CONTROL DEVICE FOR ELECTRIC-POWERED VEHICLE AND CONTROL METHOD FOR ELECTRIC-POWERED VEHICLE

A control device for electric motor vehicle using an electric motor 4 as a traveling drive source and configured to decelerate by a regenerative braking force of the electric motor 4 calculates a first torque target value on the basis of vehicle information and calculates a second torque target value which converges to zero with a reduction in a speed parameter proportional to a traveling speed of the electric motor vehicle. If the vehicle is determined to have not reached a just-before-stop moment, the first torque target value is set as a motor torque command value. If the vehicle is determined to stop shortly, the second torque target value is set as the motor torque command value. The electric motor 4 is controlled on the basis of the set motor torque command value.

![Diagram of Control Device](image-url)
The present invention relates to a control device for electric motor vehicle and a control method for electric motor vehicle.

Conventionally, a regenerative brake control device for electric vehicles is known which is provided with setting means capable of arbitrarily setting a regenerative braking force of a motor and regenerates the motor by the regenerative braking force set by the setting means (see JP8-79907A).

However, if the regenerative braking force set by the setting means is large, a problem of generating vibration in a front-back direction of a vehicle body arises when the electric vehicle is decelerated by the set regenerative braking force and the speed becomes zero.

The present invention aims to provide a technology for suppressing the generation of vibration in a front-back direction of a vehicle body in stopping an electric motor vehicle with a regenerative braking force.

A device for controlling an electric vehicle according to an embodiment is that a control device for electric motor vehicle using an electric motor as a traveling drive source and configured to decelerate by a regenerative braking force of the electric motor 4 calculates a first torque target value on the basis of vehicle information and calculates a second torque target value which converges to zero with a reduction in a speed parameter proportional to a traveling speed of the electric motor vehicle. If the vehicle is determined to have not reached a just-before-stop moment, the first torque target value is set as a motor torque command value. If the vehicle is determined to stop shortly, the second torque target value is set as the motor torque command value. The electric motor 4 is controlled on the basis of the set motor torque command value.

Embodiments of the present invention and merits of the present invention will be described below in detail together with the attached drawings.

FIG. 1 is a block diagram showing a main configuration of an electric vehicle with a control device for the electric motor vehicle in one embodiment, FIG. 2 is a flow chart showing the flow of a motor current control process performed by a motor controller, FIG. 3 is a graph showing an example of an accelerator pedal opening-torque table, FIG. 4 is a block diagram showing in detail a method for setting a first torque target value Tm1*, FIG. 5 is a block diagram showing a detailed configuration of a disturbance torque estimator, FIG. 6 is a block diagram showing a detailed configuration of a disturbance correction torque setter, FIG. 7 is a graph showing an example of a table defining a relationship of a disturbance torque estimated value Td and a gradient correction torque Td5, FIG. 8 shows an example of a table defining a relationship of a motor rotation speed \( \omega_m \) and a speed correction gain \( K_\omega \), FIG. 9 is a diagram modeling a drive force transmission system of the vehicle, FIG. 10 is a block diagram for realizing a stop control process, FIG. 11 is a diagram showing a method for calculating a motor rotation speed F/B torque T0 on the basis of the detected motor rotation speed \( \omega_m \), FIG. 12 is a chart showing control results of a stop control of stopping the electric motor vehicle on an uphill road, FIG. 13 is a chart showing control results of a stop control of stopping the electric motor vehicle on a downhill road, and FIG. 14 is a block diagram for realizing the stop control process in the case of setting the motor rotation speed F/B torque T0 as a second torque target value Tm2*.

FIG. 1 is a block diagram showing a main configuration of an electric vehicle with a control device for the electric motor vehicle.
motor vehicle in one embodiment. The control device for electric motor vehicle of the present invention includes an
electric motor as part or the entirety of a drive source of the vehicle and is applicable to an electric motor vehicle capable
of traveling by a drive force of the electric motor. Electric motor vehicles include not only electric vehicles, but also hybrid
vehicles and fuel cell vehicles. Particularly, the control device for electric motor vehicle in the present embodiment can
be applied to a vehicle capable of controlling the acceleration/ deceleration and the stop of the vehicle only by the
operation of an accelerator pedal. In this vehicle, a driver depresses the accelerator pedal during acceleration and
reduces or zeros the amount of depression of the accelerator pedal during deceleration or during stop.

A motor controller 2 has signals indicating vehicle states such as a vehicle speed V, an accelerator pedal
opening AP, a rotor phase α of an electric motor (three-phase AC motor) 4 and currents iu, iv and iw of the electric motor
4 input thereto in the form of digital signals, and generates PWM signals for controlling the electric motor 4 on the basis
of the input signals. Further, the motor controller 2 generates a drive signal for an inverter 3 in accordance with the
generated PWM signals.

The inverter 3 includes, for example, two switching elements (e.g. power semiconductor elements such as
IGBTs or MOS-FETs) for each phase, converts a direct current supplied from a battery 1 into an alternating current by
turning on and off the switching elements in accordance with the drive signal and causes a desired current to flow into
the electric motor 4.

The electric motor 4 generates a drive force by the alternating current supplied from the inverter 3 and transmits
the drive force to left and right drive wheels 9a, 9b via a speed reducer 5 and a drive shaft 8. Further, when being rotated
following the rotation of the drive wheels 9a, 9b during the travel of the vehicle, the electric motor 4 generates a regenerative
drive force, thereby collecting the kinetic energy of the vehicle as electrical energy. In this case, the inverter 3 converts
an alternating current generated during the regenerative operation of the electric motor 4 into a direct current and supplies
it to the battery 1.

A current sensor 7 detects three-phase alternating currents iu, iv and iw flowing in the electric motor 4. However,
since the sum of the three-phase alternating currents is 0, the currents of two arbitrary phases may be detected and the
current of the remaining one phase may be obtained by calculation.

A rotation sensor 6 is, for example, a resolver or an encoder and detects the rotor phase α of the electric motor 4.

FIG. 2 is a flow chart showing the flow of a motor current control process performed by the motor controller 2.
In Step S201, signals indicating the vehicle states are inputted. Here, the vehicle speed V (km/h), the accelerator
pedal opening AP (%), the rotor phase α (rad) of the electric motor 4, a rotation speed Nm (rpm) of the electric motor 4,
the three-phase alternating currents iu, iv and iw flowing in the electric motor 4 and a direct-current voltage value Vdc
(V) between the battery 1 and the inverter 3 are inputted.

