(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
05.06.2019 Bulletin 2019/23

(21) Application number: 15774077.0

(22) Date of filing: 01.04.2015

(51) Int Cl.:
- B60R 1/04 (2006.01)
- B60R 1/12 (2006.01)
- B60R 1/08 (2006.01)

(86) International application number:
PCT/US2015/023846

(87) International publication number:
WO 2015/153740 (08.10.2015 Gazette 2015/40)

(54) AUTOMATIC DISPLAY MIRROR ASSEMBLY
AUTOMATISCHE ANZEIGESPIEGELANORDNUNG
ENSEMBLE MIROIR D’AFFICHAGE AUTOMATIQUE

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 01.04.2014 US 201461973447 P

(43) Date of publication of application:
08.02.2017 Bulletin 2017/06

(73) Proprietor: Gentex Corporation
Zeeland, MI 49464 (US)

(72) Inventors:
- VANVUUREN, Mark A.
 Zeeland, Michigan 49464 (US)
- LEE, Ethan J.
 Zeeland, Michigan 49464 (US)
- VANDERPLOEG, John A.
 Zeeland, Michigan 49464 (US)

(74) Representative: Müller-Boré & Partner
Patentanwälte PartG mbB
Friedenheimer Brücke 21
80639 München (DE)

(56) References cited:
- EP-A1- 0 067 335
- US-B2- 7 683 326
- US-B2- 8 282 226
- US-B2- 8 282 226

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention generally relates to a rearview mirror assembly for a vehicle, and more particularly, to a display mirror assembly where scenes to the rear of the vehicle are either reflected to the driver’s eyes or are captured by a rearward facing camera and displayed to the driver.

WO2007/029137 A1 describes a mirror device, the reflectivity of which may be varied by means of applying a voltage.

US 2004/160657 A1 describes an electrochromic rearview mirror assembly for a vehicle according to the preamble of claim 1.

EP 0 067 335 A1 describes an automatic rearview mirror for automotive vehicles. The mirror incorporates means for detecting and comparing the relative brightness of light forwardly and rearwardly of the vehicle and means responding automatically to annoying glare from the rear of the vehicle to move a reflective element from a full reflective mode to a partial reflective mode and also automatically return the reflective element to a full reflective mode after the source of the annoying glare is removed.

SUMMARY OF THE INVENTION

A display mirror assembly as defined in claim 1 is one aspect of the present invention.

These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:

FIG. 1A is a top front perspective view of a display mirror assembly for a vehicle, in accordance with one embodiment of the present invention;

FIG. 1B is a bottom front perspective view of the display mirror assembly of FIG. 1A;

FIG. 1C is a side elevation view of the display mirror assembly of FIG. 1B;

FIG. 2 is a schematic illustration of the optical components of the display mirror assembly of FIG. 1;

FIG. 3 is an electrical circuit diagram in block form showing the electrical components of the display mirror assembly of FIG. 1;

FIG. 4 is a flow chart illustrating a process performed by the controller shown in FIG. 3;

FIG. 5A is a schematic illustration of the optical components of the display mirror assembly of FIGS. 1A-2 shown in a first viewing position;

FIG. 5B is a schematic illustration of the optical components of the display mirror assembly of FIGS. 1A-2 shown in a second viewing position;

FIG. 6A is a side elevational cross-sectional view of a display mirror assembly with a bi-modal switch in a first position; and

FIG. 6B is a side elevational cross-sectional view of a display mirror assembly with a bi-modal switch in a second position.

DETAILED DESCRIPTION

The present illustrated embodiments reside primarily in combinations of method steps and apparatus components related to a rearview mirror assembly. Accordingly, the apparatus components and method steps have been represented, where appropriate, by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein. Further, like numerals in the description and drawings represent like elements.

In this document, relational terms, such as first and second, top and bottom, and the like, are used solely to distinguish one entity or action from another entity or action, without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements, but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element preceded by "comprises ... a" does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.

