DATA AGGREGATION AND ANALYSIS SYSTEM

An interactive user interface for displaying projects comprising a collection of links specifying data to be displayed from a plurality of different applications and/or data sources. When loading a project for display, links are automatically parsed to identify the application and/or data source they are associated with. Retrieved data associated with the links is displayed in a format based upon that of their native application. The data may be displayed in an interactive format, allowing the user to change or manipulate the data in a manner that would be possible in the data's native application. A project may be expressed as a "project link," comprising a text string, wherein the links of the assets associated with the project are included or embedded within the text string, and which may be shared between different users, and may function as a snapshot of the project.

FIG. 13
The present disclosure relates to systems and techniques for querying databases storing inter alia sensor data and displaying queried data in an interactive user interface.

BACKGROUND

[0002] A database may store a large quantity of data. For example, a system may comprise a large number of sensors that each collect measurements at regular intervals, and the measurements may be stored in the database. The measurement data can be supplemented with other data, such as information regarding events that occurred while the system was operational, and the supplemental data can also be stored in the database.

[0003] In some cases, a user may attempt to analyze a portion of the stored data. For example, the user may attempt to analyze a portion of the stored data that is associated with a specific time period. However, as the number of measurements increases over time, it can become very difficult for the user to identify the relevant data and perform the analysis.

SUMMARY

[0004] The systems, methods, and devices described herein each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure, several non-limiting features will now be discussed briefly.

[0005] Disclosed herein are various systems and methods for providing interactive user interfaces with various graph displays relating to sensor data. In some embodiments, the interactive user interfaces may display data assets from a plurality of different applications and/or data sources. The data corresponding to the data assets may include graphs (as described below), interactive objects, images, documents, and/or other types of data. A collection of data assets to be displayed on the interactive user interface may be referred to as a "project."

[0006] In some embodiments, a project may comprise a collection of links specifying data to be displayed from the plurality of different applications and/or data sources. In some embodiments, a link may comprise parameters specifying the data to be displayed, and also the data is to be displayed. When loading a project for display, the links may be automatically parsed to identify the application and/or data source they are associated with. In some embodiments, a plug-in corresponding to a particular application or data source may be used to retrieve requested data using an identified link associated with application or data source. For example, a link corresponding to data to be displayed as one or more graphs may be parsed to determine that it is associated with a graph application. A plug-in corresponding to the graph application may be used to access the graph application to retrieve, display, and format the requested data.

[0007] In some embodiments, retrieved data may be displayed in a format based upon that of their native application. For example, the format of the displayed data may reflect a look and feel of the native application from which the data was retrieved. The data may be displayed in an interactive format, allowing the user to change or manipulate the data in a manner that would be possible in the data's native application. For example, the project may contain at least a first and second link, wherein data for the first link comprises one or more time-series graphs retrieved from a graph application. The user may be able to perform manipulations on the displayed graphs using the interactive user interface that correspond to manipulations that the user would have been able to perform using the graph application (e.g., zooming or scrolling through a graph, setting markers on a graph, associating events with data points in a graph, and/or the like). Data for the second link may comprise data from a second, different application, wherein the user is able to perform different manipulations based upon types of manipulations that could be performed in the second application. In some embodiments, the data may be displayed in a format that is different from its native application.

[0008] In some embodiments, the user may be able to manipulate or change the displayed data. In order to persist the changes to the data, a new link for the manipulated or changed data may be generated and associated with the project. In some embodiment, a project may be expressed as a "project link," comprising a text string, wherein the links of the assets associated with the project are included or embedded within the text string. The project link may be shared between different users, and may function as a snapshot of the project. For example, as different users modify or update the project, new links may be generated that reflect the updated or modified project. On the other hand, the original project link may still be used to load the project in the state it was in at the time the original project link was created.

[0009] The systems and methods described herein may provide several benefits. For example, the systems and methods described herein may allow the user to more easily gather and aggregate data from various different sources, without sacrificing the interactivity of the data when displayed in their native applications. By allowing the user to specify, view, and interact with different types of data from different sources in a single interface, the user may be able to better gather information, identify trends or correlations, and form a more complete picture of a topic or entity of interest. For example, a user may specify for display one or more graphs containing sensor data associated with an entity of interest during a time period of interest, in order to provide a more complete picture of the entity of interest during the time period of

[0001] The present disclosure relates to systems and techniques for querying databases storing inter alia sensor data and displaying queried data in an interactive user interface.

[0007] In some embodiments, retrieved data may be displayed in a format based upon that of their native application. For example, the format of the displayed data may reflect a look and feel of the native application from which the data was retrieved. The data may be displayed in an interactive format, allowing the user to change or manipulate the data in a manner that would be possible in the data’s native application. For example, the project may contain at least a first and second link, wherein data for the first link comprises one or more time-series graphs retrieved from a graph application. The user may be able to perform manipulations on the displayed graphs using the interactive user interface that correspond to manipulations that the user would have been able to perform using the graph application (e.g., zooming or scrolling through a graph, setting markers on a graph, associating events with data points in a graph, and/or the like). Data for the second link may comprise data from a second, different application, wherein the user is able to perform different manipulations based upon types of manipulations that could be performed in the second application. In some embodiments, the data may be displayed in a format that is different from its native application.

[0008] In some embodiments, the user may be able to manipulate or change the displayed data. In order to persist the changes to the data, a new link for the manipulated or changed data may be generated and associated with the project. In some embodiment, a project may be expressed as a “project link,” comprising a text string, wherein the links of the assets associated with the project are included or embedded within the text string. The project link may be shared between different users, and may function as a snapshot of the project. For example, as different users modify or update the project, new links may be generated that reflect the updated or modified project. On the other hand, the original project link may still be used to load the project in the state it was in at the time the original project link was created.

[0009] The systems and methods described herein may provide several benefits. For example, the systems and methods described herein may allow the user to more easily gather and aggregate data from various different sources, without sacrificing the interactivity of the data when displayed in their native applications. By allowing the user to specify, view, and interact with different types of data from different sources in a single interface, the user may be able to better gather information, identify trends or correlations, and form a more complete picture of a topic or entity of interest. For example, a user may specify for display one or more graphs containing sensor data associated with an entity of interest during a time period of interest, in order to provide a more complete picture of the entity of interest during the time period of
interest. In addition, the user may be able to generate an easily sharable "project link" corresponding to the gathered data. The project link may also function as a snapshot of the project at the time the project link was generated. As such, the user to able to more quickly and accurately access, navigate, assess, and digest the data than previous systems, potentially providing reduced mental workloads, improved decision-making, reduced work stress, and/or the like, for the user.

[0010] It has been noted that design of computer user interfaces "that are useable and easily learned by humans is a non-trivial problem for software developers." (Dillon, A. (2003) User Interface Design. MacMillan Encyclopedia of Cognitive Science, Vol. 4, London: MacMillan, 453-458.) The present disclosure describes various embodiments of interactive and dynamic user interfaces that are the result of significant development. This non-trivial development has resulted in the user interfaces described herein which may provide significant cognitive and ergonomic efficiencies and advantages over previous systems. The interactive and dynamic user interfaces include improved human-computer interactions that may provide reduced mental workloads, improved decision-making, reduced work stress, and/or the like, for a user. For example, user interaction with the interactive user interface described herein may provide an optimized display of, and interaction with, graph data, image data, and/or other data, and may enable a user to more quickly and accurately access, navigate, assess, and digest the data than previous systems.

[0011] Further, the interactive and dynamic user interfaces described herein are enabled by innovations in efficient interactions between the user interfaces and underlying systems and components. For example, disclosed herein are improved methods of receiving user inputs (including methods of interacting with, and selecting, images, graphs, and other types of data), translation and delivery of those inputs to various system components, automatic and dynamic execution of complex processes in response to the input delivery, automatic interaction among various components and processes of the system, and automatic and dynamic updating of the user interfaces (to, for example, display the relevant data from various different applications and/or data sources). The interactions and presentation of data via the interactive user interfaces described herein may accordingly provide cognitive and ergonomic efficiencies and advantages over previous systems.

[0012] Various embodiments of the present disclosure provide improvements to various technologies and technological fields. For example, existing data aggregation and analysis technology is limited in various ways (e.g., limited in the types of applications or data sources the data may be drawn from, loss of data interactivity, etc.), and various embodiments of the disclosure provide significant improvements over such technology. Additionally, various embodiments of the present disclosure are inextricably tied to computer technology. In particular, various embodiments rely on detection of user inputs via graphical user interfaces, aggregation of data from different applications and data sources, and automatic processing, formatting, and display of the aggregated data via interactive graphical user interfaces. Such features and others (e.g., automatically determining an application or data source an inputted link is directed to, accessing the application or data source to retrieve and display the requested data, implementing interactivity of displayed data reflective of how the data would be displayed in its native application) are intimately tied to, and enabled by, computer technology, and would not exist except for computer technology. For example, the interactions with displayed data described below in reference to various embodiments cannot reasonably be performed by humans alone, without the computer technology upon which they are implemented. Further, the implementation of the various embodiments of the present disclosure via computer technology enables many of the advantages described herein, including more efficient interaction with, and presentation of, various types of electronic data.

[0013] In some embodiments, a computing system configured to access and display data from a plurality of different applications or data sources is disclosed. The computing system may comprise a computer processor, and a database storing one or more projects and one or more plug-ins, wherein each of the one or more projects includes a respective one or more links, wherein at least some of the links encode data indicative of a corresponding external application or data source, data of the corresponding external application or data source to be accessed, and a format in which the data to be accessed from the corresponding external application or data source is to be displayed. The computing system may further comprise a computer readable storage medium storing program instructions configured for execution by the computer processor in order to cause the computing system to access, from the database, a first project of the one or more projects, identify a first link included in the first project, analyze the first link to determine a first corresponding external application or data source indicated by the link, and determine whether the first corresponding application or data source is associated with a plug-in of the one or more plug-ins. In some embodiments, in response to determining that the first corresponding application or data source is associated with a first plug-in of the one or more plug-ins, the computing system may, based on the first plug-in, access the corresponding external application or data source, retrieve data from the corresponding application or data source as indicated by the first link, and display the retrieved data in a format indicated by the first link such that the displayed data is interactively accessible to a user as if the displayed data were displayed natively by the corresponding application or data source.

[0014] In some embodiments, the first plug-in may correspond to an application for creating one or more graphs from a plurality of stored data points. The first link may
In some embodiments, the first plug-in corresponds to an application for providing a hierarchy of objects associated with one or more data entities. The first link may correspond to a particular object associated with a data entity of the one or more data entities, and wherein the retrieved data is displayed as a representation of the object and a breadcrumb trail indicating a position of the object within the hierarchy.

In some embodiments, accessing the corresponding application or data source comprises submitting an authentication token to the application or data source, and wherein the authentication token allows first the plug-in to retrieve a first portion of the data but not a second portion of the data from the corresponding application or data source.

In some embodiments, the program instructions are further configured to cause the computing system to, in response to a determination that a plug-in associated with the corresponding external application or data source does not exist, display the link as text.

In some embodiments, the first link comprises a URL. In some embodiments, the URL may correspond to an image, wherein the program instructions cause the computing system to display the image specified by the URL.

