R8 and R9 are each one or more substituents independently selected from the group consisting of H, alkyl, substituted alkyl, halogen, and -CN;

each Ra is independently selected from the group consisting of H, alkyl, and substituted alkyl;

Rb is selected from the group consisting of H, alkyl, substituted alkyl, CN, and -S(O2)-alkyl; and

each Rc is independently selected from the group consisting of H, alkyl, substituted alkyl, heterocyclyl, substituted heterocyclyl, -S(O2)-alkyl, -S(O2)-aryl, and substituted -S(O2)-aryl.

2. The compound of embodiment 1, having the following formula:
wherein \( R^d \) is selected from the group consisting of H, haloalkyl, -C(O)-N(R^a)_2, -C(==N-R^b)-N(R^a)_2, hydroxyalkyl, -C(N(R^a)_2)=CHNO_2, -C(O)-alkyl.

3. The compound of embodiment 1, having the following formula:

4. The compound of embodiment 3, wherein said Heterocyclyl is a substituted or unsubstituted heteroaryl.

5. The compound of embodiment 4, wherein said heteroaryl is selected from the group consisting of triazolyl, pyrrolyl, imidazolyl, pyridyl, pyrazolyl, and imidazolidin-dionyl.

6. The compound of embodiment 3, wherein said Heterocyclyl is a substituted or unsubstituted heterocycloalkyl.

7. The compound of embodiment 6, wherein said heterocycloalkyl is selected from the group consisting of pyrrolidinonyl, pyrrolidine-dionyl, oxazolidinonyl, pyrrolidinyl, piperidinyl, piperidinonyl, piperazinyl, thiomorpholinyl, and morpholinyl.

8. The compound of embodiment 7, wherein said heterocycloalkyl is morpholinyl.

9. The compound of embodiment 1, having the following formula:

wherein \( Q \) is \(-OH\) or \(-N(R^a)_2\).

10. The compound of embodiment 9, wherein \( Q \) is \(-OH\).

11. The compound of embodiment 9, wherein \( Q \) is \(-NHR^a\), and \( R^a \) is substituted or unsubstituted heterocyclyl or sulfonylalkyl.

12. The compound of embodiment 1, having the following formula:
wherein $M$ is substituted alkyl.

13. The compound of embodiment 12, wherein said substituted alkyl is selected from hydroxyalkyl, substituted hydroxyalkyl, cyanoalkyl, substituted cyanoalkyl, and trialkysiloxyalkyl.

14. The compound of embodiment 1, having the following formula:

15. The compound of embodiment 1, having the following formula:

16. The compound of embodiment 15, wherein $R^8$ is H.

17. The compound of embodiment 15, wherein $R^2$ is aminoalkyl or heterocyclylalkyl.

18. The compound of embodiment 1, selected from the group consisting of:
19. A compound which is:

or a pharmaceutically acceptable salt, ester, and/or solvate thereof.

20. A compound which is
or a pharmaceutically acceptable salt, ester, and/or solvate thereof.

21. A compound which is

or a pharmaceutically acceptable salt, ester, and/or solvate thereof.

22. A method for improving the pharmacokinetics of a drug which is metabolized by cytochrome P450 monooxygenase, comprising administering to a patient treated with said drug, a therapeutically effective amount of a compound of embodiment 1, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.

23. The method of embodiment 22 wherein said administering comprises administering a therapeutically effective amount of a combination comprising said drug and the compound of Formula IV or a pharmaceutically acceptable salt, solvate, and/or ester of the compound of Formula IV.

24. The method of embodiment 22, wherein the drug metabolized by cytochrome P450 is an HIV protease inhibiting compound, an HIV non-nucleoside inhibitor of reverse transcriptase, an HIV nucleotide inhibitor of reverse transcriptase, an HIV integrase inhibitor, a gp41 inhibitor, a CXCR4 inhibitor, a gp120 inhibitor, a CCR5 inhibitor, capsid polymerization inhibitors, other drugs for treating HIV, an interferon, ribavirin analog, NS3 protease inhibitor, alpha-glucosidase 1 inhibitor, hepatoprotectant, non-nucleoside inhibitor of HCV, NS5a inhibitors, NS5b polymerase inhibitors, other drugs for treating HCV, or mixtures thereof.

25. The method of embodiment 23, wherein the drug and the compound or pharmaceutically acceptable salt, solvate, and/or ester thereof of embodiment 1 is administered as a single composition to the patient.

26. The method of embodiment 22, wherein said improving is increasing blood plasma levels of the drug which is metabolized by cytochrome P450 monooxygenase.

27. A method for inhibiting cytochrome P450 monooxygenase in a patient comprising administering to a patient in need thereof an amount of a compound of embodiment 1, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, effective to inhibit cytochrome P450 monooxygenase.