Referring now to the drawings, reference numeral 10 generally designates a display mirror assembly for a vehicle. Display mirror assembly 10 includes an electrochromic cell 12, an electrically switchable reflective element 20, a display module 30, and a controller 50. A housing 35 at least partially receives electrochromic cell 12, switchable reflective element 20, and display module 30, and includes a mounting member 39 extending rearwardly therefrom. The mounting member 39 is adapted for mounting on a windshield or header of a vehicle. The mounting member 39 may be operably engaged with the rear housing 35 in any known manner. Examples of a display mirror are described in United States Patent No. 8,879,139; United States Provisional Patent Application Serial No. 61/637,527 filed on April 24, 2012; United States Provisional Patent Application...
Switchable reflective element 20 may include a liquid crystal material 23 disposed between two glass substrates 22 and 24. A polarizer 21 may be provided on a front surface of glass substrate 22. A reflective polarizer 25 may be provided on a rear surface of glass substrate 24. An additional glass substrate 26 may be provided on a rear surface of reflective polarizer 25. Anti-reflective layers or prismatic wedges 27 and 28 may be provided on the front and rear surfaces of switchable reflective element 20. In general, switchable reflective element 20 is responsive to an electrical signal applied thereto to change between a high reflection state and a low reflection state (with high light transmission).

[0016] Display module 30 includes appropriate display driver circuitry for displaying video images captured by a rearward facing camera 90 (FIG. 3). Display module 30 includes a display element 32 and a backlight 40. Display element 32 may include a liquid crystal material 33 disposed between glass substrates 34 and 36, a front polarizer 37 provided on a front surface of glass substrate 34, and a rear polarizer 38 provided on a rear surface of glass substrate 36. Display element 32 and backlight 40 may have any known construction.

[0017] Referring to FIG. 2, the front polarizer 37 of display module 30 may be a linear polarizer affixed to glass substrate 34 such that light exiting the display module 30 is linearly polarized. The non-extinguishing or high transmission axis of front polarizer 37 may be aligned to the non-reflecting or high transmission axis of reflective polarizer 25 of switchable reflective element 20. The reflective or low transmission axis of reflective polarizer 25 may be orthogonal from the non-reflective or high transmission axis, as is commonly known in the art. Reflective polarizer 25 may be fixed between glass substrates 24 and 26 such that a substantially specular reflective layer can be achieved. Liquid crystal 23, together with glass substrates 22 and 24, may comprise a twisted nematic LCD cell, as is commonly known in the art. Polarizer 21 may be a linear polarizer affixed to glass substrate 22 such that the non-extinguishing or high transmission axis of polarizer 21 may be aligned to the non-reflecting or high transmission axis of reflective polarizer 25. Thus, the high transmission polarization axis of polarizer 21, reflective polarizer 25, and front polarizer 37 may all be aligned, whereas the reflecting or low transmission axis of reflective polarizer 25 may be orthogonal to this axis.

[0018] Display mirror assembly 10 may be operable in the mirror mode when the display module 30 is off, such that backlight 40 is not activated or display element 32 is not activated, or both backlight 40 and display element 32 are not activated. Switchable reflective element 20 may be in a high reflectance state, whereby an electrical signal is not applied to liquid crystal material 23, such that the 90-degree rotation of polarized light indicative of the twisted nematic LCD remains intact, as is commonly known in the art. An electrical signal may be applied to electrochromic cell 12 to attenuate light transmitting through electrochromic cell 12 to switchable reflective element 20.

[0019] Thus, display mirror assembly 10 is operable in
the mirror mode when incident light, which may or may not be attenuated by electrochromic cell 12, proceeds to polarizer 21. A portion of the light incident on polarizer 21 passes in a linearly polarized fashion through to liquid crystal material 23. Substantially all of the light incident on liquid crystal material 23 may rotate 90 degrees as it passes through and proceeds to reflective polarizer 25. Light incident on reflective polarizer 25 may be aligned to its reflecting axis, whereby reflective polarizer 25 may reflect substantially all of the incident polarized light. Light reflected from reflective polarizer 25 may remain linearly polarized and proceed in reverse, whereby substantially all of the polarized light incident back on liquid crystal material 23 may rotate 90 degrees and pass through polarizer 21 substantially uninhibited and may or may not be attenuated by electrochromic cell 12 upon exiting display mirror assembly 10.

