(54) MEDICAL MATERIAL AND MEDICAL INSTRUMENT USING MEDICAL MATERIAL

(57) The invention relates to a medical material including a copolymer having a repeating unit (A) represented by the following formula (1):

\[
\begin{align*}
&\text{CH}_2-\text{C}^- \quad \text{C}^-=\text{O} \quad Z \quad \text{R}^{12} \\
&\quad \text{R}^{11} \quad \text{N}^+ \quad \text{R}^{14} \quad \text{SO}_3^- \\
\end{align*}
\]

wherein \(R^{11} \) is a hydrogen atom or a methyl group, \(Z \) is an oxygen atom or -NH-., \(R^{12} \) is a C_{1-6} alkylene group, \(R^{13} \) and \(R^{14} \) are each independently a C_{1-4} alkyl group, and \(R^{15} \) is a C_{1-6} alkylene group, and a repeating unit (B) represented by the following formula (2):

\[
\end{align*}
\]
wherein R^{21} is a hydrogen atom or a methyl group, R^{22} is a C$_{1-6}$ alkyene group, and R^{23} is a C$_{1-4}$ alkyl group. The repeating unit (A) is contained in a proportion of 0.6 to 7 mol% based on all the structural units of the copolymer. The invention makes it possible to provide a medical material and a medical device, which exhibit excellent antithrombogenicity even when used under severe conditions prone to thrombus formation.
Description

Technical Field

[0001] The present invention relates to a medical material and also to a medical device using the medical material. More specifically, it relates to a medical material containing a copolymer having specific repeating units and also to a medical device using the medical material.

Background Art

[0002] In recent years, medical materials utilizing various polymer materials have been studied, and they are expected to be used for membranes for artificial kidneys, membranes for plasma skimming, catheters, stents, membranes for artificial lungs, artificial blood vessels, anti-adhesion membranes, artificial skins, and the like. In these materials, a synthetic polymer material, which is an xenobiotic substance, is used in contact with a biological tissue or a body fluid such as blood. Therefore, such a medical material is required to be biocompatible. The biocompatibility required for a medical material varies depending on its purpose and usage. A medical material used as a material that contacts blood is required to have characteristics of inhibiting the blood coagulation system, inhibiting the adhesion/activation of platelets, and inhibiting the activation of the complement system (antithrombogenicity).

[0003] Usually, a medical device is made antithrombogenic by a method in which the substrate forming the medical device is covered with an antithrombogenic material, or a method in which an antithrombogenic material is fixed to the surface of the substrate.

[0004] For example, JP-A-4-152952 discloses a membrane for an artificial organ or a medical device, having on the surface thereof a synthetic polymer that simultaneously satisfies biocompatibilities of inhibiting the adhesion/activation of platelets, an inhibitory effect on the activation of the complement system, and affinity with in-vivo tissues. In addition, U.S. Patent Application No. 2008/0262181 (corresponding to WO 2005/113620) discloses a biocompatible material containing a homopolymer or copolymer that has reduced interaction with biological components such as proteins and blood cells and is highly biocompatible.

Summary of Invention

[0005] The invention disclosed in JP-A-4-152952 shows excellent results in terms of inhibiting the adhesion/activation of platelets. In addition, according to the invention disclosed in U.S. Patent Application No. 2008/0262181 (corresponding to WO 2005/113620), the provided biocompatible material is excellent in terms of being capable of inhibiting the adsorption of proteins.

[0006] However, when a medical device has steps on the surface thereof that contacts blood, the blood flow is impaired at the steps, resulting in a tendency that thrombus formation is likely to occur around the steps. For example, in a blood flow circuit of a medical device, the blood flow is likely to be impaired around a constricted portion such as the joint of tubes used for the medical device, whereby thrombus formation is relatively likely to occur. Then, under such severe conditions relatively prone to thrombus formation, the materials according to the inventions disclosed in JP-A-4-152952 and U.S. Patent Application No. 2008/0262181 (corresponding to WO 2005/113620) have been sometimes insufficient in terms of antithrombogenicity.

[0007] Thus, the invention has been accomplished against the above background, and an object thereof is to provide a medical material and a medical device, which particularly exhibit excellent antithrombogenicity even when used under severe conditions prone to thrombus formation.

[0008] The present inventors have conducted extensive research to solve the above problems. As a result, they have found that the problems can be solved by a medical material containing a copolymer having specific repeating units, in which the content ratios of the specific repeating units are within specific ranges, and thus accomplished the invention.

[0009] That is, the gist of the invention is as follows.

[0010] 1. A medical material including a copolymer having:

 a repeating unit (A) represented by the following formula (1):

 [Chemical Formula 1]
wherein R_{11} is a hydrogen atom or a methyl group, Z is an oxygen atom or -NH-, R_{12} is a C_{1-6} alkylene group, R_{13} and R_{14} are each independently a C_{1-4} alkyl group, and R_{15} is a C_{1-6} alkylene group; and a repeating unit (B) represented by the following formula (2):

[Chemical Formula 2]

wherein R_{21} is a hydrogen atom or a methyl group, R_{22} is a C_{1-6} alkylene group, and R_{23} is a C_{1-4} alkyl group,

the repeating unit (A) being contained in a proportion of 0.6 to 7 mol% based on all the structural units of the copolymer;

2. The medical material according to 1 above, wherein in the formula (2), R_{21} is a hydrogen atom or a methyl group, R_{22} is a C_{1-3} alkylene group, and R_{23} is a C_{1-2} alkyl group;

3. The medical material according to 1 or 2 above, wherein in the formula (1), R_{11} is a methyl group, Z is an oxygen atom or -NH-, R_{12} is a C_{1-4} alkylene group, R_{13} and R_{14} are each independently a C_{1-2} alkyl group, and R_{15} is a C_{1-4} alkylene group;

4. The medical material according to any one of 1 to 3 above, wherein the copolymer includes 0.6 to 7 mol% the repeating unit (A) and 99.4 to 93 mol% the repeating unit (B) (the total amount of the repeating unit (A) and the repeating unit (B) is 100 mol%);

5. A medical device including:

- a substrate; and,
Brief Description of Drawings

Fig. 1 shows a tube (stepped tube) used in the Examples, with both ends being connected by a connector. In Fig. 1, the circled portions each show the joint between tubes 1 and 2.

Fig. 2 is an enlarged view schematically showing a longitudinal cross-section of the joint between tubes 1 and 2 in Fig. 1.

Fig. 3 is an enlarged photograph of a joint in a stepped tube having applied thereto a medical material containing the copolymer produced in Example 1, immediately after the antithrombogenicity test.

Fig. 4 is an enlarged photograph of a joint in a stepped tube having applied thereto a medical material containing the copolymer produced in Comparative Example 7, immediately after the antithrombogenicity test.

Description of Embodiments

The invention relates to a medical material containing a copolymer having specific repeating units and also to a medical device using the medical material.

Hereinafter, embodiments of the invention will be described. Note that the invention is not limited only to the following embodiments. In addition, the scale ratio in the drawings is exaggerated for the convenience of explanation, and may be different from the actual ratio.

In addition, as used herein, “X to Y” indicating a range means “X or more and Y or less”, and “weight”, “wt%”, and “part by weight” are treated as synonymous with “mass”, “mass%”, and “part by mass”, respectively. In addition, unless otherwise noted, the operations, physical properties, and the like are measured under the condition of room temperature (20 to 25°C)/relative humidity of 40 to 50%.

