WORK MACHINE HYDRAULIC ENERGY RECOVERY DEVICE

Provided is a hydraulic fluid energy recovery system for a work machine equipped with a hydraulic pump, a hydraulic actuator for driving the work machine, an operating device for operating the hydraulic actuator, and a regenerating device for recovering a return fluid flowing back from the hydraulic actuator. The hydraulic fluid energy recovery system includes: a fluid line for allowing the return fluid from the hydraulic actuator to flow through the line; a section for branching the fluid line into a plurality of fluid lines; a recovery circuit that serves as one of the branch fluid lines and includes the regenerating device; a discharge circuit that serves as the other of the branch fluid lines and discharges the return fluid to a tank; a flow control device disposed in the discharge circuit so as to be able to control a flow rate of the return fluid; an operation amount detector for detecting the operation amount on the operating device; and a control device configured to acquire the operation amount detected by the operation amount detector, calculate a target discharge flow rate of the return fluid flowing through the discharge circuit, and calculate a target regeneration flow rate of the return fluid flowing through the recovery circuit, the control device thereby controlling the flow control device according to the target discharge flow rate and also controlling the regenerating device according to the target regeneration flow rate.
Description

Technical Field

[0001] The present invention relates generally to hydraulic fluid energy recovery systems for work machines, and more particularly, to a hydraulic fluid energy recovery system for work machines equipped with a hydraulic actuator, such as a hybrid-type hydraulic excavator.

Background Art

[0002] There exist boom energy regenerating devices for work machines including a work unit with a boom and adapted to expand/constrict a boom cylinder by switching a control valve to drive the boom with a view to achieving both an increase in the amount of energy regeneration and the improvement of operability at the same time at a high level without causing an abrupt change in operability. Patent Document 1, for example, discloses such a boom energy regenerating device for work machines, the device including a branching section that branches a hydraulic fluid line for a return fluid from the boom cylinder into two or more lines during downward movement of the boom, a recovery circuit that guides one of the branched fluid lines to a tank via regenerating means, and a flow control circuit that guides the other of the branched fluid lines to the tank via flow control means. The recovery circuit for guiding the fluid to the tank via the regenerating means is disposed outside the control valve.

Prior Art Document

Patent Document


Summary of the Invention

Problems to be Solved by the Invention

[0004] In the prior art described above, a flow of the return fluid from the boom cylinder is branched into two fluid lines and one of the fluid lines is connected to the regenerating means at all times, under which state a downward movement rate of the boom can be controlled for improved operational convenience by controlling an outflow rate of the return fluid to the recovery circuit and the flow control circuit. In addition, the amount of energy to be regenerated can be increased by increasing a setting of the outflow rate of the return fluid to the recovery circuit side.

[0005] In the above prior art, however, there is a problem in that since flow rate distribution of the return fluid to the recovery circuit side and the flow control circuit side is uniquely performed according to an amount of manipulation of a control lever, more than a necessary amount of the return fluid is drawn out to the flow control circuit side and thus the amount of energy that the energy recovery system can recover is reduced.

[0006] The present invention has been made on the basis of the above, and an object of the invention is to provide a hydraulic fluid energy recovery system for work machines, adapted to ensure high operability of a hydraulic actuator and to efficiently recover regenerated energy.

Means for Solving the Problem

[0007] A first aspect of the present invention for achieving the above object is a hydraulic fluid energy recovery system for a work machine equipped with a hydraulic pump, a hydraulic actuator for driving the work machine, an operating device for operating the hydraulic actuator, and a regenerating device for recovering a return fluid flowing back from the hydraulic actuator. The hydraulic fluid energy recovery system includes: a fluid line for allowing the return fluid from the hydraulic actuator to flow through the line; a section for branching the fluid line into a plurality of fluid lines; a recovery circuit serving as one of the branch fluid lines, the recovery circuit including the regenerating device; a discharge circuit serving as the other of the branch fluid lines, the discharge circuit being for discharging the return fluid to a tank; a flow control device disposed in the discharge circuit, the flow control device being adapted to control a flow rate of the return fluid; an operation amount detector for detecting the operation amount on the operating device; a discharge flow rate computing unit for acquiring a detection signal from the operation amount detector and calculating a target discharge flow rate of the return fluid flowing through the discharge circuit; a regeneration flow rate computing unit for acquiring the detection signal from the operation amount detector and calculating a target regeneration flow rate of the return fluid flowing through the recovery circuit; and a control device for controlling the flow control device according to the target discharge flow rate and also controlling the regenerating device according to the target regeneration flow rate. The discharge flow rate computing unit calculates the target discharge flow rate that, increases according to the operation amount immediately after a start of the operations on the operating device, and slowly decreases with an elapse of time, and the regeneration flow rate computing unit calculates the target regeneration flow rate set to be smaller than the target discharge flow rate immediately after the start of the operations on the operating device, and slowly increases with an elapse of time according to the operation amount.

[0008] A second aspect of the present invention is the work machine hydraulic fluid energy recovery system according to the first aspect of the invention, the system further including a pilot hydraulic pump for supplying a pilot fluid, wherein: the flow control device includes a pressure reducing device to which the pilot fluid is supplied and which outputs a secondary hydraulic fluid re-
duced in pressure under a command sent from the control device, and a control valve configured to receive an input of the secondary hydraulic fluid that has been output from the pressure reducing device, and to be controlled to an opening degree proportional to the pressure of the secondary hydraulic fluid, and the control device performs control with a lag element added to the control device command with respect to a change in the detection signal from the operation amount detector.

