EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

Date of publication: 14.12.2016 Bulletin 2016/50

Application number: 16745826.7

Date of filing: 20.01.2016

Int Cl.: B60P 7/06 (2006.01)

International application number: PCT/CN2016/000035

International publication number: WO 2016/127725 (18.08.2016 Gazette 2016/33)

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LT LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
MA MD

Priority: 12.02.2015 CN 201510074040

Applicant: Ningbo Xuli Metal Products Co., Ltd Ningbo, Zhejiang 315112 (CN)

Inventors:
• CHEN, Weiguo
 Ningbo Zhejiang 315112 (CN)
• CHEN, Yanqiong
 Ningbo Zhejiang 315112 (CN)
• MA, Fengquan
 Ningbo Zhejiang 315112 (CN)

Representative: Orr, Robert
Urquhart-Dykes & Lord LLP
Arena Point
Merrion Way
Leeds LS2 8PA (GB)

ANTI-SLIP ECCENTRIC SAFETY TENSION DEVICE FOR VEHICLE

An anti-slip safety tensioning device for automobile, comprises a driving handle assembly (1), an eccentric shaft (2), a support assembly (3), a long band (22) and a short band (21); characterized in that, the driving handle assembly (1) is located between a pair of support lateral plates (15) of the support assembly (3), and can be rotatable relative to the eccentric shaft (2); and when the driving handle assembly (1) is folded, the eccentric shaft (2) is located on a rear side of the top shaft (11) and the eccentric bulge (25) of the eccentric shaft (2) faces the top shaft (11); the long band (22) having a free end wrapped around the eccentric shaft (2), and the free end passes through the gap between the eccentric shaft (2) and the top shaft (11). When in unfolded state, there is a largest gap between the top shaft and the eccentric shaft. Therefore it is convenient for let the long band to pass through; when in folded state, the gap between the top shaft and the eccentric shaft is reduced, and the long band can be compressed, so that anti-slip safety tensioning is achieved.

Fig. 1
Description

Field of the Invention

[0001] The present invention relates to a safety tensioning device which can be convenient for tensioning and fixing cargos, in particular to an anti-slip safety tensioning device, which is applicable to aviation, sea transportation, automobiles, trucks, trailers, motorcycles, etc.

Description of the Prior Art

[0002] A safety tensioning device is generally made up of a tensioning device main body, a long band, a short band, etc. By using an existing safety tensioning device, cargos can be tightly tensioned in the beginning, and the transportation safety of cargos can be efficiently ensured. However, during long-distance transportation, due to bumps and vibrations and other factors, a safety tensioning device, particularly a safety tensioning device for aviation, is greatly influenced by the weather and the air pressure. The tensioned cargos are subjected to resonance so that the tensioning woven tapes slide within the tensioning device, and as a result, the cargos are not fully tensioned. This will have a certain impact on the tensioning safety of cargos and there are potential hazards of safety accidents.

Summary of the Invention

[0003] The technical problem to be solved by the present invention is to, in view of the prior art, provide an anti-slip safety tensioning device for automobile, which is simple in structure and convenient in operation, and can avoid the loosening of cargos during transportation and improve the transportation safety of cargos.

[0004] To solve the technical problem mentioned above, the anti-slip safety tensioning device for automobile comprises a driving handle assembly, a support assembly, a long band and a short band; characterized in that, the driving handle assembly is rotatable relative to the support assembly;

[0005] the support assembly comprises a pair of support lateral plates, an eccentric shaft having an eccentric bulge and two ends respectively inserted into the two support lateral plates, and a plurality of connecting shafts disposed between the two support lateral plates; the driving handle assembly comprises a pair of driving handle lateral plates, a top shaft located at a front side of the driving handle assembly and between two driving handle lateral plates, and a barrier assembly located at a rear side of the driving handle assembly and between two driving handle lateral plates; the driving handle assembly is located between the two support lateral plates, and the two ends of the eccentric shaft respectively pass through the two driving handle lateral plates enabling the whole driving handle assembly to be rotatable around the eccentric shaft to achieve unfolding and folding of the driving handle assembly relative to the support assembly; and when the driving handle assembly is folded relative to the support assembly, the eccentric shaft is located on a rear side of the top shaft and the eccentric bulge of the eccentric shaft faces the top shaft; the long band having a free end wrapped around the eccentric shaft, and the free end of the long band passes through the gap between the eccentric shaft and the top shaft.

