BEAMFORMING-BASED COMMUNICATION METHOD AND APPARATUS

Embodiments of the present invention relate to the communications field, and provide a beamforming based communications method and apparatus, where a three-level structure is used to control a beam direction and a beam width while reducing use of hardware. The solution includes: obtaining, by a transmit end, a transmit-end precoding matrix TrBB, a transmit-end intermediate-frequency beamforming matrix TrIF, and a transmit-end radio-frequency-end beamforming matrix TrRF according to feedback information that is from a receive end; acquiring a first data stream, and performing precoding processing on the first data stream according to TrBB to generate a first analog signal; performing weighting and power amplification processing on the first analog signal according to TrIF to generate a second analog signal; performing weighting and power amplification processing on the second analog signal according to TrRF to generate a third analog signal; and determining an antenna array matching the third analog signal, and transmitting the third analog signal to the receive end by using the antenna array matching the third analog signal.
Description

TECHNICAL FIELD

[0001] The present invention relates to the communications field, and in particular, to a beamforming based communications method and apparatus.

BACKGROUND

[0002] With the development of science and technologies as well as the society, quantities of mobile and wireless services sharply increase. In the prior art, it is very difficult to fulfill such a requirement by improving spectral efficiency, and it becomes an inevitable trend to use a high frequency band. To meet a future requirement for a high-speed increase of a mobile data rate, a millimeter-wave band has attracted attention of a larger quantity of people because of characteristics such as a short wavelength and a wide band of the millimeter-wave band. However, compared with existing microwave communication, a millimeter wave is more susceptible to rain, air, and the like and is therefore absorbed by the atmosphere, causing a problem such as an increase in a transmission loss. To minimize a transmission loss, using a phased array antenna system having a large array to improve a transmission gain to further improve precision of a beam direction already becomes a problem to be urgently resolved in the industry.

[0003] A large-array beamforming technology needs to be used in a phased array antenna system having a large array. At present, schemes of implementing the large-array beamforming technology may be basically classified into three types: a beamforming scheme based on digital precoding, a beamforming scheme based on analog phase shifters, and a hybrid beamforming scheme based on a digital and analog two-level-controller. However, the beamforming scheme based on digital precoding requires a very large quantity of radio-frequency link ADCs/DACs, causing relatively high costs and power consumption in hardware implementation; the beamforming scheme based on analog phase shifters causes flexibility of beam control to be reduced; for the hybrid beamforming scheme based on a digital and analog two-level-controller, a particular deviation in accuracy of a beam direction exists in the scheme. Therefore, how to efficiently perform beamforming communication when costs are properly controlled already becomes a problem to be urgently resolved in the industry.

SUMMARY

[0004] Embodiments of the present invention provide a beamforming based communications method and apparatus, which simultaneously control a beam direction and a beam width by using a three-level structure, so that not only a quantity of ADCs/DACs required for beam control is reduced, but also adjustment of a gain can be implemented by adjusting quantities of intermediate-frequency ports and radio-frequency ports.

[0005] To achieve the foregoing objectives, the following technical solutions are used in the embodiments of the present invention:

[0006] According to a first aspect, an embodiment of the present invention provides a transmit end, where the transmit end includes a transmit-end precoding module, a transmit-end intermediate-frequency beamforming module, a transmit-end radio-frequency beamforming module, an antenna array module, and a transmit-end feedback module, where the transmit-end feedback module is configured to obtain, by the transmit end, a transmit-end precoding matrix Tr_{BB}, a transmit-end intermediate-frequency beamforming matrix Tr_{IF}, and a transmit-end radio-frequency-end beamforming matrix Tr_{RF} according to feedback information that is from a receive end, where the feedback information includes a channel matrix H and AOD vector information; the transmit-end precoding module is configured to acquire, by the transmit end, a first data stream, and perform precoding processing on the first data stream according to Tr_{BB} to generate a first analog signal, where the first data stream is generated after a bitstream to be sent is scrambled and undergoes layer mapping; the transmit-end intermediate-frequency beamforming module is configured to perform, by the transmit end, weighting and power amplification processing on the first analog signal according to Tr_{IF} to generate a second analog signal; the transmit-end radio-frequency beamforming module is configured to perform, by the transmit end, weighting and power amplification processing on the second analog signal according to Tr_{RF} to generate a third analog signal; and the antenna array module is configured to determine, by the transmit end, an antenna array matching the third analog signal, and transmit the third analog signal to the receive end by using the antenna array matching the third analog signal.

[0007] In a first possible implementation manner of the first aspect, the transmit-end precoding module is specifically configured to perform, by the transmit end, precoding on the first data stream according to Tr_{BB}, to obtain a precoding signal; and perform, by the transmit end, digital-to-analog conversion processing on the precoding signal, to generate the first analog signal.

[0008] With reference to the first aspect or the first possible implementation manner of the first aspect, in a second possible implementation manner of the first aspect, the transmit-end intermediate-frequency beamforming module is specifically configured to perform, by the transmit end, intermediate-frequency-end up-conversion processing on the first analog signal; perform, by the transmit end according to Tr_{IF}, weighting processing on the first analog signal that has undergone up-conversion;
and perform, by the transmit end, power amplification processing on the first analog signal that has undergone weighting processing, to generate the second analog signal.

[0009] With reference to the first aspect or the first or second possible implementation manner of the first aspect, in a third possible implementation manner of the first aspect, the transmit-end radio-frequency beamforming module is specifically configured to perform, by the transmit end, radio-frequency-end up-conversion processing on the second analog signal; perform, by the transmit end according to TrRF, weighting processing on the second analog signal that has undergone up-conversion; and perform, by the transmit end, power amplification processing on the second analog signal that has undergone weighting processing, to generate the third analog signal.

[0010] With reference to the first aspect or any one of the first to third possible implementation manners of the first aspect, in a fourth possible implementation manner of the first aspect, the transmit-end intermediate-frequency beamforming module is specifically configured to perform, by the transmit end according to TrIF, weighting processing on the first analog signal that has undergone up-conversion, where a manner of the weighting processing is any one of amplitude weighting and phase weighting, amplitude weighting, and phase weighting.

[0011] With reference to the first aspect or any one of the first to fourth possible implementation manners of the first aspect, in a fifth possible implementation manner of the first aspect, the transmit-end feedback module is specifically configured to acquire, by the transmit end, the channel matrix H and the angle-of-departure vector information according to the feedback information; and process, by the transmit end, the channel matrix H and the angle-of-departure vector information by using a first preset iteration function, to obtain TrBB, TrIF, and TrRF.

[0012] According to a second aspect, an embodiment of the present invention provides a receive end, where the receive end includes a receive-end precoding module, a receive-end intermediate-frequency beamforming module, a receive-end radio-frequency beamforming module, and a receive-end feedback module, where the receive-end feedback module is configured to obtain, by the receive end through calculation, a receive-end precoding matrix RxBB, a receive-end intermediate-frequency beamforming matrix RxIF, and a receive-end radio-frequency-end beamforming matrix RxRF according to feedback information that is from a transmit end, where the feedback information includes a channel matrix H, AOA vector information, a transmit-end precoding matrix TrBB, a transmit-end intermediate-frequency beamforming matrix TrIF, and a transmit-end radio-frequency-end beamforming matrix TrRF; the receive-end radio-frequency beamforming module is configured to acquire, by the receive end, a fourth analog signal, and perform weighting and power amplification processing on the fourth analog signal according to RxRF, to generate a fifth analog signal; the receive-end intermediate-frequency beamforming module is configured to perform, by the receive end, weighting and power amplification processing on the fifth analog signal according to RxIF, to generate a sixth analog signal; and the receive-end precoding module is configured to perform, by the receive end, encoding processing on the sixth analog signal according to RxBB, to generate a second data stream, where the second data stream is used to perform layer demapping.

[0013] In a first possible implementation manner of the second aspect, the receive-end radio-frequency beamforming module is specifically configured to perform, by the receive end, weighting processing on the fourth analog signal according to RxRF; perform, by the receive end, power amplification processing on the fourth analog signal that has undergone weighting processing; and perform, by the receive end, radio-frequency-end down-conversion processing on the fourth analog signal that has undergone power amplification processing, to generate the fifth analog signal.

[0014] With reference to the second aspect or the first possible implementation manner of the second aspect, in a second possible implementation manner of the second aspect, the receive-end intermediate-frequency beamforming module is specifically configured to perform, by the receive end, weighting processing on the fifth analog signal according to RxIF; perform, by the receive end, power amplification processing on the fifth analog signal that has undergone weighting processing; and perform, by the receive end, intermediate-frequency-end down-conversion processing on the fifth analog signal that has undergone power amplification processing, to generate the sixth analog signal.

[0015] With reference to the second aspect or the first or second possible implementation manner of the second aspect, in a third possible implementation manner of the second aspect, the receive-end precoding module is specifically configured to convert, by the receive end, the sixth analog signal into a digital signal; and perform, by the receive end according to RxBB, weighting processing on the sixth analog signal converted into the digital signal, to obtain the second data stream.

[0016] With reference to the second aspect or any one of the first to third possible implementation manners of the second aspect, in a fourth possible implementation manner of the second aspect, the receive-end intermediate-frequency beamforming module is specifically configured to perform, by the receive end, weighting processing on the fifth analog signal according to RxIF, where a manner of the weighting processing is any one of amplitude weighting and phase
weighting, amplitude weighting, and phase weighting.

[0017] With reference to the second aspect or any one of the first to fourth possible implementation manners of
the second aspect, in a fifth possible implementation
manner of the second aspect, the receive-end feedback module is specifically config-
ured to acquire, by the receive end, the channel matrix H, the angle-of-arrival vector information, TrBB, TrIF, and
TrRF that are in the feedback information; and process,
by the receive end, the channel matrix H, the angle-of-
arrival vector information, TrBB, TrIF, and TrRF by using
a second preset iteration function, to obtain RxRF, RxRF,
and RxRF.

[0018] According to a third aspect, an embodiment of
the present invention provides a transmit end, where the
transmit end includes a first processor, a second proc-
essor, a first transceiver, a second transceiver, a DAC
converter, a first frequency mixer, a second frequency
mixer, a first phase shifter, a second phase shifter, a first
power amplifier, and a second power amplifier, where
the first transceiver is connected to the first processor,
and the first processor is connected to the DAC converter
to form a transmit-end precoding processing branch,
where the first transceiver is configured to receive the
first data stream and send the first data stream to the first
processor; the first processor is configured to multiply
the first data stream by TrBB, the DAC converter performs
digital-to-analog conversion processing on the first data
stream that is obtained after being multiplied by TrBB,
to generate the first analog signal, where the first data
stream is generated after a bitstream to be sent is scram-
bled and undergoes layer mapping;
the first frequency mixer is connected to the first phase
shifter, and the first phase shifter is connected to the first
power amplifier to form a transmit-end intermediate-fre-
cuency processing branch, where the first frequency mix-
er is configured to perform, by the transmit end, interme-
diate-frequency up-conversion processing on the first an-
alog signal; the first phase shifter is configured to perform,
according to TrIF, weighting processing on the first analog
signal that has undergone up-conversion; and the first
power amplifier is configured to perform power amplifi-
cation processing on the first analog signal that has un-
dergone weighting processing, to generate the second
analog signal;
the second frequency mixer is connected to the second
phase shifter, and the second phase shifter is connected
to the second power amplifier to form a transmit-end ra-
dio-frequency processing branch, where the second fre-
cuency mixer is configured to perform radio-frequency
up-conversion processing on the second analog signal;
the second phase shifter is configured to perform, ac-
cording to TrRF, weighting processing on the second an-
alog signal that has undergone up-conversion; and the
second power amplifier is configured to perform power
amplification processing on the second analog signal that
has undergone weighting processing, to generate the third
analog signal; and
the first transceiver is connected to the second processor to form a receive-end feedback branch, where the first transceiver is configured to acquire a channel matrix \(H \), the angle-of-arrival vector information, \(\text{TrBB} \), \(\text{TrIF} \), and \(\text{TrRF} \) by using a second preset iteration function, to obtain \(\text{RxBB} \), \(\text{RxIF} \), and \(\text{RxRF} \).

[0021] In a first possible implementation manner of the fourth aspect, the fourth phase shifter is specifically configured to perform, by the receive end, any one of amplitude weighting and phase weighting, amplitude weighting, and phase weighting on the fifth analog signal according to \(\text{RxIF} \).

[0022] According to a fifth aspect, an embodiment of the present invention provides a beamforming based communications method, including:

- obtaining, by a transmit end through calculation, a transmit-end precoding matrix \(\text{TrBB} \), a transmit-end intermediate-frequency beamforming matrix \(\text{TrIF} \), and a transmit-end radio-frequency-end beamforming matrix \(\text{TrRF} \) according to feedback information that is from a receive end, where the feedback information includes a channel matrix \(H \) and AOD vector information;
- acquiring, by the transmit end, a first data stream, and performing precoding processing on the first data stream according to \(\text{TrBB} \), to generate a first analog signal, where the first data stream is generated after a bitstream to be sent is scrambled and undergoes layer mapping;
- performing, by the transmit end, weighting and power amplification processing on the first analog signal according to \(\text{TrIF} \), to generate a second analog signal that has undergone up-conversion, where a manner of the weighting processing is any one of amplitude weighting and phase weighting, amplitude weighting, and phase weighting on the first analog signal according to \(\text{TrRF} \), to generate a third analog signal.