28. A method for treating an HIV infection comprising administering to a patient in need thereof a therapeutically effective amount of a compound of embodiment 1, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with a therapeutically effective amount of one or more additional therapeutic agents selected from the group consisting of HIV protease inhibiting compounds, HIV non-nucleoside inhibitors of reverse transcriptase, HIV nucleoside inhibitors of reverse transcriptase, HIV integrase inhibitors, gp41 inhibitors, CXCR4 inhibitors, gp120 inhibitors, G6PD and NADH-oxidase inhibitors, CCR5 inhibitors, other drugs for treating HIV, and mixtures thereof.
29. The method of embodiment 28, wherein:

(1) said HIV protease inhibitors are selected from the group consisting of amprenavir, atazanavir, fosamprenavir, indinavir, lopinavir, ritonavir, nelfinavir, saquinavir, tipranavir, brecanavir, darunavir, TMC-126, TMC-114, mozenavir (DMP-450), JE-2147 (AG1776), L-756423, RO0334649, KNI-272, DPC-681, DPC-684, GW640385X, DG17, PPL-100, DG35, and AG 1859;

(2) said HIV non-nucleoside inhibitors of reverse transcriptase are selected from the group consisting of capravirine, emivirine, delavirdine, efavirenz, nevirapine, (+) calanolide A, etravirine, GW5634, DPC-083, DPC-961, DPC-963, MIV-150, TMC-120, TMC-278 (rilpivirine), BLIRL 355 BS, VRX 804773, UK-453061, and RDEA806;

(3) said HIV nucleoside inhibitors of reverse transcriptase are selected from the group consisting of zidovudine, emtricitabine, didanosine, stavudine, zalcitabine, lamivudine, abacavir, amdoxovir, elvucitabine, fosidovudine tidoxil, apricitibine (AVX754), amdoxovir, KP-1461, and fosalvudine tidoxil (formerly HDP 99.0003);

(4) said HIV nucleotide inhibitors of reverse transcriptase are selected from the group consisting of tenofovir disoproxil fumarate, GS-9134, and adefoxiv dipivoxil;

(5) said HIV integrase inhibitors are selected from the group consisting of curcumin, derivatives of curcumin, derivatives of curcumin, choric acid, derivatives of choric acid, 3,5-dicaffeoylquinic acid, derivatives of 3,5-dicaffeoylquinic acid, aurintricarboxylic acid, derivatives of aurintricarboxylic acid, caffeic acid phenethyl ester, derivatives of caffeic acid phenethyl ester, tyrophostin, derivatives of tyrophostin, quercetin, derivatives of quercetin, S-1360, zintevir (AR-177), L-870812, L-870810, MK-0518 (raltegravir), elvitegravir, BMS-538158, GSK364735C, BMS-707035, MK-2048, and BA 011;

(6) said gp41 inhibitor are selected from the group consisting of enfuvirtide, sifuvirtide, FB006M, and TRI-1144;

(7) said CCR5 inhibitor is AMD-070;

(8) said entry inhibitor is SP01A;

(9) said gp120 inhibitor is BMS-488043 or BlockAide/ CR;

(10) said G6PD and NADH-oxidase inhibitor is immunitin;

(11) said CCR5 inhibitors are selected from the group consisting of aplaviroc, vicriviroc, maraviroc, PRO-140, INCB15050, PF-232798 (Pfizer), and CCR5mAb004;

(12) said other drugs for treating HIV are selected from the group consisting of BAS-100, SPI-452, REP 9, SP-01A, TNX-355, DES6, ODN-93, ODN-112, GV-1, PA-457 (bevirimat), Ampligen, HRG214, Cytolin, VXG-410, KD-247, AMZ 0026, CYT 99007A-221 HIV, DEBIO-025, BAY 50-4798, MDX010 (ipilimumab), PBS 119, ALG 889, and PA-1050040 (PA-040).

30. A method for treating an HCV infection comprising administering to a patient in need thereof a therapeutically effective amount of a compound of embodiment 1, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with a therapeutically effective amount of one or more additional therapeutic agents selected from the group consisting of interferons, ribavirin analogs, NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, non-nucleoside inhibitors of HCV, and other drugs for treating HCV, or mixtures thereof.

31. The method of embodiment 30, wherein:

(1) said interferons are selected from the group consisting of pegylated rIFN-alpha 2b, pegylated rIFN-alpha 2a, rIFN-alpha 2b, rIFN-alpha 2a, consensus IFN alpha (infergen), feron, reaferon, intermax alpha, r-IFN-beta, interfer + actimune, IFN-omega with DUROS, albuferon, locteron, Albuferon, Reifib, Oral interferon alpha, IFNAlapha-2b XL, AVI-005, PEG-Infergen, and Pegylated IFN-beta;

(2) said ribavirin analogs are selected from the group consisting of rebetol, copegus, and viramidine (taribavirin);

(3) said NS5b polymerase inhibitors are selected from the group consisting of NS5B, valopicitabine, R1626, PSI-6130 (R1656), HCV-796, BILB 1941, XTL-2125, MK-0608, NM-107, R7128 (R4048), VCH-759, PF-868554, and GSK625433;

(4) said NS3 protease inhibitor are selected from the group consisting of SCH-503034 (SCH-7), VX-950 (telaprevir), BILN-2065, BMS-605339, and ITMN-191;