[0006] Preferably, the barrier assembly include a connecting barrier and a fixed plate disposed adjacent to each other and between the two driving handle lateral plates, and a spring disposed between the connecting barrier and the fixed plate; the connecting barrier has two stopper portions disposed at opposite sides thereof, and corresponding, each support lateral plate has a slot for receiving each stopper portion, the two stopper portions and the slots of the two support lateral plates forms a locking mechanism between the connecting barrier and the two support lateral plates of the support assembly, when each stopper portion inserts into a corresponding slot, the driving handle assembly is locked with the support assembly.

[0007] Preferably, each end of the eccentric shaft has two steps defining two vertical step surfaces and a transverse step surface between the two vertical step surfaces, the two vertical step surfaces are an inner vertical step surface resting against the driving handle lateral plates and an outer vertical step surface resting again the support lateral plate, the transverse step surface is used for pivoting the driving handle assembly.

[0008] Preferably, each end of the eccentric shaft has a non-circular periphery, each support lateral plate of the support assembly has a non-circular hole for receiving the end of the eccentric shaft, the support plate prevents rotation of the eccentric shaft.

[0009] Preferably, each end of the top shaft has a non-circular periphery, each driving handle lateral plate has a non-circular hole for receiving the end of the top shaft, the driving handle lateral plate prevents rotation of the top shaft.

[0010] The plurality of connecting shafts disposed between the two support lateral plates include: a first round shaft rotatably located at the front side of the two support lateral plates; a second round shaft and a third round shaft both rotatably located at the rear side of the two support lateral plates; the short band is wound onto the first round shaft.

[0011] Preferably, the fixed plate has a tongue extending downward, for clamping of the spring.

[0012] When the tensioning device is in use, when the driving handle assembly is shaken counterclockwise, it rotates through the eccentric shaft. When the driving handle assembly rotates to the top end of the support, there is large gap between the top shaft of the driving handle and the eccentric shaft, thus it is convenient for operators to pass woven tapes. After passing the woven tapes as required, the driving handle assembly is shaken clockwise to the tail of the support, and the woven tapes are
tightly tensioned to fasten cargos. Now, the gap between the top shaft of the driving handle and the eccentric shaft is reduced, and the woven tapes are compressed; and the connecting barrier is clamped into the slots on the two support lateral plates, so that the purpose of anti-slip safety tensioning can be achieved.

[0013] Compared with the prior art, the present invention has the following advantages: in the present invention, a driving handle assembly and a support assembly are connected through an eccentric shaft for connecting bands, and the size of the gap between the top shaft of the driving handle assembly and the eccentric shaft is changed by the unfolding or folding of the driving handle assembly, so that the bands passing the gap are loosened or compressed. Therefore, the present invention is simple and reasonable in structure and convenient in operation, so that the loosening of cargos can be avoided efficiently during transportation and the transportation safety of cargos is greatly improved.

Brief Description of the Drawings

[0014] Fig. 1 is a schematic diagram of an anti-slip safety tensioning device for automobile according to an embodiment of the present invention (when a driving handle assembly is unfolded);

Fig. 2 is a schematic diagram of the anti-slip safety tensioning device according to the embodiment of the present invention (when the driving handle assembly is folded);

Fig. 3 is an exploded view of the anti-slip safety tensioning device according to the embodiment of the present invention;

Fig. 4 is another exploded view of the anti-slip safety tensioning device according to the embodiment of the present invention; and

Fig. 5 is a perspective view of the anti-slip safety tensioning device according to the embodiment of the present invention.