In some embodiments, a project of the one or more projects may be further associated with one or more pieces of text entered by a user or one or more uploaded files.

In some embodiments, the program instructions are further configured to cause the computing system to receive a first indication from the user of a modification to be made to at least a portion of the displayed data associated with the first link; perform the modification on the displayed data in response to the received indication; and generate a first updated link based at least in part upon the modification to the displayed data.

In some embodiments, the program instructions are further configured to cause the computing system to, in response to receiving a second indication from a second user of a second modification to be made to at least a portion of the displayed data associated with the first link, preventing a second updated link based at least in part upon the second modification from being generated, if the second indication is received between the receipt of the first indication and the generation of the first updated link.

In some embodiments, a project of the one or more projects is associated with a project link, wherein the one or more links included in the project are encoded within the text of the project link.

The present disclosure also comprises a computer program product, for example a non-transitory or transitory computer-readable medium, that comprises the program instructions recited in any of the appended claims, and/or comprises the program instructions disclosed in the present description. The present disclosure further comprises a method in which the steps recited in any of the appended claims, and/or the steps disclosed in the present description, are executed by one or more computing devices.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a user interface that displays a first time-series graph and a second time-series graph.

Figures 2A-2B illustrate another user interface that displays the first time-series graph and the second time-series graph of Figure 1.

Figures 3A-3D illustrate another user interface that displays the first time-series graph and the second time-series graph of Figure 1.

Figures 4A-C illustrate another user interface that displays the first time-series graph and the second time-series graph of Figure 1.

Figures 5A-5B illustrate another user interface that displays the first time-series graph and the second time-series graph of Figure 1.

Figures 6A-6C illustrate another user interface that displays the first time-series graph and the second time-series graph of Figure 1.

Figures 7A-7C illustrate another user interface that displays the first time-series graph and the second time-series graph of Figure 1.

Figures 8A-8B illustrate another user interface that displays the first time-series graph and the second time-series graph of Figure 1.

Figures 9A-9E illustrate another user interface that displays the first time-series graph and the second time-series graph of Figure 1.

Figures 10A-10D illustrate a user interface that displays the first time-series graph and the second time-series graph of Figure 1.

Figures 11A-11D illustrate another user interface that displays interactive information about an oil well platform.

Figure 12 is a flowchart depicting an illustrative operation of accessing one or more databases in substantially real-time in response to input from a user provided in an interactive user interface in order to determine information related to measured data points and provide the determined information to the user in the interactive user interface.

Figure 13 illustrates a user interface of a projects application that may be used to create, edit, and share projects, in accordance with some embodiments.

Figures 14A-14B illustrate user interfaces of the projects application for creating adding assets to a
As described above, it can become very difficult to view tangential data related to the selection (e.g., a portion of a graph (e.g., data across a certain time period) to view tangential data related to the selection (e.g., a portion of a graph (e.g., data across a certain time period)) to view tangential data related to the selection (e.g., a portion of a graph (e.g., data across a certain time period)).

Figure 16 illustrates a user interface of the projects application displaying a project containing a plurality of assets, in accordance with some embodiments. Figure 17A-17B illustrate user interfaces showing user interaction with a displayed chart, in accordance with some embodiments. Figure 18 is a flowchart depicting an illustrative operation of displaying asset data in a project, in accordance with some embodiments.

As described above, in some embodiments, the interactive user interfaces may display the retrieved data in one or more databases and generate one or more interactive user interfaces. For example, a computing system may display the graph at the closest zoom level at which maximum and minimum values have been cached to ensure that the cached data can be used efficiently.

In some embodiments, the interactive user interfaces may include information about a system or entity, and sensors or attributes associated with the system or entity. For example, a system or entity may correspond to an oil platform, and the interactive user interfaces may include time-series that display data measured by sensors associated with an oil platform. In other embodiments, a system or entity may correspond to other types of entities, such as geographic regions, network nodes or storage devices, user accounts, and/or the like. The time-series (and/or any other graphs displayed in the user interface) may be manipulated by the user in any manner as described herein.

As described above, the graphs may be manipulated by the user. For example, the user may zoom into a portion of a graph. In an embodiment, the computing system predetermines each possible zoom level (or at least most commonly used zoom levels) and pre-calculates the maximum and minimum values for time periods associated with the minimum display resolution (e.g., each individual pixel in the x-axis may be associated with a time period) at separate possible zoom levels. These pre-calculated maximum and minimum values may be cached, such that they may be retrieved as a user adjusts zoom levels in order to more rapidly update the graph to include the most granular data available at the particular zoom level. In one embodiment, if the user selects a zoom level having minimum time periods per pixel (or some other display unit) that has not been pre-cached, the computing system may display the graph at the closest zoom level at which maximum and minimum values have been cached to ensure that the cached data can be used effectively.
the plurality of different applications and/or data sources. For example, a link may comprise an ID that points to or references data stored in a database. In some embodiments, a link may further comprise display parameters specifying the data to be displayed, and also how the data is to be displayed. When loading a project for display, the links may be automatically parsed to identify the application and/or data source they are associated with. In some embodiments, a plug-in corresponding to a particular application or data source may be used to retrieve requested data using an identified link associated with application or data source. For example, a link corresponding to data to be displayed as one or more graphs may be parsed to determine that it is associated with a graph application. A plug-in corresponding to the graph application may be used to access the graph application to retrieve, display, and format the requested data.

In some embodiments, retrieved data may be displayed in a format based upon that of their native application. For example, the format of the displayed data may reflect a look and feel of the native application from which the data was retrieved. The data may be displayed in an interactive format, allowing the user to change or manipulate the data in a manner that would be possible in the data’s native application. For example, the project may contain at least a first and second, wherein data for the first link comprises one or more time-series graphs retrieved from a graph application. The user may be able to perform manipulations on the displayed graphs using the interactive user interface that correspond to manipulations that the user would have been able to perform using the graph application (e.g., zooming or scrolling through a graph, setting markers on a graph, associating events with data points in a graph, and/or the like). Data for the second link may comprise data from a second, different application, wherein the user is able to perform different manipulations based upon types of manipulations that could be performed in the second application. In some embodiments, the data may be displayed in a format that is different from its native application.

In some embodiments, the user may be able to manipulate or change the displayed data. For example, the user may change which data is displayed and/or how it is to be displayed. In order to persist the changes to the data, a new link for the manipulated or changed data may be generated and associated with the project. In some embodiments, a project may be expressed as a “project link,” comprising a text string, wherein the links that point to or reference the assets associated with the project are included or embedded within the text string. The project link may be shared between different users, and may function as a snapshot of the project. For example, as different users modify or update the project, new links may be generated that reflect the updated or modified project. On the other hand, the original project link may still be used to load the project in the state it was in at the time the original project link was created. In some embodiments, the original project link may reflect which sets of data were displayed and how they were displayed at the time the project link was generated, while also reflecting updates to the actual underlying data pointed to by the links associated with the project.

In some embodiments, the project link may reference the current state of the project as it is updated by one or more users.

The systems and methods described herein may provide several benefits. For example, the systems and methods described herein may improve the usability of the user interface by providing graphs that can be manipulated by a user in a concurrent manner, thereby allowing the user to identify trends or other information associated with the graphs without having to separately manipulate each individual graph. As another example, the systems and methods described herein may reduce the processor load while the user is interacting with the user interfaces by predetermining each possible zoom level and pre-calculating the maximum and minimum values. The systems and methods described herein may also increase the processing speed as the computing system may not have to determine in real-time how a graph should be updated when the zoom level is changed. Rather, the computing system can retrieve the appropriate data from the cache to update the graph. As another example, the systems and methods described herein may reduce the latency in generating updated user interfaces as the zoom levels and maximum and minimum values may be predetermined and can be retrieved from cache rather than the databases that store the actual data (e.g., which could be located externally from the computing system). Thus, the systems and methods described herein may improve the usability of the user interface.

In some embodiments, the systems and methods described herein may allow the user to more easily gather and aggregate data from various different sources, without sacrificing the interactivity of the data when displayed in their native applications. By allowing the user to specify, view, and interact with different types of data from different sources in a single interface, the user may be able to better gather information, identify trends or correlations, and form a more complete picture of a topic or entity of interest. For example, a user may specify for display one or more graphs containing sensor data associated with an entity of interest during a time period of interest, in order to provide a more complete picture of the entity of interest during the time period of interest. In addition, the user may be able to generate an easily sharable “project link” corresponding to the gathered data. The project link may also function as a snapshot of the project at the time the project link was generated. As such, the user to able to more quickly and accurately access, navigate, assess, and digest the data than previous systems, potentially providing reduced mental workloads, improved decision-making, reduced work stress, and/or the like, for the user.
Examples of Manipulating Time-Series Graphs in an Interactive User Interface

[0037] Figure 1 illustrates a user interface 100 that displays a time-series graph 110 and a time-series graph 120. As illustrated in Figure 1, the time-series graph 110 plots water allocation data across several months. The time-series graph 120 plots temperature data across several years. While the time-series graph 110 and the time-series graph 120 are each illustrated as plotting a single type of data, this is merely for simplicity and not meant to be limiting. The time-series graph 110 and/or the time-series graph 120 can plot multiple types of data simultaneously. For example, the time-series graph 110 can plot both water allocation data across several months and bottomhole pressure data for the same time period. The depicting of the plotted data can be varied to distinguish between the different types of data plotted in a single time-series graph. The time-series graph 110 and/or 120 plots may be resized vertically, horizontally, diagonally, and/or the like. In an embodiment, not shown, the user interface 100 may include a button that, when selected, causes the computing system that generates the user interface 100 to request current or updated data from an external source for display in the graph 110 and/or the graph 120. In some embodiments, the water allocation data and the temperature data are measured by sensors associated with the same system (e.g., an oil well). In an embodiment, the water allocation data was measured at a granularity that matches each individual pixel in the x-axis of the time-series graph 110. Thus, the maximum and minimum values of the water allocation data at each individual pixel may be the same and a single point (the size of a pixel in the x and y direction) may represent each water allocation measurement.

[0038] The temperature data, however, may be measured at a granularity that does not match each individual pixel in the x-axis of the time-series graph 120. For example, the temperature may have been measured every day, yet each individual pixel may represent a 2 week time period. Thus, the computing system that generates the user interface 100 may calculate the maximum and minimum temperature values for each 2 week time period between the beginning and the end of the time range associated with the time-series graph 120 (e.g., 2010 to 2014). For each individual pixel in the x-axis of the time-series graph 120, a line may be rendered from the maximum temperature value to the minimum temperature value.

[0039] Figures 2A-2B illustrate another user interface 200 that displays the time-series graph 110 and the time-series graph 120. As illustrated in Figure 2A, a user may place a cursor 210 (e.g., a mouse pointer, a finger, etc.) over a portion of the time-series graph 120. For example, the user may select the portion of the time-series graph 120 at the location of the cursor 210. Because the temperature data may be measured at a granularity that does not match each individual pixel, the selected portion of the time-series graph 120 may correspond to a first time period (e.g., 1 month in the year 2013). Thus, selection of the portion of the time-series graph 120 at the location of the cursor 210 may include selecting all temperature values within the first time period.