(5) said alpha-glucosidase 1 inhibitors are selected from the group consisting of MX-3253 (celgosivir) and UT-231B;

(6) said hepatoprotectants are selected from the group consisting of IDN-6556, ME 3738, LB-84451, and MitoxQ;

(7) said non-nucleoside inhibitors of HCV are selected from the group consisting of benzimidazole derivatives, benzo-1,2,4-thiadiazine derivatives, phenylalanine derivatives, A-831, and A-689; and

(8) said other drugs for treating HIV are selected from the group consisting of zadanix, nitazoxanide (alinea), BLVN-401 (virostat), PYN-17 (altirex), KPE02003002, actilon (CPG-10101), KRN-7000, civacir, GI-5005, ANA-
32. A pharmaceutical composition comprising a compound of embodiment 1, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, and a pharmaceutically acceptable carrier or exipient.

33. The pharmaceutical composition of embodiment 32, further comprising at least one additional therapeutic agent metabolized by cytochrome P450.

34. The pharmaceutical composition of embodiment 33, wherein the at least one additional therapeutic agent is selected from the group consisting of HIV protease inhibiting compounds, HIV non-nucleoside inhibitors of reverse transcriptase, HIV nucleoside inhibitors of reverse transcriptase, HIV nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, gp41 inhibitors, CXCR4 inhibitors, gp120 inhibitors, CCR5 inhibitors, capsid polymerization inhibitors, interferons, ribavirin analogs, NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, non-nucleoside inhibitors of HCV, other drugs for treating HCV, and combinations thereof.

35. The pharmaceutical composition of embodiment 34, wherein:

(1) said HIV protease inhibitors are selected from the group consisting of amprenavir, atazanavir, fosamprenavir, indinavir, lopinavir, ritonavir, neflinavir, saquinavir, tipranavir, brecanavir, darunavir, TMC-126, TMC-114, mozennavir (DMG-450), JE-2147 (AG1776), L-756423, RO0334649, KNI-272, DPC-681, DPC-684, GW640385X, DG17, PPL-100, DG35, and AG 1859;

(2) said HIV non-nucleoside inhibitors of reverse transcriptase are selected from the group consisting of capravine, emivirine, delavirdine, efavirenz, nevirapine, (+) calanolide A, etravirine, GW5634, DPC-083, DPC-961, DPC-963, MIV-150, and TMC-120, TMC-278 (rilpivirine), efavirenz, BILR 355 BS, VRX 840773, UK-453061, and RDEA806;

(3) said HIV nucleoside inhibitors of reverse transcriptase are selected from the group consisting of zidovudine, emtricitabine, didanosine, stavudine, zalcitabine, lamivudine, abacavir, amdoxovir, elvucitabine, alovudine, MIV-210, racivirine (±FTC), D-d4FC, emtricitabine, phosphazide, fozivudine tidoxil, apricitibine (AVX754), amdoxovir, KP-1461, and fosaludvitine tidoxil (formerly HDP 99.0003);

(4) said HIV nucleotide inhibitors of reverse transcriptase are selected from the group consisting of tenofovir disoproxil fumarate, GS-9131, and adeclovir dipivoxil;

(5) said HIV integrase inhibitors are selected from the group consisting of curcumin, derivatives of curcumin, choric acid, derivatives of choric acid, 3,5 dicaffeoylquinic acid, derivatives of 3,5 dicaffeoylquinic acid, aurintricarboxylic acid, derivatives of aurintricarboxylic acid, caffeic acid phenethyl ester, derivatives of caffeic acid phenethyl ester, tyrophostin, derivatives of tyrophostin, quercetin, derivatives of quercetin, S-1360, zintevir (AR-177), L-870812, and L-870810, MK-0518 (raltegravir), elvitegravir, BMS-538158, GSK364735C, BMS-707035, MK-2048, and BA 011;

(6) said gp41 inhibitor is selected from the group consisting of enfuvirtide, sifuvidite, FB006M, and TRI-1144;

(7) said CXCR4 inhibitor is AMD-070;

(8) said entry inhibitor is SP01A;

(9) said gp120 inhibitor is BMS-488043 or BlockAide/ CR;

(10) said G6PD and NADH-oxidase inhibitor is immunitin;

(11) said CCR5 inhibitors are selected from the group consisting of aplaviroc, vicriviroc, maraviroc, PRO-140, INCB15050, PF-232798 (Pfizer), and CCR5mAb004;

(12) said other drugs for treating HIV are selected from the group consisting of BAS-100, SPI-452, REP 9, SP-01A, TNX-355, DES6, ODN-93, ODN-112, GV-1, PA-457 (bevirimat), Ampligen, HRG214, Cytolyn, VG-X410, KD-247, AMZ 0026, CYT 99007A-221 HIV, DEBIO-025, BAY 50-4798, MDX010 (ipilimumab), PBS 119, ALG 889, and PA-1050040 (PA-040);