[0023] In a first possible implementation manner of the fifth aspect, the performing precoding processing according to \(\text{TrBB} \), to generate a first analog signal includes:

- performing, by the transmit end, precoding on the first data stream according to \(\text{TrBB} \), to obtain a precoding signal; and
- performing, by the transmit end, digital-to-analog conversion processing on the precoding signal, to generate the first analog signal.

[0024] With reference to the fifth aspect or the first possible implementation manner of the fifth aspect, in a second possible implementation manner of the fifth aspect, the performing, by the transmit end, weighting and power amplification processing on the first analog signal according to \(\text{TrIF} \), to generate a second analog signal includes:

- performing, by the transmit end, intermediate-frequency up-conversion processing on the first analog signal;
- performing, by the transmit end according to \(\text{TrIF} \), weighting processing on the second analog signal that has undergone up-conversion; and
- performing, by the transmit end, power amplification processing on the second analog signal that has undergone weighting processing, to generate the second analog signal.

[0025] With reference to the fifth aspect or the first or second possible implementation manner of the fifth aspect, in a third possible implementation manner of the fifth aspect, the performing, by the transmit end, weighting and power amplification processing on the second analog signal according to \(\text{TrRF} \), to generate a third analog signal includes:

- performing, by the transmit end, radio-frequency up-conversion processing on the second analog signal;
- performing, by the transmit end according to \(\text{TrRF} \), weighting processing on the second analog signal that has undergone up-conversion; and
- performing, by the transmit end, power amplification processing on the second analog signal that has undergone weighting processing, to generate the third analog signal.

[0026] With reference to the fifth aspect or any one of the first to third possible implementation manners of the fifth aspect, in a fourth possible implementation manner of the fifth aspect, the transmit end performs, according to \(\text{TrRF} \), weighting processing on the first analog signal that has undergone up-conversion, where a manner of the weighting processing is any one of amplitude weighting and phase weighting, amplitude weighting, and phase weighting.

[0027] With reference to the fifth aspect or any one of the first to fourth possible implementation manners of the fifth aspect, in a fifth possible implementation manner of the fifth aspect, the obtaining, by a transmit end through calculation, a transmit-end precoding matrix \(\text{TrBB} \), a transmit-end intermediate-frequency beamforming matrix \(\text{TrIF} \), and a transmit-end radio-frequency-end beamforming matrix \(\text{TrRF} \) according to feedback information that is from a receive end includes:
In a first possible implementation manner of the present invention, a communications method is provided, including:

acquiring, by the transmit end, the channel matrix H and the angle-of-departure vector information according to the feedback information; and

processing, by the transmit end, the channel matrix H and the angle-of-departure vector information by using a first preset iteration function, to obtain Tr_{BB}, Tr_{IF}, and Tr_{RF}.

[0028] According to a sixth aspect, an embodiment of the present invention provides a beamforming based communications method, including:

obtaining, by a receive end through calculation, a receive-end precoding matrix Rx_{BB}, a receive-end intermediate-frequency beamforming matrix Rx_{IF}, and a receive-end radio-frequency-end beamforming matrix Rx_{RF} according to feedback information that is from a transmit end, where the feedback information includes a channel matrix H, AOA vector information, a transmit-end precoding matrix Tr_{BB}, a transmit-end intermediate-frequency beamforming matrix Tr_{IF}, and a transmit-end radio-frequency-end beamforming matrix Tr_{RF};

acquiring, by the receive end, a fourth analog signal, and performing weighting and power amplification processing on the fourth analog signal according to Rx_{RF}, to generate a fifth analog signal; performing, by the receive end, weighting and power amplification processing on the fifth analog signal according to Rx_{IF}, to generate a sixth analog signal; and

performing, by the receive end, encoding processing on the sixth analog signal that has undergone weighting processing; and

processing, by the receive end, the channel matrix H, the angle-of-arrival vector information, Tr_{BB}, Tr_{IF}, and Tr_{RF} that are in the feedback information; and

processing, by the receive end, radio-frequency down-conversion processing on the fourth analog signal that has undergone power amplification processing, to generate the fifth analog signal.

[0029] In a first possible implementation manner of the sixth aspect, the performing weighting and power amplification processing on the fourth analog signal according to Rx_{RF}, to generate a fifth analog signal includes:

performing, by the receive end, weighting processing on the fourth analog signal according to Rx_{RF}; performing, by the receive end, power amplification processing on the fourth analog signal that has undergone weighting processing; and

performing, by the receive end, radio-frequency down-conversion processing on the fourth analog signal that has undergone power amplification processing, to generate the fifth analog signal.

[0030] With reference to the sixth aspect or the first possible implementation manner of the sixth aspect, in a second possible implementation manner of the sixth aspect, the performing, by the receive end, weighting and power amplification processing on the fifth analog signal according to Rx_{IF}, to generate a sixth analog signal includes:

performing, by the receive end, weighting processing on the fifth analog signal according to Rx_{IF}; performing, by the receive end, power amplification processing on the fifth analog signal that has undergone weighting processing; and

performing, by the receive end, intermediate frequency down-conversion processing on the fifth analog signal that has undergone power amplification processing, to generate the sixth analog signal.

[0031] With reference to the sixth aspect or the first or second possible implementation manner of the sixth aspect, in a third possible implementation manner of the sixth aspect, the performing, by the receive end, encoding processing on the sixth analog signal according to Rx_{BB}, to generate a second data stream includes:

converting, by the receive end, the sixth analog signal into a digital signal; and

performing, by the receive end according to Rx_{BB}, weight processing on the sixth analog signal converted into the digital signal, to obtain the second data stream.

[0032] With reference to the sixth aspect or any one of the first to third possible implementation manners of the sixth aspect, in a fourth possible implementation manner of the sixth aspect, the receive end performs weighting processing on the fifth analog signal according to Rx_{IF}, where a manner of the weighting processing is any one of amplitude weighting and phase weighting, amplitude weighting, and phase weighting.

[0033] With reference to the sixth aspect or any one of the first to fourth possible implementation manners of the sixth aspect, in a fifth possible implementation manner of the sixth aspect, the obtaining, by a receive end through calculation, a receive-end precoding matrix Rx_{BB}, a receive-end intermediate-frequency beamforming matrix Rx_{IF}, and a receive-end radio-frequency-end beamforming matrix Rx_{RF} according to feedback information that is from a transmit end includes:

acquiring, by the receive end, the channel matrix H, the angle-of-arrival vector information, Tr_{BB}, Tr_{IF}, and Tr_{RF} that are in the feedback information; and

processing, by the receive end, the channel matrix H, the angle-of-arrival vector information, Tr_{BB}, Tr_{IF}, and Tr_{RF} by using a second preset iteration function, to obtain Rx_{BB}, Rx_{IF}, and Rx_{RF}.

[0034] According to the beamforming based communications method and apparatus provided in the embodiments of the present invention, a beam direction and a beam width can be simultaneously controlled, by using a multi-beam system having a three-level structure, on a basis of reducing complexity of hardware implementation, so that not only a quantity of ADCs/DACs required for beam control is reduced, but also adjustment of a gain
can be implemented by adjusting quantities of intermediate-frequency ports and radio-frequency ports.

BRIEF DESCRIPTION OF DRAWINGS

[0035] To describe the technical solutions in the embodiments of the present invention or in the prior art more clearly, the following briefly describes the accompanying drawings required for describing the embodiments or the prior art. Apparently, the accompanying drawings in the following description show merely some embodiments of the present invention, and a person of ordinary skill in the art may still derive other drawings from these accompanying drawings without creative efforts.

FIG. 1 is a schematic structural diagram of a transmit end according to an embodiment of the present invention;
FIG. 2 is a schematic structural diagram of a receive end according to an embodiment of the present invention;
FIG. 3 is a schematic hardware diagram 1 of a transmit end according to an embodiment of the present invention;
FIG. 4 is a schematic hardware diagram of a receive end according to an embodiment of the present invention;
FIG. 5 is a schematic flowchart 1 of a beamforming based communications method according to an embodiment of the present invention;
FIG. 6 is a schematic structural diagram 1 of a beamforming method in the prior art;
FIG. 7 is a schematic structural diagram 2 of a beamforming method in the prior art;
FIG. 8a is a schematic structural diagram 3 of a beamforming method in the prior art;
FIG. 8b is a schematic structural diagram 4 of a beamforming method in the prior art;
FIG. 9 is a schematic hardware diagram 2 of a transmit end according to an embodiment of the present invention;
FIG. 10 is a schematic flowchart 2 of a beamforming based communications method according to an embodiment of the present invention;
FIG. 11 is a schematic flowchart 3 of a beamforming based communications method according to an embodiment of the present invention;
FIG. 12 is a schematic flowchart 4 of a beamforming based communications method according to an embodiment of the present invention; and
FIG. 13 is a schematic flowchart 5 of a beamforming based communications method according to an embodiment of the present invention.

DESCRIPTION OF EMBODIMENTS

[0036] The following clearly and completely describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Apparently, the described embodiments are merely some but not all of the embodiments of the present invention. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts shall fall within the protection scope of the present invention.

[0037] A phased array antenna is an antenna of which a shape of a pattern is changed by controlling a feeding phase of a radiation unit in an array antenna. A direction corresponding to a maximum value in a pattern of an antenna may be changed by controlling a phase, so as to achieve an objective of beam scanning. In a special case, a minor level, a minimum value position, and a shape of an entire pattern may also be controlled, for example, a cosecant-squared pattern is obtained, and the pattern is adaptively controlled. When an antenna is rotated by using a mechanical method, inertia is large, and a speed is low; a phased array antenna overcomes such a disadvantage, and a scanning speed of a beam is high. A feeding phase of the phased array antenna is usually controlled by using an electronic computer, and a changing speed of a phase is high (in a unit of millisecond), that is, a direction corresponding to a maximum value in a pattern of an antenna or another parameter changes quickly.

[0038] Beamforming is a combination of an antenna technology and a digital signal processing technology, and is used for directed transmission or reception of a signal. During signal processing performed by a receive end, weighting and synthesis may be performed on signals received by multiple antenna array elements to form a desired ideal signal. From a perspective of a pattern (pattern) of an antenna, it is equivalent to that a beam in a regulated direction is formed. For example, an original omnidirectional receive pattern is converted into a lobe pattern having a null point and a direction corresponding to a maximum value. The same principle is also applicable to a transmit end, and the transmit end performs amplitude and phase adjustment on feeding of an antenna array element, so that a pattern having a desired shape may be formed. If a beamforming technology needs to be used, a precondition is that a multi-antenna system needs to be used to process, by using a particular algorithm at the receive end, signals received by multiple antennas, so that a signal-to-noise ratio of the receive end can be obviously enhanced. Even if the receive end is relatively far, relatively desirable signal quality can also be obtained.

[0039] It should be noted that, in the embodiments of the present invention, a first analog signal, a second analog signal, a third analog signal, and the like are merely used to distinguish different analog signals, and do not constitute a limitation to an analog signal.
Embodiment 1

[0040] This embodiment of the present invention provides a transmit end. As shown in FIG. 1, the transmit end includes a transmit-end precoding module 01, a transmit-end intermediate-frequency beamforming module 02, a transmit-end radio-frequency beamforming module 03, an antenna array module 04, and a transmit-end feedback module 05.

[0041] The transmit-end feedback module 05 is configured to obtain a transmit-end precoding matrix \mathbf{Tr}_{BB}, a transmit-end intermediate-frequency beamforming matrix \mathbf{Tr}_{IF}, and a transmit-end radio-frequency-end beamforming matrix \mathbf{Tr}_{RF} according to feedback information that is from a receive end, where the feedback information includes a channel matrix \mathbf{H} and AOD vector information.

[0042] The transmit-end precoding module 01 is configured to acquire a first data stream, and perform precoding processing on the first data stream according to \mathbf{Tr}_{BB}, to generate a first analog signal, where the first data stream is generated after a bitstream to be sent is scrambled and undergoes layer mapping.

[0043] The transmit-end intermediate-frequency beamforming module 02 is configured to perform weighting and power amplification processing on the first analog signal according to \mathbf{Tr}_{IF}, to generate a second analog signal.

[0044] The transmit-end radio-frequency beamforming module 03 is configured to perform weighting and power amplification processing on the second analog signal according to \mathbf{Tr}_{RF} to generate a third analog signal.

[0045] The antenna array module 04 is configured to determine an antenna array matching the third analog signal, and transmit the third analog signal to the receive end by using the antenna array matching the third analog signal.

[0046] Further, the transmit-end precoding module 01 is specifically configured to perform precoding on the first data stream according to \mathbf{Tr}_{BB} to obtain a precoding signal; and perform digital-to-analog conversion processing on the precoding signal, to generate the first analog signal.