[0020] Display mirror assembly 10 may be operable in the display mode when the display module 30 is on, such that backlight 40 is activated or display element 32 is activated, or both backlight 40 and display element 32 are activated. Switchable reflective element 20 may be in a low reflectance state, whereby an electrical signal is applied to liquid crystal material 23, such that the 90-degree rotation of polarized light indicative of the twisted nematic LCD is temporarily disabled, as is commonly known in the art. An electrical signal may or may not be applied to electrochromic cell 12. If not applied, this avoids attenuating light transmitting from display module 30. Thus, display mirror assembly 10 may be operable in the display mode when linearly polarized light exiting front polarizer 37 passes substantially uninhibited through the non-reflecting or high transmission axis of reflective polarizer 25, and passes substantially uninhibited through liquid crystal 23, and passes substantially uninhibited through polarizer 21.

[0021] Further, when display mirror assembly 10 is operable in the display mode, incident light, which may be, but is preferably not attenuated by electrochromic cell 12, proceeds to polarizer 21. A portion of the light incident on polarizer 21 passes in a linearly polarized fashion through to liquid crystal material 23. Substantially all of the light incident on liquid crystal material 23 passes through and proceeds to reflective polarizer 25 because the 90-degree rotation of polarized light indicative of the twisted nematic LCD may be temporarily disabled. Light incident on reflective polarizer 25 may be aligned to its non-reflecting axis, whereby reflective polarizer 25 may absorb substantially all of the incident polarized light. As previously mentioned, anti-reflective layers or prismatic wedges 27 and 28 may be provided on the front and rear surfaces of switchable reflective element 20.

[0022] Referring back to FIGs. 1B and 1C, display mirror assembly 10 has a viewing area, which includes a front surface 14a of a front transparent substrate 14 of electrochromic element 12. The viewing area may be a rectangular shape, a trapezoidal shape, or any custom contoured shape desired for aesthetic reasons. The perimeter of electrochromic element 12 may also have a ground edge, a beveled edge, or be frameless.

[0023] Display element 32 may be generally planar, with outer edges defining a front surface. The front surface of display element 32 can be shaped to correspond to and fit within the shape of the viewing area of display mirror assembly 10. As illustrated in FIG. 1, display element 32 can have a trapezoidal shape. However, it should be appreciated by those skilled in the art that display element 32 can have other shapes, such as, but not limited to, square, rectangular, symmetrical, non-symmetrical, or contoured. Display element 32 may have a front surface which fits within, but is not complementary to, the viewing area of display mirror assembly 10, for example, where the front surface of display element 32 is generally rectangular and the front surface 14a of electrochromic cell 12 has a contoured outer perimeter. The distance between the outer edges of display element 32 and the outer perimeter of electrochromic cell 12 may be about 9 mm or less along at least a portion of the outer edges of display element 32. Display element 32 may be a liquid crystal display (LCD), LED, OLED, plasma, DLP or other display technology. Various types of LCDs can be used, including, but not limited to, twisted nematic (TN), in-plane switching (IPS), fringe field switching (FFS), vertically aligned (VA), etc.

[0024] FIG. 3 shows an example of the electrical components of display mirror assembly 10. As shown, display mirror assembly 10 further includes a controller 50, an electrochromic drive circuit 60, an ambient light sensor 70, and glare light sensor 80. Ambient light sensor 70 may be positioned on the rear side of housing 35 so as to capture ambient light levels forward of the vehicle. Glare light sensor 80 may be positioned on the front side of housing 35 so as to capture glare light levels incident on the front surface of display mirror assembly 10. An optional display switch 306 may also be provided as described further below with reference to FIGs. 6A and 6B. Controller 50 is coupled to each of these elements to control the operation of display module 30, electrochromic cell 12, and switchable reflective element 20 in response to light levels sensed by ambient light sensor 70 and/or glare light sensor 80. The operation of controller 50 is described further below with reference to FIG. 4.

[0025] Electrochromic drive circuit 60 may have the same construction as conventional drive circuits used for electrochromic mirror elements.