The vehicle speed V (km/h) is obtained by an unillustrated vehicle speed sensor or through communication
from another controller. Alternatively, a vehicle speed v (m/s) is obtained by multiplying a rotor mechanical angular
calculator by a tire dynamic radius R and dividing the product by a gear ratio of a final gear, and then multiplied by
3600/1000 for unit conversion, thereby obtaining the vehicle speed V (km/h).

The accelerator pedal opening AP (%) is obtained from an unillustrated accelerator pedal opening sensor or
through communication from another controller such as an unillustrated vehicle controller.

The rotor phase α (rad) of the electric motor 4 is obtained from the rotation sensor 6. The rotation speed Nm
(rpm) of the electric motor 4 is obtained by dividing a rotor angular velocity ωm (electric angle) by a pole pair number P of
the electric motor 4 to obtain a motor rotation speed ωm (rad/s), which is a mechanical angular velocity of the electric
motor 4, and multiplying the obtained motor rotation speed ωm by 60/(2π). The rotor angular velocity ωm is obtained by
differentiating the rotor phase α.

The currents iu, iv and iw (A) flowing in the electric motor 4 are obtained from the current sensor 7.

The direct-current voltage value Vdc (V) is obtained from a voltage sensor (not shown) provided in a direct-current
power supply line between the battery 1 and the inverter 3 or a power supply voltage value transmitted from a
battery controller (not shown).

In Step S202, a first torque target value Tm1* is set. Specifically, a torque table target value (basic torque target
value) Tm0* is first set on the basis of the accelerator pedal opening AP and the motor rotation speed ωm input in Step
S201 by referring to an accelerator opening-torque table shown in FIG. 3. Subsequently, a disturbance torque estimated
value Td to be described later is obtained and a disturbance correction torque Td* is obtained on the basis of the
disturbance torque estimated value Td. Then, the first torque target value Tm1* is set by adding the torque table target
value TO* and the disturbance correction torque Td*.

In Step S203, a stop control process is performed to execute such a control that the electric motor vehicle
stops. Specifically, a just-before-stop moment of the electric motor vehicle is judged, the first torque target value Tm1*
calculated in Step S202 is set as a motor torque command value Tm* before the just-before-stop moment, and a second
torque target value Tm2* which converges to the disturbance torque estimated value Td with a reduction in the motor
rotation speed is set as the motor torque command value Tm* after the just-before-stop moment. This second torque
target value Tm2* is a positive torque on an uphill road, a negative torque on a downhill road and substantially zero on
a flat road. In this way, a vehicle stopped state can be maintained regardless of a gradient of a road surface as described later. The detail of the stop control process is described later.

In Step S204, a d-axis current target value id* and a q-axis current target value iq* are obtained on the basis of the motor torque target value Tm* calculated in Step S203, the motor rotation speed ωm and the direct-current voltage value Vdc. For example, a table defining a relationship of the d-axis current target value and the q-axis current target value with the torque command value, the motor rotation speed and the direct-current voltage value is prepared in advance and the d-axis current target value id* and the q-axis current target value iq* are obtained by referring to this table.

In Step S205, a current control is executed to match a d-axis current id and a q-axis current iq with the d-axis current id* and the q-axis current iq* obtained in Step S204. To this end, the d-axis current id and the q-axis current iq are first obtained on the basis of the three-phase alternating current values and the rotor phase α of the electric motor 4 input in Step S201. Subsequently, d-axis and q-axis voltage command values vd, vq are calculated from deviations between the d-axis and q-axis current command values id*, iq* and the d-axis and q-axis currents id, iq. It should be noted that a non-interference voltage necessary to cancel out an interference voltage between d-q orthogonal coordinate axes may be added to the calculated d-axis and q-axis voltage command values vd, vq.

Subsequently, three-phase alternating-current voltage command values vu, vq and vw are obtained from the d-axis and q-axis voltage command values vd, vq and the rotor phase α of the electric motor 4. Then, PWM signals tu, tv, tw obtained in this way, the electric motor 4 can be driven with a desired torque instructed by the torque command value Tm*.

A process performed in Step S202 of FIG. 2, i.e. a method for setting the first torque target value Tm1* is described in detail using FIG. 4.

A torque table target value setter 401 sets the torque table target value Tm0* on the basis of the accelerator pedal opening AP and the motor rotation speed ωm by referring to the accelerator pedal opening-torque table shown in FIG. 3.

A disturbance torque estimator 402 obtains the disturbance torque estimated value Td on the basis of the motor torque command value Tm* and the motor rotation speed ωm.

FIG. 5 is a block diagram showing a detailed configuration of the disturbance torque estimator 402. The disturbance torque estimator 402 includes a control block 501, a control block 502, a subtractor 503 and a control block 504.

The control block 501 functions as a filter having a transmission characteristic H(s)/Gp(s) and calculates a first motor torque estimated value by filtering the motor rotation speed ωm input thereto. Gp(s) is a transmission characteristic from a motor torque Tm to the motor rotation speed ωm and described in detail later. H(s) is a low-pass filter having such a transmission characteristic that a difference between the denominator degree and the numerator degree thereof is not smaller than a difference between the denominator degree and the numerator degree of a model Gr(s).

A control block 502 functions as a low-pass filter having a transmission characteristic H(s) and calculates a second motor torque estimated value by filtering the motor torque command value Tm* input thereto.

A subtractor 503 calculates the disturbance torque estimated value Td by subtracting the first motor torque estimated value from the second motor torque estimated value.

In the present embodiment, the disturbance torque estimated value Td is calculated by filtering a deviation between the second motor torque estimated value and the first motor torque estimated value by the control block 504. The control block 504 functions as a filter having a transmission characteristic Hz(s) and calculates the disturbance torque estimated value Td by filtering the deviation between the second motor torque estimated value and the first motor torque estimated value input thereto. Hz(s) is described in detail later.

A disturbance correction torque setter 403 of FIG. 4 obtains the disturbance correction torque Td* on the basis of the disturbance torque estimated value Td calculated by the disturbance torque estimator 402.