[0047] Further, the transmit-end intermediate-frequency beamforming module 02 is specifically configured to perform intermediate-frequency-end up-conversion processing on the first analog signal; perform, according to \mathbf{Tr}_{IF}, weighting processing on the first analog signal that has undergone intermediate-frequency-end up-conversion; and perform power amplification processing on the first analog signal that has undergone weighting processing, to generate the second analog signal.

[0048] Further, the transmit-end radio-frequency beamforming module 03 is specifically configured to perform radio-frequency-end up-conversion processing on the second analog signal; perform, according to \mathbf{Tr}_{RF}, weighting processing on the second analog signal that has undergone radio-frequency-end up-conversion; and perform power amplification processing on the second analog signal that has undergone weighting processing, to generate the third analog signal.

[0049] Further, the transmit-end intermediate-frequency beamforming module 02 is specifically configured to perform, according to \mathbf{Tr}_{IF}, weighting processing on the first analog signal that has undergone up-conversion, where a manner of the weighting processing may be any one of amplitude weighting and phase weighting, amplitude weighting, and phase weighting.

[0050] Further, the transmit-end feedback module 05 is specifically configured to acquire the channel matrix \mathbf{H} and the angle-of-departure vector information according to feedback information; and process the channel matrix \mathbf{H} and the angle-of-departure vector information by using a first preset iteration function, to obtain \mathbf{Tr}_{BB}, \mathbf{Tr}_{IF}, and \mathbf{Tr}_{RF}.

[0051] Accordingly, the transmit end sends, to the receive end, the received first data stream that has undergone three processing processes, that is, baseband precoding processing, intermediate-frequency beamforming processing, and radio-frequency beamforming processing. Compared with the prior art, this solution can bring beneficial effects in multiple aspects: First, a quantity of ADCs/DACs required in beam control using a three-level structure is reduced. It is assumed that beam control is implemented in two cases. In case 1, three-level beam control is used, and in case 2, two-level beam control is used. It is assumed that radio-frequency beamforming matrices corresponding to the two cases have same dimensionality. In case 1, a relatively small precoding matrix is used in a baseband part, and weighting processing is performed on a signal in an intermediate-frequency part, so that dimensionality of an array may be further increased. In case 2, a baseband precoding matrix is directly used for processing. As known from comparison, a quantity of ADCs/DACs required in case 1 is less than that in case 2. Second, for each channel, a required gain can be conveniently adjusted according to a complexity requirement. As can be seen from the foregoing method, for each data stream, adjustment of a gain can be flexibly implemented through IF processing and RF processing, and herein, can be implemented by adjusting a quantity of IF output ports. Third, an error in a beam direction is smaller; in addition, when three-level beam control is used, a difference from two-level beam control is that one more level of beam control is added at an intermediate frequency end, and one of the following forms can be selected for a weighting manner: (1) amplitude weighting and phase weighting; (2) amplitude weighting; and (3) phase weighting. As known from comparison, a three-level beam control system obtains a more accurate beam direction and has a smaller error. Fourth, in this solution, a quantity of levels may be selected according to an actual requirement of a user; and a switch of each level is controlled according to an actual requirement of the user, and level 1/level 2/level 3 may be separately selected to control a beam direction.
In this solution, a beam direction and beam precision can be simultaneously controlled, by using a multi-beam system having a three-level structure, on a basis of reducing complexity of hardware implementation, so that not only a quantity of ADCs/DACs required for beam control is reduced, but also adjustment of a gain can be implemented by adjusting quantities of intermediate-frequency ports and radio-frequency ports.

Embodiment 2

This embodiment of the present invention provides a receive end. As shown in FIG. 2, the receive end includes a receive-end precoding module 11, a receive-end intermediate-frequency beamforming module 12, a receive-end radio-frequency beamforming module 13, and a receive-end feedback module 14.

The receive-end feedback module 14 is configured to obtain, through calculation, a receive-end precoding matrix RxBB, a receive-end intermediate-frequency-beamforming matrix RxIF, and a receive-end radio-frequency-beamforming matrix RxRF according to feedback information that is from a transmit end, where the feedback information includes a channel matrix H, AOA vector information, a transmit-end precoding matrix TrBB, a transmit-end intermediate-frequency-beamforming matrix TrIF, and a transmit-end radio-frequency-end beamforming matrix TrRF.

The receive-end feedback module 14 is specifically configured to convert the third analog signal into a digital signal; and perform, according to RxBB, weighting processing on the third analog signal converted into the digital signal, to obtain the second data stream.

Further, the receive-end feedback module 14 is specifically configured to perform weighting processing on the second analog signal according to RxIF, where a manner of the weighting processing is any one of amplitude weighting and phase weighting, amplitude weighting, and phase weighting.

Further, the receive-end intermediate-frequency beamforming module 12 is specifically configured to perform encoding processing on the second analog signal that has undergone power amplification processing, to generate the third analog signal.

According to the receive end provided in this embodiment of the present invention, the receive end obtains a receive-end precoding matrix RxBB, a receive-end intermediate-frequency beamforming matrix RxIF, and a receive-end radio-frequency beamforming matrix RxRF according to feedback information that is from a transmit end, where the feedback information includes a channel matrix H, AOA vector information, a transmit-end precoding matrix TrBB, a transmit-end intermediate-frequency beamforming matrix TrIF, and a transmit-end radio-frequency-end beamforming matrix TrRF; the receive end acquires a first analog signal, and performs weighting and power amplification processing on the first analog signal according to RxRF, to generate a second analog signal.

Further, the receive-end intermediate-frequency beamforming module 12 is specifically configured to perform encoding processing on the third analog signal according to RxBB, to generate a second data stream, where the second data stream is used to perform layer demapping.

Further, the receive-end intermediate-frequency beamforming module 12 is specifically configured to perform encoding processing on the third analog signal that has undergone weighting processing; and perform intermediate-frequency-end down-conversion processing on the second analog signal that has undergone power amplification processing, to generate the third analog signal.

Further, the receive-end intermediate-frequency beamforming module 12 is specifically configured to perform encoding processing on the second analog signal that has undergone weighting processing; and perform intermediate-frequency-end down-conversion processing on the second analog signal that has undergone power amplification processing, to generate the third analog signal.

Embodiment 3

FIG. 3 and FIG. 4 are schematic hardware dia-
grams of a beamforming based communications apparatus according to the present invention:

[0065] The large-array beamforming based communications apparatus includes a transmit end 21 and a receive end 22.

[0066] As shown in FIG. 3, the transmit end 21 includes a first processor 32, a second processor 41, a first transceiver 31, a second transceiver 40, a DAC converter 33, a first frequency mixer 34, a second frequency mixer 37, a first phase shifter 35, a second phase shifter 38, a first power amplifier 36, and a second power amplifier 39.

[0067] Specifically, the first transceiver 31 is connected to the first processor 32, and the first processor 32 is connected to the DAC converter 33 to form a transmit-end precoding processing branch, where the first transceiver 31 is configured to receive the first data stream and send the first data stream to the first processor; the first processor 32 is configured to multiply the first data stream by TrBB, and the DAC converter 33 performs digital-to-analog conversion processing on the first data stream that is obtained after being multiplied by TrBB, to generate the first analog signal, where the first data stream is generated after a bitstream to be sent is scrambled and undergoes layer mapping. It should be noted that, there may be one or more DAC converters, which is not limited in this embodiment of the present invention.

[0068] The first frequency mixer 34 is connected to the first phase shifter 35, and the first phase shifter 35 is connected to the first power amplifier 36 to form a transmit-end intermediate-frequency processing branch, where the first frequency mixer 34 is configured to perform, by the transmit end, intermediate-frequency-end up-conversion processing on the first analog signal; the first phase shifter 35 is configured to perform, according to TrIF, weighting processing on the first analog signal that has undergone intermediate-frequency-end up-conversion processing; and the first power amplifier 36 is configured to perform power amplification processing on the first analog signal that has undergone weight processing, to generate the second analog signal.

[0069] The second frequency mixer 37 is connected to the second phase shifter 38, and the second phase shifter 38 is connected to the second power amplifier 39 to form a transmit-end radio-frequency processing branch, where the second frequency mixer 37 is configured to perform radio-frequency-end up-conversion processing on the second analog signal; the second phase shifter 38 is configured to perform, according to TrRF, weighting processing on the second analog signal that has undergone radio-frequency-end up-conversion processing; and the second power amplifier 39 is configured to perform power amplification processing on the second analog signal that has undergone weight processing, to generate the third analog signal.

[0070] The second transceiver 40 is connected to the second processor 14 to form a transmit-end feedback branch, where the second transceiver 40 is configured to acquire a channel matrix H according to the feedback information; the second processor 41 is configured to calculate the angle-of-departure vector information according to the channel matrix H and the feedback information, and process the channel matrix H and the angle-of-departure vector information by using a preset iteration function, to obtain TrBB, TrRF, and TrRF.

[0071] The transmit-end precoding processing branch, the transmit-end intermediate-frequency processing branch, and the transmit-end radio-frequency processing branch are separately connected to the transmit-end feedback branch.

[0072] Further, the first phase shifter 35 is specifically configured to perform any one of amplitude weighting and phase weighting, amplitude weighting, and phase weighting on the second analog signal that has undergone intermediate-frequency-end up-conversion.

[0073] As shown in FIG. 4, the receive end 22 includes a first phase shifter 42, a second phase shifter 45, a first power amplifier 43, a second power amplifier 46, a first frequency mixer 44, a second frequency mixer 47, a DAC converter 48, a first processor 49, a second processor 51, and a first transceiver 50.

[0074] The first phase shifter 42 is connected to the first power amplifier 43, and the first power amplifier 43 is connected to the first frequency mixer 44 to form a receive-end radio-frequency processing branch, where the first phase shifter 42 is configured to perform weight processing on the first analog signal according to RxRF; the first power amplifier 43 is configured to perform power amplification processing on the first analog signal that has undergone weight processing; and the first frequency mixer 44 is configured to perform radio-frequency-end down-conversion processing on the first analog signal that has undergone power amplification processing, to generate a second analog signal.

[0075] The second phase shifter 45 is connected to the second power amplifier 46, and the second power amplifier 46 is connected to the second frequency mixer 47 to form a receive-end intermediate-frequency processing branch, where the second phase shifter 45 is configured to perform weight processing on the second analog signal according to RxIF; the second power amplifier 46 is configured to perform power amplification processing on the second analog signal that has undergone weight processing; and the second frequency mixer 47 is configured to perform intermediate-frequency-end down-conversion processing on the second analog signal that has undergone power amplification processing, to generate a third analog signal.

[0076] The DAC converter 48 is connected to the first processor 49 to form a receive-end precoding processing branch, where the DAC converter 48 is configured to convert the third analog signal into a digital signal; and the first processor 49 is configured to perform, according to RxBB, weight processing on the third analog signal converted into the digital signal, to obtain the second data stream, where the second data stream is used to perform layer demapping.
The first transceiver 50 is connected to the second processor 51 to form a receive-end feedback branch, where the first transceiver 50 is configured to acquire a channel matrix H, a transmit-end precoding matrix T_{BB}, a transmit-end intermediate-frequency beamforming matrix T_{IF}, and a transmit-end radio-frequency-end beamforming matrix T_{RF} that are in the feedback information; and the second processor 51 is configured to calculate the angle-of-arrival vector information according to the feedback information and the channel matrix H, and process the channel matrix H, the angle-of-arrival vector information, T_{BB}, T_{IF}, and T_{RF}, by using a second preset iteration function, to obtain R_{BB}, R_{IF}, and R_{RF}. The receive-end precoding processing branch, the receive-end intermediate-frequency processing branch, and the receive-end radio-frequency processing branch are separately connected to the receive-end feedback branch.

Further, the second phase shifter 45 is specifically configured to perform, by the receive end, any one of amplitude weighting and phase weighting, amplitude weighting, and phase weighting on the fifth analog signal according to R_{IF}.

It should be noted that, functions of the first transceiver and the second transceiver involved in this embodiment of the present invention may be accomplished by one transceiver; correspondingly, functions of the first processor and the second processor may be accomplished by one processor; and functions of the first frequency mixer and the second frequency mixer may be accomplished by one transceiver.

Accordingly, the receive end sends, to the transmit end, the received first data stream that has undergone three processing processes, that is, radio-frequency beamforming processing, intermediate-frequency beamforming processing, and baseband precoding processing. Compared with the prior art, this solution can bring beneficial effects in multiple aspects: First, a quantity of ADCs/DACs required in beam control using a three-level structure is reduced. It is assumed that beam control is implemented in two cases. In case 1, three-level beam control is used, and in case 2, two-level beam control is used. It is assumed that radio-frequency beamforming matrices corresponding to the two cases have same dimensionality. In case 1, a relatively small precoding matrix is used in a baseband part, and weighting processing is performed on a signal in an intermediate-frequency part, so that dimensionality of an array may be further increased. In case 2, a baseband precoding matrix is directly used for processing. As known from comparison, a quantity of ADCs/DACs required in case 1 is less than that in case 2. Second, for each channel, a required gain can be conveniently adjusted according to a complexity requirement. As can be seen from the foregoing method, for each data stream, adjustment of a gain can be flexibly implemented through IF processing and RF processing, and herein, can be implemented by adjusting a quantity of IF output ports. Third, an error in a beam direction is smaller; in addition, when three-level beam control is used, a difference from two-level beam control is that one more level of beam control is added at an intermediate frequency end, and one of the following forms can be selected for a weighting manner: (1) amplitude weighting and phase weighting; (2) amplitude weighting; and (3) phase weighting. As known from comparison, a three-level beam control system obtains a more accurate beam direction and has a smaller error. Fourth, in this solution, a quantity of levels may be selected according to an actual requirement of a user; and a switch of each level is controlled according to an actual requirement of the user, and level 1/level 2/level 3 may be separately selected to control a beam direction.