[0009] A third aspect of the present invention is the work machine hydraulic fluid energy recovery system according to the second aspect of the invention, wherein the control device is configured to add the lag element by supplying an operation amount signal from the operating device to a computing unit with a low-pass filter function and converting an output of the computing unit as a command addressed to the pressure reducing device.

[0010] A fourth aspect of the present invention is the work machine hydraulic fluid energy recovery system according to the second aspect of the invention, wherein the control device is configured to add the lag element by supplying an operation amount signal from the operating device to a computing unit with a change rate limiting function and converting an output of the computing unit as a command addressed to the pressure reducing device.

[0011] A fifth aspect of the present invention is the work machine hydraulic fluid energy recovery system according to any one of the first to fourth aspects of the invention, wherein: the regenerating device includes a hydraulic motor driven by the return fluid flowing out from the hydraulic actuator, and a generator-motor mechanically connected to the hydraulic motor; and the control device is configured to control a rotational speed of the generator-motor.

[0012] A sixth aspect of the present invention is the work machine hydraulic fluid energy recovery system according to any one of the first to fourth aspects of the invention, wherein: the regenerating device includes a variable displacement hydraulic motor driven by the return fluid flowing out from the hydraulic actuator; and the control device is configured to control a capacity of the variable displacement hydraulic motor.

[0013] A seventh aspect of the present invention is the work machine hydraulic fluid energy recovery system according to any one of the first to fourth aspects of the invention, wherein: the regenerating device includes a variable displacement hydraulic motor driven by the return fluid flowing out from the hydraulic actuator, and a generator-motor mechanically connected to the variable displacement hydraulic motor; and the control device is configured to control a capacity of the variable displacement hydraulic motor and a rotational speed of the generator-motor.

Effects of the Invention

[0014] In the present invention, immediately after a start of operations, a flow of a total return fluid from the hydraulic actuator is discharged to the tank side, then a flow of the fluid to be branched to the regenerating device side is gradually increased, and a flow rate of the fluid to be discharged to the tank side is slowly reduced. This process ensures high operability of the hydraulic actuator, and at the same time, allows highly efficient recovery of energy.

Brief Description of The Drawings

[0015] Fig. 1 is a perspective view of a hydraulic excavator incorporating a first embodiment of a hydraulic fluid energy recovery system according to the present invention for work machines.

Fig. 2 is a schematic diagram of a control system that shows the first embodiment of the hydraulic fluid energy recovery system according to the present invention for work machines.

Fig. 3 is a block diagram of a controller constituting the first embodiment of the hydraulic fluid energy recovery system of the present invention for work machines.

Fig. 4 is a characteristics diagram that illustrates details of control of the controller constituting the first embodiment of the hydraulic fluid energy recovery system of the present invention for work machines.

Fig. 5 is a schematic diagram of a control system that shows a hydraulic fluid energy recovery system according to a second embodiment of the present invention for work machines.

Fig. 6 is a block diagram of a controller constituting a part of the hydraulic fluid energy recovery system according to the second embodiment of the present invention for work machines.

Fig. 7 is a schematic diagram of a control system that shows a third embodiment of a hydraulic fluid energy recovery system according to the present invention for work machines.

Modes for Carrying Out the Invention

[0016] Hereunder, embodiments of a hydraulic fluid energy recovery system according to the present invention for work machines will be described with reference to the accompanying drawings.

First Embodiment

[0017] Fig. 1 is a perspective view of a hydraulic excavator incorporating a first embodiment of the hydraulic fluid energy recovery system according to the present invention for work machines, and Fig. 2 is a schematic
diagram of a control system that shows the first embodiment of the hydraulic fluid energy recovery system according to the present invention for work machines.

0018 The hydraulic excavator 1 in Fig. 1 includes an articulated type of work implement 1A including a boom 1a, an arm 1b, and a bucket 1c, and a vehicle body 1B including an upper swing structure 1d and a lower track structure 1e. The boom 1a is pivotably supported by the upper swing structure 1d, and is driven by a hydraulic cylinder 3a that operates as a boom cylinder. The upper swing structure 1d is swingingly disposed on the lower track structure 1e.

0019 The arm 1b is pivotally supported by the boom 1a, and is driven by a hydraulic cylinder 3b that operates as an arm cylinder. The bucket 1c is pivotally supported by the arm 1b, and is driven by a hydraulic cylinder 3c that operates as a bucket cylinder. Actuation of the boom cylinder 3a, the arm cylinder 3b, and the bucket cylinder 3c is controlled by an operating device 4 (see Fig. 2) placed inside a cab of the upper swing structure 1d and designed to output hydraulic signals.

0020 Only the control system relating to the boom cylinder 3a which operates the boom 1a is shown in the embodiment of Fig. 2. The control system includes a control valve 2, the operating device 4, a pilot check valve 8, a recovery switching valve 10, a second control valve 11, a solenoid-operated switching valve 15, a solenoid-operated proportional pressure-reducing valve 16, an inverter 24, a chopper 25, and an electricity storage device 26, the control system further including a controller 100 that operates as a control device.

0021 The control system further includes, as a hydraulic fluid source device, a hydraulic pump 6, a pilot hydraulic pump 7 for supplying a pilot hydraulic fluid, and a tank 6A. The hydraulic pump 6 and the pilot hydraulic pump 7 are driven by an engine 50 coupled to both via a driveshaft.

0022 On a hydraulic fluid line 30 for supplying the hydraulic from the hydraulic pump 6 to the boom cylinder 3a is disposed the four-port three-position control valve 2 for controlling a direction and flow rate of the fluid within the hydraulic fluid line. When the pilot hydraulic fluid is supplied to a pilot pressure-receiving port 2a or 2b of the control valve 2, this control valve switches a position of a spool, supplies the hydraulic fluid from the hydraulic pump 6 to the boom cylinder 3a, and thus drives the boom 1a.