FIG. 6 is a block diagram showing a detailed configuration of the disturbance correction torque setter 403. The disturbance correction torque setter 403 includes an uphill correction torque calculator 601, a steep uphill correcting processor 602, a downhill correction torque calculator 603, a steep downhill correcting processor 604, a gradient determiner 605 and a speed correction torque setting processor 606.

The uphill correction torque calculator 601 calculates an uphill correction torque Td1 by multiplying the disturbance torque estimated value Td by a predetermined correction gain Kup.

The steep uphill correcting processor 602 applies a limiter processing to the uphill correction torque Td1 on the basis of a motor torque command value of the accelerator pedal opening-torque table shown in FIG. 3 when the "accelerator pedal opening = O/4 (fully closed)", and calculates an uphill limiter torque Td2 after the limiter processing.

The downhill correction torque calculator 603 calculates a downhill correction torque Td3 by multiplying the disturbance torque estimated value Td by a predetermined downhill correction gain Kdown.

The steep downhill correcting processor 604 calculates a downhill limiter torque Td4 of making a deceleration of the vehicle constant when an absolute value of the disturbance torque estimated value Td is not smaller than a
The gradient determiner 605 determines a gradient of a road surface on the basis of a sign of the disturbance torque estimated value \( T_d \) and sets the uphill limiter torque \( T_{d2} \) as the gradient correction torque \( T_{d5} \) on an uphill slope (disturbance torque estimated value \( T_d > 0 \)) while setting the downhill limiter torque \( T_{d4} \) as the gradient correction torque \( T_{d5} \) on a downhill slope (disturbance torque estimated value \( T_d < 0 \)).

It should be noted that a table defining a relationship of the disturbance torque estimated value \( T_d \) and the gradient correction torque \( T_{d5} \) may be prepared in advance and the gradient correction torque \( T_{d5} \) may be calculated on the basis of the disturbance torque estimated value \( T_d \) by referring to this table.

FIG. 7 is a graph showing an example of the table defining the relationship of the disturbance torque estimated value \( T_d \) and the gradient correction torque \( T_{d5} \). In the case of a steep uphill road, i.e. if the disturbance torque estimated value \( T_d \) is not smaller than a predetermined value \( T_{d1} \), the gradient correction torque \( T_{d5} \) is set at a predetermined upper limit value. Further, in the case of an uphill road which is not a steep uphill slope, i.e. if the disturbance torque estimated value \( T_d \) is larger than 0 and below the predetermined value \( T_{d2} \), the gradient correction torque \( T_{d5} \) is set at a smaller value (however, \( T_{d5} > 0 \)) as the disturbance torque estimated value \( T_d \) becomes smaller. In the case of a downhill road which is not a steep downhill slope, i.e. if the disturbance torque estimated value \( T_d \) is smaller than 0 and larger than a predetermined value \( T_{d2} \), the gradient correction torque \( T_{d5} \) is set at a smaller value (however, \( T_{d5} < 0 \)) as the disturbance torque estimated value \( T_d \) becomes smaller. In the case of a steep downhill road surface, i.e. if the disturbance torque estimated value \( T_d \) is larger than 0 and below the predetermined value \( T_{d1} \), the gradient correction torque \( T_{d5} \) is set at 0 in a high speed region where the motor rotation speed \( \omega_m \) is lower than a predetermined rotation speed \( \omega_m1 \), and set at 0 in a high speed region where the motor rotation speed \( \omega_m \) is not lower than a predetermined rotation speed \( \omega_m2 \) (\( \omega_1 < \omega_2 \)). In this way, the gradient correction torque \( T_{d5} \) is outputted as the disturbance correction torque \( T_{d}^{*} \) in the low speed region and set at 0 in the high speed region. Further, in a medium speed region where the motor rotation speed \( \omega_m \) is not lower than the predetermined rotation speed \( \omega_m1 \) and below the predetermined rotation speed \( \omega_m2 \), the speed correction gain is set to become smaller as the motor rotation speed \( \omega_m \) increases.

Since the deceleration until the just-before-stop moment is judged can be adjusted by calculating the first torque target value \( T_{m1}^{*} \) by adding the torque table target value \( T_{m0}^{*} \) set by the torque table target value setter 401 and the disturbance correction torque \( T_{d}^{*} \) set by the disturbance correction torque setter 403.

Since the deceleration until the just-before-stop moment is judged can be adjusted by calculating the first torque target value \( T_{m1}^{*} \) by the aforementioned method, the amount of change from a deceleration being reduced to a deceleration when the motor torque command value \( T_{m}^{*} \) is converged to the disturbance torque estimated value \( T_d \) to stop the vehicle can be suppressed and the drive feeling can be improved.

Next, before the stop control process performed in Step S203 is described, the transmission characteristic \( G_p(s) \) from the motor torque \( T_m \) to the motor rotation speed \( \omega_m \) is described in the control device for electric motor vehicle in the present embodiment.

FIG. 9 is a diagram modeling a drive force transmission system of the vehicle and each parameter in FIG. 9 is as below.

- \( J_m \): inertia of electric motor
- \( J_w \): inertia of drive wheels
- \( M \): weight of vehicle
- \( K_d \): torsional rigidity of drive system
- \( K_t \): coefficient relating friction between tires and road surface
- \( N \): overall gear ratio
- \( r \): load radius of tires
- \( \omega_m \): angular velocity of electric motor
- \( T_m^{*} \): torque target value
The following motion equations can be derived from FIG. 9. However, asterisk (*) attached to the right-upper corner of a symbol in equations (1) to (3) indicates a time differential.

**Equation 1**

\[ J_m \cdot \omega_m^* = T_m - T_d / N \quad \cdots (1) \]

**Equation 2**

\[ 2J_w \cdot \omega_w^* = T_d - rF \quad \cdots (2) \]

**Equation 3**

\[ M \cdot V^* = F \quad \cdots (3) \]

**Equation 4**

\[ T_d = K_d \cdot \int (\omega_m / N - \omega_w) dt \quad \cdots (4) \]

**Equation 5**

\[ F = K_f \cdot (r\omega_w - V) \quad \cdots (5) \]

The transmission characteristic \( G_p(s) \) from the torque target value \( T_m \) to the motor rotation speed \( \omega_m \) of the electric motor 4 obtained on the basis of the motion equations (1) to (5) is expressed by the following equation (6).