According to the beamforming based communications apparatus provided in this embodiment of the present invention, the apparatus can simultaneously control, by using a multi-beam system having a three-level structure, a beam direction and a beam width on a basis of reducing complexity of hardware implementation, so that not only a quantity of ADCs/DACs required for beam control is reduced, but also adjustment of a gain can be implemented by adjusting quantities of intermediate-frequency ports and radio-frequency ports.

Embodiment 4

This embodiment of the present invention provides a beamforming based communications method. As shown in FIG. 5, the method includes:

101: A transmit end obtains, through calculation, a transmit-end precoding matrix T_{BB}, a transmit-end intermediate-frequency beamforming matrix T_{IF}, and a transmit-end radio-frequency-end beamforming matrix T_{RF} according to feedback information that is from a receive end.

According to the beamforming based communications method provided in this embodiment of the present invention, a beam direction and a beam width can be simultaneously controlled, by using a multi-beam system having a three-level structure, on a basis of reducing complexity of hardware implementation, so that not only a quantity of ADCs/DACs required for beam control is reduced, but also adjustment of a gain can be implemented by adjusting quantities of intermediate-frequency ports and radio-frequency ports. The feedback information includes a channel matrix H and AOD vector information.

In the prior art, schemes of implementing a large-array beamforming technology may be basically classified into three types: a beamforming scheme based on digital precoding, a beamforming scheme based on analog phase shifters, and a hybrid beamforming scheme based on a digital and analog two-level controller. FIG. 6 shows the beamforming scheme based on digital precoding, in which a beam direction is controlled
by adjusting a weighted value of a 615/625 digital pre-
coding matrix, and the scheme is used to control beam-
forming. However, when a digital beamforming scheme
is used to control a beam, causing a reduction in a side
lobe level, a main lobe beam is broadened, and a gain
is reduced; moreover, in the scheme, a very large quan-
tity of ADC/DAC devices are required on a radio-frequen-
cy link, which causes very high costs and power con-
sumption in hardware implementation; therefore, the digi-
tal beamforming scheme has relatively low practicability.
FIG. 7 shows the beamforming scheme based on analog
phase shifters, in which a beam direction is controlled by
changing an angle of direction of a phase shifter. Gen-
eration of a weighted value of the phase shifter may be
processed at a digital end. Compared with the beam-
forming scheme based on digital precoding, in the
scheme, although a quantity of required DACs/ADCs
may be reduced, the weighted value of the phase shifter
may be adjusted by only relying on simulation, causing
that flexibility of beam control is reduced. FIG. 8a and
FIG. 8b show the hybrid beamforming scheme based on a
digital and analog two-level-controller. FIG. 8a is a
schematic structural diagram of a transmit end of the dig-
ital and analog hybrid beamforming scheme. In the
scheme, a digital precoding matrix and an analog beam-
forming matrix are obtained by estimation performed by
using feedback information to implement beam control.
The scheme implements a compromise between com-
plexity of hardware implementation and scheme perfor-
mance. However, in aspects such as control of precision
of a beam direction and a beam width as well as a quantity
of ADCs/DACs to be used, the scheme still needs to be
improved. Therefore, this embodiment of the present in-
vention provides the beamforming based communica-
tions method, and a quantity of ADCs/DACs required on
a radio-frequency link may be reduced by controlling a
beam by combining multiple levels, so that low precision
of an error in a direction and low complexity in hardware
implementation are ensured while a large-scale antenna
array is implemented. In addition, a quantity of levels of
beam control may be adaptively selected according to an
actual requirement of a user, thereby achieving an objec-
tive of optimizing resource allocation or improving com-
unication quality.

Specifically, at the transmit end, three process-
ing processes, that is, baseband precoding processing,
intermediate-frequency beamforming processing, and
radio-frequency beamforming processing are included.
During the baseband precoding processing, interme-
diate-frequency beamforming processing, and radio-fre-
quency beamforming processing, the transmit-end pre-
coding matrix \mathbf{T}_{BB}, the transmit-end intermediate-fre-
quency beamforming matrix \mathbf{T}_{IF}, and the transmit-end
radio-frequency-end beamforming matrix \mathbf{T}_{RF} need to
be used to perform weighting processing on a signal.
Therefore, the transmit end first acquires a channel ma-
trix \mathbf{H} according to the feedback information that is from
the receive end; and the transmit end further calculates
the angle-of-departure vector information according to
the channel matrix \mathbf{H} and the feedback information, and
processes the channel matrix \mathbf{H} and the angle-of-depar-
ture vector information by using a first preset iteration
function, to obtain \mathbf{T}_{BB}, \mathbf{T}_{IF}, and \mathbf{T}_{RF}.

The channel matrix \mathbf{H} is a channel state infor-
amation, and any information reflecting a channel is re-
tered to as channel state information. A channel matrix
is only one type of channel state information in a MIMO
system. Other information such as a Channel profile, a
multipath delay, a Doppler frequency shift, a rank of a
MIMO channel, and a beamforming vector are all channel
state information.

SVD decomposition (singular value decompos-
sion, singular value decomposition) is one type of matrix
decomposition (decomposition, factorization). A matrix
is decomposed into multiple matrices and equals a prod-
uct of the multiple matrices. Singular value decomposi-
tion (singular value decomposition, SVD) is another or-
thogonal matrix decomposition method. SVD is a most
reliable decomposition method; however, SVD takes a
calculation time nearly ten times as long as that a QR
decomposition method takes. $[\mathbf{U}, \mathbf{S}, \mathbf{V}] = \text{svd} (\mathbf{A})$, where
\mathbf{U} and \mathbf{V} denote two matrices orthogonal to each other,
and \mathbf{S} denotes a diagonal matrix. An original matrix \mathbf{A} is
not necessarily a square matrix. The use of an SVD de-
composition method is to calculate a minimum square
error and perform data compression.

A least square method (also referred to as a
least square method) is a mathematical optimization
technology. In the least square method, an optimal func-
tion match for data is found by using a quadratic sum of
a minimum error. Unknown data can be easily calculated
by using the least square method, so that errors between
these data obtained through calculation and actual data
have a minimum quadratic sum. The least square method
may also be used for curve fitting. Some other optimiza-
tion problems may also be expressed by using the least
square method by minimizing energy or maximizing en-
tropy.

In addition, this embodiment provides a method
of obtaining, by the transmit end through calculation, the
transmit-end precoding matrix \mathbf{T}_{BB}, the transmit-end in-
termediate-frequency beamforming matrix \mathbf{T}_{IF}, and the
transmit-end radio-frequency-end beamforming matrix
\mathbf{T}_{RF}, and the method is described in detail in Embodi-
ment 6, and therefore, details are not described herein
again.

102: The transmit end acquires a first data
stream, and performs precoding processing on the first
data stream according to \mathbf{T}_{BB}, to generate a first analog
signal.

The first data stream is generated after a bit-
stream to be sent is scrambled and undergoes layer map-
ing.

Specifically, the transmit end acquires the first
data stream, where the data stream may include Ns information streams, and the transmit end further multiplies the first data stream by TrBB; the transmit end then performs digital-to-analog conversion processing on the first data stream that is obtained after being multiplied by TrBB to generate the first analog signal, where the matrix TrBB is provided by a feedback module.

103: The transmit end performs weighting and power amplification processing on the first analog signal according to TrIF, to generate a second analog signal.

Specifically, after the transmit end generates the first analog signal, the transmit end performs intermediate-frequency-end up-conversion processing on the first analog signal; the transmit end then performs, according to TrIF, weighting processing on the first analog signal that has undergone up-conversion; and the transmit end further performs power amplification processing on the first analog signal that has undergone weighting processing, to generate the second analog signal. Compared with step 102, during intermediate-frequency processing, a quantity of antenna array elements is increased, where an array element is also referred to as an array element, and is used to generate a directed wireless electromagnetic wave. An antenna includes array elements in different directions, and can generate a multi-beam electromagnetic wave, where the intermediate-frequency beamforming matrix TrIF is provided by the feedback module.

Further, the performing, by the transmit end according to TrIF, weighting processing on the first analog signal that has undergone up-conversion may include: performing, by the transmit end according to TrIF, amplitude weighting on the first analog signal that has undergone intermediate-frequency-end up-conversion; or performing, by the transmit end according to TrIF, phase weighting on the first analog signal that has undergone intermediate-frequency-end up-conversion; or performing, by the transmit end according to TrIF, amplitude and phase weighting on the first analog signal that has undergone intermediate-frequency-end up-conversion.

Further alternatively, as shown in FIG. 9, after the transmit end performs power amplification processing on the first analog signal that has undergone weighting processing, combined processing may be further performed on a first signal by using a combiner. In comparison with FIG. 3, a quantity of output antenna ports at an intermediate frequency end is a quantity obtained by multiplying a quantity of radio-frequency links by a quantity of antennas corresponding to each intermediate frequency channel in FIG. 3, and a quantity of output antenna ports at an intermediate frequency end is consistent with a quantity of radio-frequency links in FIG. 9.

For high-frequency wireless communication, a radio frequency end has a very high requirement for a sampling rate, causing a very strict requirement on a hardware device. It is proposed in this scheme to use three-level combined beam control, and one level of an intermediate frequency control module is added before a radio frequency module to control a beam, so that a requirement on a hardware device can be lowered, and complexity in hardware implementation is reduced; there is one more level of beam control, and therefore, a required gain can be flexibly implemented by adjusting a quantity of output ports at an intermediate frequency end.

104. The transmit end performs weighting and power amplification processing on the second analog signal according to TrRF, to generate a third analog signal.

Specifically, after the transmit end generates the second analog signal, the transmit end performs radio-frequency-end up-conversion processing on the second analog signal; the transmit end then performs, according to TrRF, weighting processing on the second analog signal that has undergone up-conversion; and the transmit end further performs power amplification processing on the second analog signal that has undergone weighting processing, to generate the third analog signal. After step 104, the transmit end further increases the quantity of antenna array elements to a required quantity, and finally selects an antenna by using an antenna to send data.

The transmit end determines an antenna array matching the third analog signal, and transmits the third analog signal to the receive end by using the antenna array matching the third analog signal.

The antenna array is formed by performing feeding and space arrangement according to a particular requirement. Because directivity of a single antenna is limited, to meet applications in various occasions, feeding and space arrangement is performed, according to a particular requirement, on two or more single antennas working at same frequency, to form an antenna array, that is, an antenna array. Main functions of the antenna array are: (1) strengthening and enhancing directivity of a radiation field; (2) strengthening the radiation field. The antenna array may be regarded as superposition of electromagnetic waves (electromagnetic fields). For several columns of electromagnetic waves, when the electromagnetic waves propagate to a same area, according to a superposition principle, vector superposition of the electromagnetic waves occurs. A superposition result is not only related to amplitudes of the columns of electromagnetic waves, but also is related to phase differences between the electromagnetic waves within an incidence region.

Specifically, after the transmit-end radio-frequency beamforming module generates the third analog signal, because each radio frequency RF link carries multiple antenna array elements, the transmit end may use, according to a different requirement, one RF link to perform spatial weighting to form one beam to send the third analog signal to the receive end in a form of an electromagnetic wave, or may use multiple RF links to perform spatial weighting to form one beam to send the third analog signal to the receive end in a form of an electromagnetic wave. In an existing phased array system, a technology of matching an analog signal with an antenna ar-
ray element is already fully disclosed, and therefore details are not described herein again.

Accordingly, the transmit end sends, to the receive end, the received first data stream that has undergone three processing processes, that is, baseband precoding processing, intermediate-frequency beamforming processing, and radio-frequency beamforming processing, so that precision of a beam direction and a beam width is simultaneously controlled on a basis of reducing complexity in hardware implementation.

According to the beamforming based communications method provided in this embodiment of the present invention, a beam direction and a beam width can be simultaneously controlled, by using a multi-beam system having a three-level structure, on a basis of reducing complexity of hardware implementation, so that not only a quantity of ADCs/DACs required for beam control is reduced, but also adjustment of a gain can be implemented by adjusting quantities of intermediate-frequency ports and radio-frequency ports.

Embodiment 5

This embodiment of the present invention provides a beamforming based communications method. As shown in FIG. 10, the beamforming based communications method includes:

- **[0107]** 201: A receive end obtains, through calculation, a receive-end precoding matrix RxBB, a receive-end intermediate-frequency beamforming matrix RxIF, and a receive-end radio-frequency-end beamforming matrix RxRF according to feedback information that is from a transmit end.