[0026] As shown in FIG. 4, controller 50 begins this automatic mode selection by determining a light level (step 102). This may be accomplished by reading the output of ambient light sensor 70 and/or glare light sensor 80. Then, in step 104, controller 50 determines if the detected light level has exceeded a threshold level. If the threshold is exceeded (representing daytime conditions), controller 50 automatically selects a display mode by turning on display module 30 so as to generate a display of the rearward scene as captured by rearward facing camera 90, setting switchable reflective element 20 to a
low reflection state, and clearing electrochromic cell 12 so as to be in a high transmission state (step 106). If the threshold is not exceeded (representing night-time conditions), controller 50 automatically selects a mirror mode by turning off display module 30, setting switchable reflective element 20 to a high reflection state, and controlling the transmission level of electrochromic cell 12 using light sensors 70 and 80 in a manner similar to that used for conventional electrochromic mirrors (step 108).

[0027] It will be understood by one having ordinary skill in the art that a manual selection method may be employed whereby the driver may manually control the reflection state of the system by pressing a conventional button, switch, lever and the like. Further, the driver may manually select the reflection state of the system through a capacitive touch switch, capacitive touch panel, resistive touch panel, gesture recognition device, proximity sensor, or any human interface device as is commonly known in the art. After manual actuation, the switchable reflective element may switch back to its prior reflective state upon release of the conventional button (or removal of the user’s hand from the assembly as sensed by other listed user-actuation mechanisms) or after a predetermined time delay after such release.

[0028] Additionally, to provide information to the viewer of the display mirror assembly 10, the display mirror assembly 10 may include information regarding a field of view 178 (FIGs. 1A-1C), such as a partially transmissive graphic overlay or an image on the display module 30 visible on the viewing area when the display module 30 is in use.

[0029] As shown in FIGs. 1B and 1C, display mirror assembly 10 may include an optional actuator device 31 for moving switchable reflective element 20 and optional electrochromic cell 12 between two distinct viewing positions including a first viewing position (FIG. 5A) and a second viewing position (FIG. 5B). In addition to moving electrochromic cell 12 and switchable reflective element 20, actuator device 31 may also move display module 30 and/or housing 35.

[0030] It is contemplated that actuator device 31 may take the form of a conventional actuator device used in prismatic mirrors with the exception that it would be modified to provide for tilting the switchable reflective element 20 and optionally electrochromic cell 12 or a prismatic element.

[0031] It is also possible to use an automated actuator device that could move the switchable reflective element 20 and optionally electrochromic cell 12 or a prismatic element between the first and second viewing positions based upon sensed light levels forward and optionally rearward of the display mirror assembly using ambient light sensor 70, and/or glare light sensor 80.

[0032] As shown in FIGs. 2, 5A, and 5B, a primary reflected image 17a of a rearward scene 17 is reflected from reflective polarizer 25 of switchable reflective element 20. When in the first viewing position (FIGs. 2 and 5A), switchable reflective element 20 is positioned to reflect the primary reflected image 17a towards a viewer’s eyes 13. This is the ideal position when display mirror assembly 10 is operating in the mirror mode. However, in the display mode, even when switchable reflective element 20 is set to a low reflective, high transmission state, a small percent of an image of the rearward scene is still reflected at the driver’s eyes 13, which may cause some degree of interference with the image 18 from display module 30. Thus, the second viewing position is provided by way of actuator device 31 wherein electrochromic cell 12 and switchable reflective element 20 are positioned (by tilting upward) such that a reflected image 46b of ambient light 46 reflected 46a from a headliner 45 of the vehicle is reflected towards the viewer’s eyes and the primary reflected image 17a of the rearward scene 17 is not reflected towards the viewer’s eyes 13. Because the reflected image 46b of the headliner 45 is of a uniform contrast and appearance, it does not interfere with the displayed image 18 from display module 30.