0023 The control valve 2 to which the hydraulic fluid from the hydraulic pump 6 is supplied has an inlet port connected to the hydraulic pump 6 via the hydraulic fluid line 30. The control valve 2 also has an outlet port connected to the tank 6A via a return fluid line 33.

0024 A rod-side fluid chamber line 31 is connected at one end thereof to one connection port of the control valve 2, and the rod-side fluid chamber line 31 is connected at the other end thereof to a rod-side fluid chamber 3ay of the boom cylinder 3a. A bottom-side fluid chamber line 32 is connected at one end thereof to the other connection port of the control valve 2, and the bottom-side fluid chamber line 32 is connected at the other end thereof to a bottom-side fluid chamber 3ax of the boom cylinder 3a.

0025 The second control valve 11, which is a two-port two-position control valve that controls the flow rate of the hydraulic fluid within the fluid line, a recovery branch 32a1, and the pilot check valve 8 are arranged in order from the second control valve 2 side, on the bottom-side fluid chamber line 32. A recovery line 34 is connected to the recovery branch 32a1.

0026 The second control valve 11 includes a spring 11b at one end thereof and a pilot pressure-receiving port 11a at the other end. The second control valve 11 has a spool moved according to a pressure of the pilot hydraulic fluid that is input to the pilot pressure-receiving port 11a, and an area of an opening through which the fluid passes is therefore controlled. This in turn allows control of an amount of the fluid flowing from the bottom-side fluid chamber 3ax of the boom cylinder 3a into the control valve 2. The pilot hydraulic fluid is supplied from the pilot hydraulic pump 7 to the pilot pressure-receiving port 11a via the solenoid-operated proportional pressure-reducing valve 16 described later herein.

0027 The control valve 2 also includes a spool, whose position is switched by manipulation of a control lever (or the like) of the operating device 4. The operating device 4 includes a pilot valve 5, which, after receiving a primary pilot fluid supplied from the pilot hydraulic pump 7 via a primary pilot fluid line not shown, generates a secondary pilot fluid of a pilot pressure Pu according to an amount of a tilting operation (boom-raising operation) of the control lever or the like in a direction "a" shown in Fig. 2. The secondary pilot fluid is supplied to the pilot pressure-receiving port 2a of the control valve 2 via a secondary pilot fluid line 40a, and the control valve 2 is switched/controlled according to the pilot pressure Pu.

0028 Similarly, the pilot valve 5 generates a secondary pilot fluid of a pilot pressure Pd according to an amount of a tilting operation (boom-lowering operation) of the control lever or the like in a direction "b" shown in Fig. 2. This secondary pilot fluid is supplied to the pilot pressure-receiving port 2b of the control valve 2 via a secondary pilot fluid line 40b, and the control valve 2 is switched/controlled according to the pilot pressure Pd.

0029 The spool of the control valve 2, therefore, moves according to the pilot pressure Pu or Pd that is input to either of the two pilot pressure-receiving ports 2a and 2b, and switches the direction and flow rate of the fluid supplied from the hydraulic pump 6 to the boom cylinder 3a.

0030 The secondary pilot fluid of the pilot pressure Pd is also supplied to the pilot check valve 8 via a secondary pilot fluid line 40c. Application of the pilot pressure Pd opens the pilot check valve 8. This causes the fluid in the bottom-side fluid chamber 3ax of the boom cylinder 3a to be guided into the bottom-side fluid chamber line 32. The pilot check valve 8, which is for preventing a fall
of the boom due to an accidental flow of the fluid from the boom cylinder 3a into the bottom-side fluid chamber line 32, interrupts the circuit in normal condition, and opened the circuit by the application of the pilot fluid pressure.

[0031] A pressure sensor 21 is mounted as an operation amount detection means on the secondary pilot fluid line 40b. The pressure sensor 21, which functions as a signal converter to detect the boom-lowering pilot pressure Pd of the pilot valve 5 connected to the operating device 4 and convert the operation amount into an electrical signal corresponding to the pressure, is configured to output the obtained electrical signal to the controller 100.

[0032] Next, the hydraulic fluid energy recovery system 70 that is a regenerating device will be described. The hydraulic fluid energy recovery system 70 includes, as shown in Fig. 2, a recovery line 34, a solenoid-operated switching valve 15, a solenoid-operated proportional pressure-reducing valve 16, a hydraulic motor 22, a generator-motor 23, an inverter 24, a chopper 25, an electricity storage device 26, and the controller 100.

[0033] The recovery line 34 includes a recovery switching valve 10 and the hydraulic motor 22 placed at a downstream side of the recovery switching valve 10, and introduces the return fluid from the bottom-side fluid chamber 3ax of the boom cylinder 3a into the tank 6A via the hydraulic motor 22. The hydraulic motor 22 has a rotary shaft mechanically connected to that of the generator-motor 23. Rotation of the hydraulic motor 22 using the return fluid introduced into the recovery line 34 during the lowering of the boom causes the generator-motor 23 to start rotating and generate electricity. This electrical energy is stored into the electricity storage device 26 via the inverter 24 and the chopper 25 having an electrical boost function.

[0034] The recovery switching valve 10 includes a spring 10b at one end thereof and a pilot pressure-receiving port 10a at the other end thereof, and depending on whether the pilot fluid is supplied to the pilot pressure-receiving port 10a, the recovery switching valve 10 switches the position of the spool, thus controlling communication/interruption of the return fluid inflow line from the bottom-side fluid chamber 3ax of the boom cylinder 3a to the hydraulic motor 22. The pilot fluid is supplied from a pilot hydraulic pump 7 to the pilot pressure-receiving port 10a via the solenoid-operated switching valve 15 described in detail later herein.