- **[0108]** The feedback information includes a channel matrix H, AOA vector information, a transmit-end precoding matrix TrBB, a transmit-end intermediate-frequency beamforming matrix TrIF, and a transmit-end radio-frequency-end beamforming matrix TrRF.

- **[0109]** According to the beamforming based communications method provided in this embodiment of the present invention, a beam direction and a beam width can be simultaneously controlled, by using a multi-beam system having a three-level structure, on a basis of reducing complexity of hardware implementation, so that not only a quantity of ADCs/DACs required for beam control is reduced, but also adjustment of a gain can be implemented by adjusting quantities of intermediate-frequency ports and radio-frequency ports.

- **[0110]** Specifically, at the receive end, three processing processes, that is, baseband precoding processing, intermediate-frequency beamforming processing, and radio-frequency beamforming processing are included. During the baseband precoding processing, intermediate-frequency beamforming processing, and radio-frequency beamforming processing, the receive-end precoding matrix RxBB, the receive-end intermediate-frequency beamforming matrix RxIF, and the receive-end radio-frequency-end beamforming matrix RxRF need to be used to perform weighting processing on a signal. Therefore, the receive end first acquires the channel matrix H, the transmit-end precoding matrix TrBB, the transmit-end intermediate-frequency beamforming matrix TrIF, and the transmit-end radio-frequency-end beamforming matrix TrRF that are in the feedback information; and the receive end further calculates the angle-of-arrival vector information according to the feedback information and the channel matrix H, and processes the channel matrix H, the angle-of-arrival vector information, TrBB, TrIF, and TrRF by using a second preset iteration function, to obtain RxBB, RxIF, and RxRF. Specifically, a method for calculating RxBB, RxIF, and RxRF is described in detail in Embodiment 6, and therefore, details are not described herein again.

- **[0111]** 202: The receive end acquires a third analog signal, and performs weighting and power amplification processing on the third analog signal according to RxRF, to generate a second analog signal.

- **[0112]** Specifically, the receive end acquires the third analog signal from an antenna array, and further performs weighting processing on the third analog signal according to RxRF; the receive end then performs power amplification processing on the third analog signal that has undergone weighting processing; and the receive end finally performs radio-frequency-end down-conversion processing on the third analog signal that has undergone power amplification processing, to generate the second analog signal.

- **[0113]** 203: The receive end performs weighting and power amplification processing on the second analog signal according to RxRF, to generate a third analog signal.

- **[0114]** Specifically, after generating the second analog signal, the receive end performs weighting processing on the second analog signal according to RxRF; the receive end further performs power amplification processing on the second analog signal that has undergone weighting processing; and the receive end finally performs intermediate frequency down-conversion processing on the second analog signal that has undergone power amplification processing, to generate the third analog signal.

- **[0115]** Further, the performing, by the receive end, weighting processing on the second analog signal according to RxRF may include: performing, by the receive end, amplitude weighting on the second analog signal according to RxRF; or performing, by the receive end, phase weighting on the second analog signal according to RxRF; or performing, by the receive end, amplitude and phase weighting on the second analog signal according to RxRF.

- **[0116]** 204: The receive end performs encoding processing on the third analog signal according to RxBB, to generate a second data stream.

- **[0117]** Specifically, after generating the third analog signal, the receive end converts the third analog signal into a digital signal; and the receive end further performs, according to RxBB, weighting processing on the third an-
Accordingly, the receive end sends, to the transmit end, the received first data stream that has undergone three processing processes, that is, radio-frequency beamforming processing, intermediate-frequency beamforming processing, and baseband precoding processing, so that precision of a beam direction and a beam width is simultaneously controlled on a basis of reducing complexity of hardware implementation.

According to the beamforming based communications method provided in this embodiment of the present invention, a receive end obtains a receive-end precoding matrix Rx_{BB}, a receive-end intermediate-frequency beamforming matrix Rx_{IF}, and a receive-end radio-frequency-end beamforming matrix Rx_{RF} according to feedback information that is from a transmit end, where the feedback information includes a channel matrix H, AOA vector information, a transmit-end precoding matrix Tr_{BB}, a transmit-end intermediate-frequency beamforming matrix Tr_{IF}, and a transmit-end radio-frequency-end beamforming matrix Tr_{RF}: the receive end acquires a first analog signal, and performs weighting and power amplification processing on the first analog signal according to Rx_{RF}, to generate a second analog signal; the receive end performs weighting and power amplification processing on the second analog signal according to Rx_{IF}, to generate a third analog signal; and the receive end performs encoding processing on the third analog signal according to Rx_{BB}, to generate a second data stream, where the second data stream is used to perform layer demapping. In the solution, a beam direction and a beam width can be simultaneously controlled, by using a multi-beam system having a three-level structure, on a basis of reducing complexity of hardware implementation, so that not only a quantity of ADCs/DACs required for beam control is reduced, but also adjustment of a gain can be implemented by adjusting quantities of intermediate-frequency and radio-frequency ports.

Embodiment 6

This embodiment of the present invention provides a beamforming based communications method. As shown in FIG. 11, the beamforming based communications method includes:

301: A transmit end obtains, through calculation, a transmit-end precoding matrix Tr_{BB}, a transmit-end intermediate-frequency beamforming matrix Tr_{IF}, and a transmit-end radio-frequency-end beamforming matrix Tr_{RF} according to feedback information that is from a receive end.

According to the beamforming based communications method provided in this embodiment of the present invention, a beam direction and a beam width can be simultaneously controlled, by using a multi-beam system having a three-level structure, on a basis of reducing complexity of hardware implementation, so that not only a quantity of ADCs/DACs required for beam control is reduced, but also adjustment of a gain can be implemented by adjusting quantities of intermediate-frequency ports and radio-frequency ports.
quirement of a user, thereby achieving an objective of optimizing resource allocation or improving communication quality.

[0123] For high-frequency wireless communication, a radio frequency end has a very high requirement for a sampling rate, causing a very strict requirement on a hardware device. It is proposed in this scheme to use three-level combined beam control, and one level of an intermediate frequency control module is added before a radio frequency module to control a beam, so that a requirement on a hardware device can be lowered, and complexity in hardware implementation is reduced; there is one more level of beam control, and therefore, a required gain can be flexibly implemented by adjusting a quantity of output ports at an intermediate frequency end.

[0124] Specifically, at the transmit end, three processing processes, that is, baseband precoding processing, intermediate-frequency beamforming processing, and radio-frequency beamforming processing are included. During the baseband precoding processing, intermediate-frequency beamforming processing, and radio-frequency beamforming processing, the transmit-end precoding matrix \mathbf{T}_{BB}, the transmit-end intermediate-frequency beamforming matrix \mathbf{T}_{IF}, and the transmit-end radio-frequency-end beamforming matrix \mathbf{T}_{RF} need to be used to perform weighting processing on a signal. Therefore, the transmit end first acquires a channel matrix \mathbf{H} according to the feedback information that is from the receive end; and the transmit end further calculates the angle-of-departure vector information according to the channel matrix \mathbf{H} and the feedback information, and processes the channel matrix \mathbf{H} and the angle-of-departure vector information by using a first preset iteration function, to obtain \mathbf{T}_{BB}, \mathbf{T}_{IF}, and \mathbf{T}_{RF}.

[0125] Exemplarily, as shown in FIG. 12, this embodiment of the present invention provides a method for constructing a beamforming matrix in a multi-level structure.

[0126] 401: A transmit end acquires a channel matrix \mathbf{H} according to feedback information that is from a receive end.

[0127] Specifically, a feedback module in a transmit end in an FDD (Frequency Division Duplexing, frequency division duplex) system may acquire the channel matrix \mathbf{H} according to a feedback channel; and a feedback module in a transmit end in a TDD (Time Division Duplexing, time division duplex) system may obtain, by means of uplink SRS estimation, the channel matrix \mathbf{H} based on a channel reciprocity.

[0128] TDD is a technology for distinguishing a wireless channel in time in a downlink operation within a frame period and continuing with an uplink operation, is also one of duplex technologies used in mobile communications technologies, and corresponds to FDD.

[0129] 402: The transmit end performs AOD (Angle-of-departe) estimation on the feedback information, to obtain an angle-of-departure array vector set \mathbf{A}.\n
[0130] AOD (Angle-of-departe, angle-of-departure ranging) estimation is a positioning algorithm based on an angle of departure of a signal, and is a typical ranging-based positioning algorithm. An angle of departure of a signal of a transmit node is sensed by using some hardware devices, relative positions or angles of a transmitting node and an anchor node are calculated, and a triangulation method or another manner is then used to calculate a position of an unknown node.

[0131] 403: The transmit end performs SVD decomposition on the channel matrix \mathbf{H}, to generate an initial value \mathbf{T}_{opt}.

[0132] SVD decomposition (singular value decomposition, singular value decomposition) is one type of matrix decomposition (decomposition, factorization). A matrix is decomposed into multiple matrices and equals a product of the multiple matrices. Singular value decomposition (singular value decomposition, SVD) is another orthogonal matrix decomposition method. SVD is a most reliable decomposition method; however, SVD takes a calculation time nearly ten times as long as that a QR decomposition method takes. $[\mathbf{U}, \mathbf{S}, \mathbf{V}] = \text{svd} (\mathbf{A})$, where \mathbf{U} and \mathbf{V} denote two matrices orthogonal to each other, and \mathbf{S} denotes a diagonal matrix. An original matrix \mathbf{A} is not necessarily a square matrix. The use of an SVD decomposition method is to calculate a minimum square error and perform data compression.

[0133] 404: The transmit end updates \mathbf{T}_{opt} by using a first preset iteration function formula.

[0134] Specifically, an RF (Radio Frequency, radio frequency) and IF (Intermediate Frequency, intermediate frequency) set is estimated through cyclic iteration.

[0135] First, a cost function $f(x) = (\mathbf{A}_i)^H \mathbf{T}_{\text{opt}} \mathbf{A}_i$ is constructed, and a cost function $k = \text{arg max} (f_i(x) * (f_i(x))^H)$ is used to choose suitable vectors from \mathbf{A}_i to form an RF and IF set $\mathbf{T}_{\text{an}} = [\mathbf{T}_{\text{an}} | \mathbf{A}_i^H]$.

[0136] A least square method is further used to estimate a TX baseband precoding matrix \mathbf{T}_{BB}, where

$$\mathbf{T}_{\text{BB}} = \min \left\| \mathbf{T}_{\text{opt}} - \mathbf{T}_{\text{an}} \mathbf{T}_{\text{RF}} \right\|_F$$

The least square method (also referred to as a least square method) is a mathematical optimization technology. In the least square method, an optimal function match for data is found by using a quadratic sum of a minimum error. Unknown data can be easily calculated by using the least square method, so that errors between these data obtained through calculation and actual data have a minimum quadratic sum. The least square method may also be used for curve fitting. Some other optimization problems may also be expressed by using the least square method by minimizing energy or maximizing entropy.

[0137] Further, a solution of \mathbf{T}_{opt} is updated, and it is determined whether an indication variable ii is greater than N_f. If the indication variable ii is not greater than N_f, and the indication variable ii is greater than N_f, then the algorithm is stopped.
TrIF, and TrRF by using a second preset iteration function, decomposition on TrIF, and decomposition is performed on Tran to separately obtain TrIF and TrRF. In this scheme, SVD decomposition may be performed on Tran, a right singular matrix is chosen as TrIF, and a left singular matrix is chosen as TrRF.

405: The transmit end fixes TrBB, performs SVD decomposition on TrIF, chooses a right singular matrix as TrRF, and chooses a left singular matrix as TrRF.

406: The transmit end performs normalization processing to obtain TrBB, TrIF, and TrRF. Accordingly, the transmit end obtains the transmit-end precoding matrix TrBB, the transmit-end intermediate-frequency beamforming matrix TrIF, and the transmit-end radio-frequency-end beamforming matrix TrRF according to the feedback information sent by the receive end.

302: The receive end obtains, through calculation, a receive-end precoding matrix RxBB, a receive-end intermediate-frequency beamforming matrix RxIF, and a receive-end radio-frequency-end beamforming matrix RxRF according to feedback information that is from the transmit end.

Specifically, at the receive end, three processing processes, that is, baseband precoding processing, intermediate-frequency beamforming processing, and radio-frequency beamforming processing are included. During the baseband precoding processing, intermediate-frequency beamforming processing, and radio-frequency beamforming processing, the receive-end precoding matrix RxBB, the receive-end intermediate-frequency beamforming matrix RxIF, and the receive-end radio-frequency-end beamforming matrix RxRF need to be used to perform weighting processing on a signal. Therefore, the receive end first acquires the channel matrix H, the transmit-end precoding matrix TrBB, the transmit-end intermediate-frequency beamforming matrix TrIF, and the transmit-end radio-frequency-end beamforming matrix TrRF that are in the feedback information; and the receive end further calculates the angle-of-arrival vector set Ar.

Exemplarily, as shown in FIG. 13, this embodiment of the present invention provides a method for constructing a beamforming matrix in a multi-level structure.

A receive end acquires a channel matrix H, a transmit-end precoding matrix TrBB, a transmit-end intermediate-frequency beamforming matrix TrIF, and a transmit-end radio-frequency-end beamforming matrix TrRF according to the feedback information.