(13) said interferons are selected from the group consisting of pegylated rIFN-alpha 2b, peglated rIFN-alpha 2a, rIFN-alpha 2b, rIFN-alpha 2a, consensus IFN alpha (inferrgen), feron, reaferon, internax alpha, r-IFN-beta, inferrgen + acetamine, IFN-omega with DUROS, albuferon, locteron, Albuferon, Reblif, Oral interferon alpha, IFNalpha-2b XL, AVI-005, PEG-Inferrgen, and Peglated IFN-beta;

(14) said ribavirin analogs are selected from the group consisting of rebetol, copegus, and viramidine (taribavirin);

(15) said NS5b polymerase inhibitors are selected from the group consisting of NM-283, valopicitabine, R1626, PSL-6130 (R1656), HCV-796, BILB 1941, XTL-2125, MK-0608, NM-107, R7128 (R4048), VCH-759, PF-868554, and GSK625433;

(16) said NS3 protease inhibitor is selected from the group consisting of SCH-503034 (SCH-7), VX-950 (tel-
(17) said alpha-glucosidase 1 inhibitors are selected from the group consisting of MX-3253 (celgosivir) and UT-231B;
(18) said hepatoprotectants are selected from the group consisting of IDN-6556, ME 3738, LB-84451, and MitoQ;
(19) said non-nucleoside inhibitors of HCV are selected from the group consisting of benzimidazole derivatives, benzo-1,2,4-thiadiazine derivatives, phenylyalanine derivatives, A-831, and A-689; and
(20) said other drugs for treating HCV are selected from the group consisting of zadaxin, nitazoxanide (alinea), BIVN-401 (virostat), PYN-17 (altirex), KPE02003002, action (CPG-10101), KRN-7000, civacir, GI-5005, ANA-975, XTL-6865, ANA 971, NOV-205, tarvacin, EHC-18, NIM811, DEBIO-025, VGX-410C, EMZ-702, AVI 4065, Bavituximab, Ogulfanide, and VX-497 (merimepodib).

36. A new pharmaceutical composition or use for the preparation of a medicament, comprising a compound of embodiment 1.

37. A compound of embodiment 1 as a therapeutic substance.

38. The use of a compound of embodiment 1 for the manufacture of a medicament for improving the pharmacokinetics of a drug which is metabolized by cytochrome P450 monooxygenase, increasing the blood plasma level of a drug which is metabolized by cytochrome P450 monooxygenase, inhibiting cytochrome P450 monooxygenase, treating an HIV infection, or treating an HCV infection in a patient.

39. The use of embodiment 38, wherein said drug which is metabolized by cytochrome P450 monooxygenase is an HIV protease inhibiting compounds, HIV non-nucleoside inhibitors of reverse transcriptase, HIV nucleoside inhibitors of reverse transcriptase, HIV nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, HIV protease inhibitors, CXCR4 inhibitors, gp120 inhibitors, G6PD and NADH-oxidase inhibitors, CCR5 inhibitors, other drugs for treating HIV, an interferon, ribavirin analog, NS3 protease inhibitor, alpha-glucosidase 1 inhibitor, hepatoprotectant, non-nucleoside inhibitor of HCV, and other drugs for treating HCV, or mixtures thereof.

40. The use of embodiment 39, wherein said medicament is a combination of a compound of embodiment 1 and one or more additional therapeutic agents selected from the group consisting of HIV protease inhibiting compounds, HIV non-nucleoside inhibitors of reverse transcriptase, HIV nucleoside inhibitors of reverse transcriptase, HIV nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, HIV protease inhibitors, CXCR4 inhibitors, gp120 inhibitors, G6PD and NADH-oxidase inhibitors, CCR5 inhibitors, other drugs for treating HIV, interferons, ribavirin analogs, NS5b polymerase inhibitors, NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, non-nucleoside inhibitors of HCV, and other drugs for treating HCV, or mixtures thereof.