[0035] In addition, the inverter 24 controls speeds at which the hydraulic motor 22 and the generator-motor 23 rotate during the lowering of the boom. This speed control of the hydraulic motor 22 by the inverter 24 allows flow control of the fluid passed through the hydraulic motor 22, and hence, flow control of the return fluid flowing from the bottom-side fluid chamber 3ax into the recovery line 34. In other words, the inverter 24 in the present embodiment functions as a flow controller to control the flow rate of the return fluid within the recovery line 34.

[0036] The hydraulic fluid that is output from the pilot hydraulic pump 7 is input to an input port of the solenoid-operated switching valve 15 in the present embodiment. Meanwhile, a command signal that is output from the controller 100 is input to an operating port of the solenoid-operated switching valve 15. Supply/interruption of the pilot hydraulic fluid from the pilot hydraulic pump 7 to a pilot operating port 10a of the recovery switching valve 10 is controlled according to the command signal.

[0037] The hydraulic fluid that is output from the pilot hydraulic pump 7 is input to an input port of the solenoid-operated proportional pressure-reducing valve 16 in the present embodiment. Meanwhile, a command signal that is output from the controller 100 is input to an operating port of the solenoid-operated proportional pressure-reducing valve 16. The spool position of the solenoid-operated proportional pressure-reducing valve 16 is controlled according to this command signal, and the pressure of the hydraulic fluid supplied from the pilot hydraulic pump 7 to the pilot pressure-receiving port 11a of the second control valve 11 is controlled as appropriate.

[0038] The controller 100 receives an input of the boom-lowering pilot pressure Pd of the pilot valve 5 of the operating device 4 from the pressure sensor 21, then performs an arithmetic operation based on the received input value, and outputs the appropriate command signal to the solenoid-operated switching valve 15, the solenoid-operated proportional pressure-reducing valve 16, and the inverter 24.

[0039] Next, operation of the hydraulic fluid energy recovery system in the first embodiment of the present invention for work machines will be outlined.

[0040] First, when the control lever of the operating device 4 shown in Fig. 2 is operated in the direction “a” to raise the boom and extend a piston rod, the pilot pressure Pu is transmitted from the pilot valve 5 to the pilot pressure-receiving port 2a of the control valve 2 and the control valve 2 is switched. Thus the fluid from the hydraulic pump 6 is introduced into the bottom-side fluid chamber line 32 via the second control valve 11 and flows into the bottom-side fluid chamber 3ax of the boom cylinder 3a via the pilot check valve 8. This inflow of the fluid extends the piston rod of the boom cylinder 3a. The return fluid discharged from the rod-side fluid chamber 3ay of the boom cylinder 3a is then introduced into the tank 6A through the rod-side fluid chamber line 31 and the control valve 2.

[0041] Next, the lowering of the boom will be described. When the control lever of the operating device 4 is operated in the direction “b” to lower the boom and retract the piston rod, the pilot pressure Pd to be supplied from the pilot valve 5 is created and then guided as an operating pressure to the pilot check valve 8, such that the pilot check valve 8 is opened. The pilot pressure Pd is also transmitted to the operating port 2b of the control valve 2 and thus the control valve 2 is switched.

[0042] In addition, the controller 100 outputs a switching command to the solenoid-operated switching valve 15 and a control command to the solenoid-operated pro-
The flow rate of the return fluid discharged to the piston rod of the boom cylinder 3a to the control valve 11 and the control valve 2. This retracts the second control valve 11 and the control valve 2. This retracts the boom cylinder 3a.

The flow rate of the return fluid discharged to the tank 6A at this time (this flow rate will be hereinafter referred to as the discharge flow rate) is controlled according to a resultant opening area of the control valve 2 and the second control valve 11, and the flow rate of the return fluid flowing into the recovery line 34 (the regenerating device side) rotates the hydraulic motor 22 (this flow rate will be hereinafter referred to as the regeneration flow rate). The hydraulic motor 22 generates electricity by rotating the generator-motor 23 directly connected to the hydraulic motor 22. The generated electrical energy is stored into the electricity storage device 26.

Next, the control of the controller 100 will be outlined with reference to Figs. 3 and 4. Fig. 3 is a block diagram of the controller constituting the first embodiment of the hydraulic fluid energy recovery system of the present invention for work machines, and Fig. 4 is a characteristics diagram that illustrates details of the control of the controller constituting the first embodiment of the hydraulic fluid energy recovery system of the present invention for work machines. Referring to Figs. 3 and 4, the elements that are assigned the same reference numbers as those shown in Fig. 1 or 2 are the same elements and detailed description of these elements will therefore be omitted hereunder.

The controller 100 shown in Fig. 3 includes a first function generator 101, a second function generator 102, a third function generator 103, an addition arithmetic unit 104, a regeneration flow rate computing unit 105, a first output converter 106, a discharge flow rate computing unit 107, a second output converter 108, and a third output converter 109.

The first function generator 101, the second function generator 102, and the third function generator 103 receive a lever manipulation signal 121 as an input signal that indicates the value that the pressure sensor 21 has detected as the boom-lowering pilot pressure Pd of the pilot valve 5 connected to the operating device 4. A target bottom flow rate with respect to the lever manipulation signal 121 is prestored within a table of the first function generator 101 as a target bottom flow rate which has been input, and then outputs the calculated target bottom flow rate to one input end of the addition arithmetic unit 104.

The second function generator 102 outputs the calculated target bottom flow rate to one input end of the addition arithmetic unit 104 and the discharge flow rate computing unit 107.