[0040] In an embodiment, selection of the portion of the time-series graph 120 at the location of the cursor 210 causes a marker 220 to appear at the selection in the time-series graph 120, as illustrated in Figure 2B. Furthermore, the selection of the portion of the time-series graph 120 at the location of the cursor 210 may cause a corresponding selection to be made and displayed in the time-series graph 110, e.g., water allocation data recorded over a same time period as is represented by the marker 220 with reference to temperature data. For example, markers 230A and 230B may be displayed in the time-series graph 110. The selection in the time-series graph 110 may correspond to the selection in the time-series graph 120 in that the water allocation values between markers 230A and 230B may have been measured over the same time period (e.g., during the same month in 2013 selected by marker 220).

[0041] The user interface 200 may further include a window 240 where users can provide or view notes associated with a particular sensor data or with sensor data at a particular time or time period. In the example of Figure 2B, the window 240 includes notes associated with both graphs 110 and 120 during the selected time period, but as discussed further below, the user can choose to have note information on only a single chart displayed. In some embodiments, the notes can include actual measurement data associated with the corresponding graph. For example, in the embodiment of Figure 2B, the window 240 includes water allocation maximum and minimum data during the selected time period, while window 250 includes temperature data for the selected time period. Figures 3A-3D illustrate another user interface 300 that displays the time-series graph 110 and the time-series graph 120. As illustrated in Figure 3A, a user may place the cursor 210 over a portion of the time-series graph 110. For example, the user may begin to select a portion of the time-series graph 110 at the location of the cursor 210. As illustrated in Figure 3B, the user may drag the cursor 210, while the time-series graph 110 is selected, from left to right to complete the selection at the new location of the cursor 210. As the user is dragging the cursor 210, a marker 310A may appear in the time-series graph 110 to indicate where the selection began.

[0042] In an embodiment, as the selection of the end of the desired time period is made in graph 110, a second marker 310B appears in the time-series graph 110 to indicate an end of the time period, and marker 320 (or possibly two markers showing start and end of the time period, if the scale of graph 120 is such that the time period includes multiple pixels) is updated in response to changes in the time period selected in graph 110 such that the markers in each graph 110 and 120 indicate the same time period, even though the time series graphs...
are on a different time scale. Thus, the selected time period in the time-series graph 110 with reference to water allocation is automatically used to select a corresponding time period in the time-series graph 120 with reference to temperature values.

[0043] The user may indicate that all graphs or just a subset of graphs displayed in the user interface 300 should be synchronized or identically manipulated in a manner described herein (e.g., an identical manipulation such as a selection of a time period in one graph causing a selection of a corresponding time period in another graph). For example, if the user interface 300 displayed a third graph, the user may be provided with an option to synchronize the graph 110, the graph 120, and the third graph, the graph 110 and the third graph, or the graph 120 and the third graph. If, for example, the user selected to synchronize the graph 120 and the third graph, then any changes to the third graph by the user may also occur to the graph 120, but not to the graph 110. Likewise, any changes to the graph 110 by the user would not affect the graph 120 or the third graph. In further embodiments, the user may elect to synchronize certain manipulations of a graph, but not other manipulations of a graph. For example, the user may select an option to synchronize the zoom level in two or more graphs, but not the time period displayed within the graphs. As illustrated in Figure 3D, the user has selected an option to synchronize the zoom levels in the graph 110 and the graph 120 (e.g., the x-axis for both graphs 110 and 120 is at the same zoom level), however each graph is displaying data at a different period of time (e.g., the x-axis for graph 110 ranges from March to July and the x-axis for graph 120 ranges from January to May). If the user, for example, places a marker in the graph 110, the marker may appear in the graph 120 if the marker is placed at a time that appears on the x-axis for the graph 120 (e.g., if the marker is placed on April 1st, which also appears on the x-axis in the graph 120). If the user, as another example, manipulates the graph 110 by scrolling to the right, the graph 120 may be manipulated in the same way.

[0044] Figures 4A-4C illustrate another user interface 400 that displays the time-series graph 110 and the time-series graph 120. As illustrated in Figure 4A, a user may place the cursor 210 over a portion of the time-series graph 120. For example, the user may hover over the portion of the time-series graph 120 at the location of the cursor 210. Hovering over the time-series graph 120 may cause the computing system to generate a marker 410 that is displayed in the time-series graph 120 at the location of the cursor 210, and which can be moved in response to movement, by the user, of the hovering cursor 210 over other portions of the graph 120. In addition, a corresponding marker 420 may be displayed in the time-series graph 110. The marker 420 may be located at a location in the time-series graph 110 that represents a water allocation value that was measured at a same time as a temperature value that falls within the time period represented by the marker 410.

[0045] In an embodiment, as the user moves the cursor 210 to different locations within the time-series graph 120, the marker 410 may follow the cursor 210. Furthermore, as illustrated in Figures 4B-4C, the marker 420 may also move such that the marker 420 continues to correspond to the marker 410 in a manner as described above. Because time scales of the two time-series graphs 110 and 120 are different, movement of the marker 420 may move at a faster rate than movement of the marker 410.

[0046] Figures 5A-5B illustrate another user interface 500 that displays the time-series graph 110 and the time-series graph 120. As illustrated in Figure 5A, the time-series graph 110 and the time-series graph 120 include data plotted over the same time period (e.g., March to June). Furthermore, in this example the user may have selected water allocation values in the time-series graph 110 over a particular time period, represented by markers 510A-B, or the user may have selected temperature values in the time-series graph 120 over a time period, represented by markers 520A-B, causing the other time-series graph to display an automatically determined selection of the same time period.

[0047] In an embodiment, events (e.g., a manufacturing failure, a contamination event, etc.) may have occurred during the time period associated with the selections in the time-series graph 110 and the time-series graph 120 and/or annotations may be marked. The events that occurred and/or the annotations may be associated with the sensor that measured the water allocation values, the sensor that measured the temperature values, and/or other sensors that measured other data (not shown). Marks 530, 540, and 550 may identify a time at which an event occurred and/or an annotation is marked and/or a time range during which an event occurred and/or an annotation is marked. For example, the mark 530 may indicate that an event occurred or an annotation was marked at a time corresponding to the location of the mark 530 in the time-series graph 110, where the event or annotation is associated with the sensor that measured the water allocation values. Likewise, the mark 540 may indicate that an event occurred or an annotation was marked at a time corresponding to the location of the mark 540 in the time-series graph 110 (e.g., where the event or annotation is associated with the sensor that measured the water allocation values) and the mark 550 may indicate that an event occurred or an annotation was marked at a time corresponding to the location of the mark 550 in the time-series graph 120 (e.g., where the event or annotation is associated with the sensor that measured the temperature values). The marks 530, 540, and/or 550 can be represented in various ways. For example, if the event occurs or the annotation is marked at a specific time instant, the marks 530, 540, and/or 550 can be represented as vertical lines. If the event occurs or an annotation is marked during a range of time, the marks 530, 540, and/or 550 can be represented as blocks (e.g., rectangular blocks) that encom-
Furthermore, the user interface 500 may include an event information pane or notebook 560. The event information pane 560 may include information on the events that occurred (and/or annotations made by the user) corresponding to the sensors that measured the water allocation data, the temperature data, and/or other data (not shown). The information may include a time-series graph or sensor that the event or annotation is associated with, a time-series within the time-series graph that the event or annotation is associated with, a time that the event occurred (or that the annotation is associated with), and a description of the event or annotation itself, such as a description of the event or annotation provided by a human operator. In an embodiment, the event information pane 560 includes event or annotation information for any event that occurred during a time range for which data was collected and/or for any annotation marked within a time range for which data was collected. In another embodiment, the information displayed in the event information pane 560 is for events that occurred during the entire time range displayed (e.g., March to June) and/or for annotations marked during the entire time range displayed. In another embodiment, the information displayed in the event information pane 560 is for events that occurred during the selected portions (e.g., April to May, as represented by the markers 510A-B and 520A-B) and/or for annotations marked within the selected portions. The user interface may include controls that allow the user to select the desired time period for which event information should be included in the event information pane 560.

The event information pane 560 may display event and/or annotation information for every available time-series graph or just selected time-series graphs. For example, the user may use cursor 210 to select the time-series graph 120 (e.g., also referred to as "Graph 2") and not the time-series graph 110 (e.g., also referred to as "Graph 1"), as illustrated by the dark outline of time-series graph 120 in Figure 5B. Selecting the time-series graph 120 may cause the event information pane 560 to only display the events and/or annotations that are associated with the time-series graph 120 (e.g., the sensor that measured the temperature values) during the currently selected time period associated with markers 520A and 520B. The event information pane 560 may also include a search field 570 that allows the user to search for and identify specific events and/or annotations that may have occurred or been marked within the currently displayed events (or among other events that are not displayed in some embodiments).

Figures 6A-6C illustrate another user interface 600 that displays the time-series graph 110 and the time-series graph 120. As illustrated in Figure 6A, the time-series graph 120 has been selected by the user (as indicated by the dark outline around time-series graph 120). In this example, the user is hovering the cursor 210 over the time-series graph 120, causing the user interface 600 to display marker 610 at the location of the cursor 210. As described above, a marker 620 corresponding to the marker 610 may be displayed in the time-series graph 110 as a result.

As illustrated in Figure 6B, the user may provide an instruction to add an event and/or an annotation at a time (or time range) that corresponds to the location of the cursor 210. For example, the user may right-click on a mouse, tap a touch screen, or press a keyboard hotkey to indicate that an event is to be added. Once the user interface 600 receives the instruction, the user interface 600 may display an add event window 630 that appears near a location where the event and/or annotation is to be added. The add event window 630 may be a pop-up window or may be a window that overlays the window displaying the time-series graphs 110 and 120.

In an embodiment, the user can specify a description of the event and/or annotation and a time-series within the time-series graph 120 that the event and/or annotation corresponds to within the add event window 630. As described above, the time-series graph 120 can depict multiple time-series data. However, the time-series graph 120 as illustrated in Figure 6B only includes a single time-series (e.g., the temperature time-series data, also referred to as "Series 1"). Thus, the add event window 630 only provides an option to associate the event and/or annotation with the time-series depicted in the time-series graph 120. However, if the time-series graph 120 as illustrated in Figure 6B included two or more time-series, then the add event window 630 would provide the option to specify that the event and/or annotation corresponds to the first time-series (e.g., temperature time-series), a second time-series, a third time-series, and so on, and/or all time-series graphs or combinations of graphs that are displayed within the time-series graph 120. In many embodiments, each time-series graph is associated with a different sensor or other data source, while in other embodiments a time-series graph may be associated with multiple sensors or other data sources, such as to indicate derived values that are based on two or more sensor values (e.g., a ratio of temperature to pressure). In other embodiments, not shown, the user can specify that an event and/or annotation can be associated with time-series depicted in different time-series graphs (e.g., the time-series graph 110 and the time-series-graph 120).

As illustrated in Figure 6C, the user has specified that the new event and/or annotation is to correspond with the temperature sensor time-series data (illustrated in time-series graph 120). Accordingly, a mark 650 is placed in the time-series graph 120 at the corresponding time. Because the time-series graph 120 is still selected for display of event information, the event information pane 560 is updated to include information about the newly added event and/or annotation (e.g., "Event 2"). Note that former "Event 3" has now become "Event 4" because the events and/or annotations can be listed (and/or numbered) in chronological order and the newly
added event or annotation occurs prior to “Event 4” represented by marker 550.