41. The use of embodiment 40, wherein:

(1) said HIV protease inhibitors are selected from the group consisting of amprenavir, atazanavir, fosamprenavir, indinavir, lopinavir, ritonavir, nelfinavir, saquinavir, tipranavir, brecanavir, darunavir, TMC-126, TMC-114, mozenavir (DMP-450), JE-2147 (AG1776), L-756423, RO0334649, KNI-272, DPC-681, DPC-684, GW640385X, DG17, PPL-100, DG35, and AG 1859;
(2) said HIV non-nucleoside inhibitors of reverse transcriptase are selected from the group consisting of capravirine, emivirine, delavirdine, efavirenz, nevirapine, (+) calanolide A, etravirine, GW5634, DPC-083, DPC-961, DPC-963, MIV-150, and TMC-120, TMC-278 (rilpivirine), efavirenz, BILR 355 BS, VRX 840773, UK-453061, and RDEA806;
(3) said HIV nucleoside inhibitors of reverse transcriptase are selected from the group consisting of zidovudine, emtricitabine, didanosine, stavudine, zalcitabine, lamivudine, abacavir, amdinovir, elvucitabine, alovudine, MIV-210, racivir (Z-FTC), D-d4FC, emtricitabine, phosphazide, foivudine tidoixil, apricitabine (AVX754), amdinovir, KP-1461, and fosaludvine tidoixil (formerly HDP 99.0003);.
(4) said HIV nucleotide inhibitors of reverse transcriptase are selected from the group consisting of tenofovir disoproxil fumarate, GS-9131, and adefovir dipivoxil;
(5) said HIV integrase inhibitors are selected from the group consisting of curcumin, derivatives of curcumin, choric acid, derivatives of choric acid, 3,5-dicafeoylquinic acid, derivatives of 3,5-dicafeoylquinic acid, aurinencroxylic acid, derivatives of aurinercroxylic acid, caffeic acid phenethyl ester, derivatives of caffeic acid phenethyl ester, tyrphostin, derivatives of tyrphostin, quercetin, derivatives of quercetin, S-1360, zintevir (AR-177), L-870812, and L-870810, MK-0518 (raltegravir), elvitegravir, BMS-538158, GSK36473SC, BMS-707035, MK-2048, and BA 011;
(6) said gp41 inhibitor are selected from the group consisting of enfuvirtide, sifuvirtide, FB006M, and TRI-1144;
(7) said CXCR4 inhibitor is AMD-070;
(8) said entry inhibitor is SP01A;
(9) said gp120 inhibitor is BMS-488043 or BlockAide/ CR;
(10) said G6PD and NADH-oxidase inhibitor is immunitin;
(11) said CCR5 inhibitors are selected from the group consisting of aplaviroc, vicriviroc, maraviroc, PRO-140, INCB15050, PF-232798 (Pfizer), and CCR5mAb004;
(12) said other drugs for treating HIV are selected from the group consisting of BAS-100, SPI-452, REP 9, SP-01A, TNX-355, DES6, ODN-93, ODN-112, VGV-1, PA-457 (bevirimat), Ampligen, HRG214, Cytolin, VGX-410, KD-247, AMZ 0026, CYT 99007A-221 HIV, DEBIO-025, BAY 50-4798, MDX010 (ipilimumab), PBS 119, ALG 889, and PA-1050040 (PA-040);
(13) said interferons are selected from the group consisting of pegylated rIFN-alpha 2b, pegylated rIFN-alpha 2a, rIFN-alpha 2b, rIFN-alpha 2a, consensus IFN alpha (interferon), man, rIFN-beta, interferon + actimmune, IFN-omega with DUROS, alb uniform, locteron, Albuferon, Rebif, Oral interferon alpha, IFNalpha-2b XL, AVI-005, PEG-Interferon, and Pegylated IFN-beta;
(14) said ribavirin analogs are selected from the group consisting of rebetol, copegus, and viramidine (taribavirin);
(15) said NS5b polymerase inhibitors are selected from the group consisting of NM-283, valopicitabine, R1626, PSI-8130 (R1656), HCV-796, BILB 1941, XTL-2125, MK-0608, NM-107, R7128 (R4048), VCH-759, PF-868554, and GSK625433;
(16) said NS3 protease inhibitor are selected from the group consisting of SCH-503034 (SCH-7), VX-950 (telaprevir), BILN-2065, BMS-605339, and ITMN-191;
(17) said alpha-glucosidase 1 inhibitors are selected from the group consisting of MX-3253 (celgosivir) and UT-231B;
(18) said hepatoprotectants are selected from the group consisting of IDN-6556, ME 3738, LB-84451, and MitoQ;
(19) said non-nucleoside inhibitors of HCV are selected from the group consisting of benzimidazole derivatives, benzo-1,2,4-thiazine derivatives, phenylalanine derivatives, A-831, and A-689; and
(20) said other drugs for treating HCV are selected from the group consisting of zadalixnitoxazole (alinea), BIVN-401 (virostat), PYN-17 (alirex), KPE02003002, action (CPG-10101), KRN-7000, civacir, GI-5005, ANA-975, XTL-6865, ANA 971, NOV-205, tarvacin, EHC-18, NIM811, DEBIO-025, VGX-410C, EMZ-702, AVI 4065, Bavituximab, Oglufanide, and VX-497 (merimepodib).

Claims

1. A pharmaceutical composition comprising a compound of formula IIB:

![Image of formula IIB]

or a pharmaceutically acceptable salt, solvate, stereoisomer and/or ester thereof, wherein:

- R10a and R10b are each independently H or -C1-4 alkyl;
- R12 is H or -CH3;
- R13 is -(CH2)0-3CR17R18NR20R21, -(CH2)0-3CR17R18NR17C(O)NR20R21, -(CH2)1-3C(O)R22, -(CH2)1-3S(O)2R22 or -(CH2)1-3-R23;
- R14 and R15 are each independently H, -C1-4 alkyl or arylalkyl;
- R17 and R18 are each independently H or -C1-3 alkyl;
- R19 is H, -C1-4 alkyl or arylalkyl;
- R20 and R21 are each independently H, -C1-3 alkyl, -C(O)R17 or -S(O)2R17; or
- R20 and R21, taken together with the nitrogen atom to which they are attached, form an unsubstituted or substituted 5-6 membered heterocyclyl ring containing 1-2 heteroatoms selected from the group consisting of N...
and O;

R²² is H, -C₁₋₃ alkyl, -OR¹⁹ or -NR²⁰R²¹; and

R²³ is an unsubstituted or substituted 5-6 membered heterocyclyl ring containing 1-2 heteroatoms selected from the group consisting of N and O;

wherein said unsubstituted or substituted 5-6 membered heterocyclyl ring formed by R²⁰ and R²¹ and said unsubstituted or substituted 5-6 membered heterocyclyl ring of R²³ are each independently unsubstituted or substituted with a C₁₂ alkyl, a pharmaceutically acceptable carrier or excipient, and a HIV nucleotide inhibitor of reverse transcriptase.