The addition arithmetic unit 104 calculates a target regeneration flow rate that indicates a deviation between the target bottom flow rate and target discharge flow rate that have been input, and then outputs the calculated flow rate to the regeneration flow rate computing unit 105.

The regeneration flow rate computing unit 105 calculates, for example, a first order lag signal as a signal with an added lag element relative to a signal of the target regeneration flow rate which has been input, and then outputs the calculated signal to the first output converter 106. This lag signal can be provided with, for example, a low-pass filter circuit or a rate limiter circuit.

The discharge flow rate computing unit 107 calculates, for example, a first order lag signal as a signal with an added lag element relative to the signal of the target discharge flow rate which has been input, and then outputs the calculated signal to the second output converter 108. This lag signal can be provided with, for example, a low-pass filter circuit or a rate limiter circuit.

The first output converter 106 converts the input target regeneration flow rate into a target generator-motor speed and outputs the target generator-motor speed signal to the inverter 24 as a speed command 124. The output of this command signal controls the regeneration flow rate that is the flow rate of the return fluid within the recovery line 34.

The second output converter 108 converts the input target discharge flow rate into a control signal for the solenoid-operated proportional pressure-reducing valve 16 and outputs the control signal to the solenoid-operated proportional pressure-reducing valve 16 as a solenoid valve command 115. This activates the solenoid-operated switching valve 15, thereby switching the recovery switching valve 10, and causing the fluid within the bottom-side fluid chamber 3ax of the boom cylinder 3a to flow into the recovery line 34 (the regenerating device side).

Next, a description will be given of a control logic configuration of the controller 100 and the way the control
logic configuration ensures high operability by dividing the flow rate of the return fluid from the bottom-side fluid chamber 3ax of the boom cylinder 3a into the flow rate of the fluid to the regeneration device side (i.e., the regeneration flow rate) and the flow rate of the fluid to the tank side (i.e., the discharge flow rate), and efficiently recovers regenerated energy.

To ensure high operability of a hydraulic actuator, it is important, at an onset of operations that is a transient period when the amount of lever manipulation of the operating device 4 changes, for the regenerating device to provide smooth operation equivalent to that of a hydraulic actuator of a conventional hydraulic excavator. In a steady state where the amount of lever manipulation of the operating device 4 stabilizes at a certain level, smooth operation equivalent to that of the hydraulic actuator of the conventional hydraulic excavator can be obtained since inverter speed control of the regenerating device maintains a constant regeneration flow rate.

In the present embodiment, therefore, immediately after the lever manipulation of the operating device 4 has been started, the flow rate of the return fluid from the bottom-side fluid chamber 3ax is controlled with a control valve (for discharge flow control only), as is done in the conventional hydraulic excavator, and this flow control is performed for increases in regeneration flow rate with an elapsed time. In order for the controller 100 to provide the flow control, the function for adding a lag element for an input signal is assigned to the regeneration flow rate computing unit 105 and discharge flow rate computing unit 107 of the controller 100.

Next, functional advantageous effects of the lag element will be described with reference to Fig. 4 that shows behaviors of various device elements. A horizontal axis in Fig. 4 denotes time, and vertical axes (a) to (d) denote, in order from top, the lever manipulation of the operating device 4, the target discharge flow rate Qd, the target regeneration flow rate Qr, and an actual return fluid flow rate Qt.

The lever manipulation signal 121 is input to the control lever manipulation signal from the operating device 4 has thereafter (i.e., after the time t1), the discharge flow rate Qt2 increases immediately after the lever manipulation of the operating device 4 was started, and time t1 denotes the time that the hydraulic fluid starts flowing to the regenerating device side.

Referring back to Fig. 3, the control lever manipulation of the operating device 4 is described below. When the control lever of the operating device 4 is operated in a predetermined direction to lower the boom, the pilot pressure Pd is generated in the pilot valve 5, then detected by the pressure sensor 21, and input to the controller 100 as the lever manipulation signal 121. This operation on the control lever is continued at a fixed rate until the lever has reached its maximum operation position from a start of the operation at the time t0.

The lever manipulation signal 121 is input to the second function generator 102. The second function generator 102 then calculates the target discharge flow rate that is the target flow rate of the fluid to be discharged to the tank 6A, and outputs the calculated value to one end of the addition arithmetic unit 104 and the discharge flow rate computing unit 107. The discharge flow rate computing unit 107 calculates the signal incorporating the lag element with respect to the input target discharge flow rate, and outputs the calculated value to the second output converter 108. Referring to target discharge flow rate curve (b) in Fig. 4, reference code Qd1 shown with a broken line denotes output characteristics of the second function generator 102, and reference code Qd2 shown with a solid line denotes output characteristics of the discharge flow rate computing unit 107. The output characteristics of Qd1 and Qd2 overlap in timing between the time t0 and the time t1. As can be seen from these curves, the target discharge flow rate signal that is output from the discharge flow rate computing unit 107 gently decreases in level from the time t1 because the lag element is added.

The first function generator 101 calculates the target bottom flow rate and then outputs the calculated target bottom flow rate to the addition arithmetic unit 104. The addition arithmetic unit 104 calculates the target regeneration flow rate from the target bottom flow rate and the target discharge flow rate, and then outputs the calculated flow rate to the regeneration flow rate computing unit 105. The regeneration flow rate computing unit 105 calculates a signal incorporating the lag element with respect to the input target regeneration flow rate signal, and then outputs the calculated signal to the first output converter 106. Referring to target regeneration flow rate curve (c) in Fig. 4, reference code Qr1 shown with a broken line denotes output characteristics of the addition arithmetic unit 104, and reference code Qr2 shown with a solid line denotes output characteristics of the regeneration flow rate computing unit 105. Since the output signal from the second function generator 102 is subtracted from that of the first function generator 101, the target regeneration flow rate that is output from the addition arithmetic unit 104 becomes zero between the time t0 and the time t1, and starts rising after the time t1. The target regeneration flow rate signal Qr2 from the regeneration flow rate computing unit 105 incorporating the lag element gently increases with respect to the output signal Qr1 of the addition arithmetic unit 104.