[0054] Figures 7A-7C illustrate another user interface 700 that displays the time-series graph 110 and the time-series graph 120. As illustrated in Figure 7A, the time-series graph 120 has been selected by the user. Furthermore, the event information pane 560 includes two events: Event 2 that corresponds with the mark 650 and Event 4 that corresponds with the mark 550.

[0055] As illustrated in Figure 7B, the user may hover over information about an event and/or annotation using the cursor 210. In the example of Figure 7B, the user has hovered over the Event 2. In an embodiment, when the cursor 210 hovers over and/or is used to select an event and/or annotation, a marker is displayed at a location of the event and/or annotation in the corresponding time-series graph(s). For example, when the cursor 210 hovers over Event 2, a marker 710 is displayed at a location in the time-series graph 110 that corresponds with a time that the event and/or annotation occurred and/or a marker 720 is displayed at a location of the mark 650 in the time-series graph 120. In other embodiments, an event and/or annotation may be selected in any other manner and indications of the corresponding data on the time-series graphs maybe indicated in other visual representations, such as an animated circular marker that changes size, blinks off and on, etc.

[0056] As illustrated in Figure 7C, the user has moved the cursor over Event 4. When the cursor 210 hovers over Event 4, a marker 730 is displayed at a location in the time-series graph 110 that corresponds with a time that the event and/or annotation occurred and a marker 740 is displayed at a location of the mark 550 in the time-series graph 120.

[0057] Figures 8A-8B illustrate another user interface 800 that displays the time-series graph 110 and the time-series graph 120. In some embodiments, a physical component that is monitored by a sensor may begin to operate outside normal operating conditions. For example, the physical component may have encountered a mechanical issue that causes the physical component to operate at sub-optimal levels. In some cases, the abnormal performance of the physical component could cause a system slowdown or failure. Accordingly, the computing system that generates the user interface 800 may generate an alert to notify a human operator of the abnormal operation.

[0058] In an embodiment, the abnormal performance of the physical component is represented by sensor values that are outside of an expected range and an alert may be triggered when the sensor values are outside of the expected range. For example, an alert may be generated for a sensor that measures temperature values for a physical component of an oil well if the measured temperature values exceed certain levels (e.g., 200°F). Alerts may also be triggered based on a combination of sensor values. For example, an alert may be triggered if values associated with a first sensor (e.g., a temperature sensor) exceed certain values and values associated with a second sensor (e.g., a pressure sensor) do not exceed certain values. Triggering of alerts may initiate real-time (or substantially real-time) notifications to one or more users, such as via text messages, email, phone calls, etc. Thus, the alert may allow the user to make adjustments to the sensor and/or other system components in order to reduce impact of the physical component operating outside of its normal range. Alerts may be recorded and associated with a particular sensor and stored for display along side time-series graphs for the particular sensor in the future, such as in the notes or event information areas of the user interface. The user interface 800 may display markers that indicate when an alert would be or should be triggered. For example, marker 810 may indicate an upper boundary at which point an alert may be triggered and marker 820 may indicate a lower boundary at which point an alert may be triggered. As illustrated in Figure 8A, an alert was triggered in May as the water allocation values exceeded the value associated with the marker 810.

[0059] Figure 8B illustrates an example recorded alert 830 that was triggered when the water allocation values exceeded the value associated with the marker 810. The user interface 800 may display the alert 830 if a user hovers over the portion of the time-series graph 110 that includes values that exceed the value associated with the marker 810 or that do not exceed the value associated with the marker 820.

[0060] Figures 9A-9E illustrate a user interface 900 that correlates time-series and scatterplot graphs. As illustrated in Figure 9A, the user interface 900 includes a time-series graph 910. The user may use the cursor 210 to begin selecting a portion of the time-series graph 910.

[0061] As illustrated in Figure 9B, the user, via the cursor 210, has selected a portion of the time-series graph 910 represented by markers 920 and 930. The selected portion of the time-series graph 910 represents water allocation values for a time period between late April and early June.

[0062] As illustrated in Figure 9C, based on the selection in the time-series graph 910, a scatterplot 950 is displayed in the user interface 900. The scatterplot 950 may include temperature values plotted against pressure values. Each combination of temperature and pressure values may have been measured at a time within the time period corresponding to the selected portion of the time-series graph 910 (e.g., late April and early June). Thus, for every time increment in the time period, the computing system may retrieve a temperature value and a pressure value and generate the user interface 900 such that it plots the temperature value as a function of the pressure value.

[0063] In an embodiment, the water allocation values may be measured by a sensor associated with a system. The temperature values and the pressure values may also be measured by sensors associated with the same system.
As illustrated in Figure 9D, the user can make a selection in the scatterplot 950 using the cursor 210. For example, the user can make a selection represented by box 960, where the box 960 includes various combinations of temperature and pressure values.

Once the user makes the selection in the scatterplot 950, the computing device may determine all times that the individual combinations of temperature and pressure values within the box 960 occurred. For example, while the combination of temperature and pressure values in the box 960 occurred during the time period between markers 920 and 930, the same combination of temperature and pressure values may have occurred at other times. Thus, the user interface 900 may indicate such times. As illustrated in Figure 9E, markers 970A and 970B designate a first time period during which some or all combinations of temperature and pressure values in the box 960 occurred, markers 980A and 980B designate a second time period during which some or all combinations of temperature and pressure values in the box 960 occurred, and markers 990A and 990B designate a third time period during which some or all combinations of temperature and pressure values in the box 960 occurred. Alternatively or in addition, the portions of the time-series graph 910 that correspond with the times that the individual combinations of temperature and pressure values within the box 960 occurred can be bolded, highlighted, and/or otherwise annotated to indicate such times.

Example Use Case of an Interactive User Interface with Time-Series Graphs

Figures 10A-10D illustrate a user interface 1000 that provides interactive information about an oil well. As illustrated in Figure 10A, the user interface 1000 includes a first window 1010 and a second window 1020. The window 1010 may be a navigation window that includes a list of selectable buttons that can be used to provide further information about the oil well. The window 1020 may be an informational window that provides details about the oil well, such as the well’s age, the well’s location, and/or the well’s objectives.

As illustrated in Figure 10B, the user may select a sensors button in the window 1010 using the cursor 210. The sensors button may retrieve data measured by the various sensors of the oil well. For example, the data may be retrieved from databases associated with the system that the sensors are associated with, and the data may be displayed in time-series graphs, scatterplot graphs, and/or the like as described herein.

As illustrated in Figure 10C, after the sensors button is selected, the window 1020 may display various time-series graphs 1030 and 1040. The time-series graphs 1030 and/or 1040 may be manipulated in any manner as described herein with respect to Figures 1 through 9E. In addition, the user interface 1000 may display any number of time-series graphs, each of which may be manipulated in the manners described herein.

For example, several time-series graphs (e.g., three, four, five, or more graphs) may be concurrently displayed on one or more display devices, each with differing (or identical) timescales for the corresponding sensor data displayed. According to the systems and methods discussed above, a user may select a particular time or time period on one of the displayed time-series graphs and, in response to such selection, the system automatically selects corresponding time periods in each of the other time-series graphs.

As illustrated in Figure 10D, the user interface 1000 may also include an event information pane 1050 that provides event information for events that occurred and/or annotations that are related to the sensors that measured the data depicted in the time-series graphs 1030 and/or 1040.

Figures 11A-11D illustrate another user interface 1100 that provides interactive information about an oil well. As illustrated in Figure 11A, the user interface 1100 includes the windows 1010 and 1020. In an embodiment, the user selects a maps button in the window 1010.

As illustrated in Figure 11B, once the maps button is selected, the window 1020 displays a map showing a location of an oil well 1140, injectors 1110 and 1120, producer 1130, and/or other related components (not shown).

As illustrated in Figure 11C, the user may hover and/or select one or more of the components depicted in the map to view more information. For example, the cursor 210 may hover over the injector 1110, which causes the user interface 1100 to display text associated with the injector 1110 in the window 1020 (e.g., “well communication between A01 and A1”).

As illustrated in Figure 11D, selecting a component may allow the user to view additional information about the component in the window 1020. For example, selection of the injector 1110 causes the user interface 1100 to provide more information about the injector 1110 (e.g., the injector’s age, the injector’s location, the injector’s objectives, etc.). Furthermore, from the information displayed in Figure 11D, the user may select the sensors indicator in order to view one or more time-series graphs associated with sensor data of the selected component (a particular well in the example of Figure 11D).

Figure 11E illustrates another user interface 1140 that displays drill bit, hole depth, and rock layer information. As illustrated in Figure 11E, the user interface 1140 includes graph 1145 and window 1180. The graph 1145 may display a vertical position of an item (e.g., a drill bit) in an underground crevice or structure (e.g., an oil well) over a period of time in which a rock layer at the position of the item, a rock layer at the bottom of the underground crevice or structure (e.g., a hole depth), and/or events associated with the underground crevice or structure that have occurred during the period of time are indicated. For example, the graph 1145 may...
have an x-axis that represents time (e.g., in months), may have a y-axis that represents depth below the surface (e.g., in meters), and may display a vertical position of a drill bit in an oil well over a period of time. The graph 1145 may also display a rock layer at the position of the drill bit during the period of time, a rock layer at the bottom of the oil well during the period of time, and events associated with the oil well that occurred during the period of time.

[0075] As illustrated in Figure 11E, the graph 1145 includes a curve 1142 that represents a depth of the drill bit at each point in time. The graph 1145 further includes a curve 1144 that represents a depth of the bottom of the oil well at each point in time. For example, the drill bit may be used alone or as a part of a larger apparatus to drill into the ground to increase the depth of the oil well. Occasionally, the drill bit may be raised from the bottom of the oil well to the surface (e.g., to perform maintenance on the drill). Thus, the curve 1142 may rise and fall as drilling begins, ends, and restarts. However, the depth of the bottom of the oil well may not decrease (e.g., the depth may not decrease from 1000m below the surface to 500m below the surface) unless, for example, the hole in the oil well is filled in. Thus, the curve 1144 may remain static over time or continue to fall down along the y-axis.

[0076] Row 1150 identifies the different rock layers at a vertical position of the drill bit over time. For example, between February and mid-March, the drill bit may be at a depth that falls within rock layer 1152 (except for times in which the drill bit is at the surface, which is indicated by a blank space in the row 1150). After mid-March, the drill bit may briefly be at a depth that falls within rock layer 1154. However, prior to the beginning of April, the drill bit may be slowly raised to the surface. During this time, the drill bit may pass from the rock layer 1154 to the rock layer 1152 before reaching the surface, as indicated in the row 1150. Likewise, in May, the drill bit may reach a depth below the surface that falls within rock layer 1156, as indicated in the row 1150.

[0077] Row 1160 identifies the different rock layers at the bottom of the oil well over time. For example, the row 1160 may identify the deepest rock layer reached by the drill bit (assuming that the oil well is not filled in and that the deepest region reached by the drill bit corresponds with the depth of the bottom of the oil well). Thus, while the drill bit may be raised to the surface in mid-May, the row 1160 indicates that the rock layer 1156 is the rock layer at the depth of the bottom of the oil well.