[0033] With reference to FIGs. 6A and 6B, an actuator device is illustrated in the form of a bi-modal switch 31 whose functionality consists of the interaction between the mounting member 39, a mounting member plate 334, a first pivot axis 300, a second pivot axis 302, a bi-modal switch spring 304, the bi-modal switch 31, a primary PCB 328 (on which controller 50 may be mounted), an optional display switch 302, the rear housing 35, the switchable reflective element 20, the electrochromic cell 12, and the display module 30. In this embodiment, the switchable reflective element 20, the electrochromic cell 12, and the display module 30 are rigidly attached to the rear housing 35. The first pivot axis 300 is defined by a cylindrical rotation member disposed between the rear housing 35 and the mounting member plate 334. The second pivot axis 302 is defined by a cylindrical rotation member disposed between the rear housing 35 and the bi-modal switch 31. The bi-modal switch 31 rotates about the second pivot axis 302 when the bi-modal switch 31 is moved from the on position to the off position. During the rotation of the bi-modal switch 31, the mounting member 39 and the mounting member plate 334 do not move relative to the observer of the display mirror assembly 10. However, the rear housing 35, the switchable reflective element 20, the electrochromic cell 12, the display module 30, and the primary PCB 328 rotate around the first pivot axis 300. The bi-modal switch 31 rotates approximately 75 to 105 degrees around the second pivot axis 302. The distance from the center of the second pivot axis 302 to a spring receiving area 308 of the bi-modal switch 31 and the bi-modal switch spring 304 is fairly small when compared to the distance between the first pivot axis 300 and the spring receiving area 308 between the bi-modal switch 31 and the bi-modal switch spring 304. The difference in distances between the first pivot axis 300 and the second pivot axis 302 causes a rotation of the rear housing 30 of approximately 2 to 7 degrees when the bi-modal switch 31 is rotated 75 to 110 degrees. Optional display switch 306 is rigidly mounted to the primary PCB.
328 with a predetermined distance between the mounting member plate 334 and the display switch 306, such that when the bi-modal switch 31 is in the second viewing position (FIG. 6A), the display switch 306 is not depressed and the display module 30 is turned on, and when the bi-modal switch 31 is in the first viewing position (FIG. 6B), the display switch 306 is depressed thereby turning off the display module 30.

[0034] With reference again to FIGs. 6A and 6B, the rotation of the bi-modal switch 31 generally performs two functions, the first of which is rotating the switchable reflective element 20 between 2 and 7 degrees, and the second of which is to move the display switch 306 between depressed and not depressed (deactivated) positions, which switches the display module 30 off and on, depending on the mode. It should be appreciated, however, that display switch 306 may be eliminated if controller 50 is responsive to ambient light sensed by ambient light sensor 70 to automatically turn display module 30 on and off. On the other hand, if display switch 306 is provided, it may be used to control the state of switchable reflective element 20 and potentially affect the state of electrochromic cell 12. Alternatively, controller 50 may automatically change the mode of display mirror assembly 10 in response to the ambient light and display switch 306 may be used as a manual override.

[0035] It will be appreciated that the controller 50 described herein may be comprised of one or more conventional processors and unique stored program instructions that control one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of a display mirror assembly 10, as described herein. The non-processor circuits may include, but are not limited to signal drivers, clock circuits, power source circuits, and/or user input devices. As such, these functions may be interpreted as steps of a method used in using or constructing a classification system. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain functions are implemented as custom logic. Of course, a combination of the two approaches could be used. Thus, the methods and means for these functions have been described herein. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein, will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.

[0036] It will be understood by one having ordinary skill in the art that construction of the described invention and other components is not limited to any specific material. Other exemplary embodiments of the invention disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.

[0037] For purposes of this disclosure, the term "coupled" (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.

[0038] It is also important to note that the construction and arrangement of the elements of the invention as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations.

[0039] Modifications of the invention will occur to those skilled in the art and to those who make or use the invention. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and not intended to limit the scope of the invention, which is defined by the following claims.

Claims

1. A display mirror assembly (10) for a vehicle comprising:

an ambient light sensor (70) for sensing an ambient light level and outputting an ambient light signal representative of the sensed ambient light level;

a switchable reflective element (20) that changes states between a high reflection mode and a low reflection mode;

a display (30) positioned behind said switchable
reflective element (20) for generating a displayed image visible through said switchable reflective element (20); and a controller (50) in communication with said ambient light sensor (70), said switchable reflective element (20), and said display (30), said controller (50) compares the ambient light signal to a threshold level, characterized in that if the ambient light signal exceeds the threshold level, said controller (50) activates said display (30) and sets said switchable reflective element (20) to the low reflection mode, and if the ambient light signal does not exceed the threshold level, said controller (50) deactivates said display (30) and sets said switchable reflective element (20) to the high reflection mode.