Referring to actual return fluid flow rate curve Qt in Fig. 4, reference code Qt1 shown with a broken line denotes an actual total flow rate of the return fluid from the bottom-side fluid chamber 3ax of the boom cylinder 3a, reference code Qt2 shown with a solid line denotes an actual discharge flow rate, and reference code Qt3 denotes an actual regeneration flow rate. Characteristics of Qt1 and Qt2 overlap in timing between the time t0 and the time t1. As can be seen from these curves, the discharge flow rate Qt2 increases immediately after the lever manipulation signal from the operating device 4 has been input (i.e., between the time t0 and the time t1), and thereafter (i.e., after the time t1), the discharge flow rate Qt2 gradually decreases. In addition, after the time t1, as the discharge flow rate Qt2 decreases, the regeneration flow rate Qt3 gradually increases, which yields the
Accordingly, even if an operator abruptly operates the control lever, the flow of the total return fluid to the tank side (i.e., the discharge flow rate side) increases at a start of movement of the boom cylinder 3a, a hydraulic actuator, and after that, the flow of the fluid to the regenerating device side (i.e., the regeneration flow rate side) gradually increases. That is to say, high operability can be obtained. In addition, the flow rate of the fluid whose flow is branched to the tank side (i.e., the discharge flow rate side) is slowly reduced, which prevents an unnecessary discharge of the fluid to the tank. Furthermore, under the steady state, since the return fluid is not drawn out to the tank side, high energy recovery efficiency can be provided.

Next, operation of the control logic of the hydraulic fluid energy recovery system according to the first embodiment of the present invention for work machines will be described with reference to Figs. 2 and 3.

When the control lever of the operating device 4 is operated in the predetermined direction to lower the boom, the pilot pressure $P_d$ is generated in the pilot valve 5, then detected by the pressure sensor 21, and input to the controller 100 as the lever manipulation signal 121.

The lever manipulation signal 121 is input from the controller 100 to the first function generator 101, the second function generator 102, and the third function generator 103. The third function generator 103 generates an ON signal if the lever manipulation signal 121 has a level exceeding the starting point of switching. The ON signal is then output to the solenoid-operated switching valve 15 via the third output converter 109. Accordingly, the hydraulic fluid from the pilot hydraulic pump 7 is input to the pilot operated port 10a of the recovery switching valve 10 via the solenoid-operated switching valve 15. Switching to the open side is then performed and the return fluid from the bottom-side fluid chamber 3ax of the boom cylinder 3a flows into the regenerating device.

The first function generator 101 and the second function generator 102 calculate the target bottom flow rate and the target discharge flow rate, respectively, according to the lever manipulation signal 121. The addition arithmetic unit 104 calculates the target regeneration flow rate from the target bottom flow rate and the target discharge flow rate. The target regeneration flow rate and the target discharge flow rate are input to the regeneration flow rate computing unit 105 and the discharge flow rate computing unit 107, respectively.

The regeneration flow rate computing unit 105 and the discharge flow rate computing unit 107 generate command signals incorporating a lag element, and then output control signals 124 and 116 to the inverter 24 and the solenoid-operated proportional pressure-reducing valve 16, respectively, via the first output converter 106 and the second output converter 108.

Consequently, the rotational speed of the generator-motor 23 is increased progressively, and thus the opening degree of the second control valve 11 is reduced progressively. Immediately after the control lever of the operating device 4 has been operated, the flow of the total return fluid to the tank side (i.e., the discharge flow rate side) increases much and then the flow of the fluid to the regenerating device side (i.e., the regeneration flow rate side) gradually increases. In addition, the flow rate of the fluid whose flow is branched to the tank side (i.e., the discharge flow rate side) is slowly reduced, which prevents an unnecessary discharge of the fluid.

The operation that has been described above allows the provision of the smooth cylinder operation in response to the lever manipulation, and hence allows the efficient recovery of energy as well.

In the hydraulic fluid energy recovery system according to the above-described first embodiment of the present invention for work machines, the total flow of the return fluid from the boom cylinder 3a that is a hydraulic actuator is discharged to the tank 6A side immediately after the start of operations, then the flow of the fluid to be branched to the regenerating device 70 is gradually increased, and the discharge flow rate of the fluid in the flow line extending to the tank 6A is slowly reduced. The high operability of the boom cylinder 3a, a hydraulic actuator, can therefore be obtained and the highly efficient recovery of energy can be provided.

In addition, in the hydraulic fluid energy recovery system according to the above-described first embodiment of the present invention for work machines, even if the operator abruptly operates the control lever, the flow of the total return fluid to the tank 6A side increases at the start of movement of the boom cylinder 3a, and after that, the flow of the fluid to the regenerating device 70 side gradually increases. High operability can be obtained as a result. Furthermore, the flow rate of the fluid whose flow is branched to the tank 6A side is slowly reduced, which prevents an unnecessary discharge of the fluid to the tank 6A. Moreover, under the steady state, since the return fluid is not drawn out to the tank 6A side, high energy recovery efficiency can be provided.