[0078] Row 1170 identifies a time or time range at which various events 1171-1178 may have occurred in the period of time viewed within the graph 1145. Information on one or more of the events 1171-1178 may be provided in the window 1180. For example, the window 1180 may identify an event, a time that the event occurred, and/or a description of the event. Accordingly, a user may be able to identify times in which an oil well is not being drilled, reasons why such delays have occurred, and/or possible solutions for reducing such delays.

[0079] In further embodiments, not shown, additional data or curves can be included in the graph 1145. For example, a curve indicating levels of gamma radiation at the vertical position of the drill bit (e.g., a curve in which the y-axis value represents gamma radiation levels at the vertical position of the drill bit at a time instant and the x-axis value represents time), a curve indicating levels of gamma radiation at the bottom of the oil well (e.g., a curve in which the y-axis value represents gamma radiation levels at the static or dynamic depth and the x-axis value represents time), and/or the like may be included in the graph 1145.

Example Process Flow

[0080] Figure 12 is a flowchart 1200 depicting an illustrative operation of accessing one or more databases in substantially real-time in response to input from a user provided in an interactive user interface in order to determine information related to measured data points and provide the determined information to the user in the interactive user interface. Depending on the embodiment, the method of Figure 13 may be performed by various computing devices, such as by the computing system 1400 described below. Depending on the embodiment, the method of Figure 13 may include fewer and/or additional blocks and the blocks may be performed in an order different than illustrated. While the flowchart 1200 is described with respect to having sensor data depicting in graphs, this is not meant to be limiting. The illustrative operation depicting in the flowchart 1200 can be implemented on any type of time-series data from any source.

[0081] In block 1202, user interface data for rendering an interactive user interface is generated. The interactive user interface may include a first graph in a first container and a second graph in a second container that has a same width as the first container. The first graph may include first sensor values over a first time period and the second graph may include second sensor values over a second time period.

[0082] In block 1204, an identification of a selection of a first data point in the first graph that corresponds to a first time range is received. The first time range could be determined based on a time range that corresponds with each individual pixel in an x-axis.

[0083] In block 1206, the user interface data is updated such that the interactive user interface includes a first marker at a location of the first data point in the first graph. The marker may be a vertical line that is temporarily displayed in the interactive user interface.

[0084] In block 1208, the database is accessed to determine a second sensor value that corresponds to a beginning of the first time range and a second sensor value
that corresponds to an end of the first time range. For example, the second sensor value that corresponds to a beginning of the first time range may be a sensor value that was measured at a time that corresponds with the beginning of the first time range.

[0085] In block 1310, the user interface data is updated to include a second marker at a location of a second data point in the second graph that corresponds to the beginning of the first time range and a third marker at a location of a third data point in the second graph that corresponds to the end of the first time range. Thus, the user may be able to view, within the interactive user interface, first sensor values and second sensor values that were measured at the same time.

Projects and Assets

[0086] In some embodiments, the charts and time series graphs described above with regard to Figures 1-12 may be generated using a software application and/or web application (referred to herein as a "graph application" or "graph"), by, for example, accessing one or more data sources and processing, analyzing, and/or displaying data from those data sources. In some embodiments, multiple software applications and/or data sources may be used to generate or view different types of data relating to a particular topic or entity (e.g., an oil well platform, a geographic region, a network or network nodes, a user account or user group, and/or the like). For example, a graph application may be used by a user to generate and view one or more graphs (e.g., times series graphs showing different attributes, such as those described above in reference to Figures 1-12) associated with one or more data entities (e.g., platforms or wells, regions, nodes, accounts, groups, and/or the like). In some embodiments, other types of applications may be used to view other types of data associated with the data entities. For example, a hierarchical object explorer application maybe used to view specific information about specific entities. For example, a particular entity may be associated with a plurality of different attributes and data objects (e.g., an oil well platform may be associated with various measurements, sensor readings, reports, photographs, and/or the like). These attributes and objects may be organized into a hierarchy and viewed using the hierarchical object explorer application. For example, in the context of oil well platforms, a hierarchy may comprise a region associated with one or more wells, wherein each of the one or more wells is associated with one or more platforms. Each of the one or more platforms may be associated with one or more data objects (e.g., attributes of a platform, measured sensor data associated with the platform, images or documents containing data relevant to the platform, and/or the like). Additional data relating to the entity may be accessed from other software applications, data sources, and/or on various websites (e.g., a news article concerning an oil well platform found on a news website).

[0087] In some cases, a user may wish to be able to collect and interact with different types of data from different applications and data sources in one place, instead of having to view the different data in the individual applications and/or data sources that they are associated with. For example, the user may be doing research into a particular issue concerning one or more entities, and may wish to collect and interact with information from a variety of different applications and data sources relating to the one or more entities to provide a more complete picture of the issue being researched. Various different types of data and data visualizations may be used to create a story or report concerning the researched data entities. In some embodiments, a completed collection of data may be shared, such as with coworkers, a supervisor, and/or the like.

[0088] In some embodiments, these collections of data may be referred to as "projects," and the individual pieces of data in a project may be referred to as "assets."

[0089] While the present application may discuss generating and manipulating projects in the context of oil wells and oil well platforms, it is understood that projects may be directed to analyzing any type of data entity. For example, in some embodiments, a user may wish to collect, aggregate, and interact with different types of data relating to a particular network node or a group of nodes in a network, wherein the node may be associated with a plurality of different attributes (e.g., storage size, processor type, and/or the like) and data objects (e.g., instruction manuals, schematic diagrams, and/or the like) that may be viewed and/or manipulated using a hierarchical object explorer application. The node may also be associated with various attributes and measurements (e.g., network traffic over time, storage over time, and/or the like) that may be visualized and/or manipulated using a graph application.

[0090] Figure 13 illustrates a user interface of a projects application that may be used to create, edit, and share projects, in accordance with some embodiments. In some embodiments, after a user launches the projects application, they can create a new project or load an existing project. For example, the user may click on a "New Project" button 1302 in order to initiate the creation of a new project. The user may also load an existing project by making a selection from a list of existing projects 1304. In some embodiments, the displayed projects may be filtered by one or more attributes or conditions. For example, by selecting a "My Projects" button 1306, the user may filter the projects to only display projects that were created by the user and/or assigned to the user. On the other hand, filter criteria may be removed in response to a selection of the "All Projects" button 1308, causing all available projects to be displayed. In some embodiments, a search field 1310 may be provided to allow the user to search for an existing project by title, author, keyword, group, and/or other attributes or parameters.

[0091] In some embodiments, in order to assist a user in finding a desired project to load, various project at-
Figures 14A and 14B illustrate user interfaces associated with each project, signifying the number and types of data assets associated with each project. In some embodiments, the URL or link may map to or specify a location in a server associated with the graph application that contains the attributes and settings for the created graphs. In some embodiments, the graph application may be a web application, such that when the URL is entered into a web browser, the graph application will launch and display the relevant graphs associated with the URL.

In some embodiments, in order to obtain the link or URL for the asset, the user may view the desired data on the outside application, and copy and paste its link or URL to the projects application. In some embodiments, applications and data sources maybe integrated with the projects application, such that a user may add a link to data in the application directly to the projects application. For example, in some embodiments, a graph application may be modified to contain an "Add to Projects" button or other interface element. When the user clicks on the "Add to Projects" button, a link corresponding to the graph data that they are currently viewing may be sent to the projects applications. In some embodiments, the user maybe prompted to enter a project to which the link will be associated with.

In some embodiments, the data associated with "URL" or "link" assets, unlike "image" or "file" assets, may be accessed through an outside application and rendered on-the-fly, and is generally does not need to be uploaded and persistently stored by the projects application. As such, if the underlying data at the application or data source changes, the data displayed at the projects application may also change accordingly. In some embodiments, the application may be configured such that data from different applications and data sources may be displayed in different formats, based at least in part upon the application or data source from which the data originated.

As used herein, a database, which may also be referred to as "data store" and/or "data structure," may originate.

Displaying Link Asset Application Data with Plug-ins

Figure 15 illustrates a system diagram illustrating how a projects application communicates with other applications and/or data sources to retrieve and display data specified by link assets, in accordance with some embodiments. Projects application 1502 may receive a plurality of links associated with a plurality of different applications and/or data sources. In some embodiments, a project may display a link asset simply by displaying
the link. However, in most cases it would be much more useful to actually display the data associated with the link in a format (e.g., an interactive format) that reflects a format of the application or data source from which the data originated. In some embodiments, the projects application determines what outside application (or type of outside application) the link is associated with, and based on that determination, the projects application determines how to display the data associated with the link.

[0101] As shown in the embodiment of Figure 15, projects application 1502 is associated with one or more plug-ins 1504. Each plug-in may correspond to one or more outside applications from which data may be retrieved. For example, the projects application 1502 may have at least a first plug-in 1504-1 corresponding to a graph application 1506, and a second plug-in 1504-2 corresponding to an object explorer application 1508. While Figure 15 illustrates projects application 1502 having two plug-ins associated with an object explorer application and a graph application, in some embodiments, the projects application may be associated with any number of plug-ins corresponding to any number of applications and/or data sources.

[0102] Links associated with a project (e.g., links submitted by a user) may be analyzed to determine which application and/or data source the link is associated with. For example, the link maybe parsed, analyzed with one or more regular expressions to determine an application, data source, and/or plug-in associated with the link. In another example, the projects application may provide the link to each of the plug-ins 1504. Each plug-in 1504 may receive and parse the submitted link to determine if the link is associated with the outside application associated with the plug-in.

[0103] In some embodiments, projects application 1502 may receive links that are associated with other applications 1514 or websites/images 1516 that do not have a corresponding plug-in 1504. In some embodiments, if an application and/or data source associated with a link cannot be identified (e.g., the link is associated with an application, data source, and/or website that does not have a corresponding plug-in), data associated with the link is not retrieved, and the link may simply be displayed by the project interface. The user may then click on or select the link, which may open the website, application, and/or data source associated with the link. In some embodiments, if the link corresponds to a particular file type (e.g., an image file on a webpage, a PDF, and/or the like), the file may be retrieved from the webpage and displayed directly on the project interface, similar to how an "image" asset may be displayed. In some embodiments, "note", "image", and/or "file" assets may also be expressed as links. For example, an "image" asset may be expressed as a link specifying an image file stored in a data store associated with the projects application (e.g., asset data 1518).

[0104] On the other hand, if a suitable plug-in is found, the plug-in may be used to access the application or data source to retrieve the data specified by the link (e.g., graph data 1510, object data 1512, and/or the like), and to display the data in the project interface in a format based upon the particular application that the link is associated with. In some embodiments, the data may be displayed in a format that emulates a look and feel of how the data would have been displayed in its native application. In addition, the format that the data is displayed in may be interactive in a manner reflective of its native application. For example, a graph application may allow a user to manipulate a displayed graph (e.g., pan or zoom on the graph, merge graphs, add an event to a graph, and/or the like). In some embodiments, a link corresponding to the graph associated with a project in the projects application will allow the user to perform the same manipulations when displayed by the projects application. In some embodiments, the data may be displayed in a format that is different from how it would be displayed natively in the application.