**Equation 6**

\[ G_p(s) = \frac{b_2s^3 + b_1s^2 + b_0}{s(a_4s^3 + a_3s^2 + a_2s + a_1)} \quad \cdots (6) \]

Here, each parameter in equation (6) is expressed by the following equations (7).

**Equations 7**
The poles and zero point of the transmission function shown in equation (6) can be approximated to a transmission function of the following equation (8) and one pole and one zero point indicate values extremely close to each other. This is equivalent to that $\alpha$ and $\beta$ of the following equation (8) indicate values extremely close to each other.

**[Equation 8]**

\[
G_p(s) = \frac{(s + \beta)(b_2's^2 + b_1's + b_0')}{s(a_3's^2 + a_2's + a_1')} \quad \cdots (8)
\]

Accordingly, by performing pole-zero cancellation (approximation to $\alpha = \beta$) in equation (8), $G_p(s)$ constitutes a transmission characteristic of (second order)/ (third order) as shown in the following equation (9).

**[Equation 9]**

\[
G_p(s) = \frac{(b_2's^2 + b_1's + b_0')}{s(a_3's^2 + a_2's + a_1')} \quad \cdots (9)
\]

Next, the detail of the stop control process performed in Step S203 of FIG. 2 is described. FIG. 10 is a block diagram for realizing the stop control process.

A motor rotation speed F/B torque setter 1001 calculates a motor rotation speed feedback torque (hereinafter, referred to as a motor rotation speed F/B torque) $T_{\omega}$ on the basis of the detected motor rotation speed $\omega_m$.

**[Equation 10]**

\[
a_3 = 2J_m J_w M
\]

\[
a_1 = J_m (2J_w + Mr^2)K_i
\]

\[
a_2 = (J_m + 2J_w / N^2)M \cdot K_d
\]

\[
a_1 = (J_m + 2J_w / N^2 + Mr^2 / N^2)K_d \cdot K_i
\]

\[
b_3 = 2J_w \cdot M
\]

\[
b_2 = (2J_w + Mr^2)K_i
\]

\[
b_1 = M \cdot K_d
\]

\[
b_0 = K_d \cdot K_i
\]

It should be noted that although the motor rotation speed F/B torque setter 1001 is described to calculate the motor rotation speed F/B torque $T_{\omega}$ on the basis of the detected motor rotation speed $\omega_m$. The motor rotation speed F/B torque setter 1001 includes a multiplier 1101 and calculates the motor rotation speed F/B torque $T_{\omega}$ by multiplying the motor rotation speed $\omega_m$ by a gain $K_vref$. However, $K_vref$ is a negative (minus) value necessary to stop the electric motor vehicle just before the electric motor vehicle stops, and appropriately set, for example, from experimental data or the like. The motor rotation speed F/B torque $T_{\omega}$ is set as a torque capable of achieving a larger regenerative braking force as the motor rotation speed $\omega_m$ increases.

It is also necessary to consider the effect of the disturbances on the motor rotation speed feedback torque $T_{\omega}$. The disturbance torque estimator 1002 calculates the disturbance torque estimated value $T_d$ on the basis of the detected motor rotation speed $\omega_m$ and the motor torque command value $T_m^*$. The configuration of the disturbance torque estimator 1002 is the same as that of the disturbance torque estimator 402 of FIG. 4, i.e. the configuration shown in FIG. 5.

Here, the transmission characteristic $H_z(s)$ of the control block 504 of FIG. 5 is described. The following equation (10) is obtained by rewriting equation (9). $\zeta_z$, $\omega_z$, $\zeta_p$ and $\omega_p$ in equation (10) are expressed by equations (11).
From the above, \( H_z(s) \) is expressed by the following equation (12). However, \( \zeta_c > \zeta_z \). Further, \( \zeta_c > 1 \) to enhance a vibration suppressing effect in a deceleration scene accompanied by the backlash of the gear.

\[
H_z(s) = \frac{s^2 + 2\zeta_z \cdot \omega_z \cdot s + \omega_z^2}{s^2 + 2\zeta_p \cdot \omega_p \cdot s + \omega_p^2} \tag{12}
\]

It should be noted that although the disturbance torque is estimated by a disturbance observer as shown in FIG. 5 in the present embodiment, it may be estimated using a meter such as a vehicle longitudinal G sensor.

Here, air resistance, a modeling error caused by a variation of a vehicle mass due to the number of passengers and load capacity, rolling resistance of the tires, gradient resistance of the road surface and the like can be thought as disturbances, but a disturbance factor dominant just before the vehicle stops is gradient resistance. Disturbance factors differ depending on driving conditions, but the disturbance factors described above can be collectively estimated since the disturbance torque estimator \( 402 \) and the disturbance torque estimator \( 1002 \) calculate the disturbance torque estimated value \( T_d \) on the basis of the motor torque command value \( T_m^* \), the motor rotation speed \( \omega_m \) and the vehicle model \( G_p(s) \). This enables the realization of a smooth vehicle stop from deceleration under any driving condition.