Second Embodiment

Hereunder, a second embodiment of a hydraulic fluid energy recovery system according to the present invention for work machines will be described with reference to part of the accompanying drawings. Fig. 5 is a schematic diagram of a control system that shows the hydraulic fluid energy recovery system according to the second embodiment of the present invention for work machines, and Fig. 6 is a block diagram of a controller constituting a part of the hydraulic fluid energy recovery system according to the second embodiment of the present invention for work machines. Referring to Figs. 5 and 6, the elements that are assigned the same refer-
ence numbers as those shown in Figs. 1 to 4 are the same elements and detailed description of these elements will therefore be omitted hereunder.

As shown in Figs. 5 and 6, the hydraulic fluid energy recovery system according to the second embodiment of the present invention for work machines includes substantially the same hydraulic fluid source, work machine, and other elements, as those of the first embodiment. The system configuration, however, has the following differences. That is to say, in the second embodiment, the hydraulic motor 22 in the first embodiment is replaced by a variable displacement hydraulic motor 222. In addition, a motor regulator 222a is disposed in the second embodiment. The motor regulator 222a changes a capacity of the variable displacement hydraulic motor 222 in proportion to a command from a controller 100. The controller 100 in the present embodiment differs from that of the first embodiment in that the former includes a fixed rotational speed command unit 201, a division arithmetic unit 202, a fourth output converter 203, and a capacity command computing unit 105A.

The present embodiment controls a regeneration flow rate by rotating the generator-motor 23 at a fixed speed and controlling the capacity of the variable displacement hydraulic motor 222. Constituent elements in Fig. 6 that differ from the elements of the first embodiment will be described hereunder.

In the first embodiment, the output from the addition arithmetic unit 104 is output to the inverter 24 via the regeneration flow rate computing unit 105 and the first output converter 106. In the second embodiment, however, the output from the addition arithmetic unit 104 is input to one end of the division arithmetic unit 202. The fixed rotational speed command unit 201 outputs a generator-motor speed command to the first output converter 106 to always rotate the rotational speed of the generator-motor 23 at a fixed speed. The first output converter 106 then converts the input rotational speed command into a target generator-motor speed and outputs the target generator-motor speed to the inverter 24 as a speed command 124.

The fixed rotational speed command unit 201 also outputs the generator-motor speed command to the other end of the division arithmetic unit 202. The division arithmetic unit 202 receives a target regeneration flow rate command and the generator-motor speed command, both output from the addition arithmetic unit 104, then calculates a target capacity of the variable displacement hydraulic motor 222 by dividing the regeneration flow rate command by the speed command, and outputs the calculated value to the capacity command computing unit 105A.

The capacity command computing unit 105A calculates a signal having an added lag element, such as a first order lag signal, with respect to an input target capacity signal, and then outputs the first order lag signal to the fourth output converter 203. This lag signal can be provided with, for example, a low-pass filter circuit or a rate limiter circuit.

The fourth output converter 203 converts the input target capacity into a tilt angle, for example, and then outputs the tilt angle to the motor regulator 222a as a capacity command 204. The output of this command controls the flow rate of the return fluid within the recovery line 34 (i.e., the regeneration flow rate).

The hydraulic fluid energy recovery system according to the above-described second embodiment of the present invention for work machines yields substantially the same advantageous effects as those of the first embodiment.

Third Embodiment

Hereunder, a third embodiment of a hydraulic fluid energy recovery system according to the present invention for work machines will be described with reference to part of the accompanying drawings. Fig. 7 is a schematic diagram of a control system that shows the third embodiment of the hydraulic fluid energy recovery system according to the present invention for work machines. Referring to Fig. 7, the elements that are assigned the same reference numbers as those shown in Figs. 1 to 6 are the same elements and detailed description of these elements will therefore be omitted hereunder.

As shown in Fig. 7, the hydraulic fluid energy recovery system according to the third embodiment of the present invention for work machines includes substantially the same hydraulic fluid source, work machine, and other elements, as those of the first embodiment. The system configuration, however, has the following differences. That is to say, in the third embodiment, the hydraulic motor 22 in the first embodiment is replaced by a variable displacement hydraulic motor 222. In addition, a motor regulator 222a is disposed in the third embodiment. Furthermore, a variable displacement hydraulic pump 223 is coupled with the variable displacement hydraulic motor 222. Moreover, a pump regulator 223a that renders a capacity of the variable displacement hydraulic pump 223 variable is provided for this pump. A hydraulic fluid from the variable displacement hydraulic pump 223 is supplied to actuators such as an arm cylinder.

The motor regulator 222a changes a capacity of the variable displacement hydraulic motor 222 in proportion to a command from a controller 100. The pump regulator 223a changes a capacity of the variable displacement hydraulic pump 223 in proportion to a command from the controller 100.

The present embodiment controls a regeneration flow rate by controlling the capacity of the variable displacement hydraulic motor 222.

The hydraulic fluid energy recovery system according to the above-described third embodiment of the present invention for work machines yields substantially the same advantageous effects as those of the first embodiment.

An example in which the variable displacement
hydraulic pump 223 is coupled with the variable displacement hydraulic motor 222 has been described in the present embodiment. The description, however, is not intended to limit the scope of application of the present invention. For example, a flywheel may be coupled with the variable displacement hydraulic pump 223 such that the system will store regenerated energy as kinetic energy.