502: The receive end performs AOA (Angle-of-Arrival, angle-of-arrival ranging) estimation on the feedback information, to obtain an angle-of-departure array vector set Ar.

AOA estimation is a positioning algorithm based on an angle of arrival of a signal, and is a typical ranging-based positioning algorithm. An angle of arrival of a signal of a transmit node is sensed by using some hardware devices, relative positions or angles of a receiving node and an anchor node are calculated, and a triangulation method or another manner is then used to calculate a position of an unknown node. A positioning algorithm based on an angle of arrival (AOA) of a signal is a common self-positioning algorithm of a wireless sensor network node, and the algorithm has low communication overheads and relatively high positioning precision.

503: The receive end fixes TrBB, TrIF, and TrRF, performs initialization, and calculates an optimal matrix set RxMMSE = H*RxBB*RxIF*RxRF of the receive end.

In addition, before initialization is performed, a signal y = H*TrRF*TrIF*TrBB*s(t) + n(t) that has passed a channel may be further acquired, where H denotes a channel matrix, s(t) denotes an input single-stream or multi-stream signal, and n(t) denotes Gaussian white noise.

504: The receive end updates RxMMSE by using a second preset iteration function formula.

Specifically, the receive end first constructs a function k = fr(x) to choose suitable vectors from an "angle-of-arrival vector set Ar" to form.

First, a cost function f(x) = (A_jH*E[yy^T])^T is constructed, and a cost function k = arg max(f(x)) * (f(x))^T is used to choose suitable vectors from A_j to form an RF and IF set Rxan = [Rxan, A_j^T] for

Further, the receive end estimates a baseband precoding matrix RxBE by using Rxan and based on an MMSE criterion.

An MMSE (Minimum Mean Square Error, minimum mean square error criterion) is used to optimize a weighted value coefficient, to obtain optimal spectrum estimation in the sense of a minimum mean square error.

Further, the receive end updates RxMMSE by using a second preset iteration function, to obtain Rxan, Rxan, and RxRF.
iteration estimation until the requirement is met.

- **[0157]** 505: The receive end fixes R_{BB}, performs SVD decomposition on R_{an}, chooses a right singular matrix as R_{IF}, and chooses a left singular matrix as R_{RF}.
- **[0158]** Specifically, R_{BB} is fixed, decomposition is performed on R_{an} to separately obtain R_{IF} and R_{RF}. In this scheme, SVD decomposition may be performed on R_{an}, a right singular matrix is chosen as R_{IF}, and a left singular matrix is chosen as R_{RF}.
- **[0159]** 506: The receive end performs normalization processing to obtain a receive-end precoding matrix R_{BB}, a receive-end intermediate-frequency beamforming matrix R_{IF}, and a receive-end radio-frequency-end beamforming matrix R_{RF}.

- **[0160]** It should be noted that, in this embodiment of the present invention, $(\cdot)^{\text{H}}$ denotes conjugate transpose, and $\|\cdot\|_F$ denotes a unitarily invariant norm.
- **[0161]** Accordingly, the receive end obtains the receive-end precoding matrix R_{BB}, the receive-end intermediate-frequency beamforming matrix R_{IF}, and the receive-end radio-frequency-end beamforming matrix R_{RF} according to the feedback information sent by a transmit end.

- **[0162]** 303: The transmit end acquires a first data stream, and performs precoding processing on the first data stream according to Tr_{BB}, to generate a first analog signal.
- **[0163]** In this embodiment of the present invention, the transmit end includes a transmit-end precoding unit, a transmit-end intermediate-frequency beamforming unit, a transmit-end radio-frequency beamforming unit, and a transmit-end feedback unit.
- **[0164]** Specifically, the transmit-end precoding unit acquires the first data stream, where the data stream may include N_s information streams, and the transmit-end precoding unit further multiplies the first data stream by Tr_{BB}, and the transmit-end precoding unit then performs digital-to-analog conversion processing on the first data stream that is obtained after being multiplied by Tr_{BB}, to generate the first analog signal.
- **[0165]** Preferably, the transmit-end precoding unit includes a first transceiver, a first processor, and a first DAC converter, where the first transceiver is configured to receive the first data stream and send the first data stream to a processor; the first processor is configured to multiply the first data stream by Tr_{BB}, and the DAC converter performs digital-to-analog conversion processing on the first data stream that is obtained after being multiplied by Tr_{BB}, to generate the first analog signal.
- **[0166]** 304: The transmit end performs weighting and power amplification processing on the first analog signal according to Tr_{IF}, to generate a second analog signal.

- **[0167]** Specifically, after the transmit-end precoding unit generates the first analog signal, the transmit-end intermediate-frequency beamforming unit performs intermediate-frequency-end up-conversion processing on the first analog signal; the transmit-end intermediate-frequency beamforming unit then performs, according to Tr_{IF}, weighting processing on the first analog signal that has undergone up-conversion; and the transmit-end intermediate-frequency beamforming unit further performs power amplification processing on the first analog signal that has undergone weighting processing, to generate the second analog signal.
- **[0168]** Preferably, the transmit-end intermediate-frequency beamforming unit includes at least one group of a first frequency mixer, a first phase shifter, and a first power amplifier connected in series, where the first frequency mixer is configured to perform, by the transmit end, up-conversion processing on the first analog signal; the first phase shifter is configured to perform, according to Tr_{IF}, weighting processing on the first analog signal that has undergone up-conversion; and the first power amplifier is configured to perform power amplification processing on the first analog signal that has undergone weighting processing, to generate the second analog signal.

- **[0169]** Further, the performing, by the transmit end according to Tr_{IF}, weighting processing on the first analog signal that has undergone up-conversion may include: performing, by the transmit end according to Tr_{IF}, amplitude weighting on the first analog signal that has undergone up-conversion; or performing, by the transmit end according to Tr_{IF}, phase weighting on the first analog signal that has undergone up-conversion; or performing, by the transmit end according to Tr_{IF}, amplitude and phase weighting on the first analog signal that has undergone up-conversion.
- **[0170]** 305: The transmit end performs weighting and power amplification processing on the second analog signal according to Tr_{RF}, to generate a third analog signal.
- **[0171]** Specifically, after the transmit-end intermediate-frequency beamforming unit generates the second analog signal, the transmit-end radio-frequency beamforming unit performs radio-frequency-end up-conversion processing on the second analog signal; the transmit-end radio-frequency beamforming unit then performs, according to Tr_{RF}, weighting processing on the second analog signal that has undergone up-conversion; and the transmit-end radio-frequency beamforming unit further performs power amplification processing on the second analog signal that has undergone weighting processing, to generate the third analog signal.

- **[0172]** Preferably, the transmit-end radio-frequency beamforming unit includes at least one group of a second frequency mixer, a second phase shifter, and a second power amplifier connected in series, where the second frequency mixer is configured to perform up-conversion processing on the second analog signal; the second phase shifter is configured to perform, according to Tr_{RF}, weighting processing on the second analog signal that has undergone up-conversion; and the second power amplifier is configured to perform power amplification processing on the second analog signal that has undergone weighting processing, to generate the third analog
signal.

[0173] 306: The transmit end determines an antenna array matching the third analog signal, and transmits the third analog signal to the receive end by using the antenna array matching the third analog signal.

[0174] Accordingly, the transmit end sends, to the receive end, the received first data stream that has undergone three processing processes, that is, baseband precoding processing, intermediate-frequency beamforming processing, and radio-frequency beamforming processing, so that precision of a beam direction and a beam width is simultaneously controlled on a basis of reducing complexity of hardware implementation.

[0175] 307: The receive end acquires the first analog signal, and performs weighting and power amplification processing on the first analog signal according to RxRF, to generate the second analog signal.

[0176] In this embodiment of the present invention, the receive end includes a receive-end feedback unit, a receive-end radio-frequency beamforming unit, a receive-end intermediate-frequency beamforming unit, and a receive-end precoding unit.

[0177] Specifically, the receive-end radio-frequency beamforming unit acquires the first analog signal from the antenna array, and further performs weighting processing on the first analog signal according to RxRF: the receive-end radio-frequency beamforming unit then performs power amplification processing on the first analog signal that has undergone weighting processing; and the receive-end radio-frequency beamforming unit finally performs radio-frequency-end down-conversion processing on the first analog signal that has undergone power amplification processing, to generate the second analog signal.

[0178] Preferably, the receive-end radio-frequency beamforming unit includes at least one group of a third phase shifter, a third power amplifier, and a third frequency mixer connected in series, where the third phase shifter is configured to perform weighting processing on the first analog signal according to RxRF; the third power amplifier is configured to perform power amplification processing on the first analog signal that has undergone weighting processing; and the third frequency mixer is configured to perform radio-frequency-end down-conversion processing on the first analog signal that has undergone power amplification processing, to generate the second analog signal.

[0179] 308: The receive end performs weighting and power amplification processing on the second analog signal according to RxIF, to generate the third analog signal.

[0180] Preferably, the receive-end intermediate-frequency beamforming unit includes at least one group of a fourth phase shifter, a fourth power amplifier, and a fourth frequency mixer connected in series, where the fourth phase shifter is configured to perform weighting processing on the second analog signal according to RxRF: the fourth power amplifier is configured to perform power amplification processing on the second analog signal that has undergone weighting processing; and the fourth frequency mixer is configured to perform down-conversion processing on the second analog signal that has undergone power amplification processing, to generate the third analog signal.

[0181] Further, the performing, by the receive-end intermediate-frequency beamforming unit, weighting processing on the second analog signal according to RxIF may include: performing, by the receive end, amplitude weighting on the second analog signal according to RxIF; or performing, by the receive end, phase weighting on the second analog signal according to RxIF, or performing, by the receive end, amplitude and phase weighting on the second analog signal according to RxIF.

[0182] Preferably, the receive-end intermediate-frequency beamforming unit includes at least one group of a fourth phase shifter, a fourth power amplifier, and a fourth frequency mixer connected in series, where the fourth phase shifter is configured to perform weighting processing on the second analog signal according to RxIF, the fourth power amplifier is configured to perform power amplification processing on the second analog signal that has undergone weighting processing; and the fourth frequency mixer is configured to perform down-conversion processing on the second analog signal that has undergone power amplification processing, to generate the third analog signal.

[0183] 309: The receive end performs encoding processing on the third analog signal according to RxBB, to generate a second data stream.

[0184] Specifically, after the receive-end intermediate-frequency beamforming unit generates the third analog signal, the receive-end precoding unit converts the third analog signal into a digital signal; and the receive-end precoding unit further performs, according to RxBB, weighting processing on the third analog signal converted into the digital signal, to obtain the second data stream, where the second data stream is used to perform layer demapping.

[0185] Preferably, the receive-end precoding unit includes a second DAC converter and a third processor, where the second DAC converter is configured to convert the third analog signal into a digital signal; and the third processor is configured to perform, according to RxBB, weighting processing on the third analog signal converted into the digital signal, to obtain the second data stream.

[0186] Accordingly, the receive end sends, to the transmit end, the received first data stream that has undergone three processing processes, that is, radio-frequency beamforming processing, intermediate-frequency beamforming processing, and baseband precoding processing. Compared with the prior art, this solution can bring beneficial effects in multiple aspects: First, a quantity of ADCs/DACs required in beam control using a three-level structure is reduced. It is assumed that beam control is implemented in two cases. In case 1, three-level beam control is used, and in case 2, two-level beam control is
used. It is assumed that radio-frequency beamforming matrices corresponding to the two cases have same dimensionality. In case 1, a relatively small precoding matrix is used in a baseband part, and weighting processing is performed on a signal in an intermediate-frequency part, so that dimensionality of an array may be further increased. In case 2, a baseband precoding matrix is directly used for processing. As known from comparison, a quantity of ADCs/DACs required in case 1 is less than that in case 2. Second, for each channel, a required gain can be conveniently adjusted according to a complexity requirement. As can be seen from the foregoing method, for each data stream, adjustment of a gain can be flexibly implemented through IF processing and RF processing, and herein, can be implemented by adjusting a quantity of IF output ports. Third, an error in a beam direction is smaller; in addition, when three-level beam control is used, a difference from two-level beam control is that one more level of beam control is added at an intermediate frequency end, and one of the following forms can be selected for a weighting manner: (1) amplitude weighting and phase weighting; (2) amplitude weighting; and (3) phase weighting. As known from comparison, a three-level beam control system obtains a more accurate beam phase weighting. As known from comparison, a three-level structure, on a basis of reducing complexity of hardware implementation, so that not only a quantity of ADCs/DACs required for beam control is reduced, but also adjustment of a gain can be implemented by adjusting quantities of intermediate-frequency ports and radio-frequency ports.

According to the beamforming based communications method provided in this embodiment of the present invention, a beam direction and a beam width can be simultaneously controlled, by using a multi-beam system having a three-level structure, on a basis of reducing complexity of hardware implementation, so that not only a quantity of ADCs/DACs required for beam control is reduced, but also adjustment of a gain can be implemented by adjusting quantities of intermediate-frequency ports and radio-frequency ports.