Referring back to FIG. 10, description is continued. An adder \( 1003 \) calculates the second torque target value \( T_{m2}^* \) by adding the motor rotation speed F/B torque \( T_{\omega} \) calculated by the motor rotation speed F/B torque setter \( 1001 \) and the disturbance torque estimated value \( T_d \) calculated by the disturbance torque estimator \( 1002 \). The second torque target value \( T_{m2}^* \) is smaller than the first torque target value \( T_{m1}^* \) during the travel of the vehicle. When the vehicle decelerates and reaches the just-before-stop moment (vehicle speed is not higher than a predetermined vehicle speed), the second torque target value \( T_{m2}^* \) is smaller than the first torque target value \( T_{m1}^* \) during the travel of the vehicle. When the vehicle decelerates and reaches the just-before-stop moment (vehicle speed is not higher than a predetermined vehicle speed), the second torque target value \( T_{m2}^* \) becomes larger than the first torque target value \( T_{m1}^* \). Thus, if the first torque target value \( T_{m1}^* \) is larger than the second torque target value \( T_{m2}^* \), the torque comparator \( 1004 \) judges that the just-before-stop moment has not been reached and sets the motor torque command value \( T_m^* \) to the first torque target value \( T_{m1}^* \). Further, when the second torque target value \( T_{m2}^* \) becomes larger than the first torque target value \( T_{m1}^* \), the torque comparator \( 1004 \) judges that the vehicle will stop shortly and switches the motor torque command value \( T_m^* \) from the first torque target value \( T_{m1}^* \) to the second torque target value \( T_{m2}^* \). It should be noted that the second torque target value \( T_{m2}^* \) is a positive torque on an uphill road and a negative torque on a downhill road and converges substantially to zero on a flat road to maintain the vehicle stopped state.
FIG. 12 is a chart showing control results of a stop control of stopping the electric motor vehicle on an uphill road. FIG. 12(a) shows the control result of a comparative example of a configuration in which the torque table target value $T_{m0}^*$ is not corrected in calculating the first torque target value $T_{m1}^*$ (the disturbance torque estimator 402 and the disturbance correction torque setter 403 of FIG. 4 are absent) and FIG. 12(b) shows the control result by the control device for electric motor vehicle in the present embodiment, wherein a wheel speed, a deceleration and a motor torque command value are successively shown from the top.

In FIG. 12(a), the vehicle is decelerated on the basis of the torque table target value $T_{m0}^*$ calculated on the basis of the accelerator pedal opening and the motor rotation speed up to time $t_3$.

At time $t_3$, it is judged that the vehicle stops shortly due to a reduction of the motor rotation speed $\omega_m$ to the predetermined rotation speed regardless of the gradient of the road surface and the motor torque command value $T_{m}^*$ is switched from the first torque target value $T_{m1}^*$ to the second torque target value $T_{m2}^*$. In this way, the motor torque command value $T_{m}^*$ suddenly changes to match the disturbance torque estimated value $T_d$ at time $t_3$ to time $t_5$. Due to a sudden change of the motor torque command value $T_{m}^*$, a driver feels shock due to a torque level difference and a sudden torque change at a switching timing of the motor torque command value. Specifically, since the motor torque command value is switched at the same rotation speed (vehicle speed) regardless of the gradient of the road surface, a change of the motor torque command value is large on the uphill road and the driver is likely to feel shock due to a sudden torque change.

After time $t_5$, the wheel speed becomes 0 and the vehicle stopped state is maintained.

In FIG. 12(b), a section up to time $t_0$ is the high speed region of FIG. 8 and the disturbance correction torque $T_d^*$ calculated by the disturbance correction torque setter 403 is 0. Thus, up to time $t_0$, the vehicle is decelerated on the basis of the torque table target value $T_{m0}^*$ output from the torque table target value setter 401.

A section from time $t_0$ to time $t_1$ is the medium speed region of FIG. 8. In this section, the disturbance correction torque $T_d^*$ is calculated by multiplying the gradient correction torque $T_d5$ obtained on the basis of the disturbance torque estimated value $T_d$ by the speed correction gain $K_\omega$ corresponding to the motor rotation speed $\omega_m$ (speed correction torque setting processor 606 of FIG. 6) and the first torque target value $T_{m1}^*$ is calculated by adding the torque table target value $T_{m0}^*$ output from the torque table target value setter 401 and the disturbance correction torque $T_d^*$. Then, the vehicle is decelerated on the basis of the calculated first torque target value $T_{m1}^*$.

A section after $t_1$ is the low speed region of FIG. 8. In this section, the disturbance correction torque $T_d^*$ calculated by the disturbance correction torque setter 403 of FIG. 4 is equal to the disturbance torque estimated value $T_d$ obtained by the disturbance torque estimator 402 and the first torque target value $T_{m1}^*$ is calculated by adding the torque table target value $T_{m0}^*$ output from the torque table target value setter 401 and the disturbance correction torque $T_d^*$. Then, the vehicle is decelerated on the basis of the calculated first torque target value $T_{m1}^*$.

At time $t_2$, the second torque target value $T_{m2}^*$ becomes larger than the first torque target value $T_{m1}^*$, the vehicle is judged to stop shortly and the motor torque command value $T_{m}^*$ is switched from the first torque target value $T_{m1}^*$ to the second torque target value $T_{m2}^*$. This switching timing differs depending on the gradient of the road surface. In this way, the motor torque command value $T_{m}^*$ smoothly changes to converge to the disturbance torque estimated value $T_d$ at time $t_2$ to time $t_5$.

At time $t_5$, the motor torque command value $T_{m}^*$ asymptotically converges to the disturbance torque estimated value $T_d$ and the motor rotation speed $\omega_m$ asymptotically converges to zero. In this way, a smooth vehicle stopping free from acceleration vibrations is possible. After time $t_5$, the vehicle stopped state is maintained.

Specifically, according to the control device for electric motor vehicle in the present embodiment, the disturbance correction torque $T_d^*$ is calculated on the basis of the disturbance torque estimated value, whether or not the vehicle stops shortly is judged also considering the calculated disturbance correction torque $T_d^*$ and the motor torque command value $T_{m}^*$ is switched from the first torque target value $T_{m1}^*$ to the second torque target value $T_{m2}^*$. Thus, smooth deceleration and vehicle stopping equivalent to those on flat roads can also be realized on uphill roads.

FIG. 13 is a chart showing control results of a stop control of stopping the electric motor vehicle on a downhill road. FIG. 13(a) shows the control result of a comparative example of a configuration in which the torque table target value $T_{m0}^*$ is not corrected in calculating the first torque target value $T_{m1}^*$ (the disturbance torque estimator 402 and the disturbance correction torque setter 403 of FIG. 4 are absent) and FIG. 13(b) shows the control result by the control device for electric motor vehicle in the present embodiment, wherein the wheel speed, the deceleration and the motor torque command value are successively shown from the top.

In FIG. 13(a), the vehicle is decelerated on the basis of the torque table target value $T_{m0}^*$ calculated on the basis of the accelerator pedal opening and the motor rotation speed up to time $t_3$.