According to a first embodiment of the invention, provided is a medical material including a copolymer having:

a repeating unit (A) represented by the following formula (1):

\[
\text{[Chemical Formula 3]}
\]

\[
\begin{align*}
\text{CH}_2&-\text{C}^- \\
\text{Z} &\quad \text{C}=\text{O} \\
\text{R}^{12} &\quad \text{R}^{13} \\
\text{N}^+ &\quad \text{R}^{14} \\
\text{SO}_3^- &
\end{align*}
\]

(1)

wherein \(R^{11}\) is a hydrogen atom or a methyl group, \(Z\) is an oxygen atom or -NH-, \(R^{12}\) is a \(C_{1-6}\) alkylene group, \(R^{13}\) and \(R^{14}\) are each independently a \(C_{1-4}\) alkyl group, and \(R^{15}\) is a \(C_{1-6}\) alkylene group; and a repeating unit (B) represented by the following formula (2):
wherein \(R^{21} \) is a hydrogen atom or a methyl group, \(R^{22} \) is a C\(_{1-6}\) alkylene group, and \(R^{23} \) is a C\(_{1-4}\) alkyl group, the repeating unit (A) being contained in a proportion of 0.6 to 7 mol% based on the total structural units of the copolymer.

[Chemical Formula 4]

[Medical Material]

[0016] Hereinafter, first, the medical material according to the first embodiment of the invention will be described in detail.

[0017] The medical material of the invention is characterized in that it indispensably contains a copolymer having a repeating unit (A) represented by the above formula (1) (hereinafter also simply referred to as "repeating unit (A)") and a repeating unit (B) represented by the above formula (2) (hereinafter also simply referred to as "repeating unit (B)").

[0018] The present inventors have found that when the repeating unit (A) is combined with the repeating unit (B), and a coating layer is formed using a copolymer containing these repeating units, a medical material (antithrombogenic material) having excellent antithrombogenicity can be obtained.

[0019] JP-A-4-152952 discloses a biocompatible biomedical material composed of a homopolymer of the repeating unit (B) or a copolymer containing the same. However, as described above, there has been a demand for further improvement in antithrombogenicity under severe conditions extremely prone to thrombus formation. Then, in order to achieve further improvement in antithrombogenicity, the present inventors have studied structural units to be contained in a copolymer together with the repeating unit (B). In the course of study, they have found that, surprisingly, when the copolymer has, as a repeating unit, an apparently nonionic zwitterion-containing backbone such as a sulfobetaine backbone, the antithrombogenicity can be improved. Such improvement in antithrombogenicity appears to be attributable to the following: when a repeating unit (A) having high hydrophilicity is contained, the hydrophilicity of the copolymer is moderately controlled, and the biocompatibility is enhanced, resulting in a significantly improved inhibitory effect on thrombus formation. In addition, it has been found that when the copolymer contains, among a number of zwitterions, a zwitterion moiety with a sulfobetaine backbone, such a copolymer exhibits particularly excellent antithrombogenicity.

[0020] However, as a result of further study of copolymers containing the repeating units (A) and (B), it has turned out that when the content ratio of the repeating unit (A) is increased, although the antithrombogenicity is improved, the water solubility becomes too high. When a coating layer is formed using such a copolymer having extremely high water solubility on the substrate of a medical device, at the time of using the medical device or the like, the medical material containing the copolymer may be eluted upon contact with a body fluid such as blood. In particular, in a blood flow circuit such as an artificial lung system, the medical device remains in contact with blood for several hours during surgery. Accordingly, in the case where the medical material fixed to the medical device is eluted at high speed, it may happen that the antithrombogenicity of the medical device decreases during the surgery, resulting in significant thrombus formation in
the blood vessel circuit, thereby making the blood circuit unusable.

Thus, the upper limit of the content ratio of the repeating unit (A) based on all the structural units of the copolymer is specified to be 7 mol%. Accordingly, a medical material exhibiting excellent antithrombogenicity and also having moderately controlled water solubility can be obtained. As a result, a medical device that is excellent in terms of the above characteristics can be provided.

Therefore, according to the invention, a medical material and a medical device, which particularly exhibit excellent antithrombogenicity even when used under severe conditions prone to thrombus formation, are provided.

Note that the above mechanism is based on a guess, and the invention is not limited to the above mechanism.

(Copolymer Contained in Medical Material)

The copolymer contained in the medical material according to the invention is a copolymer containing the repeating units (A) and (B), in which the content ratio of the repeating unit (A) based on all the structural units is within a specific range. Therefore, as long as the copolymer has the above composition, its terminus is not particularly limited. They are suitably determined according to the kind of raw material used, but are usually hydrogen atoms. The structure of the copolymer is not particularly limited either, and may be any of a random copolymer, an alternating copolymer, a periodic copolymer, and a block copolymer.

It is preferable that the weight average molecular weight of the copolymer is 1,000 to 1,000,000. A weight average molecular weight within the above range is preferable in terms of solubility. In terms of the ease of covering with the coating layer, it is more preferable that the weight average molecular weight of the copolymer is 50,000 to 500,000. In the invention, as "weight average molecular weight", a value measured by gel permeation chromatography (GPC) using polystyrene as a reference material and tetrahydrofuran (THF) as a mobile phase should be employed.

Hereinafter, each structural unit (repeating unit) of the copolymer contained in the medical material will be described.

(I) Repeating Unit (A)

In the invention, the copolymer contained in the medical material indispensably contains a repeating unit (A) represented by the above formula (1).

In the above formula (1), R11 is a hydrogen atom or a methyl group, and preferably a methyl group in terms of improving the antithrombogenicity.

In the above formula (1), Z is an oxygen atom or -NH-. Although an oxygen atom and -NH- are equal in terms of antithrombogenicity, in terms of durability, it is preferable that Z is -NH-. In the case where Z is -NH-, in the above formula (1), an amide structure is formed. This results in higher hydrolysis resistance than in the case where Z is an oxygen atom (i.e., the case where an ester structure is formed in the above formula (1)), which is more suitable for applications in contact with a biological component over a long period of time.

In the above formula (1), R12 is a C1-6 linear or branched alkylene group. Specific examples thereof include a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group. Among them, in terms of improving the antithrombogenicity, C1-4 linear or branched alkylene groups are preferable, a methylene group, an ethylene group, and a trimethylene group are more preferable, and an ethylene group and a trimethylene group are particularly preferable.

In the above formula (1), R13 and R14 are each independently a C1 alkyl group. Specific examples thereof include linear or branched alkyl groups such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. Among them, in terms of improving the antithrombogenicity, C1-3 linear or branched alkyl groups are preferable, C1-2 alkyl groups (methyl group, ethyl group) are more preferable, and a methyl group is particularly preferable.

In the above formula (1), R15 is a C1-6 linear or branched alkylene group. Specific examples thereof include the same groups as described above for R12. Among them, in terms of improving the antithrombogenicity, C1-4 linear or branched alkylene groups are preferable, a methylene group, an ethylene group, and a trimethylene group are more preferable, and a trimethylene group is particularly preferable.