2. The display mirror assembly (10) of claim 1, and further comprising an electrochromic cell (12) positioned in front of said switchable reflective element (20) for variably attenuating light reflected from said switchable reflective element (20).

3. The display mirror assembly (10) of any one of claims 1 and 2, and further comprising an anti-reflection coating provided on at least one of the front and rear sides of said switchable reflective element (20).

4. The display mirror assembly (10) of any one of claims 1-3, wherein said switchable reflective element (20) is a switchable liquid crystal reflective element.

5. The display mirror assembly (10) of any one of claims 1-4, wherein said display (30) is a liquid crystal display.

6. The display mirror assembly (10) of any one of claims 1-5, and further comprising:

 a housing (35) configured for attachment to a vehicle and for housing (35) at least said switchable reflective element (20) and said display (30); and an actuator device (31) for moving said switchable reflective element (20) between two distinct viewing positions including a first viewing position and a second viewing position, wherein a primary reflected image of a rearward scene is reflected from said switchable reflective element (20), wherein:

 when in the first viewing position, said switchable reflective element (20) is positioned to reflect the primary reflected image towards a viewer's eyes, when in the second viewing position, said switchable reflective element (20) is posi-

7. The display mirror assembly (10) of claim 2, further comprising a glare light sensor (80) for sensing glare light levels from the rear of the vehicle, wherein said controller (50) varies attenuation by said electrochromic cell (12) in response to light levels sensed by said glare light sensor (80), wherein if the ambient light signal exceeds the threshold level, said controller (50) sets said electrochromic cell (12) to a clear state with minimum attenuation, and if the ambient light signal does not exceed the threshold level, said controller (50) varies attenuation by said electrochromic cell (12).

8. The display mirror assembly (10) of claim 6, wherein said actuator device (31) also moves said display (30) with said switchable reflective element (20).

9. The display mirror assembly (10) of any one of claims 6 and 8, wherein said actuator device (31) also moves said housing (35) with said switchable reflective element (20).

Patentansprüche

1. Eine Anzeigespiegelanordnung (10) für ein Fahrzeug, die Folgendes umfasst:

 einen Umgebungslichtsensor (70) zum Erfassen eines Umgebungslichtniveaus und zum Ausgeben eines Umgebungslichtsignals, das das erfasste Umgebungslichtniveau darstellt; ein schaltbares reflektierendes Element (20), das Zustände wechselt zwischen einem Modus mit hoher Reflexion und einem Modus mit niedriger Reflexion; eine Anzeige (30), die hinter dem genannten schaltbaren reflektierenden Element (20) positioniert ist, um ein angezeigtes Bild zu erzeugen, das durch das genannte schaltbare reflektierende Element (20) hindurch sichtbar ist; und eine Steuerung (50), die in Verbindung steht mit dem genannten Umgebungslichtsensor (70), mit dem genannten schaltbaren Reflexionselement (20) und mit der genannten Anzeige (30), wobei die genannte Steuerung (50) das Umge-
bungslichtsignal mit einem Schwellenwert vergleicht, durch gekennzeichnet, dass falls das Umgebungslichtsignal den Schwellenwert überschreitet, die genannte Steuerung (50) die genannte Anzeige (30) aktiviert und das genannte schaltbare reflektierende Element (20) auf den Niederreflexionsmodus einstellt, und dass falls das Umgebungslichtsignal den Schwellenwert nicht überschreitet, die genannte Steuerung (50) die genannte Anzeige (30) deaktiviert und das genannte schaltbare reflektierende Element (20) auf den Hochreflexionsmodus einstellt.

2. Die Anzeigespiegelanordnung (10) nach Anspruch 1, die ferner eine elektrochrome Zelle (12) umfasst, die vor dem genannten schaltbaren Reflexionselement (20) angeordnet ist, um das von dem genannten schaltbaren Reflexionselement (20) reflektierte Licht variabel zu dämpfen.