2. The pharmaceutical composition of claim 1 comprising a compound of formula IIb, or a pharmaceutically acceptable salt, solvate, stereoisomer and/or ester thereof, wherein R¹³ is -(CH₂)₀₋₃CR¹⁷R¹⁸NR²⁰R²¹, -(CH₂)₀₋₃CR¹⁷R¹⁸NR¹⁷C(O) NR²⁰R²¹ or -(CH₂)₁₋₃-R²³.

3. The pharmaceutical composition of claim 2, comprising a compound of formula IIb, or a pharmaceutically acceptable salt, solvate, stereoisomer and/or ester thereof, wherein R¹³ is -(CH₂)₀₋₃CR¹⁷R¹⁸NR²⁰R²¹ or -(CH₂)₀₋₃CR¹⁷R¹⁸NR¹⁷C(O)-NR²⁰R²¹.

4. The pharmaceutical composition of claim 1 wherein the compound of formula IIb is a compound of formula IIc:

![Formula IIc]

or a pharmaceutically acceptable salt, solvate, stereoisomer and/or ester thereof, wherein:

R¹³ is -(CH₂)₀₋₃CR¹⁷R¹⁸NR²⁰R²¹, -(CH₂)₀₋₃CR¹⁷R¹⁸NR¹⁷C(O) NR²⁰R²¹, -(CH₂)₁₋₃(O)R²² or -(CH₂)₁₋₃-R²³;

R¹⁷ and R¹⁸ are each independently H or C₁₋₃ alkyl;

R¹⁹ is H, -C₁₋₄ alkyl or arylalkyl;

R²⁰ and R²¹ are each independently H, -C₁₋₃ alkyl, -C(O)R¹⁷ or -S(O)₂R¹⁷; or

R²⁰ and R²¹, taken together with the nitrogen atom to which they are attached, form a 5-6 membered heterocyclyl ring containing 1-2 heteroatoms selected from the group consisting of N and O;

R²² is H, -C₁₋₃ alkyl, -OR¹⁹ or -NR²⁰R²¹; and

R²³ is an unsubstituted or substituted 5-6 membered heterocyclyl ring containing 1-2 heteroatoms selected from the group consisting of N and O.

5. The pharmaceutical composition of claim 1 wherein the compound of formula IIb is the compound of formula IIba
6. The pharmaceutical composition of claim 5, wherein the compound of formula IIB is the compound of formula IIBb or a pharmaceutically acceptable salt, solvate, and/or ester thereof.

7. The pharmaceutical composition of any of claims 1 to 6, wherein the HIV nucleotide inhibitor of reverse transcriptase is GS-9131, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.

8. The pharmaceutical composition of claim 7, comprising a combination selected from the group consisting of:

- the compound of formula IIBb/GS-9131/emtricitabine,
- the compound of formula IIBb/GS-9131/elvitegravir,
- the compound of formula IIBb/GS-9131/efavirenz,
- the compound of formula IIBb/GS-9131/raltegravir,
- the compound of formula IIBb/GS-9131/rilpivirine,
- the compound of formula IIBb/tenofovir disoproxil fumarate/GS-9131/emtricitabine,
- the compound of formula IIBb/tenofovir disoproxil fumarate/GS-9131/elvitegravir,
- the compound of formula IIBb/GS-9131/emtricitabine/elvitegravir,
- the compound of formula IIBb/GS-9131/emtricitabine/efavirenz,
- the compound of formula IIBb/GS-9131/emtricitabine/raltegravir,
- the compound of formula IIBb/GS-9131/emtricitabine/rilpivirine,
- the compound of formula IIBb/GS-9131/elvitegravir/efavirenz,
- the compound of formula IIBb/GS-9131/elvitegravir/raltegravir,
- the compound of formula IIBb/GS-9131/elvitegravir/rilpivirine,
- the compound of formula IIBb/GS-9131/efavirenz/raltegravir,
9. The pharmaceutical composition of any one of claims 1-8 in the form of tablets, troches, lozenges, aqueous or oil suspensions, dispersible powders or granules, emulsions, hard or soft capsules, syrups or elixirs.

10. The pharmaceutical composition of any one of claims 1-9 in the form of tablets.

11. A compound of Formula IIB or a pharmaceutically acceptable salt, solvate, stereoisomer and/or ester thereof as defined in any one of claims 1-6 in combination with a HIV nucleotide inhibitor of reverse transcriptase for use in treating an HIV infection in a patient.