At time $t_3$, it is judged that the vehicle stops shortly due to a reduction of the motor rotation speed $\omega_m$ to the predetermined rotation speed regardless of the gradient of the road surface and the motor torque command value $T_{m}^*$ is switched from the first torque target value $T_{m1}^*$ to the second torque target value $T_{m2}^*$. In this way, at time $t_3$ to time $t_6$, a time until the vehicle stops and a stopping distance become longer and the drive feeling is deteriorated due to a slow torque change, whereby a smooth vehicle stop is impaired. Specifically, in the configuration of the comparative...
example in which the motor torque command value is switched at the same rotation speed (vehicle speed) regardless of the gradient of the road surface, a time until the motor torque command value \( T_m^* \) converges to the disturbance torque estimated value \( T_d \) becomes longer and the drive feeling is deteriorated on downhill roads.

[0078] After time \( t_6 \), the wheel speed becomes 0 and the vehicle stopped state is maintained.

[0079] In FIG. 13(b), a section up to time \( t_0 \) is the high speed region of FIG. 8. and the disturbance correction torque \( T_d^* \) calculated by the disturbance correction torque setter 403 is 0. Thus, up to time \( t_0 \), the vehicle is decelerated on the basis of the torque table target value \( T_m^0* \) output from the torque table target value setter 401. A section from time \( t_0 \) to time \( t_1 \) is the medium speed region of FIG. 8. In this section, the disturbance correction torque \( T_d^* \) calculated by multiplying the gradient correction torque \( T_d5 \) obtained on the basis of the disturbance torque estimated value \( T_d \) by the speed correction gain \( K_\omega \) corresponding to the motor rotation speed \( \omega_m \) (speed correction torque setting processor 606 of FIG. 6) and the first torque target value \( T_m^1* \) is calculated by adding the torque table target value \( T_m^0* \) output from the torque table target value setter 401 and the disturbance correction torque \( T_d^* \). Then, the vehicle is decelerated on the basis of the calculated first torque target value \( T_m^1* \).

[0080] A section after \( t_1 \) is the low speed region of FIG. 8. In this section, the disturbance correction torque \( T_d^* \) calculated by the disturbance correction torque setter 403 of FIG. 4 is equal to the disturbance torque estimated value \( T_d \) obtained by the disturbance torque estimator 402 and the first torque target value \( T_m^1* \) is calculated by adding the torque table target value \( T_m^0* \) output from the torque table target value setter 401 and the disturbance correction torque \( T_d^* \). Then, the vehicle is decelerated on the basis of the calculated first torque target value \( T_m^1* \).

[0081] A section after \( t_1 \) is the low speed region of FIG. 8. In this section, the disturbance correction torque \( T_d^* \) calculated by the disturbance correction torque setter 403 of FIG. 4 is equal to the disturbance torque estimated value \( T_d \) obtained by the disturbance torque estimator 402 and the first torque target value \( T_m^1* \) is calculated by adding the torque table target value \( T_m^0* \) output from the torque table target value setter 401 and the disturbance correction torque \( T_d^* \). Then, the vehicle is decelerated on the basis of the calculated first torque target value \( T_m^1* \).

[0082] At time \( t_4 \), the second torque target value \( T_m^2* \) becomes larger than the first torque target value \( T_m^1* \), the vehicle is judged to stop shortly and the motor torque command value \( T_m^* \) is switched from the first torque target value \( T_m^1* \) to the second torque target value \( T_m^2* \). This switching timing differs depending on the gradient of the road surface.

[0083] At time \( t_5 \), the motor torque command value \( T_m^* \) asymptotically converges to the disturbance torque estimated value \( T_d \) and the motor rotation speed \( \omega_m \) asymptotically converges to zero. In this way, a smooth vehicle stopping free from acceleration vibrations is possible. After time \( t_5 \), the vehicle stopped state is maintained.

[0084] Specifically, according to the control device for electric motor vehicle in the present embodiment, the disturbance correction torque \( T_d^* \) is calculated on the basis of the disturbance torque estimated value and whether or not the vehicle stops shortly is judged (the timing of switching the motor torque command value \( T_m^* \) from the first torque target value \( T_m^1* \) to the second torque target value \( T_m^2* \) is determined) also considering the calculated disturbance correction torque \( T_d^* \). Thus, smooth deceleration and vehicle stopping equivalent to those on flat roads can also be realized on downhill roads.

[0085] Here, although the second torque target value \( T_m^2* \) is calculated by adding the motor rotation speed \( F/B \) torque \( T_o \) and the disturbance torque estimated value \( T_d \) in the above description, the motor rotation speed \( F/B \) torque \( T_o \) may be set as the second torque target value \( T_m^2* \). FIG. 14 is a block diagram for realizing the stop control process in the case of setting the motor rotation speed \( F/B \) torque \( T_o \) as the second torque target value \( T_m^2* \). In FIG. 14, the same constituent elements as those shown in FIG. 10 are denoted by the same reference signs. In this case, the disturbance torque estimated value \( T_d \) is computed as zero in calculating the first torque target value \( T_m^1* \) (FIG. 4).

[0086] Also in the case of setting the motor rotation speed \( F/B \) torque \( T_o \) as the second torque target value \( T_m^2* \), the motor torque command value \( T_m^* \) is switched from the first torque target value \( T_m^1* \) to the second torque target value \( T_m^2* \) when the second torque target value \( T_m^2* \) becomes larger than the first torque target value \( T_m^1* \) and the vehicle is judged to stop shortly. At this time, the motor torque command value \( T_m^* \) converges to zero as the motor rotation speed \( \omega_m \) decreases since the second torque target value \( T_m^2* \) is substantially equal to the motor rotation speed \( F/B \) torque \( T_o \).