3. Die Anzeigespiegelanordnung (10) nach irgendeinem der Ansprüche 1 und 2 und ferner umfassend eine Antireflexionsbeschichtung, die auf mindestens einer der Vorder- und Rückseiten des genannten umschaltbaren Reflexionselementes (20) vorgesehen ist.

4. Die Anzeigespiegelanordnung (10) nach irgendeinem der Ansprüche 1 - 3, wobei das genannte schaltbare Reflexionselement (20) ein schaltbares Flüssigkristall-Reflexionselement ist.

5. Die Anzeigespiegelanordnung (10) nach irgendeinem der Ansprüche 1 - 4, wobei die genannte Anzeige (30) eine Flüssigkristallanzeige ist.

6. Die Anzeigespiegelanordnung (10) nach irgendeinem der Ansprüche 1 - 5, die ferner Folgendes umfasst:

 • ein Gehäuse (35), das konfiguriert ist zur Befestigung an einem Fahrzeug und um zumindest das genannte schaltbare Reflexionselement (20) und die genannte Anzeige (30) Aufnehmen (35); und
 • eine Betätigungsvorrichtung (31), um das genannte schaltbare reflektierende Element (20) zwischen zwei unterschiedlichen Betrachtungspositionen zu bewegen, einschließlich einer ersten Betrachtungsposition und einer zweiten Betrachtungsposition, wobei ein primäres reflektiertes Bild einer hecksitzigen Szene vom genannten umschaltbaren reflektierenden Element (20) reflektiert wird, wobei:

 • wenn sich das genannte schaltbare reflektierende Element (20) in der ersten Betrachtungsposition befindet, es positioniert ist, um das primäre reflektierte Bild in Richtung der Augen eines Betrachters zu reflektieren, wenn sich das genannte schaltbare reflektierende Element (20) in der zweiten Betrachtungsposition befindet, es derart positioniert ist, dass ein reflektiertes Bild einer Dachinnenverkleidung (45) des Fahrzeugs zu den Augen des Betrachters reflektiert wird und dass das primäre reflektierte Bild nicht zu den Augen des Betrachters reflektiert wird, und wobei die genannte Anzeige (30) eingeschaltet wird, wenn sich das genannte schaltbare Reflexionselement (20) in der ersten Betrachtungsposition befindet.

7. Die Anzeigespiegelanordnung (10) nach Anspruch 2, ferner umfassend einen Blendlicht-Sensor (80) zum Erfassen eines Blendungslichtniveaus, das von der Rückseite des Fahrzeugs ausgeht, wobei die genannte Steuerung (50), als Reaktion auf das vom genannten Blendlicht-Sensor (80) erfasste Lichtniveau, die Dämpfung durch die genannte elektrochrome Zelle (12) verändert, wobei falls das Umgebungslightsignal den Schwellenwert überschreitet, die genannte Steuerung (50) die genannte elektrochrome Zelle (12) in einen klaren Zustand mit minimaler Dämpfung versetzt, und wobei falls das Umgebungslightsignal den Schwellenwert nicht überschreitet, die genannte Steuerung (50) die Dämpfung durch die genannte elektrochrome Zelle (12) verändert.

8. Anzeigespiegelanordnung (10) nach Anspruch 6, wobei die genannte Betätigungsvorrichtung (31) auch die genannte Anzeige (30) mit dem genannten schaltbaren Reflexionselement (20) bewegt.

9. Anzeigespiegelanordnung (10) nach irgendeinem der Ansprüche 6 und 8, wobei die genannte Betätigungsvorrichtung (31) auch das genannte Gehäuse (35) mit dem genannten schaltbaren Reflexionselement (20) bewegt.

Revendications

1. Un ensemble miroir d'affichage ou encore rétroviseur à afficheur (10) pour un véhicule comprenant :
un capteur de lumière ambiante (70) pour détecter un niveau de lumière ambiante et délivrer un signal de lumière ambiante représentatif du niveau de lumière ambiante détecté ;
un élément réfléchissant commutable (20) qui change d’état entre un mode haute réflexion et un mode basse réflexion ;
un affichage (30) positionné derrière ledit élément réfléchissant commutable (20) pour générer une image affichée visible à travers ledit élément réfléchissant commutable (20) ;
e une commande (50) en communication avec ledit capteur de lumière ambiante (70), ledit élément réfléchissant commutable (20) et ledit affichage (30), ladite commande (50) comparant le signal de lumière ambiante à un niveau seuil, caractérisé en ce que si le signal de lumière ambiante dépasse le niveau seuil, ladite commande (50) active ledit affichage (30) et met ledit élément réfléchissant commutable (20) en mode faible réflexion, et que si le signal de lumière ambiante ne dépasse pas le niveau seuil, ladite commande (50) désactive ledit affichage (30) et met ledit élément réfléchissant commutable (20) en mode haute réflexion.