Detailed Description of the Preferred Embodiment

[0015] To enable a further understanding of the present invention content of the invention herein, refer to the detailed description of the invention and the accompanying drawings below:

[0016] Fig. 1 - Fig. 5 show a preferred embodiment of an anti-slip safety tensioning device for automobile of the present invention. The tensioning device comprises a driving handle assembly 1, a support assembly 3, a long band 22 and a short band 21.

[0017] The driving handle assembly 1 is rotatable relative to the support assembly 3 to realize unfolding and folding; the driving handle assembly 1 mainly comprises a pair of driving handle lateral plates 4, a top shaft 11 and a barrier assembly; the top shaft 11 and the barrier assembly are respectively connected to a front end and a rear end of the two driving handle lateral plates 4, to connect the two driving handle lateral plates 4; and non-circular holes are provided at front ends of the two driving handle lateral plates 4; while non-circular portions having a non-circular section are provided at two ends of the top shaft 11; by coordination and fixation of the non-circular holes of the two driving handle lateral plates 4 and the non-circular portions at the two ends of the top shaft 11, the rotation of the top shaft 11 relative to the two driving handle lateral plates 4 is limited.

[0018] The barrier assembly includes a connecting barrier 8, a spring 7 and a fixed plate 5. A connecting barrier slot 23 and a fixed plate slot 24 in which the connecting barrier 8 and the fixed plate 5 are clamped are sequentially provided on the tails of the two driving handle lateral plates 4; the tails of the two driving handle lateral plates 4 are connected and fixed through the fixed plate 5, and a downward-facing cut-tongue 6 for clamping the spring 7 is provided in the middle of the fixed plate 5. The connecting barrier 8 has two stopper portions 9 disposed at opposite sides thereof; after the connecting barrier 8 passes through the connecting barrier slot 23 of the two driving handle lateral plates 4, its overhung stopper portions 9 respectively fall on the two support lateral plates 15 of the support assembly; and slots 18 into which the stopper portions 9 are clamped are respectively formed behind the non-circular holes, for mounting the top shafts 11, of the two driving handle lateral plates 4, and adjacent to the non-circular holes.

[0019] The support assembly 3 comprises a pair of support lateral plates 15, and the eccentric shaft 2 having two ends respectively inserted into the two support lateral plates 15, and a plurality of connecting shafts are disposed between the two support lateral plates 15. In this embodiment, the plurality of connecting shafts include a first round shaft 19, a second round shaft 16 and a third round shaft 17, characterized in that, the second round shaft 16 and the third round shaft 17 are sequentially provided on the tails of the two support lateral plates 15, the second round shaft 16 fixes two support lateral plates 16, and the third round shaft 17 is freely rotatable. In this way, it is convenient for the drawing of the long band 22. The first round shaft 19 is rotatably located at the front side of the two support lateral plates 15, the short band 21 is wound onto the first round shaft 19. Non-circular holes 20 are formed in the middle parts of the two support lateral plates 15, so that the two support lateral plates 15 of the support assembly and two ends of the eccentric shaft 2 are coordinated and fixed respectively through...
the non-circular holes 20 and non-circular portions coordinated with the non-circular holes, to limit the rotation of the eccentric shaft 2.

[0020] The driving handle assembly 1 is located between the two support lateral plates 15 of the support assembly 3, and they are connected through the eccentric shaft 2. Each end of the eccentric shaft 2 is in non-circular shape, and has two steps defining two vertical step surfaces 12, 13 and a transverse step surface 14 between the two vertical step surfaces 12, 13, the two vertical step surfaces 12, 13 are an inner vertical step surface 12 resting against the driving handle lateral plates 4 and an outer vertical step surface 13 resting against the support lateral plate 15, the transverse step surface 14 is used for pivoting the driving handle assembly 1, to make the driving handle assembly 1 rotatable about the eccentric shaft 2.