It may be clearly understood by a person skilled in the art that, for the purpose of convenient and brief description, division of the foregoing function modules is taken as an example for illustration. In actual application, the foregoing functions can be allocated to different function modules and implemented according to a requirement, that is, an inner structure of an apparatus is divided into different function modules to implement all or some of the functions described above. For a detailed working process of the foregoing system, apparatus, and unit, reference may be made to a corresponding process in the foregoing method embodiments, and details are not described herein again.

In the several embodiments provided in this application, it should be understood that the disclosed system, apparatus, and method may be implemented in other manners. For example, the described apparatus embodiment is merely exemplary. For example, the module or unit division is merely logical function division and may be other division in actual implementation. For example, a plurality of units or components may be combined or integrated into another system, or some features may be ignored or not performed. In addition, the displayed or discussed mutual couplings or direct couplings or communication connections may be implemented through some interfaces. The indirect couplings or communication connections between the apparatuses or units may be implemented in electronic, mechanical, or other forms.

1. A transmit end, wherein the transmit end comprises a transmit-end precoding module, a transmit-end in-
Intermediate-frequency beamforming module, a transmit-end radio-frequency beamforming module, an antenna array module, and a transmit-end feedback module, wherein
the transmit-end feedback module is configured to obtain a transmit-end precoding matrix \mathbf{Tr}_{BB}, a transmit-end intermediate-frequency beamforming matrix \mathbf{Tr}_{IF}, and a transmit-end radio-frequency-end beamforming matrix \mathbf{Tr}_{RF} according to feedback information that is from a receive end, wherein the feedback information comprises a channel matrix \mathbf{H} and AOD vector information;
the transmit-end precoding module is configured to acquire a first data stream, and perform precoding processing on the first data stream according to \mathbf{Tr}_{BB}, to generate a first analog signal, wherein the first data stream is generated after a bitstream to be sent is scrambled and undergoes layer mapping;
the transmit-end intermediate-frequency beamforming module is configured to perform weighting and power amplification processing on the first analog signal according to \mathbf{Tr}_{IF}, to generate a second analog signal;
the transmit-end radio-frequency beamforming module is configured to perform weighting and power amplification processing on the second analog signal according to \mathbf{Tr}_{RF}, to generate a third analog signal; and
the antenna array module is configured to determine an antenna array matching the third analog signal, and transmit the third analog signal to the receive end by using the antenna array matching the third analog signal.

2. The transmit end according to claim 1, wherein the transmit-end precoding module is specifically configured to:

perform precoding on the first data stream according to \mathbf{Tr}_{BB}, to obtain a precoding signal; and
perform digital-to-analog conversion processing on the precoding signal, to generate the first analog signal.

3. The transmit end according to claim 1 or 2, wherein the transmit-end intermediate-frequency beamforming module is specifically configured to:

perform intermediate-frequency-end up-conversion processing on the first analog signal; perform, according to \mathbf{Tr}_{IF}, weighting processing on the first analog signal that has undergone up-conversion; and perform power amplification processing on the first analog signal that has undergone weighting processing, to generate the second analog signal.

4. The transmit end according to any one of claims 1 to 3, wherein the transmit-end radio-frequency beamforming module is specifically configured to:

perform radio-frequency-end up-conversion processing on the second analog signal; perform, according to \mathbf{Tr}_{RF}, weighting processing on the second analog signal that has undergone radio-frequency-end up-conversion; and perform power amplification processing on the second analog signal that has undergone weighting processing, to generate the third analog signal.

5. The transmit end according to any one of claims 1 to 4, wherein the transmit-end intermediate-frequency beamforming module is specifically configured to:

perform, according to \mathbf{Tr}_{IF}, weighting processing on the first analog signal that has undergone up-conversion, wherein a manner of the weighting processing is any one of amplitude weighting and phase weighting, amplitude weighting, and phase weighting.

6. The transmit end according to any one of claims 1 to 5, wherein the transmit-end feedback module is specifically configured to:

acquire the channel matrix \mathbf{H} and the angle-of-departure vector information according to the feedback information; and process the channel matrix \mathbf{H} and the angle-of-departure vector information by using a first preset iteration function, to obtain \mathbf{Tr}_{BB}, \mathbf{Tr}_{IF}, and \mathbf{Tr}_{RF}.

7. A receive end, wherein the receive end comprises a receive-end precoding module, a receive-end intermediate-frequency beamforming module, a receive-end radio-frequency beamforming module, and a receive-end feedback module, wherein
the receive-end feedback module is configured to obtain a receive-end precoding matrix \mathbf{Rx}_{BB}, a receive-end intermediate-frequency beamforming matrix \mathbf{Rx}_{IF}, and a receive-end radio-frequency-end beamforming matrix \mathbf{Rx}_{RF} according to feedback information that is from a transmit end, wherein the feedback information comprises a channel matrix \mathbf{H}, AOA vector information, a transmit-end precoding matrix \mathbf{Tr}_{BB}, a transmit-end intermediate-frequency beamforming matrix \mathbf{Tr}_{IF}, and a transmit-end radio-frequency-end beamforming matrix \mathbf{Tr}_{RF};
the receive-end radio-frequency beamforming module is configured to acquire a first analog signal, and perform weighting and power amplification processing on the first analog signal according to \mathbf{Rx}_{RF}, to generate a second analog signal;
the receive-end intermediate-frequency beamforming module is configured to perform weighting and power amplification processing on the second analog signal according to RxRF, to generate a third analog signal; and

the receive-end precoding module is configured to perform encoding processing on the third analog signal that has undergone power amplification processing, to generate the second data stream, wherein the second data stream is used to perform layer demapping.

8. The receive end according to claim 7, wherein the receive-end radio-frequency beamforming module is specifically configured to:

- perform weighting processing on the first analog signal according to RxRF; and perform, by the receive end, power amplification processing on the first analog signal that has undergone weighting processing; and

- perform radio-frequency-end down-conversion processing on the first analog signal that has undergone power amplification processing, to generate the second analog signal.

9. The receive end according to claim 7 or 8, wherein the receive-end intermediate-frequency beamforming module is specifically configured to:

- perform weighting processing on the second analog signal according to RxRF; and perform, by the receive end, power amplification processing on the second analog signal that has undergone weighting processing; and

- perform intermediate-frequency-end down-conversion processing on the second analog signal that has undergone power amplification processing, to generate the third analog signal.

10. The receive end according to any one of claims 7 to 9, wherein the receive-end precoding module is specifically configured to:

- convert the third analog signal into a digital signal; and

- perform, according to RxBB, weighting processing on the third analog signal converted into the digital signal, to obtain the second data stream.

11. The receive end according to any one of claims 7 to 10, wherein the receive-end intermediate-frequency beamforming module is specifically configured to perform weighting processing on the second analog signal according to RxRF, wherein a manner of the weighting processing is any one of amplitude weighting and phase weighting, amplitude weighting, and phase weighting.

12. The receive end according to any one of claims 7 to 11, wherein the receive-end feedback module is specifically configured to:

- acquire the channel matrix H, the angle-of-arrival vector information, TrBB, TrIF, and TrRF that are in the feedback information; and

- process the channel matrix H, the angle-of-arrival vector information, TrBB, TrIF, and TrRF by using a second preset iteration function, to obtain RxBB, RxIF, and RxRF.

13. A transmit end, wherein the transmit end comprises a first processor, a second processor, a first transceiver, a second transceiver, a DAC converter, a first frequency mixer, a second frequency mixer, a first phase shifter, a second phase shifter, a first power amplifier, and a second power amplifier, wherein

the first transceiver is connected to the first processor, and the first processor is connected to the DAC converter to form a transmit-end precoding processing branch, wherein the first transceiver is configured to receive the first data stream and send the first data stream to the first processor; the first processor is configured to multiply the first data stream by TrBB; and

the DAC converter performs digital-to-analog conversion processing on the first data stream that is obtained after being multiplied by TrBB, to generate the first analog signal, wherein the first data stream is generated after a bitstream to be sent is scrambled and undergoes layer mapping;

the first frequency mixer is connected to the first phase shifter, and the first phase shifter is connected to the first power amplifier to form a transmit-end intermediate-frequency processing branch, wherein the first frequency mixer is configured to perform, by the transmit end, intermediate-frequency up-conversion processing on the first analog signal; the first phase shifter is configured to perform, according to TrIF, weighting processing on the first analog signal that has undergone up-conversion; and the first power amplifier is configured to perform power amplification processing on the first analog signal that has undergone weighting processing, to generate the second analog signal;

the second frequency mixer is connected to the second phase shifter, and the second phase shifter is connected to the second power amplifier to form a transmit-end radio-frequency processing branch, wherein the second frequency mixer is configured to perform radio-frequency up-conversion processing on the second analog signal; the second phase shifter is configured to perform, according to TrRF, weighting processing on the second analog signal that has undergone up-conversion; and the second power amplifier is configured to perform power amplification processing on the second analog signal that has undergone weighting processing, to gener-
15. A receive end, wherein the receive end comprises a first phase shifter, a second phase shifter, a first power amplifier, a second power amplifier, a first frequency mixer, and a DAC converter, wherein the first phase shifter is connected to the first power amplifier, and the first power amplifier is connected to the first frequency mixer to form a receive-end radio-frequency processing branch, wherein the first phase shifter is configured to perform weighting processing on the first analog signal that has undergone up-conversion.

14. The transmit end according to claim 13, wherein the phase shifter is specifically configured to perform any one of amplitude weighting and phase weighting, amplitude weighting, and phase weighting on the second analog signal that has undergone up-conversion.

15. A receive end, wherein the receive end comprises a first phase shifter, a second phase shifter, a first power amplifier, a second power amplifier, a first frequency mixer, a DAC converter, a first processor, a second processor, and a first transceiver, wherein the first phase shifter is connected to the first power amplifier, and the first power amplifier is connected to the first frequency mixer to form a receive-end radio-frequency processing branch, wherein the first phase shifter is configured to perform weighting processing on the first analog signal according to RXRF; the first power amplifier is configured to perform power amplification processing on the first analog signal that has undergone weighting processing; and the first frequency mixer is configured to perform radio-frequency-end down-conversion processing on the first analog signal that has undergone power amplification processing, to generate a second analog signal;

16. The receive end according to claim 15, wherein the second phase shifter is specifically configured to perform, by the receive end, any one of amplitude weighting and phase weighting, amplitude weighting, and phase weighting on the second analog signal according to RXIF.

17. A beamforming based communications method, comprising:

obtaining, by a transmit end, a transmit-end precoding matrix TBB, a transmit-end intermediate-frequency beamforming matrix TRF, and a transmit-end radio-frequency-end beamforming matrix TRRF according to feedback information that is from a receive end, wherein the feedback information comprises a channel matrix H and AOD vector information;

acquiring, by the transmit end, a first data stream, and performing precoding processing on the first data stream according to TBB, to generate a first analog signal, wherein the first data stream is generated after a bitstream to be sent is scrambled and undergoes layer mapping;

performing, by the transmit end, weighting and power amplification processing on the first analog signal according to TRF, to generate a second analog signal;

performing, by the transmit end, weighting and power amplification processing on the second analog signal according to TRRF, to generate a third analog signal; and
determining, by the transmit end, an antenna array matching the third analog signal, and transmitting the third analog signal to the receive end by using the antenna array matching the third analog signal into a digital signal; the first processor is configured to perform, according to RXBB, weighting processing on the third analog signal converted into the digital signal, to obtain the second data stream, wherein the second data stream is used to perform layer demapping; and

the DAC converter is configured to convert any one of amplitude weighting and phase weighting, amplitude weighting, and phase weighting on the second analog signal according to RXRF.

16. The receive end according to claim 15, wherein the second phase shifter is specifically configured to perform, by the receive end, any one of amplitude weighting and phase weighting, amplitude weighting, and phase weighting on the second analog signal according to RXIF.

17. A beamforming based communications method, comprising:

obtaining, by a transmit end, a transmit-end precoding matrix TBB, a transmit-end intermediate-frequency beamforming matrix TRF, and a transmit-end radio-frequency-end beamforming matrix TRRF according to feedback information that is from a receive end, wherein the feedback information comprises a channel matrix H and AOD vector information;

acquiring, by the transmit end, a first data stream, and performing precoding processing on the first data stream according to TBB, to generate a first analog signal, wherein the first data stream is generated after a bitstream to be sent is scrambled and undergoes layer mapping;

performing, by the transmit end, weighting and power amplification processing on the first analog signal according to TRF, to generate a second analog signal;

performing, by the transmit end, weighting and power amplification processing on the second analog signal according to TRRF, to generate a third analog signal; and
determining, by the transmit end, an antenna array matching the third analog signal, and transmitting the third analog signal to the receive end by using the antenna array matching the first analog signal in the first transmit-end feedback branch.
third analog signal.

18. The method according to claim 17, wherein the performing precoding processing according to T_{BB}, to generate a first analog signal comprises:

performing, by the transmit end, precoding on the first data stream according to T_{BB}, to obtain a precoding signal; and

performing, by the transmit end, digital-to-analog conversion processing on the precoding signal, to generate the first analog signal.