Claims

1. A hydraulic fluid energy recovery system for a work machine equipped with a hydraulic pump, a hydraulic actuator for driving the work machine, an operating device for operating the hydraulic actuator, and a regenerating device for recovering a return fluid flowing back from the hydraulic actuator, the hydraulic fluid energy recovery system comprising:

   a fluid line for allowing the return fluid from the hydraulic actuator to flow through the line;
   a section for branching the fluid line into a plurality of fluid lines;
   a recovery circuit serving as one of the branch fluid lines, the recovery circuit including the regenerating device;
   a discharge circuit serving as the other of the branch fluid lines, the discharge circuit being for discharging the return fluid to a tank;
   a flow control device disposed in the discharge circuit, the flow control device being adapted to control a flow rate of the return fluid;
   an operation amount detector for detecting the operation amount on the operating device;
   a discharge flow rate computing unit for acquiring a detection signal from the operation amount detector and calculating a target discharge flow rate of the return fluid flowing through the discharge circuit;
   a regeneration flow rate computing unit for acquiring the detection signal from the operation amount detector and calculating a target regeneration flow rate of the return fluid flowing through the recovery circuit;
   and

   wherein:

   the discharge flow rate computing unit calculates the target discharge flow rate that increases according to the operation amount immediately after a start of the operations on the operating device, and slowly decreases with an elapsed time; and

   the regeneration flow rate computing unit calculates the target regeneration flow rate set to be smaller than the target discharge flow rate immediately after the start of the operations on the operating device, and slowly increases with an elapsed time according to the operation amount.

2. The work machine hydraulic fluid energy recovery system according to claim 1, further comprising a pilot hydraulic pump for supplying a pilot fluid, wherein:

   the flow control device includes a pressure reducing device to which the pilot fluid is supplied and which outputs a secondary hydraulic fluid reduced in pressure under a command sent from the control device, and a control valve configured to input of the secondary hydraulic fluid that has been output from the pressure reducing device, the control valve being adjusted to have an opening degree proportional to the pressure of the secondary hydraulic fluid; and

   the control device performs control with a lag element added to the control device command with respect to a change in the detection signal from the operation amount detector.

3. The work machine hydraulic fluid energy recovery system according to claim 2, wherein:

   the control device is configured to add the lag element by supplying an operation amount signal from the operating device to a computing unit with a low-pass filter function and converting an output of the computing unit as a command addressed to the pressure reducing device.

4. The work machine hydraulic fluid energy recovery system according to claim 2, wherein:

   the control device is configured to add the lag element by supplying an operation amount signal from the operating device to a computing unit with a change rate limiting function and converting an output of the computing unit as a command addressed to the pressure reducing device.

5. The work machine hydraulic fluid energy recovery system according to any one of claims 1 to 4, wherein:

   the regenerating device includes a hydraulic motor driven by the return fluid flowing out from the hydraulic actuator, and a generator-motor mechanically connected to the hydraulic motor; and
the control device is configured to control a rotational speed of the generator-motor.

6. The work machine hydraulic fluid energy recovery system according to any one of claims 1 to 4, wherein:

the regenerating device includes a variable displacement hydraulic motor driven by the return fluid flowing out from the hydraulic actuator; and

the control device is configured to control a capacity of the variable displacement hydraulic motor.

7. The work machine hydraulic fluid energy recovery system according to any one of claims 1 to 4, wherein:

the regenerating device includes a variable displacement hydraulic motor driven by the return fluid flowing out from the hydraulic actuator and a generator-motor mechanically connected to the variable displacement hydraulic motor; and

the control device is configured to control a capacity of the variable displacement hydraulic motor and a rotational speed of the generator-motor.
FIG. 4

(a) LEVER OPERATION AMOUNT

(b) TARGET DISCHARGE FLOW RATE Qd

(c) TARGET REGENERATION FLOW RATE Qr

(d) ACTUAL RETURN FLUID FLOW RATE Qt
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
F15B21/14(2006.01)i, E02F9/20(2006.01)i, E02F9/22(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F15B21/14, E02F9/20, E02F9/22

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1972-1996
Jitsuyo Shinan Toroku Koho 1996-2014
Kokai Jitsuyo Shinan Koho 1970-2014
Toroku Jitsuyo Shinan Koho 1994-2014

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2013-61044 A (Hitachi Construction Machinery Co., Ltd.), 04 April 2013 (04.04.2013), claim 1; paragraphs [0022] to [0024], [0028], [0037] to [0040], [0052] to [0056], [0059]; fig. 2, 3, 5 &amp; WO 2012/173149 A1</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>JP 2013-68291 A (Hitachi Construction Machinery Co., Ltd.), 18 April 2013 (18.04.2013), claim 1; paragraphs [0018] to [0023], [0044] to [0047]; fig. 2 to 4 (Family: none)</td>
<td>1-7</td>
</tr>
</tbody>
</table>

[×] Further documents are listed in the continuation of Box C. [ ] See patent family annex.

* Special categories of cited documents:
  "A" document defining the general state of the art which is not considered to be of particular relevance
  "E" earlier application or patent but published on or after the international filing date
  "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
  "O" document referring to an oral disclosure, use, exhibition or other means
  "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"Z" document member of the same patent family

Date of the actual completion of the international search
19 February, 2014 (19.02.14)

Date of mailing of the international search report
04 March, 2014 (04.03.14)

Name and mailing address of the ISA/ Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2013-200023 A (Kayaba Industry Co., Ltd.), 03 October 2013 (03.10.2013), paragraphs [0001] to [0008], [0027] to [0029], [0044] to [0045], [0049]; fig. 1 to 3 (Family: none)</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>JP 2006-336843 A (Shin Caterpillar Mitsubishi Ltd.), 14 December 2006 (14.12.2006), claim 2; paragraphs [0003], [0019] to [0024], [0035], [0038]; fig. 1, 2 (Family: none)</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>JP 2006-336842 A (Shin Caterpillar Mitsubishi Ltd.), 14 December 2006 (14.12.2006), claim 2; paragraphs [0003], [0008], [0011] to [0012], [0019] to [0033]; fig. 1, 2 (Family: none)</td>
<td>1-7</td>
</tr>
</tbody>
</table>
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description