[0087] As described above, the control device for electric motor vehicle in one embodiment is a control device for an electric motor vehicle using the electric motor \( 4 \) as a traveling drive source and configured to be decelerated by a regenerative braking force of the electric motor \( 4 \) and calculates the first torque target value \( T_m^1* \) on the basis of vehicle information and calculates the second torque target value \( T_m^2* \) that converges to zero as the motor rotation speed \( \omega_m \) decreases. The first torque target value \( T_m^1* \) is set as the motor torque command value \( T_m^* \) when the vehicle is determined to have not reached the just-before-stop moment, and the second torque target value \( T_m^2* \) is set as the motor torque command value \( T_m^* \) when the vehicle is determined to stop shortly. The electric motor \( 4 \) is controlled on the basis of the set motor torque command value \( T_m^* \). Specifically, since the motor torque command value \( T_m^* \) is switched from the first torque target value \( T_m^1* \) to the second torque target value \( T_m^2* \) just before the vehicle stops after the vehicle is decelerated on the basis of the first torque target value \( T_m^1* \) based on the vehicle information, a smooth vehicle stop from deceleration can be realized. This enables the realization of smooth deceleration and vehicle stopping free from acceleration vibrations in the front-back direction on flat roads. Further, since the vehicle can be decelerated up to the vehicle stopped state even without using the braking force by mechanical braking means such as a foot brake, the regenerative operation of the electric motor \( 4 \) is possible also just before the vehicle stops and electric power consumption can be improved. Furthermore, since the acceleration/deceleration and the stop of the vehicle can be realized only by the accelerator operation, it is not necessary to switchingly depress the accelerator pedal and a
brake pedal and burdens on the driver can be reduced.

[0088] In the case of stopping the vehicle using the brake pedal, a driver not used to driving depresses the accelerator pedal too much to generate acceleration vibrations in the front-back direction of the vehicle when the vehicle stops. Further, if it is attempted to realize the deceleration and the stop of the vehicle at a constant deceleration in the vehicle for realizing the acceleration/deceleration and the stop of the vehicle only by the accelerator operation, the deceleration needs to be increased to realize a sufficient deceleration during deceleration. Thus, acceleration vibrations are generated in the front-back direction of the vehicle when the vehicle stops. However, according to the control device for electric motor vehicle in the one embodiment, any driver can realize smooth deceleration and vehicle stopping only by the accelerator operation as described above.

[0089] Further, according to the control device for electric motor vehicle in the one embodiment, the vehicle is determined to have not reached the just-before-stop moment if the first torque target value Tm1* is larger than the second torque target value Tm2* while being determined to stop shortly if the second torque target value Tm2* is larger than the first torque target value Tm1*. Thus, the motor torque command value Tm* can be switched from the first torque target value Tm1* to the second torque target value Tm2* without generating a torque level difference just before the vehicle stops. Further, since the larger one of the first and second torque target values Tm1*, Tm2* is set as the motor torque command value Tm*, smooth deceleration can be realized without generating a torque level difference at the switching timing of the torque target value at any gradient.

[0090] Particularly, according to the control device for electric motor vehicle in the one embodiment, the disturbance torque estimated value Td is obtained and the torque target value that converges to the disturbance torque estimated value Td as the motor rotation speed ωm decreases is calculated as the second torque target value Tm2*. Thus, regardless of whether it is an uphill road, a downhill road or a flat road, smooth deceleration free from acceleration vibrations in the front-back direction can be realized just before the vehicle stops and the vehicle stopped state can be held.

[0091] Since the disturbance torque estimated value Td is estimated to be a positive value on an uphill road and a negative value on a downhill road, the vehicle can also smoothly stop on slopes and the vehicle stopped state can be held without requiring the foot brake. Further, since the disturbance torque estimated value Td is estimated to be zero on a flat road, the vehicle can smoothly stop and the vehicle stopped state can be held without requiring the foot brake also on flat roads.

[0092] Further, since the first torque target value Tm1* is calculated by calculating the torque table target value Tm0* on the basis of the vehicle information and correcting the calculated torque table target value Tm0* on the basis of the disturbance torque estimated value Td, the deceleration until the just-before-stop moment is determined and can be adjusted on the basis of the disturbance torque estimated value Td. In this way, a torque change amount from the motor torque command value Tm* before the just-before-stop moment to the disturbance torque estimated value Td to which the motor torque command value Tm* converges when the vehicle stopping can be suppressed, and the drive feeling can be improved by suppressing a shock due to a torque change.

[0093] Particularly, since the disturbance correction torque Td* is calculated by multiplying the disturbance torque estimated value Td by the predetermined gain (Kup, Kdown) and the first torque target value Tm1* is calculated by adding the torque table target value Tm0* and the disturbance correction torque Td*, the first torque target value Tm1* can be calculated by linearly correcting the torque table target value Tm0* in accordance with a disturbance.

[0094] Further, the disturbance correction torque Td* is calculated by multiplying a product of the disturbance torque estimated value Td and the predetermined gain (Kup, Kdown) by the speed correction gain Kω corresponding to the motor rotation speed ωm, and the speed correction gain Kω is 1 if the motor rotation speed ωm is lower than the first predetermined rotation speed ωm1, 0 if the motor rotation speed ωm is higher than the second predetermined rotation speed ωm2 higher than the first predetermined rotation speed ωm1, and a value not smaller than 0 and not larger than 1 and closer to 0 as the motor rotation speed ωm increases if the motor rotation speed ωm is not lower than the first predetermined rotation speed ωm1 and not higher than the second predetermined rotation speed ωm2. The disturbance torque in the high speed region is dominantly air resistance. Acceleration/deceleration feeling in the high speed region can be matched with the drive feeling by reducing the disturbance correction torque Td* as the motor rotation speed ωm increases.

[0095] The present invention is not limited to the one embodiment described above. For example, in the above description, the second torque target value Tm2* is the torque target value that converges to the disturbance torque estimated value Td with a reduction in the motor rotation speed ωm. However, since speed parameters such as the wheel speed, the vehicle body speed and the rotation speed of the drive shaft are in a proportional relationship with the rotation speed of the electric motor 4, the second torque target value Tm2* may be caused to converge to the disturbance torque estimated value Td (or zero) with a reduction in the speed parameter proportional to the rotation speed of the electric motor 4.

[0096] Although the embodiment of the present invention has been described above, the above embodiment is merely one application example of the present invention and not intended to limit the technical scope of the present invention to the specific configuration of the above embodiment.
Claims

1. A control device for electric motor vehicle using a motor as a traveling drive source and configured to decelerate by a regenerative braking force of the motor, comprising:

   an accelerator operation amount detecting unit configured to detect an accelerator operation amount;
   a first torque target value calculating unit configured to calculate a first torque target value on the basis of vehicle information;
   a second torque target value calculating unit configured to calculate a second torque target value, the second torque target value converging to zero with a reduction in a speed parameter proportional to a traveling speed of an electric motor vehicle;
   an just-before-stop moment determining unit configured to determine whether or not the vehicle stops shortly;
   a motor torque command value setting unit configured to set the first torque target value as a motor torque command value when the vehicle is determined to have not reached a just-before-stop moment and setting the second torque target value as the motor torque command value when the vehicle is determined to stop shortly; and
   a motor control unit configured to control the motor on the basis of the motor torque command value.