From above, in the above formula (1) representing the repeating unit (A), it is preferable that R11 is a methyl group, Z is an oxygen atom or -NH-, R12 is a C1-4 alkylene group, R13 and R14 are each independently a C1-2 alkyl group, and R15 is a C1-4 alkylene group. Further, in the above formula (1), it is particularly preferable that R11 is a methyl group, R12 is a C2-3 alkylene group, Z is an oxygen atom or -NH-, R13 and R14 are each a C1 alkyl group (methyl group), and R15 is a C3 alkylene group.

The copolymer contained in the medical material in the invention can be obtained by a polymerization reaction between a monomer that forms the repeating unit (A) described above (hereinafter also referred to as "monomer a") and a monomer that forms the repeating unit (B) described below in detail (hereinafter also referred to as "monomer b").
[0035] As the monomer a, for example, the following compounds where Z is an oxygen atom, or where Z is -NH-, are usable. The following monomers may be used alone or as a mixture of two or more kinds. In addition, it is also possible to use a mixture of a compound where Z is an oxygen atom and a compound where Z is -NH-.

[0037] In addition, in the case where Z is -NH-, examples of monomers a include [3-(methacryloylamino)propyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (compound of chemical formula (i) in the Examples), [3-(acryloylamino)propyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, [2-[methacryloylamino]ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, [2-[methacryloylamino]ethyl]diethyl-(2-sulfoethyl)ammonium hydroxide, [2-[methacryloylamino]ethyl]diethyl-(3-sulfopropyl)ammonium hydroxide, [3-[methacryloylamino]propyl]dimethyl-(2-sulfoethyl)ammonium hydroxide, [3-[methacryloylamino]propyl]diethyl-(2-sulfoethyl)ammonium hydroxide, [3-[methacryloylamino]propyl]diethyl-(3-sulfopropyl)ammonium hydroxide. Preferred examples of monomers b include isobutyl group, a sec-butyl group, and a tert-butyl group. Among them, in terms of improving the antithrombogenicity, C1-3 linear or branched alkyl groups are preferable, a methylene group and an ethylene group are more preferable, and an ethylene group is particularly preferable.

[0038] By using such a monomer having a betaine backbone, the coating layer of a medical device can be made highly antithrombogenic. Note that, as used herein, "(meth)acryl" means "acryl" and/or "methacryl", and "(meth)acryloyl" means "acryloyl" and/or "methacryloyl".

(II) Repeating Unit (B)

[0039] In the invention, the copolymer contained in the medical material indispensably contains a repeating unit (B) represented by the above formula (2).

[0040] In the above formula (2), R21 is a hydrogen atom or a methyl group, and preferably a hydrogen atom in terms of improving the antithrombogenicity.

[0041] In the above formula (2), R22 is a C1-6 linear or branched alkylene group. Specific examples thereof include a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group. Among them, in terms of improving the antithrombogenicity, C1-3 linear or branched alkylene groups are preferable, a methylene group and an ethylene group are more preferable, and an ethylene group is particularly preferable.

[0042] In the above formula (2), R23 is a C1-4 linear or branched alkyl group. Specific examples thereof include linear or branched alkyl groups such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. Among them, in terms of improving the antithrombogenicity, C1-3 linear or branched alkyl groups are preferable, C1-2 alkyl groups (methyl group, ethyl group) are more preferable, and a methyl group is particularly preferable.

[0043] From above, in the above formula (2) representing the repeating unit (B), it is preferable that R21 is a hydrogen atom or a methyl group, R22 is a C1-3 alkylene group, and R23 is a C1-2 alkyl group. Furthermore, in the above formula (2), it is particularly preferable that R21 is a hydrogen atom or a methyl group, R22 is a C2 alkylene group (ethylene group), and R23 is a C1 alkyl group (methyl group).

[0044] Examples of monomers b to form the repeating unit (B) include methoxymethyl acrylate, methoxethyl acrylate (MEA), methoxpropyl acrylate, methoxybutyl acrylate, ethoxymethyl acrylate, ethoxethyl acrylate, ethoxypropyl acrylate, ethoxybutyl acrylate, propoxymethyl acrylate, propoxethyl acrylate, propoxypropyl acrylate, propoxybutyl acrylate, butoxymethyl acrylate, butoxyethyl acrylate, butoxypropyl acrylate, butoxybutyl acrylate, methoxymethyl methacrylate, methoxethyl methacrylate, methoxypropyl methacrylate, methoxybutyl methacrylate, ethoxymethyl methacrylate, ethoxethyl methacrylate, ethoxypropyl methacrylate, ethoxybutyl methacrylate, propoxymethyl methacrylate, propoxethyl methacrylate, propoxypropyl methacrylate, propoxybutyl methacrylate, butoxymethyl methacrylate, butoxyethyl methacrylate, butoxypropyl methacrylate, and butoxybutyl methacrylate. Preferred examples of monomers b include methoxymethyl acrylate, methoxethyl acrylate (MEA), ethoxymethyl acrylate, ethoxethyl acrylate, methoxymethyl methacrylate, methoxethyl methacrylate, ethoxymethyl methacrylate, and ethoxethyl methacrylate. In terms of availability, methoxethyl acrylate (MEA) is more preferable. The above monomers may be used alone or as a mixture of two or more kinds.
In the invention, the copolymer contains the repeating unit (A) in a proportion of 0.6 to 7 mol% based on all the structural units (100 mol%) of the copolymer. The repeating unit (A) is highly hydrophilic. Therefore, in the case where a large amount of repeating unit (A) is contained in the copolymer, such a copolymer exhibits excellent antithrombogenicity. Meanwhile, when the amount of repeating unit (A) is too large, the copolymer has increased water solubility. When such a medical material is applied to a medical device, the medical material may be released.

When the repeating unit (A) is present in a proportion of less than 0.6 mol% based on all the structural units of the copolymer, the antithrombogenicity-improving effect cannot be sufficiently obtained, resulting in thrombus formation in severe environments, such as when used for a long period of time under conditions prone to thrombus formation. Meanwhile, when the repeating unit (A) is present in a proportion of more than 7 mol%, because of the action of the repeating unit (A) to impart water solubility, upon contact with a body fluid (e.g., blood), the medical material covering a medical device may be released from the substrate and eluted into the body fluid (contamination).

In terms of improving the antithrombogenicity and preventing the release of the medical material at the same time, the repeating unit (A) based on all the structural units is preferably 0.8 to 6 mol%, more preferably 0.9 to 4.7 mol%, and particularly preferably 1 to 4 mol%.

In the copolymer contained in the medical material, as long as the repeating unit (A) based on all the structural units is within the above range, the content ratio of the repeating unit (B) is not particularly limited. However, it is preferable that the repeating unit (B) is contained, for example, in a proportion of 60 mol% or more based on all the structural units of the copolymer, more preferably in a proportion of 80 mol% or more, and particularly preferably in a proportion of 90 mol% or more. Meanwhile, in relation to the repeating unit (A), the upper limit thereof is 99.4 mol%.

The copolymer contained in the medical material may contain other structural units aside from the repeating units (A) and (B), but is preferably composed only of the repeating units (A) and (B). That is, in the copolymer contained in the medical material, it is preferable in the total amount of the repeating unit (A) and the repeating unit (B) is 100 mol%.