[0105] In some embodiments, the plug-in may use existing code from its associated application in order to retrieve the data and format the data for display. For example, if the application is a graph application 1506, the plug-in 1504-1 may utilize the existing code in the graph application 1506 to retrieve the requested data (e.g., data points for one or more data series) from graph data 1510, and create one or more interactive graphs based upon the retrieved data to be displayed in the projects application 1502. In other embodiments, the plug-in accesses an API associated with the application in order to retrieve the data associated with the link. Once data is retrieved through the API, the plug-in may then format the data (e.g., create interactive graphs using the received data) for display in the projects application interface.

[0106] In some embodiments, in order to access the application or data source, the plug-in may be required to submit an authentication token or other authentication data in order to access the data from the application. In some embodiments, the authentication token may be created automatically based upon a user profile when the user launches the projects application. In some embodiments, the user may be prompted to enter authentication information (e.g., a username and/or password) for one or more applications when using the projects application for the first time and/or when the user specifies a link associated with the application.

[0107] In some embodiments, the authentication information may be used to access certain data on the application or data source. For example, if the user does not have permission to access certain data in an application (e.g., a data series associated with a particular well platform), an error may be returned. Alternatively, the inaccessible data may simply not be displayed (e.g., the graph for the data series that the user does not have permission to access may be displayed as a blank graph).

For example, if the link is associated with data corresponding to a first graph and a second graph, and the user does not have authentication information to access...
data for the second graph, the projects application may display the first graph and a blank graph for the second graph, and/or an error indicating that the second graph cannot be displayed.

[0108] Figure 16 illustrates a user interface of the projects application displaying a project containing a plurality of assets, in accordance with some embodiments. For example, the displayed project may contain a note asset 1602, and link assets 1604 and 1606.

[0109] Note asset 1602 may comprise a text box for other interface element allowing a user to enter text to be associated with note asset 1602. In some embodiments, a user may use note assets to record a summary of the project, to provide commentary on other displayed assets, provide additional data, and/or the like.

[0110] As illustrated in Figure 16, link asset 1604 is associated with a graph application. Because the projects application contains a plug-in that corresponds to the graph application, the data associated with the asset maybe displayed as one or more graphs in a format that emulates the look and feel of how it would be displayed in its native application. For example, one or more graphs displayed in the projects application may be interacted with or manipulated by a user (e.g., zooming or panning over a displayed graph, associating data points in a displayed graph with events, performing a manipulation on a second displayed graph based at least in part on a manipulation performed on a first displayed graph, and/or the like), in a manner similar to how the graphs would when displayed in its native graph application. In some embodiments, the format of the displayed data may be different from how it would be displayed native application. For example, in some embodiments, in order to integrate the displayed data with the rest of the projects application interface, interface elements that may have been associated with the data if displayed in the graph application may not be displayed in the projects application.

[0111] In some embodiments, a link asset may also be associated with additional text or other information. For example, link asset 1604 may be associated with a text box 1608, allowing a user to enter in additional text. This may be used to specify a caption and/or provide context to the displayed asset data. In some embodiments, the text may be associated with the asset as a whole, or may be associated with a specific element of displayed asset data. For example, the user may be able to specify a text box having a pointer to a specific location or element of the displayed link data (e.g., a specific data point, a specific point on an axis of a displayed graph, and/or the like).

[0112] Link asset 1606 is associated with an object explorer application. In some embodiments, the link specifies a specific object in the object hierarchy maintained by the object explorer application. Because the projects application contains a plug-in that corresponds to the object explorer application, the specified object maybe displayed in a format that emulates the look and feel of how it would be displayed in its native application. For example, in some embodiments, the object may correspond to an image, which may be displayed in the projects application interface.

[0113] In addition, a hierarchical path or breadcrumbs trail 1610 associated with the object may also be displayed, providing the user with context information. For example, in the context of oil well platforms, the breadcrumbs trail may contain the region, well, and platform that the object is associated with. In some embodiments, by clicking on different stages in the hierarchical trail, the user may be able to view parent stages of the displayed object, and explore the object hierarchy.

[0114] In some embodiments, a link may not only specify what data is to be displayed, but also how the data is to be displayed. For example, a link associated with a graph application may specify one or more data series to be displayed, as well as display setting information relating to how the data series will be displayed. These may include parameters such as a zoom level, graph axis range settings, graph display settings (e.g., if the data is associated with two different data series, whether the two data series are displayed as different graphs or combined into a single graph), and/or the like. In some embodiments, if the link does not contain information on how the data is to be displayed, one or more default display settings may be used. In some embodiments, the link may comprise a text string such as a URL/URI, wherein the display parameters are encoded directly into the text string. In some embodiments, the link may comprise a pointer or mapping to a location in a server maintained by an outside application, wherein the display parameters are identified and retrieved by the server based at least in part upon the pointer or mapping.

[0115] In some embodiments, the projects application interface may contain one or more buttons or other interface elements 1612 next to each asset. These may include a collapse button that may be used to collapse the asset for easier viewing of the other assets in the project, and a delete button that can be used to delete the asset from the project. In some embodiments, link assets may also be associated with an application button 1614, allowing the user to launch the application that the link asset is associated with. For example, a user may click on the application button next to a link asset associated with data from a graph application in order to open the graph application. In some embodiments, if a user launches an application through an application button associated with a link asset, the data associated with that link asset will be displayed when the application is launched. For example, launching the graph application may cause the application to automatically load and display the graph data specified by the link, while launching the object explorer application may cause the application to automatically load and display the particular object that was specified by the link. In some embodiments, an application button is only provided for link assets associated with applications having a corresponding plug-in.
Asset Data Interaction and Manipulation

[0116] In some embodiments, the user may be able to interact with and/or perform actions changing how link assets are displayed. For example, for link asset data associated with a graph application, the user may be able to scroll along the axes of a graph by clicking on a location within the graph area and dragging in a desired direction. The user may be able to combine two or more graphs by dragging one graph on top of another one, or separate a graph showing two or more data series by dragging a data series away from the graph.

[0117] Figure 17A illustrates a screen showing user interaction with a displayed graph, in accordance with some embodiments. As illustrated in the figure, the graph data may comprise a time series graph. The user has may place a cursor (e.g., a mouse pointer, a finger, etc.) over a portion of a displayed time-series graph (similar to Figure 2A as performed in a graph application). For example, the user may select the portion of the time-series graph at the location of the cursor. In some embodiments, selection of the portion of the time-series graph at the location of the cursor causes a marker to appear at the selection in the time-series graph (similar to Figure 2B).

[0118] Furthermore, in some embodiments, a text box or other interface element contain information associated with an axis location corresponding to the marker may also be displayed. Because the axis data may be measured at a granularity that does not match each individual pixel, the selected portion of the time-series graph may correspond to a first time period. As such, selection of the portion of the time-series graph at the location of the cursor may include selecting all axis values within the first time period. In some cases, the displayed text box may display the range of values selected, an average value, and/or the like.

[0119] Figure 17B illustrates a screen showing a user changing a view of a displayed graph, in accordance with some embodiments. A user may click and drag the cursor in a desired direction in order to change the range displayed on the axis of the graph. For example, by dragging the cursor to the left, the user may move the range of values displayed on x-axis of the graph (time axis) to a new location having smaller values (earlier time values). In some embodiments, the user may also change a zoom level of a graph, add events or annotations to a graph (similar to how it would be performed in a graph application, as illustrated in Figures 5A-5B), and/or perform other types of interactions.

[0120] In some embodiments, the user may also perform manipulations on the actual data that is displayed. For example, the user may delete a data series from the displayed data, or specify a new data series to be displayed. In some embodiments, the user may be able to perform other types of manipulations capable of being performed in the native interface of the application that the data asset is associated with.

[0121] In some embodiments, the user may store any changes made to the displayed asset data (e.g., by clicking on a "save changes" button or other interface element). In some embodiments, changes may be saved automatically or periodically. In some embodiments, a change in the data or how the data is displayed may be reflected in the link associated with the data. For example, when changes to an asset in the project are saved, a new link may be generated that corresponds to the updated data and/or data display parameters. The asset may then be associated with the new link. On the other hand, if the user does not save the changes, a new link is not generated. As such, when the project is opened or re-loaded, the assets of the project will be displayed in the states as specified by the original links. Thus, the change(s) made by the user may not persist.

[0122] In some embodiments, a project may be stored as list or collection of assets. Each asset may be associated with a title, an order in the project, text (if a "note" asset), file or image data (if an "image" or "file" asset), a link (if a "link" or "URL" asset), and/or additional metadata (e.g., any annotations, comments, and/or the like). In some embodiments, a stored link may be in its raw unparsed form, or may already be pre-parsed to allow for faster processing.

[0123] In some embodiments, all assets associated with a project, regardless of type, maybe expressed as links. For example, a "note" asset may comprise a link pointing to text data stored in a data store associated with the projects application (e.g., asset data 1518, as illustrated in Figure 15), while an "image" or "file" asset may comprise a link pointing to a particular image or file stored on the data store. As such, each project may be stored as simply a collection of links. For example, in some embodiments, data for an asset (e.g., text, image, and/or file data) stored in the data store may be associated with a reference ID. A link pointing to the asset may contain the reference ID, which may be used to look up the asset data in the data store. Thus, the size of a stored project maybe very compact. In some embodiments, a project maybe stored as a "project link," the project link comprising a URL or URI, wherein the links corresponding to the assets of the project may be encoded into the URL/URI of the project link.

[0124] In some embodiments, one or more assets associated with a project may each be associated with some text and an optional file attachment. The file attachment may be stored in a data store associated with the projects application (e.g., asset data 1518, as illustrated in Figure 15), an external storage system, and/or other type of data store. In some embodiments, the text may contain a link that references the file attachment. In some embodiments, the text may also contain other types of data (e.g., display parameters).

Process for Displaying Link Assets

[0125] Figure 18 is a flowchart depicting an illustrative
operation of displaying asset data in a project, in accordance with some embodiments. At block 1802, a project may be created or selected. For example, a user may select a "new project" button or other interface element in order to initiate the creation of a new project. Alternatively, the user may select an existing project to be loaded.

At block 1804, one or more links may be identified. For example, after the user creates a new project, the user may specify one or more links to be included in the project. If the user loads an existing project, one or more links associated with the project may be identified.

At block 1806, a link from the one or more links is parsed. In some embodiments, the link may be parsed, analyzed with one or more regular expressions to determine an application, data source, and/or plug-in associated with the link. In some embodiments, parsing the link may comprise submitting the link to a plurality of plug-ins corresponding to applications or data sources that the links may be associated with. For example, the projects application may contain a first plug-in corresponding to a graph application, a second plug-in corresponding to an object explorer application, and/or one or more additional plug-ins corresponding to other applications. In some embodiments, each plug-in, upon receipt of the link, parses the link to determine if the link has a format that is associated with the application or data source corresponding to the plug-in. If so, the link may be deemed to be associated with the application or data source. In some embodiments, where display parameters (e.g., what data will be displayed, how the data will be displayed) associated with the link are encoded directly into the URL/URI of the link, parsing the link may comprise extracting the various display parameters from the URL/URI.