2. L’ensemble miroir d’affichage (10) d’après la revendication 1, et comprenant en outre une cellule électrochrome (12) placée devant ledit élément réfléchissant commutable (20) pour atténuer de manière variable la lumière réfléchie par ledit élément réfléchissant commutable (20).

3. L’ensemble miroir d’affichage (10) d’après l’une quelconque des revendications 1 et 2, et comprenant en outre un revêtement antireflet prévu sur au moins un des côtés avant et arrière dudit élément réfléchissant commutable (20).

4. L’ensemble miroir d’affichage (10) d’après l’une quelconque des revendications de 1 à 3, sachant que ledit élément réfléchissant commutable (20) est un élément réfléchissant à cristaux liquides commutable.

5. L’ensemble miroir d’affichage (10) d’après l’une quelconque des revendications de 1 à 4, sachant que ledit affichage (30) est un affichage à cristaux liquides.

6. L’ensemble miroir d’affichage (10) d’après l’une quelconque des revendications de 1 à 5, et comprenant en outre :
un boîtier (35) configuré pour être fixé à un véhicule et pour loger (35) au moins ledit élément réfléchissant commutable (20) et ledit affichage (30) ; et un dispositif d’actionnement (31) pour déplacer ledit élément réfléchissant commutable (20) entre deux positions de vision distinctes comprenant une première position de vision et une deuxième position de vision, sachant qu’une image réfléchie primaire d’une scène arrière est réfléchie par ledit élément réfléchissant commutable (20), sachant que : lorsqu’il se trouve dans la première position de vision, ledit élément réfléchissant commutable (20) est positionné pour refléter l’image réfléchie primaire vers les yeux d’un observateur, lorsqu’il se trouve dans la deuxième position de vision, ledit élément réfléchissant commutable (20) est positionné de manière qu’une image réfléchie d’une garniture de pavillon (45) du véhicule soit réfléchie vers les yeux de l’observateur et que l’image réfléchie primaire ne soit pas réfléchie vers les yeux de l’observateur, et que ledit affichage (30) est allumé lorsque ledit élément réfléchissant commutable (20) est dans la deuxième position de vision et est éteint lorsque ledit élément réfléchissant commutable (20) est dans la première position de vision.

7. L’ensemble miroir d’affichage (10) d’après la revendication 2, comprenant en outre un capteur de lumière éblouissante (80) pour détecter des niveaux de lumière éblouissante depuis l’arrière du véhicule, sachant que ladite commande (50) varie l’atténuation par ladite cellule électrochrome (12) en réponse aux niveaux de lumière détectés par ledit capteur de lumière éblouissante (80), sachant que si le signal de lumière ambiante dépasse le niveau seuil, ladite commande (50) règle ladite cellule électrochrome (12) à un état clair avec une atténuation minimale, et que si le signal de lumière ambiante ne dépasse pas le niveau seuil, ladite commande (50) fait varier l’atténuation par ladite cellule électrochrome (12).

8. L’ensemble miroir d’affichage (10) d’après la revendication 6, sachant que ledit dispositif d’actionnement (31) déplace également ledit affichage (30) avec ledit élément réfléchissant commutable (20).

9. L’ensemble miroir d’affichage (10) d’après l’une quelconque des revendications 6 et 8, sachant que ledit dispositif d’actionnement (31) déplace également ledit boîtier (35) avec ledit élément réfléchis-
sant commutable (20).
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2007029137 A1 [0002]
- EP 0067335 A1 [0004]
- US 8879139 B [0010]
- US 61637527 B [0010]
- US 61764341 B [0010]