Thus, it is preferable that the copolymer includes 0.6 to 7 mol% the repeating unit (A) and 99.4 to 93 mol% the repeating unit (B) (the total amount of the repeating unit (A) and the repeating unit (B) is 100 mol%). When the copolymer has the above composition, such a copolymer exhibits high antithrombogenicity even under severe conditions prone to thrombus formation. At the same time, the medical material covering a medical device can be prevented from being released from the substrate and eluted into a body fluid (contamination).

Further, it is more preferable that the copolymer contained in the medical material includes 0.8 to 6 mol% the repeating unit (A) and 99.2 to 94 mol% the repeating unit (B) (the total amount of the repeating unit (A) and the repeating unit (B) is 100 mol%). Further, it is still more preferable that the copolymer includes 0.9 to 4.7 mol% the repeating unit (A) and 99.1 to 95.3 mol% the repeating unit (B) (the total amount of the repeating unit (A) and the repeating unit (B) is 100 mol%). Further, it is particularly preferable that the copolymer includes 1 to 4 mol% the repeating unit (A) and 99 to 96 mol% the repeating unit (B) (the total amount of the repeating unit (A) and the repeating unit (B) is 100 mol%).

In the invention, as the proportions of the repeating unit (A), the repeating unit (B), and repeating units derived from other monomers in the copolymer, values determined by NMR spectroscopy should be employed. For example, in the case of a copolymer composed of the repeating unit (A) and the repeating unit (B), 1H-NMR integration values of the alkylene group (i.e., R^15) and alkoxy group (i.e., -OR^23) on the nitrogen atom, which are characteristic structures of the repeating units (A) and (B), respectively, are determined, and, based on the ratio between the integration values, the proportions of the repeating unit (A) and the repeating unit (B) in the copolymer can be analyzed. In addition, in the case where the peaks overlap in the 1H-NMR measurement, 13C-NMR may be used for calculation.

Examples of other monomers copolymerizable with the monomer a and the monomer b include acrylamide, N,N-dimethylacrylamide, N,N-diethylacrylamide, aminomethyl acrylate, aminooethyl acrylate, aminoisopropyl acrylate, dimethoxyethyl acrylate, diisopropyl acrylate, diaminobutyl acrylate, methacrylamide, N,N-dimethacrylamide, N,N-diethylmethacrylamide, aminooethyl methacrylate, aminooethyl methacrylate, diaminomethyl methacrylate, diisopropyl acrylate, methyl acrylate, ethyl acrylate, isopropyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexyl acrylate, hexyl methacrylate, ethylene, propylene, N-vinylacetamide, N-isopropenylacetamide, and N-(meth)acryloyl morpholine.

The proportion of repeating units derived from the above other monomers based on all the structural units of...
the copolymer is not particularly limited, and is, for example, more than 0 mol% and less than 39 mol%, preferably more than 0 mol% and less than 33 mol%, more preferably more than 0 mol% and less than 9 mol%, and particularly preferably more than 0 mol% and less than 3 mol%.

[0056] The proportions of the repeating unit (A), the repeating unit (B), and repeating units derived from other monomers in the copolymer can be arbitrarily adjusted by changing the proportions of monomers used for polymerization. More specifically, at the time of polymerization, it is necessary that the monomer a for forming the repeating unit (A) is added in a proportion of 0.6 to 7 mol% based on the total number of moles of all the monomers used. Further, at this time, it is preferable that the monomer b for forming the repeating unit (B) is added in a proportion of 99.4 to 93 mol% based on the total number of moles of all the monomers used. Basically, with respect to a copolymer obtained by the copolymerization of the monomer a, the monomer b, and optionally added other monomers, in the case where molecular weight fractionation or the like is not performed, the feeding ratios of the monomers used for copolymerization are equivalent to the content ratios of the corresponding repeating units in the obtained copolymer.

[0057] The method for producing the copolymer contained in the medical material according to the invention is not particularly limited. For example, known polymerization methods, such as radical polymerization, anionic polymerization, and cationic polymerization, may be employed, and it is preferable to use radical polymerization that facilitates production. As a method for producing the copolymer contained in the medical material according to the invention, it is also possible to employ plasma polymerization by radiation or UV light, for example, thereby forming a coating layer containing the copolymer on the substrate surface.

[0058] As a method for polymerizing the monomers, usually, a method in which at least one kind of monomer a corresponding to the repeating unit (A) (e.g., [2-(methacyryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBAC) or [3-(methacyrylamino)propyl]dimethyl[(3-sulfopropyl)ammonium]m hydroxide (SBAA)), at least one kind of monomer b corresponding to the repeating unit (B) (e.g., methoxycryl acrylate (MEA)), and other monomers as necessary are stirred and heated in a polymerization solvent together with a polymerization initiator, thereby causing copolymerization, is used.

[0059] In terms of controlling the molecular weight, it is preferable that the polymerization temperature is 30°C to 100°C. The polymerization reaction is usually carried out for 30 minutes to 24 hours.

[0060] Preferred examples of polymerization solvents include aqueous solvents including water; alcohols such as methanol, ethanol, propanol, and n-butanol; polyalcohols such as ethylene glycol, diethylene glycol, propylene glycol, and dipropylene glycol; and the like. Methanol, ethanol, and propanol are particularly preferable. They may be used alone, and it is also possible to use two or more kinds together.

[0061] The monomer concentration (solids concentration) in the polymerization solvent is usually 10 to 90 wt%, preferably 15 to 80 wt%, based on the entire reaction solution. Note that the monomer concentration relative to the polymerization solvent refers to the concentration of the total weight of the monomer a, the monomer b, and optionally contained other monomers copolymerizable therewith (hereinafter "the monomer a, the monomer b, and optionally contained other monomers copolymerizable therewith" is also referred to as "polymerization monomers").

[0062] The polymerization solvent having added thereto the polymerization monomers may be subjected to a degassing treatment before the addition of a polymerization initiator. The degassing treatment may be such that, for example, the polymerization solvent having added thereto the polymerization monomers is bubbled with an inert gas, such as nitrogen gas or argon gas, for about 0.5 to 5 hours. At the time of the degassing treatment, the polymerization solvent having added thereto the polymerization monomers may be heated to about 30°C to 100°C.

[0063] For the production of the copolymer, known polymerization initiators may be used without particular limitation. For example, azo polymerization initiators such as 2,2'-azobis(isobutyronitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), and 2,2'-azobis(2,4-dimethylvaleronitrile); and redox polymerization initiators obtained by combining an oxidizing agent, such as a persulfate such as potassium peroxodisulfate (KPS), sodium persulfate, and ammonium persulfate, or a peroxide such as hydrogen peroxide, t-butyl peroxide, and methyl ethyl ketone peroxide, with a reducing agent, such as sodium sulfite, sodium hydrosulfite, or ascorbic acid, are usable.

[0064] The amount of polymerization initiator incorporated is, for example, 0.0001 to 1 mol per mole of all the monomers used for copolymer production.

[0065] Further, as necessary, chain transfer agents, polymerization rate regulators, surfactants, and other additives may also be suitably used for polymerization.

[0066] The atmosphere in which the polymerization reaction is carried out is not particularly limited, and the reaction may be carried out in ambient atmosphere, an inert gas atmosphere such as nitrogen gas or argon gas, or the like. In addition, the reaction mixture may be stirred during the polymerization reaction.