[0021] The diameter of the circular holes 10 on the two driving handle lateral plates 4, for the eccentric shaft 2 to run through, is less than the size of a longitudinal section of an eccentric bulge 25 in the eccentric shaft 2, so that two sides (i.e., the step 12 on the inner side) of the eccentric bulge 25 are clamped between the two driving handle lateral plates 4 and the whole eccentric shaft 2 cannot slide out from the two driving handle lateral plates 4 accordingly.

[0022] Furthermore, when the driving handle assembly 1 is in the folded state, the eccentric shaft 2 is located on a rear side of the top shaft 11; and an eccentric bulge 25 is provided on the eccentric shaft 2 and faces a side of the top shaft 11. After the free end of the long band 22 passes between the second round shaft 16 and the third round shaft 17, it bypasses the eccentric shaft 2 and passes through the gap between the eccentric shaft 2 and the top shaft 11.

[0023] As shown in Fig. 1 and Fig. 2, when the driving handle assembly 1 is shaken counterclockwise, it rotates about the smooth circumferential surface 14 of the eccentric shaft 2. When the driving handle assembly 1 rotates to the top end of the support assembly 3, there is a largest gap (as indicated by gap A of Fig. 1) between the top shaft 11 of the driving handle and the eccentric shaft 2. Thus, it is convenient for operators to pass the long band 22. After passing the woven tapes as required, the driving handle assembly 1 is shaken clockwise to the tail of the support assembly 3, and the woven tapes are tightened to fasten cargos. Meanwhile, the gap between the top shaft 11 of the driving handle assembly 1 and the eccentric shaft 2 is reduced (as indicated by gap B of Fig. 2), and the woven tapes are compressed (but not fully compressed) to lock the woven tapes, so that the anti-slip performance is improved. The connecting barrier 8 is engaged into the connecting barrier slot 18 of the support lateral plates 15. In this way, anti-slip safety tensioning is realized.

Claims

1. An anti-slip safety tensioning device for automobile, comprising a driving handle assembly (1), a support assembly (3), a long band (22) and a short band (21); the driving handle assembly (1) is rotatable relative to the support assembly (3); characterized in that, the support assembly (3) comprises a pair of support lateral plates (15), an eccentric shaft (2) having an eccentric bulge (25) and two ends respectively inserted into the two support lateral plates (15), and a plurality of connecting shafts (19,16,17) disposed between the two support lateral plates (15); the driving handle assembly (1) comprises a pair of driving handle lateral plates (4), a top shaft (11) located at a front side of the driving handle assembly (1) and between two driving handle lateral plates, and a barrier assembly located at a rear side of the driving handle assembly (1) and between two driving handle lateral plates; the driving handle assembly (1) is located between the two support lateral plates (15), and the two ends of the eccentric shaft (2) respectively pass through the two driving handle lateral plates (4) enabling the whole driving handle assembly (1) be rotatable around the eccentric shaft (2) to achieve unfolding and folding of the driving handle assembly (1) relative to the support assembly (3); and when the driving handle assembly (1) is folded relative to the support assembly (3), the eccentric shaft (2) is located on a rear side of the top shaft (11) and the eccentric bulge (25) of the eccentric shaft (2) faces the top shaft (11); the long band (22) having a free end wrapped around the eccentric shaft (2), and the free end of the long band (22) passes through the gap between the eccentric shaft (2) and the top shaft (11).

2. The tensioning device of claim 1, characterized in that, the barrier assembly includes a connecting barrier (8) and a fixed plate (5) disposed adjacent to each other and between the two driving handle lateral plates (4), and a spring (7) disposed between the connecting barrier (8) and the fixed plate (5); the connecting barrier (8) has two stopper portions (9) disposed at opposite sides thereof, and correspondingly, each support lateral plate (15) has a slot (18) for receiving each stopper portion (9), the two stopper portions (9) and the slots (18) of the two support lateral plates (15) forms a locking mechanism between the connecting barrier (8) and the two support lateral plates (15) of the support assembly (3), when each stopper portion (9) inserts into a corresponding slot (18), the driving handle assembly (1) is locked with the support assembly (3).