12. The combination of claim 11 wherein the HIV nucleotide inhibitor of reverse transcriptase is GS-9131, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.
### DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
</table>

**TECHNICAL FIELDS SEARCHED (IPC)**

- C07D

The present search report has been drawn up for all claims.
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

31-01-2017

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2008010921 A</td>
<td>24-01-2008</td>
<td>AP 2985 A</td>
<td>30-09-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 061838 A1</td>
<td>24-09-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2007275860 A1</td>
<td>24-01-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR P10714055 A2</td>
<td>18-12-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2653374 A1</td>
<td>24-01-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101490023 A</td>
<td>22-07-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103725033 A</td>
<td>04-09-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 2049506 T3</td>
<td>14-09-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 200900155 A1</td>
<td>30-06-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201270738 A1</td>
<td>30-07-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2049506 A2</td>
<td>22-04-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2487165 A1</td>
<td>15-08-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 3112355 A1</td>
<td>04-01-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2546378 T3</td>
<td>23-09-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1126485 A1</td>
<td>24-03-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR P20090077 A2</td>
<td>30-06-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR P20150744 T1</td>
<td>09-10-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU E025565 T2</td>
<td>29-03-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4881433 B2</td>
<td>22-02-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009542696 A</td>
<td>03-12-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012051933 A</td>
<td>15-03-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090028821 A</td>
<td>19-03-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140004808 A</td>
<td>13-01-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20150042869 A</td>
<td>21-04-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU 92864 I2</td>
<td>06-01-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 300780 I1</td>
<td>15-03-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 573060 A</td>
<td>24-02-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 2049506 E</td>
<td>09-10-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 183007 A1</td>
<td>30-08-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI 2049506 T1</td>
<td>31-08-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200811167 A</td>
<td>01-03-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201412733 A</td>
<td>01-04-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008108617 A1</td>
<td>08-05-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009291952 A1</td>
<td>26-11-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011212964 A1</td>
<td>01-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013123311 A1</td>
<td>16-05-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014105859 A1</td>
<td>17-04-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015011775 A1</td>
<td>08-01-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015225448 A1</td>
<td>13-08-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2016067360 A1</td>
<td>10-03-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2016303088 A1</td>
<td>20-10-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008010921 A2</td>
<td>24-01-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 064309 A2</td>
<td>25-03-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 332132 T</td>
<td>15-07-2006</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>429224 T</td>
<td></td>
<td>15-05-2009</td>
</tr>
<tr>
<td>AU</td>
<td>778198 B2</td>
<td></td>
<td>25-11-2004</td>
</tr>
<tr>
<td>BG</td>
<td>65445 B1</td>
<td></td>
<td>29-08-2008</td>
</tr>
<tr>
<td>BR</td>
<td>0007294 A</td>
<td></td>
<td>27-08-2002</td>
</tr>
<tr>
<td>CA</td>
<td>2371109 A1</td>
<td></td>
<td>14-12-2000</td>
</tr>
<tr>
<td>CN</td>
<td>1353607 A</td>
<td></td>
<td>12-06-2002</td>
</tr>
<tr>
<td>CN</td>
<td>101361723 A</td>
<td></td>
<td>11-02-2009</td>
</tr>
<tr>
<td>CO</td>
<td>5160323 A1</td>
<td></td>
<td>30-05-2002</td>
</tr>
<tr>
<td>CY</td>
<td>1109135 T1</td>
<td></td>
<td>02-07-2014</td>
</tr>
<tr>
<td>CZ</td>
<td>20014293 A3</td>
<td></td>
<td>13-03-2002</td>
</tr>
<tr>
<td>DE</td>
<td>60029219 T2</td>
<td></td>
<td>28-06-2007</td>
</tr>
<tr>
<td>DK</td>
<td>1183026 T3</td>
<td></td>
<td>06-11-2006</td>
</tr>
<tr>
<td>DK</td>
<td>1733725 T3</td>
<td></td>
<td>03-08-2009</td>
</tr>
<tr>
<td>EP</td>
<td>1183026 A2</td>
<td></td>
<td>06-03-2002</td>
</tr>
<tr>
<td>EP</td>
<td>1733725 A1</td>
<td></td>
<td>20-12-2006</td>
</tr>
<tr>
<td>ES</td>
<td>2265946 T3</td>
<td></td>
<td>01-03-2007</td>
</tr>
<tr>
<td>ES</td>
<td>2324549 T3</td>
<td></td>
<td>10-08-2009</td>
</tr>
<tr>
<td>HK</td>
<td>1045804 A1</td>
<td></td>
<td>09-02-2007</td>
</tr>
<tr>
<td>HU</td>
<td>0201591 A2</td>
<td></td>
<td>28-09-2002</td>
</tr>
<tr>
<td>IL</td>
<td>146025 A</td>
<td></td>
<td>30-04-2012</td>
</tr>
<tr>
<td>IL</td>
<td>216686 A</td>
<td></td>
<td>30-01-2014</td>
</tr>
<tr>
<td>JP</td>
<td>4753511 B2</td>
<td></td>
<td>24-06-2011</td>
</tr>
<tr>
<td>JP</td>
<td>2003501386 A</td>
<td></td>
<td>14-01-2003</td>
</tr>
<tr>
<td>MX</td>
<td>PA01012478 A</td>
<td></td>
<td>14-10-2003</td>
</tr>
<tr>
<td>MY</td>
<td>127908 A</td>
<td></td>
<td>29-12-2006</td>
</tr>
<tr>
<td>NO</td>
<td>20015670 A</td>
<td></td>
<td>20-11-2001</td>
</tr>
<tr>
<td>NZ</td>
<td>515016 A</td>
<td></td>
<td>27-02-2004</td>
</tr>
<tr>
<td>PL</td>
<td>351943 A1</td>
<td></td>
<td>14-07-2003</td>
</tr>
<tr>
<td>PT</td>
<td>1183026 E</td>
<td></td>
<td>30-11-2006</td>
</tr>
<tr>
<td>PT</td>
<td>1733725 E</td>
<td></td>
<td>30-06-2009</td>
</tr>
<tr>
<td>SI</td>
<td>1183026 T1</td>
<td></td>
<td>31-10-2006</td>
</tr>
<tr>
<td>SI</td>
<td>1733725 T1</td>
<td></td>
<td>31-08-2009</td>
</tr>
<tr>
<td>SK</td>
<td>287185 B6</td>
<td></td>
<td>08-02-2010</td>
</tr>
<tr>
<td>SK</td>
<td>17202001 A3</td>
<td></td>
<td>05-03-2002</td>
</tr>
<tr>
<td>TR</td>
<td>200103488 T2</td>
<td></td>
<td>22-04-2002</td>
</tr>
<tr>
<td>TW</td>
<td>1244390 B</td>
<td></td>
<td>01-12-2005</td>
</tr>
<tr>
<td>WO</td>
<td>0074677 A2</td>
<td></td>
<td>14-12-2000</td>
</tr>
<tr>
<td>ZA</td>
<td>200108641 B</td>
<td></td>
<td>20-01-2003</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 31-01-2017.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DK 0871465 T3</td>
<td>03-02-2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK 1284140 T3</td>
<td>18-08-2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK 1293207 T3</td>
<td>05-10-2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK 2295052 T3</td>
<td>20-01-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1210941 A2</td>
<td>05-06-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1273298 A2</td>
<td>08-01-2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1284140 A2</td>
<td>19-02-2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 2130534 A1</td>
<td>09-12-2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 2295052 A1</td>
<td>16-03-2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES 2186787 T3</td>
<td>16-05-2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES 2304416 T3</td>
<td>16-10-2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES 2328559 T3</td>
<td>16-11-2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES 2441736 T3</td>
<td>06-02-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HK 1016088 A1</td>
<td>08-06-2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HK 1053782 A1</td>
<td>12-02-2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HK 1053783 A1</td>
<td>28-11-2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL 122546 A</td>
<td>31-01-2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 4023823 B2</td>
<td>19-12-2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 5364871 B2</td>
<td>11-12-2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP H11508884 A</td>
<td>03-08-1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2007291131 A</td>
<td>08-11-2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2012111775 A</td>
<td>14-06-2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2015013878 A</td>
<td>22-01-2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 20070120619 A</td>
<td>24-12-2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT 871465 E</td>
<td>28-02-2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT 1284140 E</td>
<td>14-05-2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT 1293207 E</td>
<td>11-08-2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT 2295052 E</td>
<td>23-01-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 6037157 A</td>
<td>14-03-2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2002039998 A</td>
<td>04-04-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 9701349 A1</td>
<td>16-01-1997</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 90322807 P [0001]
- US 95871607 P [0001]
- WO 2008010921 A2 [0760] [0780] [0790] [0798] [0809] [0812] [0819] [0835] [0871] [0876] [0910] [0934]