[0067] The copolymer after polymerization may be purified by a general purification method, such as reprecipitation, dialysis, ultrafiltration, or extraction.
The copolymer after purification may be dried by any method, such as freeze drying, vacuum drying, spray drying, or drying by heating. However, in terms of not significantly affecting the physical properties of the polymer, freeze drying or vacuum drying is preferable.

The medical material according to the invention may contain other components aside from the copolymer. Examples of other components include unreacted monomers that have not reacted during polymerization, as well as various additives such as crosslinking agents, thickeners, preservatives, and pH adjusters. It is preferable that the content of unreacted polymerization monomers in the obtained copolymer is 0.01 wt% or less based on the entire copolymer. The content of unreacted polymerization monomers is the lower the better. Thus, the lower limit is not particularly set, but is, for example, 0 wt%. The content of residual monomers can be measured by a method known to those skilled in the art, such as high-speed liquid chromatography.

The medical material in the invention may be used in the form of the obtained copolymer, and may also be processed into a gel, a solution, or the like before use. For example, the medical material may be used in the form of a coating agent prepared by dissolving the copolymer in a solvent. In the case of use in the form of a coating agent, the solvent to be used is not particularly limited as long as it is capable of dissolving the copolymer. Examples thereof include alcohol solvents such as methanol, ethanol, isopropanol, and butanol; water; and non-proton-donating organic solvents such as chloroform, tetrahydrofuran, acetone, dioxane, and benzene. The above solvents may be used alone or as a mixture of two or more kinds. As a mixed solvent, a water-alcohol solvent is preferable, and a water-methanol mixed solvent is particularly preferable.

The medical device according to the invention will be described in detail. According to the second embodiment of the invention, provided is a medical device including a substrate and, on the substrate surface, a coating layer containing the above medical material.

As described above, the medical material of the invention has excellent antithrombogenicity. Therefore, by using the above medical material, a medical device having excellent antithrombogenicity can be provided.

In the medical device of the invention, the substrate surface is covered with the above medical material. Materials for the substrate usable at this time are not particularly limited, and examples thereof include various polymer materials including polyolefins, such as polyethylene, polypropylene, and ethylene-α-olefin copolymers, and modified polyolefins; polystyrene; polyamide; polyimide; polyurethane; polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polycyclohexane terephthalate, and polyethylene-2,6-naphthalate; polyvinyl chloride; polyvinylidene chloride (PVDC); polycarbonate; fluororesins such as polytetrafluoroethylene (PTFE) and ethylene-tetrafluoroethylene copolymers (ETFE); and the like, as well as metals such as SUS, ceramic, carbon, and composite materials thereof.

The shape of the substrate is suitably selected according to the intended use of the medical device or the like, and the substrate may be in the shape of, for example, a tube, a sheet, a rod, or the like. The form of the substrate is not limited to a molded body using the above material alone, and the substrate may also be used in the form of a blended molded article, an alloyed molded article, a multilayered molded article, or the like. The substrate may have a monolayer or laminated structure. At this time, in the case of a laminated substrate, the substrates of the layers may be the same or different from each other. However, in the case where it is desired to swell the substrate with a solvent to firmly fix the copolymer, at least as a material present on the substrate surface, a material that can be swollen well with the solvent of the coating agent of the medical material is preferable.

In the invention, "substrate surface" is a side of the substrate that faces a biological tissue or a body fluid such as blood. When a coating layer made of the copolymer-containing medical material is formed on the substrate surface, the antithrombogenicity of the substrate surface is improved. In the medical device according to the invention, it is
necessary that the copolymer-containing coating layer is formed on a side of the substrate that faces a biological tissue or a body fluid such as blood, but this does not interfere with the formation of the coating layer also on other sides.

In order to enhance the stability of the coating layer on the substrate surface, the substrate may be surface-treated before forming the coating layer on the substrate surface. Examples of methods for surface-treating the substrate include a method that applies active energy rays (electron beam, UV, X-ray, etc.), a method that utilizes plasma discharge such as arc discharge, corona discharge, or glow discharge, a method that applies a high electric field, a method that allows ultrasonic vibration through a polar liquid (water, etc.) to act, and a method of treating the surface with ozone gas.

(Method for Forming Coating Layer)

In the medical device according to the invention, the substrate surface is covered with the medical material to form a coating layer.

The formation of a coating layer on the substrate surface may be performed by applying a coating liquid containing the medical material (e.g., the above coating agent), thereby covering the substrate surface, or by applying a polymerization solvent containing polymerization monomers for obtaining a copolymer to the substrate surface, followed by plasma polymerization. In terms of the ease of production, it is preferable that the coating layer is formed by covering the substrate surface with a coating liquid containing the medical material. Note that "covering" includes not only the mode in which the entire surface of the substrate is completely covered with the coating layer, but also the mode in which the surface of the substrate is partially covered with the coating layer, that is, the mode in which the coating layer is attached to a part of the substrate surface.

In the case where the coating layer is formed by covering the substrate surface with a coating liquid containing the medical material, for the method for preparing a coating liquid containing the medical material, the method for preparing a coating agent described above is suitably taken into consideration.

As the method for applying a coating liquid containing the medical material to the substrate surface, known methods may be employed without particular limitation. Examples thereof include dip coating, spraying, spin coating, dripping, doctor blading, brush coating, roll coating, air knife coating, curtain coating, wire bar coating, and gravure coating.

The thickness of the coating liquid (coating layer) may be suitably adjusted according to the intended use of the medical device and is not particularly limited. For example, the layer is formed to a thickness of 0.1 μm or less.

By drying the substrate surface having applied thereto the copolymer-containing coating liquid, a coating layer is formed on the substrate surface. The drying step may be suitably set considering the glass transition temperature of the substrate or the like, and is, for example, 15 to 50°C. The atmosphere during the drying step is not particularly limited, and the step may be performed in ambient atmosphere or an inert gas atmosphere such as nitrogen gas or argon gas.

(Examples of Medical Devices)

Examples of medical devices according to the invention include implantable prostheses and treating instruments, artificial organs for extracorporeal circulation, catheters, and guidewires. Specific examples thereof include artificial blood vessels, artificial tracheas, and stents inserted into, or to replace, blood vessels or lumens; implantable medical instruments such as artificial skins and artificial pericardia; artificial organ systems such as artificial heart systems, artificial lung systems, artificial heart-lung systems, artificial kidney systems, artificial liver systems, and immunoregulation systems; catheters inserted into or indwelled in blood vessels, such as indwelling needles, IVH catheters, catheters for liquid medicine administration, thermodilution catheters, angiographic catheters, vasodilatation catheters, dilators, and introducers, as well as guidewires, styles, and the like for these catheters; various suction catheters such as stomach tube catheters, nutrition catheters, feeding (ED) tubes, urethral catheters, urine drainage catheters, balloon catheters, and tracheal suction catheters; and catheters inserted into or indwelled in biological tissues other than blood vessels, such as drainage catheters. In particular, an artificial lung system, for example, is used continuously for a long period of time and also has several steps at tube connections and the like. Accordingly, the invention is suitable for use as an artificial lung system or an artificial heart-lung system, which contacts a large amount of blood.