3. The tensioning device of claim 1 according to claim
2. characterized in that, each end of the eccentric shaft (2) has two steps defining two vertical step surfaces (12,13) and a transverse step surface (14) between the two vertical step surfaces (12, 13), the two vertical step surfaces (12,13) are an inner vertical step surface (12) resting against the driving handle lateral plates (4) and an outer vertical step surface (13) resting again the support lateral plate (15), the transverse step surface (14) is used for pivoting the driving handle assembly (1).

4. The tensioning device of claim 3, characterized in that, each end of the eccentric shaft (2) has a non-circular periphery, each support lateral plate (15) of the support assembly (3) has a non-circular hole (20) for receiving the end of the eccentric shaft (2), the support plate (15) prevents rotation of the eccentric shaft (2).

5. The tensioning device of claim 1 according to claim 2, characterized in that, each end of the top shaft (11) has a non-circular periphery, each driving handle lateral plate (4) has a non-circular hole (20) for receiving the end of the top shaft (11), the driving handle lateral plate prevents rotation of the top shaft (11).

6. The tensioning device of claim 1 according to claim 2, characterized in that, the plurality of connecting shafts (19, 16, 17) disposed between the two support lateral plates (15) include: a first round shaft (19) rotatably located at the front side of the two support lateral plates (15); a second round shaft (16) and a third round shaft (17) both rotatably located at the rear side of the two support lateral plates (15); the short band (21) is wound onto the first round shaft (19).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

B60P 7/06 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B60P; A44B;

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNABS, VEN, CNKI ecentric+, offcenter, offcenter, decenterat+, cam+, ratchet, tie down

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2007220175 A1 (MACK STEVEN J ESQ) 27 September 2007 (27.09.2007) the whole document</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>CN 101611786 A (AMSAFE BRIDPORT LTD.) 06 January 2010 (06.01.2010) embodiment 1</td>
<td>1-6</td>
</tr>
<tr>
<td>PX</td>
<td>CN 204641526 U (NINGBO XULI METAL PROD CO., LTD.) 16 September 2015 (16.09.2015) embodiments</td>
<td>1-6</td>
</tr>
<tr>
<td>PX</td>
<td>CN 104648219 A (NINGBO XULI METAL PROD CO., LTD.) 27 May 2015 (27.05.2015) embodiments</td>
<td>1-6</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 - “A” document defining the general state of the art which is not considered to be of particular relevance
 - “E” earlier application or patent but published on or after the international filing date
 - “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - “O” document referring to an oral disclosure, use, exhibition or other means
 - “P” document published prior to the international filing date but later than the priority date claimed
 - “T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - “X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - “Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - “Z” document member of the same patent family

Date of the actual completion of the international search

01 March 2016

Date of mailing of the international search report

22 April 2016

Name and mailing address of the ISA

State Intellectual Property Office of the P. R. China
No. 6, Xitucheng Road, Jimenqiao
Haidian District, Beijing 100088, China
Facsimile No. (86-10) 62019451

Authorized officer

LI, Mei

Telephone No. (86-10) 62085386

Form PCT/ISA/210 (second sheet) (July 2009)
INTERNATIONAL SEARCH REPORT
Information on patent family members

<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2007220715 A1</td>
<td>27 September 2007</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 101617874 A</td>
<td>06 January 2010</td>
<td>GB 2461521 A</td>
<td>06 January 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2461521 B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 0811977 D0</td>
<td>07 November 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101617874 B</td>
<td>30 July 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8291552 B2</td>
<td>09 July 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010000061 A1</td>
<td>23 October 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5173996 A</td>
<td>07 January 2010</td>
</tr>
<tr>
<td></td>
<td>29 December 1992</td>
<td>GB 2271403 B</td>
<td>23 August 1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2080196 C</td>
<td>17 October 1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2271403 A</td>
<td>13 April 1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 9221135 D0</td>
<td>25 November 1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2080196 A1</td>
<td>14 January 1994</td>
</tr>
<tr>
<td>CN 204641526 U</td>
<td>16 September 2015</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 104648219 A</td>
<td>27 May 2015</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)