19. The method according to claim 17 or 18, wherein the performing, by the transmit end, weighting and power amplification processing on the first analog signal according to T_{IF}, to generate a second analog signal comprises:

performing, by the transmit end, intermediate-frequency-end up-conversion processing on the first analog signal;

performing, by the transmit end according to T_{IF}, weighting processing on the first analog signal that has undergone up-conversion; and

performing, by the transmit end, power amplification processing on the first analog signal that has undergone weighting processing, to generate the second analog signal.

20. The method according to any one of claims 17 to 19, wherein the performing, by the transmit end, weighting and power amplification processing on the second analog signal according to T_{RF}, to generate a third analog signal comprises:

performing, by the transmit end, radio-frequency-end up-conversion processing on the second analog signal;

performing, by the transmit end according to T_{RF}, weighting processing on the second analog signal that has undergone up-conversion; and

performing, by the transmit end, power amplification processing on the second analog signal that has undergone weighting processing, to generate the third analog signal.

21. The method according to any one of claims 17 to 20, wherein the transmit end performs, according to T_{IF}, weighting processing on the first analog signal that has undergone up-conversion, wherein a manner of the weighting processing is any one of amplitude weighting and phase weighting, amplitude weighting, and phase weighting.

22. The method according to any one of claims 17 to 21, wherein the obtaining, by a transmit end through calculation, a transmit-end precoding matrix T_{BB}, a transmit-end intermediate-frequency beamforming matrix T_{IF}, and a transmit-end radio-frequency-end beamforming matrix T_{RF} according to feedback information that is from a receive end comprises:

obtaining, by the receive end, a receive-end precoding matrix R_{BB}, a receive-end intermediate-frequency beamforming matrix R_{IF}, and a receive-end radio-frequency-end beamforming matrix R_{RF} according to feedback information that is from a transmit end, wherein the feedback information comprises a channel matrix H, AOA vector information, a transmit-end precoding matrix T_{BB}, a transmit-end intermediate-frequency beamforming matrix T_{IF}, and a transmit-end radio-frequency-end beamforming matrix T_{RF};

acquiring, by the receive end, a first analog signal, and performing weighting and power amplification processing on the first analog signal according to R_{RF}, to generate a second analog signal;

performing, by the receive end, encoding processing on the third analog signal according to R_{BB}, to generate a second data stream, wherein the second data stream is used to perform layer demapping.

23. A beamforming based communications method, comprising:

obtaining, by a receive end, a receive-end precoding matrix R_{BB}, a receive-end intermediate-frequency beamforming matrix R_{IF}, and a receive-end radio-frequency-end beamforming matrix R_{RF} according to feedback information that is from a transmit end, wherein the feedback information comprises a channel matrix H, AOA vector information, a transmit-end precoding matrix T_{BB}, a transmit-end intermediate-frequency beamforming matrix T_{IF}, and a transmit-end radio-frequency-end beamforming matrix T_{RF};

acquiring, by the receive end, a first analog signal, and performing weighting and power amplification processing on the first analog signal according to R_{RF}, to generate a second analog signal;

performing, by the receive end, encoding processing on the third analog signal according to R_{BB}, to generate a second data stream, wherein the second data stream is used to perform layer demapping.

24. The method according to claim 23, wherein the performing weighting and power amplification processing on the first analog signal according to R_{RF}, to generate a second analog signal comprises:

performing, by the receive end, weighting processing on the first analog signal according to R_{RF}; performing, by the receive end, power amplification processing on the first analog signal according to R_{RF}; and

performing, by the receive end, radio-frequency-end down-conversion processing on the first an-
alog signal that has undergone power amplification processing, to generate the second analog signal.

25. The method according to claim 23 or 24, wherein the performing, by the receive end, weighting and power amplification processing on the second analog signal according to RxIF, to generate a third analog signal comprises:

performing, by the receive end, weighting processing on the second analog signal according to RxIF;
performing, by the receive end, power amplification processing on the second analog signal that has undergone weighting processing; and
performing, by the receive end, intermediate-frequency-end down-conversion processing on the second analog signal that has undergone power amplification processing, to generate the third analog signal.

26. The method according to any one of claims 23 to 25, wherein the performing, by the receive end, encoding processing on the third analog signal according to RxBB, to generate a second data stream comprises:

converting, by the receive end, the third analog signal into a digital signal; and
performing, by the receive end according to RxBB, weighting processing on the third analog signal converted into the digital signal, to obtain the second data stream.

27. The method according to any one of claims 23 to 26 wherein the receive end performs weighting processing on the second analog signal according to RxIF, wherein a manner of the weighting processing is any one of amplitude weighting and phase weighting.

28. The method according to any one of claims 23 to 27, wherein the obtaining, by a receive end through calculation, a receive-end precoding matrix RxBB, a receive-end intermediate-frequency beamforming matrix RxIF, and a receive-end radio-frequency-end beamforming matrix RxRF according to feedback information that is from a transmit end comprises:

acquiring, by the receive end, the channel matrix H, the angle-of-arrival vector information, TrBB, TrIF, and TrRF that are in the feedback information; and
processing, by the receive end, the channel matrix H, the angle-of-arrival vector information, TrBB, TrIF, and TrRF by using a second preset iteration function, to obtain RxBB, RxIF, and RxRF.
FIG. 1

FIG. 2
FIG. 4
A transmit end obtains, through calculation, a transmit-end precoding matrix T_{BB}, a transmit-end intermediate-frequency beamforming matrix T_{IF}, and a transmit-end radio-frequency-end beamforming matrix T_{RF} according to feedback information that is from a receive end.

The transmit end acquires a first data stream, and performs precoding processing on the first data stream according to T_{BB}, to generate a first analog signal.

The transmit end performs weighting and power amplification processing on the first analog signal according to T_{IF}, to generate a second analog signal.

The transmit end performs weighting and power amplification processing on the second analog signal according to T_{RF}, to generate a third analog signal.

The transmit end determines an antenna array matching the third analog signal, and transmits the third analog signal to the receive end by using the antenna array matching the third analog signal.

FIG. 5

FIG. 6
FIG. 8b
A receive end obtains, through calculation, a receive-end precoding matrix RX_{BB}, a receive-end intermediate-frequency beamforming matrix RX_{IF}, and a receive-end radio-frequency-end beamforming matrix RX_{RF} according to feedback information that is from a transmit end.

The receive end acquires a first analog signal, and performs weighting and power amplification processing on the first analog signal according to RX_{RF}, to generate a second analog signal.

The receive end performs weighting and power amplification processing on the second analog signal according to RX_{IF}, to generate a third analog signal.

The receive end performs encoding processing on the third analog signal according to RX_{BB}, to generate a second data stream.

FIG. 10
A transmit end obtains, through calculation, a transmit-end precoding matrix T_{BB}, a transmit-end intermediate-frequency beamforming matrix T_{IF}, and a transmit-end radio-frequency-end beamforming matrix T_{RF}, according to feedback information that is from a receive end.

The receive end obtains, through calculation, a receive-end precoding matrix R_{BB}, a receive-end intermediate-frequency beamforming matrix R_{IF}, and a receive-end radio-frequency-end beamforming matrix R_{RF}, according to feedback information that is from the transmit end.

The transmit end acquires a first data stream, and performs precoding processing on the first data stream according to T_{BB}, to generate a first analog signal.

The transmit end performs weighting and power amplification processing on the first analog signal according to T_{IF}, to generate a second analog signal.

The transmit end performs weighting and power amplification processing on the second analog signal according to T_{RF}, to generate a third analog signal.

The transmit end determines an antenna array matching the third analog signal, and transmits the third analog signal to the receive end by using the antenna array matching the third analog signal.

The receive end acquires a first analog signal, and performs weighting and power amplification processing on the first analog signal according to R_{RF}, to generate the second analog signal.

The receive end performs weighting and power amplification processing on the second analog signal according to R_{IF}, to generate a third analog signal.

The receive end performs encoding processing on the third analog signal according to R_{BB}, to generate a second data stream.

FIG. 11
A transmit end acquires a channel matrix H according to feedback information that is from a receive end.

The transmit end performs AOD estimation on the feedback information, to obtain an angle-of-departure array vector set A_t.

The transmit end performs SVD decomposition on the channel matrix H, to generate an initial value T_{opt}.

The transmit end updates T_{opt} by using a first preset iteration function formula.

$$
i < N_{\text{RF}}^{RF}
$$

- **No**
 - Construct a function $k=f_i(x)$ to choose suitable vectors A_t^k from an "angle-of-departure vector set A_t" to form
 $$T_{\text{opt}} = T_{RF} T_{RF} = \left[T_{\text{opt}} \right] A_t^k$$

- **Yes**
 - Estimate a baseband precoding matrix T_{BB} based on a least square method.

Update T_{opt}

$$T_{\text{opt}} = \frac{T_{\text{opt}} - T_{\text{RF}} T_{BB}}{\left\| T_{\text{opt}} - T_{\text{RF}} T_{BB} \right\|_F}$$

The transmit end fixes T_{BB}, performs SVD decomposition on T_{RF}, chooses a right singular matrix as T_{RF}, and chooses a left singular matrix as T_{RF}.

The transmit end performs normalization processing to obtain T_{BB}, T_{RF}, and T_{RF}.

FIG. 12
A receive end acquires a channel matrix H, a transmit-end precoding matrix T_{BB}, a transmit-end intermediate-frequency beamforming matrix T_{IF}, and a transmit-end radio-frequency-end beamforming matrix T_{RF} according to feedback information.

The receive end performs AOA estimation on the feedback information, to obtain an angle-of-departure array vector set A_r.

The receive end fixes T_{BB}, T_{IF}, and T_{RF}, performs initialization, and calculates an optimal matrix set $R_{X_{MMSE}} = H^* R_{X_{BB}}^* R_{X_{IF}}^* R_{X_{RF}}$ of the receive end.

The receive end updates $R_{X_{MMSE}}$ by using a second preset iteration function formula.

Since $k < N_{RF}$

YES

The receive end constructs a function $kr = fr(x)$ to choose suitable vectors A_v^c. From an "angle-of-arrival vector set $A_r"$ to form $R_{X_{an}} = R_{X_{RF}} R_{X_{IF}} = \begin{bmatrix} R_{X_{an}} & A_v^c \end{bmatrix}$

Estimate a baseband precoding matrix $R_{X_{BB}}$ by using $R_{X_{an}}$ and based on an MMSE criterion.

The receive end updates $R_{X_{MMSE}}$

$$R_{X_{MMSE}} = \frac{R_{X_{MMSE}} - R_{X_{RF}} R_{X_{IF}} R_{X_{BB}}}{\|R_{X_{MMSE}} - R_{X_{RF}} R_{X_{IF}} R_{X_{BB}}\|^F}$$

Fix $R_{X_{BB}}$, perform SVD decomposition on $R_{X_{an}}$, choose a right singular matrix as A_v, and choose a left singular matrix as $R_{X_{RF}}$.

The receive end performs normalization processing to obtain $R_{X_{BB}}$, $R_{X_{IF}}$, and $R_{X_{RF}}$, and outputs $R_{X_{BB}}$, $R_{X_{IF}}$, and $R_{X_{RF}}$.

FIG. 13
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H04L 1/06 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04L; H04B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN 101719816 A (UNIV SHANDONG) 02 June 2010 (02.06.2010) claims 1 to 4, description, paragraphs [0033] to [0049], figure 1</td>
<td>1-28</td>
</tr>
<tr>
<td>A</td>
<td>CN 103428148 A (ZTE CORPORATION) 04 December 2013 (04.12.2013) the whole document</td>
<td>1-28</td>
</tr>
<tr>
<td>A</td>
<td>CN 101834650 A (UNIV HUAZHONG SCIENCE TECH) 15 September 2010 (15.09.2010) the whole document</td>
<td>1-28</td>
</tr>
<tr>
<td>A</td>
<td>US 2013028341 A1 (SAMSUNG ELECTRONICS CO., LTD) 31 January 2013 (31.01.2013) the whole document</td>
<td>1-28</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☑ See patent family annex.

* Special categories of cited documents:

 "A" document defining the general state of the art which is not considered to be of particular relevance

 "E" earlier application or patent but published on or after the international filing date

 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

 "O" document referring to an oral disclosure, use, exhibition or other means

 "P" document published prior to the international filing date but later than the priority date claimed

 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

 "&" document member of the same patent family

Date of the actual completion of the international search: 17 February 2014

Date of mailing of the international search report: 04 January 2015

Name and mailing address of the ISA:
State Intellectual Property Office of the P. R. China
No. 6, Xitucheng Road, Jingangqiao
Haidian District, Beijing 100088, China
Facsimile No. (86-10) 62019451

Authorized officer: ZHANG Qian
Telephone No. (86-10) 82245296

Form PCT/ISA/210 (second sheet) (July 2009)
INTERNATIONAL SEARCH REPORT
Information on patent family members

<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 101719816 A</td>
<td>02 June 2010</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 103428148 A</td>
<td>04 December 2013</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 101834650 A</td>
<td>15 September 2010</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103718474 A</td>
<td>09 April 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130014454 A</td>
<td>07 February 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013015664 A2</td>
<td>31 January 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014526191 A</td>
<td>02 October 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN K0LN201400016 E</td>
<td>02 May 2014</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)