(Examples)

The advantageous effects of the invention will be described hereinafter through examples and comparative examples. However, the technical scope of the invention is not limited only to the following examples.

Example 1: Copolymer of SBAA (in formula (1), Z = -NH-) and MEA (Repeating Unit (A): 4.7 mol%)

5 g (38.4 mmol) of methoxyethyl acrylate (MEA) and 0.55 g (1.9 mmol) of [3-(methacryloylamino)propyl]dimethyl[(3-sulfopropyl)ammonium hydroxide (SBAA, compound of the following chemical formula (i)) were dissolved in 22
g of methanol, placed in a four-necked flask, and bubbled with N₂ at 50°C for 1 hour.

\[\text{Chemical Formula 5} \]

\[\text{Chemical Formula (i)} \]

[0090] Subsequently, a solution prepared by dissolving 0.006 g of 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (V-70, manufactured by Wako Pure Chemical Industries) in 1 mL of methanol was added to the methanol solution having dissolved therein the polymerization monomers, followed by polymerization at 50°C for 5 hours. The polymerization liquid was added dropwise to diethyl ether, and the precipitated copolymer was recovered to give a polymer (1). The content ratio of the repeating unit (A) in the polymer (1) was measured by ¹H-NMR. As a result, the ratio was the same as the value calculated from the above feeding amount. In addition, the content ratio of the repeating unit (B) was also the same as the value calculated from the feeding amount (95.3 mol%).

[Example 2: Copolymer of SBAA (in formula (1), Z = -NH-) and MEA (Repeating Unit (A): 3.2 mol%)]

[0091] A polymer (2) was obtained in the same manner as in Example 1, except that the amounts of SBAA and methanol used in the preparation of the copolymer in Example 1 were changed to 0.37 g (1.3 mmol) and 21 g, respectively. The content ratio of the repeating unit (A) in the polymer (2) was measured by ¹H-NMR. As a result, the ratio was the same as the value calculated from the above feeding amount. In addition, the content ratio of the repeating unit (B) was also the same as the value calculated from the feeding amount (96.8 mol%).

[Example 3: Copolymer of SBAA (in formula (1), Z = -NH-) and MEA (Repeating Unit (A): 0.9 mol%)]

[0092] A polymer (3) was obtained in the same manner as in Example 1, except that the amounts of SBAA and methanol used in the preparation of the copolymer in Example 1 were changed to 0.1 g (0.3 mmol) and 20 g, respectively. The content ratio of the repeating unit (A) in the polymer (3) was measured by ¹H-NMR. As a result, the ratio was the same as the value calculated from the above feeding amount. In addition, the content ratio of the repeating unit (B) was also the same as the value calculated from the feeding amount (99.1 mol%).

[Example 4: Copolymer of SBAC (in formula (1), Z = oxygen atom) and MEA (Repeating Unit (A): 3.3 mol%)]

[0093] A polymer (4) was obtained in the same manner as in Example 1, except that SBAA used in the preparation of the copolymer in Example 1 was changed to [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBAC, compound of the following chemical formula (ii)], further the amount thereof was changed to 0.37 g (1.3 mmol), and the amount of methanol used was changed to 20 g. The content ratio of the repeating unit (A) in the polymer (4) was measured by ¹H-NMR. As a result, the ratio was the same as the value calculated from the above feeding amount. In addition, the content ratio of the repeating unit (B) was also the same as the value calculated from the feeding amount (96.7 mol%).

\[\text{Chemical Formula 6} \]

\[\text{Chemical Formula (ii)} \]
[Example 5: Copolymer of SBAC (in formula (1), Z = oxygen atom) and MEA (Repeating Unit (A): 1.7 mol%)]

[0094] A polymer (5) was obtained in the same manner as in Example 4, except that the amounts of SBAC and methanol used in the preparation of the copolymer in Example 4 were changed to 0.18 g (0.6 mmol) and 20 g, respectively. The content ratio of the repeating unit (A) in the polymer (5) was measured by 1H-NMR. As a result, the ratio was the same as the value calculated from the above feeding amount. In addition, the content ratio of the repeating unit (B) was also the same as the value calculated from the feeding amount (98.3 mol%).

[Example 6: Copolymer of SBAC (in formula (1), Z = oxygen atom) and MEA (Repeating Unit (A): 0.7 mol%)]

[0095] A polymer (6) was obtained in the same manner as in Example 4, except that the amounts of SBAC and methanol used in the preparation of the copolymer in Example 4 were changed to 0.07 g (0.3 mmol) and 20 g, respectively. The content ratio of the repeating unit (A) in the polymer (6) was measured by 1H-NMR. As a result, the ratio was the same as the value calculated from the above feeding amount. In addition, the content ratio of the repeating unit (B) was also the same as the value calculated from the feeding amount (99.3 mol%).

[Comparative Example 1: Copolymer of SBAA (in formula (1), Z = -NH-) and MEA (Repeating Unit (A): 21.1 mol%)]

[0096] A comparative polymer (1) was obtained in the same manner as in Example 1, except that the amounts of SBAA and methanol used in the preparation of the copolymer in Example 1 were changed to 3.0 g (10.3 mmol) and 32 g, respectively. The content ratio of the repeating unit (A) in the comparative polymer (1) was measured by 1H-NMR. As a result, the ratio was the same as the value calculated from the above feeding amount. In addition, the content ratio of the repeating unit (B) was also the same as the value calculated from the feeding amount (78.9 mol%).

[Comparative Example 2: Copolymer of SBAA (in formula (1), Z = -NH-) and MEA (Repeating Unit (A): 8.9 mol%)]

[0097] A comparative polymer (2) was obtained in the same manner as in Example 1, except that the amounts of SBAA and methanol used in the preparation of the copolymer in Example 1 were changed to 1.1 g (3.8 mmol) and 24 g, respectively. The content ratio of the repeating unit (A) in the comparative polymer (2) was measured by 1H-NMR. As a result, the ratio was the same as the value calculated from the above feeding amount. In addition, the content ratio of the repeating unit (B) was also the same as the value calculated from the feeding amount (91.1 mol%).

[Comparative Example 3: Copolymer of SBAA (in formula (1), Z = -NH-) and MEA (Repeating Unit (A): 0.4 mol%)]

[0098] A comparative polymer (3) was obtained in the same manner as in Example 1, except that the amounts of SBAA and methanol used in the preparation of the copolymer in Example 1 were changed to 0.05 g (0.2 mmol) and 20 g, respectively. The content ratio of the repeating unit (A) in the comparative polymer (3) was measured by 1H-NMR. As a result, the ratio was the same as the value calculated from the above feeding amount. In addition, the content ratio of the repeating unit (B) was also the same as the value calculated from the feeding amount (99.6 mol%).

[Comparative Example 4: Copolymer of SBAC (in formula (1), Z = oxygen atom) and MEA (Repeating Unit (A): 10.1 mol%)]

[0099] A comparative polymer (4) was obtained in the same manner as in Example 4, except that the amounts of SBAC and methanol used in the preparation of the copolymer in Example 4 were changed to 1.2 g (4.3 mmol) and 20 g, respectively. The content ratio of the repeating unit (A) in the comparative polymer (4) was measured by 1H-NMR. As a result, the ratio was the same as the value calculated from the above feeding amount. In addition, the content ratio of the repeating unit (B) was also the same as the value calculated from the feeding amount (89.9 mol%).