Non-patent literature cited in the description

- PAQUETTE, LEO A. Principles of Modern Heterocyclic Chemistry. W.A. Benjamin, 1968 [0036]
- J. Am. Chem. Soc. 1960, vol. 82, 5566 [0036]
- THEODORA W. GREENE; PETER G. M. WUTS. Protective Groups in Organic Synthesis. John Wiley & Sons, Inc, 1999 [0074] [0484] [0504]
- KOCIENSKI; PHILIP J. Protecting Groups. Georg Thieme Verlag, 1994 [0074]
- Protecting Groups: An Overview. 1-20 [0074]
- Hydroxyl Protecting Groups. 21-94 [0074]
- Diol Protecting Groups. 95-117 [0074]
- Carboxyl Protecting Groups. 118-154 [0074]
- Protecting Groups. 155-184 [0074]
- Handbook of Pharmaceutical Excipients. 1986 [0359]
- Remington’s Pharmaceutical Sciences. Mack Publishing Co, [0361]
- Tetrahedron [0454]
- J. Org. Chem. [0500]
- J. Med. Chem [0525]
- J. Med. Chem. [0922]
- M.V. TOTH; G.R.MARSHALL. Int. T. Peptide Protein Res., 1990, vol. 36, 544 [0950] [0953]
- Biochemistry [0952]