At block 1808, a determination is made as to whether or not the link is of a type associated with an application that has a corresponding plug-in. If the link is not associated with an application having a corresponding plug-in, then at block 1810, the link may simply be displayed on the projects application interface. In some embodiments, if the link corresponds to a particular file type (e.g., an image file, a text file, a PDF, and/or the like), the file may be displayed in the projects application. For example, for a link corresponding to an image, the image may be directly displayed on the projects application interface.

On the other hand, if the link is of a type associated with an application having a corresponding plug-in, then at block 1812, the plug-in is used to access the application associated with the link. At block 1814, data specified by the link is retrieved from the application. In some embodiments, the plug-in accesses an API associated with the application in order to request and receive the data. In some embodiments, the plug-in may use existing code and/or assets from the application in order to retrieve and format the requested data.

At block 1816, the retrieved data is displayed in the projects application in a format specified by the plug-in. In some embodiments, the plug-in may access existing code and/or assets of the application in order to display the data. In some embodiments, the format may be a format based upon a data display format of the application. For example, the data may be displayed in a format that emulates a look and feel of how the data would have been displayed in its native application. In addition, the data may be interactive in a manner similar to its native application, as described above. In some embodiments, the displayed format may be different from the native application format.

At block 1818, a determination is made as to whether there are more links associated with the project to be parsed. If so, the process returns to block 1806. On the other hand, if there are no more links to be parsed, the process ends at block 1820, whereupon a user may view the displayed data, perform manipulations on the displayed data, and/or the like.

Manipulating Displayed Link Data

Figure 19 is a flowchart depicting an illustrative operation for modifying or manipulating displayed link data, in accordance with some embodiments. At block 1902, a project is loaded. The project may be a new project or an existing saved project. At block 1904, data associated with a link is displayed. The link may be specified by a user, or, if the project is an existing saved project, a link may correspond to a saved link asset associated with the project. In some embodiments, the data may be displayed using the process illustrated in Figure 18.

At block 1906, a manipulation is performed on the displayed data. The manipulation may be a manipulation that would have been able to be performed on the data when displayed in its native application. In some embodiments, the manipulation may be performed in a manner that is the same or substantially similar to how it would have been performed in its native application. In some embodiments, a manipulation may change the way that the data is displayed. For example, the manipulation may change a zoom level on which the data is displayed, change a view of how the data is displayed, and/or the like. In some embodiments, a manipulation may change the data that is displayed. For example, the manipulation may comprise adding or deleting a data series from a graph, adding an annotation to an element of the displayed data, navigating to a different object in an object hierarchy, and/or the like.

For example, in some embodiments, the displayed data may comprise one or more time series graphs. A manipulation may comprise changing how the graphs are displayed, such as changing the zoom level or axis scale of a graph, panning across the axis of a graph, and/or the like. In some embodiments, the manipulation may comprise changing the actual data that is displayed. This may include changing the graphs that are...
displayed (e.g., deleting a graph from display, specifying additional data series to be displayed, etc.), adding events or markers onto one or more of the displayed graphs, combining or merging two or more graphs, and/or the like.

[0135] At block 1908, the link associated with the asset may be updated to reflect the changes and manipulations performed by the user. For example, a new link may be generated that reflects the updated asset data, which replaces the original link associated with the asset.

[0136] In some embodiments, some types of changes or manipulations may not be reflected in the link, but may instead be stored as asset metadata. These may include adding captions to displayed asset data and/or operations that normally are not performed by the application with which the link is associated with.

[0137] In some embodiments, a user may change or perform manipulations on displayed asset data when the asset data is displayed. In other embodiments, the user must first enter into an "edit" mode (e.g., by clicking on an "edit" button or other interface element) for the asset in order to make changes or perform manipulations on the data associated with the asset.

[0138] In some embodiments, any changes or manipulations performed on the data do not cause the link to be updated until the data is saved. In some embodiments, this requires a user to click a “save” button or interact with some other interface element. In some embodiments, data may be saved automatically or periodically. On the other hand, if the user chooses not to save, no updated link is generated. Instead, the project asset may continue to be associated with its original link, such that when the project is re-opened or re-loaded, the data associated with the asset will be displayed in its original pre-manipulation state as specified by the original link.

Read/Write Privileges

[0139] It is often desirable for a user to be able to share a project with other users. For example, a project may be shared between multiple users in a collaborative environment, with different users being able to view, add to, and modify the data assets in the project. In some cases, a user may wish to submit a project to be viewed by a supervisor or committee.

[0140] In some embodiments, a project may be associated with one or more user groups. For example, a first group of users may be allowed both read and write access to the project. In addition, the project may also be associated with a second group of users who only have read access to the project. In some embodiments, additional user groups may be specified with different levels of privileges (e.g., be able to add new assets, but not delete or modify existing assets).

[0141] In some embodiments, multiple users may be able to view and edit a particular project concurrently. When performing changes on modifications on asset data in the project, each asset in the project may be considered independently. For example, if a first user is editing a first asset in a particular project, a second user may concurrently edit a second, different asset or add new assets to the project. On the other hand, if the first user is editing a first asset, the second user may be prevented from editing the same asset, or be notified that any edits made to the asset will not be able to be saved.

[0142] In some embodiments, different users modifying and saving a project may create snapshots of the project. As such, if another user modifies the project, the earlier saved versions of the project may be retrieving using the snapshots. In some embodiments, a snapshot may be taken each time a different user modifies the project. In some embodiments, a user may specify when saving a project whether or not a snapshot should be taken. In some embodiments, taking a snapshot may comprise generating a project link corresponding to the snapshot. As such, each snapshot may simply be an updated list of links. The project link corresponding to the snapshot may be easily shared between users. Because the links of the assets associated with the project may be extracted from the project link in the state they were in at the time the snapshot was made, even if the project is modified at a later time, the version of the project corresponding to the snapshot may still be loaded using the project link.

Implementation Mechanisms

[0143] According to one embodiment, the techniques described herein are implemented by one or more special-purpose computing devices. The special-purpose computing devices may be hard-wired to perform the techniques, or may include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or may include one or more general purpose hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination. Such special-purpose computing devices may also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques. The special-purpose computing devices may be desktop computer systems, server computer systems, portable computer systems, handheld devices, networking devices or any other device or combination of devices that incorporate hard-wired and/or program logic to implement the techniques.

[0144] Computing device(s) are generally controlled and coordinated by operating system software, such as iOS, Android, Chrome OS, Windows XP, Windows Vista, Windows 7, Windows 8, Windows Server, Windows CE, Unix, Linux, SunOS, Solaris, iOS, BlackBerry OS, X-Windows, or other compatible operating systems. In other embodiments, the computing device may be controlled by a proprietary operating system. Conventional operating systems control and schedule computer processes...
for execution, perform memory management, provide file system, networking, I/O services, and provide a user interface functionality, such as a graphical user interface ("GUI"), among other things.

[0145] For example, Figure 20 is a block diagram that illustrates a computer system 2000 upon which various embodiments may be implemented. For example, any of the computing devices discussed herein may include some or all of the components and/or functionality of the computer system 2000.

[0146] Computer system 2000 includes a bus 2002 or other communication mechanism for communicating information, and a hardware processor, or multiple processors, 2004 coupled with bus 2002 for processing information. Hardware processor(s) 2004 may be, for example, one or more general purpose microprocessors.

[0147] Computer system 2000 also includes a main memory 2006, such as a random access memory (RAM), cache and/or other dynamic storage devices, coupled to bus 2002 for storing information and instructions to be executed by processor 2004. Main memory 2006 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 2004. Such instructions, when stored in storage media accessible to processor 2004, render computer system 2000 into a special-purpose machine that is customized to perform the operations specified in the instructions. Main memory 2006 may also store cached data, such as zoom levels and maximum and minimum sensor values at each zoom level.

[0148] Computer system 2000 further includes a read only memory (ROM) 2008 or other static storage device coupled to bus 2002 for storing static information and instructions for processor 2004. A storage device 2010, such as a magnetic disk, optical disk, or USB thumb drive (Flash drive), etc., is provided and coupled to bus 2002 for storing information and instructions. For example, the storage device 2010 may store measurement data obtained from a plurality of sensors.

[0149] Computer system 2000 may be coupled via bus 2002 to a display 2012, such as a cathode ray tube (CRT) or LCD display (or touch screen), for displaying information to a computer user. For example, the display 2012 can be used to display any of the user interfaces described herein with respect to Figures 1 through 11D. An input device 2014, including alphanumeric and other keys, is coupled to bus 2002 for communicating information and command selections to processor 2004. Another type of user input device is cursor control 416, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 2004 and for controlling cursor movement on display 2012. This input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane. In some embodiments, the same direction information and command selections as cursor control may be implemented via receiving touches on a touch screen without a cursor.

[0150] Computing system 2000 may include a user interface module to implement a GUI that may be stored in a mass storage device as executable software codes that are executed by the computing device(s). This and other modules may include, by way of example, components, such as software components, object-oriented software components, class components and task components, processes, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.

[0151] In general, the word "module," as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, Lua, C or C++. A software module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules may be callable from other modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software modules configured for execution on computing devices may be provided on a computer readable medium, such as a compact disc, digital video disc, flash drive, magnetic disc, or any other tangible medium, or as a digital download (and may be originally stored in a compressed or installable format that requires installation, decompression or decryption prior to execution). Such software code may be stored, partially or fully, on a memory device of the executing computing device, for execution by the computing device. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors. The modules or computing device functionality described herein are preferably implemented as software modules, but maybe represented in hardware or firmware. Generally, the modules described herein refer to logical modules that may be combined with other modules or divided into sub-modules despite their physical organization or storage.

[0152] Computer system 2000 may implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 2000 to be a special-purpose machine. According to one embodiment, the techniques herein are performed by computer system 2000 in response to processor(s) 2004 executing one or more sequences of one or more instructions contained in main memory 2006. Such instructions may be read into main memory 2006 from another storage medium, such as storage device 2010. Execution of
the sequences of instructions contained in main memory 2006 causes processor(s) 2004 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry maybe used in place of or in combination with software instructions.

[0153] The term "non-transitory media," and similar terms, as used herein refers to any media that store data and/or instructions that cause a machine to operate in a specific fashion. Such non-transitory media may comprise non-volatile media and/or volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 2010. Volatile media includes dynamic memory, such as main memory 2006. Common forms of non-transitory media include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge, and networked versions of the same.

[0154] Non-transitory media is distinct from but may be used in conjunction with transmission media. Transmission media participates in transferring information between non-transitory media. For example, transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 2002. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.

[0155] Various forms of media maybe involved in carrying one or more sequences of one or more instructions to processor 2004 for execution. For example, the instructions may initially be carried on a magnetic disk or solid state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modern local to computer system 2000 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 2002. Bus 2002 carries the data to main memory 2006, from which processor 2004 retrieves and executes the instructions. The instructions received by main memory 2006 may retrieve and execute the instructions. The instructions received by main memory 2006 may optionally be stored in storage device 2010 either before or after execution by processor 2004.