[Comparative Example 5: Copolymer of SBAC (in formula (1), Z = oxygen atom) and MEA (Repeating Unit (A): 0.4 mol%)]

[0100] A comparative polymer (5) was obtained in the same manner as in Example 4, except that the amounts of SBAC and methanol used in the preparation of the copolymer in Example 4 were changed to 0.04 g (0.1 mmol) and 20 g, respectively. The content ratio of the repeating unit (A) in the comparative polymer (5) was measured by 1H-NMR. As a result, the ratio was the same as the value calculated from the above feeding amount. In addition, the content ratio of the repeating unit (B) was also the same as the value calculated from the feeding amount (99.6 mol%).
Comparative Example 6: Copolymer of CBA and MEA (CBA-Derived Structural Unit: 0.84 mol%)

A comparative polymer (6) was obtained in the same manner as in Example 1, except that SBAA in the preparation of the copolymer in Example 1 was replaced with 0.07 g (0.33 mmol) of N-methacryloyloxyethyl-N,N-dimethylammonium-α-N-methylcarboxybetaine (CBA, compound of the following chemical formula (iii)), and the amount of methanol used was changed to 25.5 g. The content ratio of the CBA-derived structural unit in the comparative polymer (6) was measured by \(^1\)H-NMR. As a result, the ratio was the same as the value calculated from the above feeding amount. In addition, the content ratio of the repeating unit (B) was also the same as the value calculated from the feeding amount (99.16 mol%).

[Chemical Formula 7]

[Chemical Formula iii]

Comparative Example 7: (Homo) polymer of MEA (Repeating Unit (A): 0 mol%)

A comparative polymer (7) was obtained in the same manner as in Example 1, except that 5 g (38.4 mmol) of MEA in the preparation of the copolymer in Example 1 was used alone. That is, the comparative polymer (7) was obtained as a homopolymer of MEA. In addition, the weight average molecular weight of the comparative polymer (7) was 130,000. Note that the weight average molecular weight was measured by GPC as described above.

The polymers (1) to (6) and comparative polymers (1) to (7) obtained in the examples and comparative examples were purified by reprecipitation in diethyl ether. Subsequently, these copolymers and polymers were dried by vacuum drying and subjected to the following tests.

Test Example 1. Polymer (Copolymer or Polymer) Solubility Test

0.1-g samples were weighed from the polymers (1) to (6) and comparative polymers (1) to (2) and (4) obtained in the examples and comparative examples, and placed in separate test tubes made of glass. 5 g of physiological saline was added to each test tube and stirred, and the solubility of the polymer was examined. As visually observed, in the case where the polymer maintained its form as placed in the glass test tube, such a polymer was considered as insoluble in water. In the case where there was no insoluble matter, or it was slightly cloudy but dispersed, such a polymer was considered to be dissolved in water.

[Table 1]

<table>
<thead>
<tr>
<th>Composition of Medical Material</th>
<th>Z in Formula (1)</th>
<th>Solubility in Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1 (MEA-SBAA copolymer, SBAA: 4.7 mol%)</td>
<td>-NH-</td>
<td>Insoluble</td>
</tr>
<tr>
<td>Example 2 (MEA-SBAA copolymer, SBAA: 3.2 mol%)</td>
<td>-NH-</td>
<td>Insoluble</td>
</tr>
<tr>
<td>Example 3 (MEA-SBAC copolymer, SBAA: 0.9 mol%)</td>
<td>-NH-</td>
<td>Insoluble</td>
</tr>
<tr>
<td>Example 4 (MEA-SBAC copolymer, SBAC: 3.3 mol%)</td>
<td>-O- (oxygen atom)</td>
<td>Insoluble</td>
</tr>
<tr>
<td>Example 5 (MEA-SBAC copolymer, SBAC: 1.7 mol%)</td>
<td>-O- (oxygen atom)</td>
<td>Insoluble</td>
</tr>
<tr>
<td>Example 6 (MEA-SBAC copolymer, SBAC: 0.7 mol%)</td>
<td>-O- (oxygen atom)</td>
<td>Insoluble</td>
</tr>
<tr>
<td>Comparative Example 1 (MEA-SBAA copolymer, SBAA: 21.1 mol%)</td>
<td>-NH-</td>
<td>Dissolved</td>
</tr>
<tr>
<td>Comparative Example 2 (MEA-SBAA copolymer, SBAA: 8.9 mol%)</td>
<td>-NH-</td>
<td>Dissolved</td>
</tr>
<tr>
<td>Comparative Example 4 (MEA-SBAC copolymer, SBAC: 10.1 mol%)</td>
<td>-O- (oxygen atom)</td>
<td>Dissolved</td>
</tr>
</tbody>
</table>
As shown in Table 1, even in the case of a copolymer containing the repeating unit (A) having high hydrophilicity, when the repeating unit (A) is 7 mol% or less based on all the structural units of the copolymer, such a copolymer is not dissolved in physiological saline.

This result shows that when the repeating unit (A) is 7 mol% or less based on all the structural units of the copolymer, the substrate can be suitably coated with the medical material, and also the medical material (coating layer) can be more effectively prevented from being released from the substrate and contaminating blood.

In addition, when the repeating unit (A) is 4.7 mol% or less based on all the structural units of the copolymer, the dissolution in physiological saline can be particularly inhibited. Therefore, it is suggested that when the repeating unit (A) is 4.7 mol% or less based on all the structural units of the copolymer, the medical material (coating layer) can be even more effectively prevented from being released from the substrate and contaminating blood.

In Test Example 2, an antithrombogenicity test was performed.

(Preparation of Coating Agent)

0.5 wt% methanol solutions of the above polymers (1) to (6) and comparative polymers (3) and (5) to (7) obtained in the examples and comparative examples were prepared and used as coating agents.

(Production of Medical Device)

At each end of a soft vinyl chloride tube 30 cm in overall length x 8 mm in inner diameter (tube 1), 1 cm of an end of a soft vinyl chloride tube 5 cm in overall length x 6 mm in inner diameter x 9 mm in outer diameter (tube 2) was inserted, thereby producing a stepped tube.

Fig. 1 shows the produced stepped tube. In Fig. 1, the circled portions each show the joint between the tubes 1 and 2.

Fig. 2 is an enlarged view schematically showing the joint between the tubes 1 and 2 in Fig. 1. The inner diameter of the tube 2 is smaller than the inside diameter of the tube 1, and thus a stepped surface 3 is formed. In the case where blood is passed through the stepped tube, it is highly likely that thrombus formation occurs at the stepped surface 3.

Using the produced stepped tube as a substrate, the above coating agent was passed through the stepped tube to apply the coating agent to the substrate surface. Subsequently, the stepped tube was dried at room temperature (25°C), thereby forming a coating layer containing a medical material on the substrate surface (the lumenal surface of the stepped tube). At this time, the (co)polymers obtained in the above examples and comparative examples were each dissolved in methanol to prepare a 0.5 wt% solution, and used for dip coating to form the coating layer.