2. The control device for electric motor vehicle according to claim 1, wherein:

   the just-before-stop moment determining unit determines that the just-before-stop moment has not been reached if the first torque target value is larger than the second torque target value and determines that the vehicle stops shortly if the second torque target value is larger than the first torque target value.

3. The control device for electric motor vehicle according to claim 1 or 2, further comprising:

   a disturbance torque estimating unit configured to estimate a disturbance torque, wherein:

   the second torque target value calculating unit calculates a torque target value as the second torque target value, the torque target value converging to the disturbance torque with a reduction in the speed parameter.

4. The control device for electric motor vehicle according to claim 3, wherein:

   the disturbance torque estimating unit estimates the disturbance torque to be a positive value on an uphill road and a negative value on a downhill road.

5. The control device for electric motor vehicle according to claim 3 or 4, wherein:

   the disturbance torque estimating unit zeros the disturbance torque on a flat road.

6. The control device for electric motor vehicle according to any one of claims 3 to 5, wherein:

   the first torque target value calculating unit calculates a basic torque target value on the basis of the vehicle information and calculates the first torque target value by correcting the calculated basic torque target value on the basis of the disturbance torque.

7. The control device for electric motor vehicle according to claim 6, wherein:

   the first torque target value calculating unit calculates a disturbance correction torque by multiplying the disturbance torque by a predetermined gain and calculates the first torque target value by adding the basic torque target value and the disturbance correction torque.

8. The control device for electric motor vehicle according to claim 7, wherein:
the first torque target value calculating unit calculates the disturbance correction torque by multiplying a product of the disturbance torque and the predetermined gain by a speed correction gain corresponding to the speed parameter; and

the speed correction gain is 1 if the speed parameter is smaller than a first predetermined value, 0 if the speed parameter is larger than a second predetermined value larger than the first predetermined value, and a value not smaller than 0 and not larger than 1 and closer to 0 as the speed parameter increases if the speed parameter is not smaller than the first predetermined value and not larger than the second predetermined value.

9. A control method for electric motor vehicle using a motor as a traveling drive source and configured to decelerate by a regenerative braking force of the motor, the method comprising:

a step of detecting an accelerator operation amount;

a step of calculating a first torque target value on the basis of vehicle information;

a step of calculating a second torque target value, the second torque target value converging to zero with a reduction in a speed parameter proportional to a traveling speed of an electric motor vehicle;

a step of determining whether or not the vehicle stops shortly;

a step of setting the first torque target value as a motor torque command value when the vehicle is determined to have not reached a just-before-stop moment and setting the second torque target value as the motor torque command value when the vehicle is determined to stop shortly; and

a step of controlling the motor on the basis of the motor torque command value.
START

INPUT PROCESS \( S_201 \)

FIRST TORQUE TARGET VALUE \( T_m1^* \) CALCULATION PROCESS \( S_202 \)

STOP CONTROL PROCESS \( S_203 \)

CURRENT COMMAND VALUE CALCULATION PROCESS \( S_204 \)

CURRENT CONTROL \( S_205 \)

END

FIG.2
FIG. 3

MOTOR TORQUE [Nm]

- ACCELERATOR PEDAL OPENING = 8/8 (FULLY OPEN)
- ACCELERATOR PEDAL OPENING = 7/8
- ACCELERATOR PEDAL OPENING = 6/8
- ACCELERATOR PEDAL OPENING = 5/8
- ACCELERATOR PEDAL OPENING = 4/8
- ACCELERATOR PEDAL OPENING = 3/8
- ACCELERATOR PEDAL OPENING = 2/8
- ACCELERATOR PEDAL OPENING = 1/8
- ACCELERATOR PEDAL OPENING = 0/8 (FULLY CLOSED)

MOTOR ROTATION SPEED [rpm]
FIG. 5

- Disturbance torque estimated value $T_d$
- First motor torque estimated value $H_z(s)$
- Second motor torque target value $H(s)$
- Motor rotation speed $\omega_m$
- Motor torque command value $T_m^*$
FIG. 9
FIG.11
FIG. 13

(b) EMBODIMENT (DOWNHILL ROAD)

(a) COMPARATIVE EXAMPLE (UPHILL ROAD)

WHEEL SPEED

DECLERATION

COMMAND VALUE

MOTOR TORQUE

DISTURBANCE TORQUE ESTIMATED VALUE

0 10 11 12 13 14 15 16

0 10 11 12 13 14 15 16

0
FIG. 14

1001
MOTOR ROTATION SPEED FB Torque Seter

1004
TORQUE COMPARATOR

SECOND TORQUE TARGET VALUE $T_{m2}^*$

FIRST TORQUE TARGET VALUE $T_{m1}^*$

MOTOR ROTATION SPEED FB Torque

MOTOR TORQUE COMMAND VALUE $T_m^*$
### INTERNATIONAL SEARCH REPORT

**International application No.**

PCT/JP2015/050066

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2013-158178 A (Nissan Motor Co., Ltd.), 15 August 2013 (15.08.2013), paragraphs [0026] to [0068]; fig. 2 to 7 &amp; WO 2013/115042 A1 &amp; CN 104066613 A</td>
<td>1, 3-6, 9</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2007-143350 A (Hitachi, Ltd.), 07 June 2007 (07.06.2007), paragraphs [0015] to [0023]; fig. 1 to 3 (Family: none)</td>
<td>1, 3-6, 9</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search

19 February 2015 (19.02.15)

Date of mailing of the international search report

10 March 2015 (10.03.15)

Name and mailing address of the ISA/

Japan Patent Office

3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2013-187959 A (Toyota Motor Corp.), 19 September 2013 (19.09.2013), entire text (Family: none)</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>JP 2008-92683 A (Nissan Motor Co., Ltd.), 17 April 2008 (17.04.2008), entire text (Family: none)</td>
<td>1-9</td>
</tr>
</tbody>
</table>
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description