[0156] Computer system 2000 also includes a communication interface 2018 coupled to bus 2002. Communication interface 2018 provides a two-way data communication coupling to a network link 2020 that is connected to a local network 2022. For example, communication interface 2018 may be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 2018 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN (or WAN component to communicate with a WAN). Wireless links may also be implemented. In any such implementation, communication interface 2018 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.

[0157] Network link 2020 typically provides data communication through one or more networks to other data devices. For example, network link 2020 may provide a connection through local network 2022 to a host computer 2024 or to data equipment operated by an Internet Service Provider (ISP) 2026. ISP 2026 in turn provides data communication services through the world wide packet data communication network now commonly referred to as the "Internet" 2028. Local network 2022 and Internet 2028 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 2020 and through communication interface 2018, which carry the digital data to and from computer system 2000, are example forms of transmission media.

[0158] Computer system 2000 can send messages and receive data, including program code, through the network(s), network link 2020 and communication interface 2018. In the Internet example, a server 2030 might transmit a requested code for an application program through Internet 2028, ISP 2026, local network 2022 and communication interface 2018.

[0159] The received code may be executed by processor 2004 as it is received, and/or stored in storage device 2010, or other non-volatile storage for later execution.

Terminology

[0160] Each of the processes, methods, and algorithms described in the preceding sections may be embodied in, and fully or partially automated by, code modules executed by one or more computer systems or computer processors comprising computer hardware. The processes and algorithms may be implemented partially or wholly in application-specific circuitry.

[0161] The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described blocks or states may be performed in an order other than that specifically disclosed, or multiple blocks or states may be combined in a single block or state. The example blocks or states may be performed in serial, in parallel,
or in some other manner. Blocks or states may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.

[0162] Conditional language, such as, among others, "can," "could," "might," or "may," unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.

[0163] The term "comprising" as used herein should be given an inclusive rather than exclusive interpretation. For example, a general purpose computer comprising one or more processors should not be interpreted as excluding other computer components, and may possibly include such components as memory, input/output devices, and/or network interfaces, among others.

[0164] Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art.

[0165] It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways.

[0166] As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims.

Claims

1. A computing system configured to access and display data from a plurality of different applications or data sources, the computing system comprising:

 a computer processor;
 a database storing one or more projects and one or more plug-ins, wherein each of the one or more projects includes a respective one or more links, wherein at least some of links encode data indicative of at least:
 a corresponding external application or data source,
 data of the corresponding external application or data source to be accessed, and
 a format in which the data to be accessed from the corresponding external application or data source is to be displayed; and
 a computer readable storage medium storing program instructions configured for execution by the computer processor in order to cause the computing system to:

 access, from the database, a first project of the one or more projects;
 identify a first link included in the first project;
 analyze the first link to determine a first corresponding application or data source associated with a first plug-in of the one or more plug-ins:

 based on the first plug-in, access the corresponding application or data source;
 retrieve data from the corresponding application or data source as indicated by the first link; and
 display the retrieved data in a format indicated by the first link such that the displayed data is interactively accessible to a user as if the displayed data were displayed natively by the corresponding application or data source.

2. The computing system of claim 1, wherein the first plug-in corresponds to an application for creating...
one or more graphs from a plurality of stored data points.

3. The computing system of claim 2, wherein the first link specifies one or more graphs created using stored data points.

4. The computing system of any preceding claim, wherein accessing the corresponding application or data source comprises submitting an authentication token to the application or data source, and wherein the authentication token allows first the plug-in to retrieve a first portion of the data but not a second portion of the data from the corresponding application or data source.

5. The computing system of any preceding claim, wherein the first plug-in corresponds to an application for providing a hierarchy of objects associated with one or more data entities.

6. The computing system of claim 5, wherein the first link corresponds to a particular object associated with a data entity of the one or more data entities, and wherein the retrieved data is displayed as a representation of the object and a breadcrumb trail indicating a position of the object within the hierarchy.

7. The computing system of claim, wherein the program instructions are further configured to causing the computing system to, in response to a determination that a plug-in associated with the corresponding external application or data source does not exist, display the link as text.

8. The computing system of any preceding claim, wherein the first link comprises a URL.

9. The computing system of claim 8, wherein the URL corresponds to an image, and wherein the program instructions cause the computing system to display the image specified by the URL.

10. The computing system of any preceding claim, wherein a project of the one or more projects may be further associated with one or more pieces of text entered by a user or one or more uploaded files.

11. The computing system of any preceding claim, wherein the program instructions are further configured to cause the computing system to:

 receive a first indication from the user of a modification to be made to at least a portion of the displayed data associated with the first link;
 perform the modification on the displayed data in response to the received indication; and
 generate a first updated link based at least in part upon the modification to the displayed data.

12. The computing system of claim 11, wherein the program instructions are further configured to cause the computing system to:

 in response to receiving a second indication from a second user of a second modification to be made to at least a portion of the displayed data associated with the first link, preventing a second updated link based at least in part upon the second modification from being generated, if the second indication is received between the receipt of the first indication and the generation of the first updated link.

13. The computing system of any preceding claim, wherein a project of the one or more projects is associated with a project link, wherein the one or more links included in the project are encoded within the text of the project link.
Graph 2

Event 3: Graph 2: Series 1
2014-05-21 2:45 am
No temperature reading detected

Water Allocation
- **510A**
- **530**
- **620**
- **540**
- **510B**

Temperature
- **520A**
- **610**
- **550**

W1: Water Alloc.
100.0-2300.4 Gals.

W1: Temp.
46.11-65.398 °C

FIG. 6A
Graph 2

Event 3: Graph 2: Series 1
2014-05-21 2:45am
No temperature reading detected

Steamer overheated
Tag Series Series 1
CANCEL SAVE

W1: Water Alloc.
100.0-2300.4 Gals.

W1: Temp.
46.11-65.398 °C

FIG. 6B
Event 1: Graph 1: Series 1
2014-04-15 10:30am
Aborted opening of valve

Event 2: Graph 1: Series 1
2014-05-12 4:35pm
Detected water pressure is low

Event 3: Graph 2: Series 1
2014-05-21 2:45am
No temperature reading detected

FIG. 8A
Figure 8B

Alert:
Water allocation values exceed threshold

Event 1: Graph 1: Series 1
2014-04-15 10:30am
Aborted opening of valve

Event 2: Graph 1: Series 1
2014-05-12 4:35pm
Detected water pressure is low

Event 3: Graph 2: Series 1
2014-05-21 2:45am
No temperature reading detected

W1: Water Alloc. 100.0-2300.4 Gals.
W1: Temp. 46.11-65.398 °C
WELL #1

Producer

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spud Date:</td>
<td>March 1, 2000 12:00:00 -00:00</td>
</tr>
<tr>
<td>Completion Date:</td>
<td>August 2, 2000 16:35:00 -00:00</td>
</tr>
<tr>
<td>Water Depth:</td>
<td>100m</td>
</tr>
<tr>
<td>Well Length:</td>
<td>10m</td>
</tr>
<tr>
<td>True Vertical Depth:</td>
<td>160m</td>
</tr>
<tr>
<td>Region:</td>
<td>West</td>
</tr>
<tr>
<td>Field:</td>
<td>Chamber</td>
</tr>
<tr>
<td>Platform:</td>
<td>Jane</td>
</tr>
<tr>
<td>Block:</td>
<td>5</td>
</tr>
<tr>
<td>Slot:</td>
<td>12</td>
</tr>
<tr>
<td>Objectives:</td>
<td>To start production</td>
</tr>
</tbody>
</table>

FIG. 10A
WELL #1

Producer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spud Date</td>
<td>March 1, 2000 12:00:00 -00:00</td>
</tr>
<tr>
<td>Completion Date</td>
<td>August 2, 2000 16:35:00 -00:00</td>
</tr>
<tr>
<td>Water Depth</td>
<td>100m</td>
</tr>
<tr>
<td>Well Length</td>
<td>10m</td>
</tr>
<tr>
<td>True Vertical Depth</td>
<td>160m</td>
</tr>
<tr>
<td>Region</td>
<td>West</td>
</tr>
<tr>
<td>Field</td>
<td>Chamber</td>
</tr>
<tr>
<td>Platform</td>
<td>Jane</td>
</tr>
<tr>
<td>Block</td>
<td>5</td>
</tr>
<tr>
<td>Slot</td>
<td>12</td>
</tr>
<tr>
<td>Objectives</td>
<td>To start production</td>
</tr>
</tbody>
</table>
WELL #1

<table>
<thead>
<tr>
<th>Profile</th>
<th>Well Communication Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors</td>
<td>Oil/Gas/Water</td>
</tr>
<tr>
<td>History and Events</td>
<td>Well Work</td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>CPI</td>
<td>Comp. Diagram</td>
</tr>
</tbody>
</table>

Well #2 Injector

Spud Date:	March 1, 2000 12:00:00 -00:00
Completion Date:	August 2, 2000 16:35:00 -00:00
Water Depth:	100m
Well Length:	10m
True Vertical Depth:	160m

Region:	West
Field:	Chamber
Platform:	Jane
Block:	5
Slot:	12
Objectives:	Drill water injector in field

FIG. 11D
Generate user interface data for rendering an interactive user interface, where the interactive user interface includes a first graph in a first container and a second graph in a second container that has a same width as the first container, where the first graph includes first sensor values over a first time period and the second graph includes second sensor values over a second time period that is shorter than the first time period.

Receive an identification of a selection of a first data point in the first graph that corresponds to a first time range.

Update the user interface data such that the interactive user interface includes a first marker at a location of the first data point in the first graph.

Access the database to determine a second sensor value that corresponds to a beginning of the first time range and a second sensor value that corresponds to an end of the first time range.

Update the user interface data to include a second marker at a location of a second data point in the second graph that corresponds to the beginning of the first time range and a third marker at a location of a third data point in the second graph that corresponds to the end of the first time range.

FIG. 12
On this page you will see all assets that have been added to the project. Assets are anything related to your process of exploring a problem or the resulting analysis - images, charts, web pages, links, comments, documents.

Target started, add an asset to your project. You only need a URL, and the project will take care of displaying the information for you. Try keeping all of your thoughts together with the assets to organize your analysis and collaborate.
Summary goes here
Create or load Project

Identify one or more links to content

Parse link

Link of type associated with a plug-in?

Use plug-in to access application associated with link

Display Link URL or Image corresponding to Link

Retrieve data associated with link

Display retrieved data in format specified by plug-in

More Links?

End

FIG. 18
1900

1902 Load project

1904 Display data associated with link

1906 Perform a manipulation on the displayed data

1908 Update link based upon manipulation

FIG. 19
DOCTOMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>Classification of the Application (IPC)</th>
</tr>
</thead>
</table>

TECHNICAL FIELDS SEARCHED (IPC)

G06F

The present search report has been drawn up for all claims

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munich</td>
<td>22 September 2016</td>
<td>Krawaritis, Achilles</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

X: particularly relevant if taken alone
Y: particularly relevant if combined with another document of the same category
A: technological background
O: non-written disclosure
P: intermediate document

T: theory or principle underlying the invention
E: earlier patent document, but published on, or after the filing date
D: document cited in the application
L: document cited for other reasons

&: member of the same patent family, corresponding document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 22-09-2016.

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2011074788 A1</td>
<td>31-03-2011</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description