(ANTHROMBOGENICITY TEST)

In order to evaluate the antithrombogenicity of a medical material under severe conditions prone to thrombus formation, the following test system was established using the above stepped tube having formed therein a coating layer. That is, the lumen of the stepped tube having formed therein a coating layer was filled with 6 ml of a liquid prepared by diluting human fresh blood 2-fold with physiological saline (diluted blood). Both ends of the stepped tube were connected with a connector, fixed to a cylindrical rotator, and rotated at 40 rpm for 2 hours. Subsequently, the circulating blood was removed from the stepped tube, and thrombus attachment (indicated by the reference numeral "4" in Fig. 4) to the joint between the tubes 1 and 2 (stepped surface) was visually observed. Here, "fresh blood" means blood collected from a healthy donor by whole blood transfusion within 30 minutes ago. Note that the fresh blood has no anticoagulant added.

Fig. 3 and Fig. 4 are enlarged photographs of joints in stepped tubes having applied thereto coating layers each containing the copolymer produced in Example 1 or the polymer produced in Comparative Example 7, immediately after the antithrombogenicity test. In the stepped tube having applied thereto the copolymer according to the invention, thrombus formation was not observed (Fig. 3). Meanwhile, in the stepped tube having applied thereto the polymer of Comparative Example 7, a thrombus 4 was observed at the joint (Fig. 4).

(Table 2)

<table>
<thead>
<tr>
<th>Composition of Medical Material</th>
<th>Z in Formula (1)</th>
<th>Thrombus Formation at Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1 (MEA-SBAA copolymer, SBAA: 4.7 mol%)</td>
<td>-NH-</td>
<td>Not formed</td>
</tr>
</tbody>
</table>
As shown in Table 2, Fig. 3, and Fig. 4, the medical devices according to the invention exhibited high antithrombogenicity. In particular, it can be seen that when the repeating unit (A) is 0.6 mol% or more based on all the structural units of the copolymer, high antithrombogenicity can be obtained even under severe use conditions. Further, in the antithrombogenicity test, as a result of visual evaluation, it was found that when the repeating unit (A) was 0.9 to 4.7 mol %, particularly excellent antithrombogenicity was obtained.

In addition, Example 3 and Comparative Example 6 are copolymers obtained by combining SBAA and MEA and combining CBA and MEA, respectively. As a result of comparison, although the content (ratio) of the betaine backbone (zwitterion moiety) in the copolymer was almost equal between the two, excellent antithrombogenicity was obtained in Example 3, while the antithrombogenicity in Comparative Example 6 was poor. Therefore, it was revealed that although the copolymers obtained in Example 3 and Comparative Example 6 are both equally zwitterion-moiety-containing copolymers, when the zwitterion moiety is a SBAA-derived structure, the antithrombogenicity-improving effect is higher than in the case of CBA.

[Test 3: Blood Circulation Test using Simulated Product Form]

The antithrombogenicity of substrates coated with the polymer (5) obtained in Example 5 and the comparative polymer (7) obtained in Comparative Example 7 was evaluated in accordance with the following method.

(Preparation of Coating Agent)

The polymer (5) and the comparative polymer (7) were each dissolved in a water-alcohol (methanol) mixed solution to a concentration of 0.05 wt% and used as a coating agent.

(Production of Medical Device)

A simulated product form (blood circulation module: the hollow fiber membrane artificial lung for external hemoperfusion according to Example 1 disclosed in JP-A-11-114056, used as an artificial lung having the structure disclosed in Fig. 4 of JP-A-2009-219936; the substrate forming the blood circulation pathway includes polypropylene, polyurethane, polycarbonate, SUS) was filled with the above coating agent from the blood import side and allowed to stand for 120 seconds. The coating agent was then removed, followed by blow drying at room temperature (25°C) for 240 minutes.

(Evaluation)

The above blood circulation module was connected to a blood reservoir using a connection tube (made of...
flexible polyvinyl chloride, about 100 cm in overall length x 8 mm in inner diameter) and thereby incorporated into an extracorporeal circulation circuit. Subsequently, the extracorporeal circulation circuit was filled with 200 ml of Ringer’s lactate, and then 200 ml of heparin-added human fresh blood was added. The heparin concentration in the circulating blood was set at 0.5 units/ml. Circulation was performed at room temperature (25°C), 500 ml/min. After 120 minutes from the start of circulation, the blood was sampled from each blood circulation circuit, and the thrombin-antithrombin complex (TAT) concentration, which is an index of the activation of the blood coagulation system, was measured. The TAT concentration was measured using a measurement kit by EIA method. A high TAT concentration indicates an activated state of coagulation, where it can be said that thrombus formation is likely to occur.

<table>
<thead>
<tr>
<th>[Table 3]</th>
<th>TAT Concentration [ng/ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coated with Polymer (5) of Example 5</td>
<td>180</td>
</tr>
<tr>
<td>Coated with Comparative Polymer (7) of Comparative Example 7</td>
<td>2640</td>
</tr>
</tbody>
</table>

In the blood circulation module coated with the copolymer (5) of Example 5, the TAT concentration was lower than in the blood circulation module coated with the comparative polymer (7) of Comparative Example 7. That is, it was confirmed that in the medical device according to the invention, the activation of the blood coagulation system is low, indicating excellent antithrombogenicity.

From above, it can be seen that the medical device according to the invention exhibits excellent antithrombogenicity even when used under severe conditions prone to thrombus formation, as in the case of a medical device having a constricted portion such as a tube joint, for example, where steps are present on the surface that contacts blood.

Further, this application is based on Japanese Patent Application No. 2014-033404 filed on February 24, 2014, the contents of which are entirely incorporated herein by reference.

Reference Signs List

1: Tube 1,
2: Tube 2,
3: Stepped surface,
4: Thrombus.

Claims

1. A medical material comprising a copolymer having:

 a repeating unit (A) represented by the following formula (1):
wherein \(R^{11} \) is a hydrogen atom or a methyl group, \(Z \) is an oxygen atom or -NH-, \(R^{12} \) is a C\(_{1-6}\) alkylene group, \(R^{13} \) and \(R^{14} \) are each independently a C\(_{1-4}\) alkyl group, and \(R^{15} \) is a C\(_{1-6}\) alkylene group; and

a repeating unit (B) represented by the following formula (2):

![Chemical Formula 2](image-url)
5. A medical device comprising:

 a substrate; and,

 on a surface of the substrate, a coating layer containing the medical material according to any one of claims 1 to 4.
FIG. 4

Comparative Example 7
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
A61L33/00(2006.01)i, A61L31/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
A61L33/00, A61L31/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of database and, where practicable, search terms used)
CRplus/REGISTRY/MEDLINE/EMBASE/BIOSIS(STN), JSTplus/JMEDplus/JST7500(JDreamII)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special category of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search
01 May 2015 (01.05.15)

Date of mailing of the international search report
19 May 2015 (19.05.15)

Name and mailing address of the ISA/
Japan Patent Office
3-4-3, Kasumigaoka-ku, Chiyoda-ku,
Tokyo 100-8915, Japan

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 04-152952 A (Terumo Corp.), 26 May 1992 (26.05.1992), entire text (Family: none)</td>
<td>1-5</td>
</tr>
</tbody>
</table>
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 4152952 A [0004] [0005] [0006] [0019]
- US 20080262181 A [0004] [0005] [0006] [0019]
- WO 2005113620 A [0004] [0005] [0006] [0019]
- JP 11114056 A [0124]
- JP 2009219936 A [0124]