EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

Date of publication: 07.09.2016 Bulletin 2016/36
Application number: 14858090.5
Date of filing: 30.09.2014

Int Cl.:
C07D 487/04 (2006.01)
A61K 31/51 (2006.01)
A61P 5/00 (2006.01)
A61P 5/24 (2006.01)
A61P 13/08 (2006.01)
A61P 17/14 (2006.01)
A61P 25/26 (2006.01)
A61P 15/00 (2006.01)
A61P 13/08 (2006.01)

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME

Priority: 30.10.2013 CN 201310525956

Applicants:
• Shanghai Hengrui Pharmaceutical Co. Ltd.
 Minhang District
 Shanghai 200245 (CN)
• Jiangsu Hengrui Medicine Co., Ltd.
 Jiangsu 222047 (CN)

Inventors:
• LU, Hejun
 Shanghai 200245 (CN)
• SUN, Piaoyang
 Lianyungang
 Jiangsu 222047 (CN)
• GUI, Bin
 Shanghai 200245 (CN)
• DONG, Qing
 Shanghai 200245 (CN)

Representative: Pistolesi, Roberto et al
Dragotti & Associati Srl
Via Nino Bixio, 7
20129 Milano (IT)

The present invention provides pyrazolopyrimidone or pyrrolotriazone derivatives, method of preparing same, and pharmaceutical applications thereof. Specifically, the present invention provides pyrazolopyrimidone or pyrrolotriazone derivatives represented by a general formula (I) and pharmaceutical salts thereof, method of preparing same, and use thereof as a gonadotropin releasing hormone (GnRH) antagonist and especially as therapeutic agents for endometriosis, where the definitions of the substituents in the general formula (I) are the same as the definitions in the specification.
The present invention relates to a novel pyrazolopyrimidone derivative or pyrrolotriazone derivative and pharmaceutically acceptable salt thereof, a preparation method thereof, and the pharmaceutical composition containing the same, as well as use of the same as a gonadotropin-releasing hormone (GnRH) receptor antagonist, particularly as a therapeutic agent for the diseases such as endometriosis.

BACKGROUND OF THE INVENTION

Endometriosis is a common estrogen-dependent gynecological disease, which is often occurred in women of childbearing-age, though the mechanism is unclear. The difficult diagnosis and unclear pathogenesis of endometriosis severely hinder the discovery of effective treatments. At present, endometriosis is mainly diagnosed by laparoscopy, and treated by surgery, or controlled by taking contraceptive, GnRH receptor agonists or progestogen to reduce body estrogen levels.

Presently the incidence rate of endometriosis is high. Statistics data of Datamonitor 2009 shows that the number of female patients suffering from endometriosis has been more than 68 million only in two countries (India and China) (31,288,000 in India, 37,535,000 in China), while the data in the seven major markets has been more than 17 million. Datamonitor expects that during 2009-2018, endometriosis drug market will grow from $764 million in 2009 ($596 million in US, $117 million in European Union, $51 million in Japan) to $1.156 billion in 2018 ($844 million in US, $206 million in European Union, $106 million in Japan), and the growing space in Chinese market will be larger.

Gonadotropin-releasing hormone (Gonadoliberin; GnRH), also known as luteinizing hormone releasing hormone (LHRR), is a decapeptide hormone (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) synthesized by hypothalamic neuroendocrine cells, and is a central regulation factor of endocrine reproductive system. GnRH plays an important role in the hypothalamic-pituitary-gonadal axis system by being transported to the pituitary through hypothalamic portal circulation system and then binding to GnRH receptor cells in anterior pituitary, by promoting the secretion and release of gonadotropin luteinizing hormone such as Luteinizing Hormone (LH) and follicle-stimulating hormone (FSH), and by regulating normal development of ovary and corpus luteum. GnRH receptor plays its regulating role by coupling with G protein which is capable of activating calcium phosphatidylinositol second messenger system; LH regulates the production of sex steroids; and FSH regulates male spermatogenesis and maturation of female ovarian follicles.

LH and FSH are released into the circulation, and combined with receptors on the specific cells of ovaries or testes to stimulate steroid production. Diseases such as endometriosis, uterine leiomyoma and prostate cancer have aggravated in the presence of sex steroids. It is necessary to administrate long-acting peptides GnRH receptor agonists and antagonists to control the diseases.

Peptides GnRH receptor antagonists include GnRH-derived linear peptides (US 5,171,835), cyclic hexapeptide derivatives (US 2002/0065309), bicyclic peptide derivatives (Journal of Medicinal Chemistry, 1993; 36: 3265-73), etc.; and peptides GnRH receptor agonists include Leuprorelin (pGlu-His-Trp-Ser-Tyr-d-Leu-Arg-Pro-NH2E). However, there are many unresolved issues for peptides compound including oral absorption, dosage form, dose volume, drug stability, sustained action, and metabolic stability and the like. The primary reason that small molecule GnRH receptor antagonist therapy is superior to the existing peptide-based therapy is largely due to the oral administration of small molecule GnRH receptor antagonists, which is convenient and efficient. Studies have shown that small molecule antagonists have a significant efficiency for hormone-dependent diseases such as endometriosis, precocious puberty, prostate cancer.

Indirect tumor inhibition mechanism mediated by GnRH agonists is that GnRH agonists decrease the secretion of sex hormone and then indirectly inhibit the growth of tumor cells by long-term effect on the hypothalamic-pituitary-gonadal axis which leads to reduction of pituitary gonadotropins (FSH, LH). While GnRH receptor antagonists directly inhibit the release of pituitary gonadotropins, and then inhibit the growth of tumor cells.

In view of the limitations of peptides GnRH receptor antagonists, certain non-peptides GnRH receptor antagonists have been proposed and put into development, clinical trials and marketing stages. For example, Elagolix (also known as NBI-56418 or ABT-620), is a small molecule GnRH receptor antagonist co-developed by Abbott and Neurocrine Biosciences Inc, which is currently in phase III clinical stage, and mainly used for the treatment of endometriosis (phase III) and uterine leiomyoma (phase II). In June 2012, the data from endometriosis phase II trial were presented by the 94th Annual Meeting of the Endocrine Society in Houston: among the 131 womensuffering from endometriosis who were treated with elagolix (150 or 250 mg qd), leuprorelin depot (3.75 mg sc, once a month for 12 weeks) or placebo, the serum estrogen level in the patient of elagolix treatment group is lower than that of leuprorelin treatment group and placebo group. Meanwhile, the safety and tolerability of elagolix has been well verified.

Relugolix, also known as TAK-385, is an oral small molecule GnRH receptor antagonist developed by Takeda.
Pharmaceutical in Japan, which is used for the treatment of endometriosis, uterine leiomyoma and prostate cancer. The study of endometriosis and uterine leiomyomas has been in phase II clinical trial in 2011, and the study of prostate cancer has been in phase I clinical trial in the same year.

At present, a series of patent applications concerning small molecule GnRH receptor antagonists have been disclosed, including WO2006096785, WO2010026993, WO2011076687, WO2012175514, etc.

Despite numerous significant studies have been conducted in this field, it remains a need to develop more effective small molecule GnRH receptor antagonists. The present disclosure provides new structure GnRH receptor antagonists, and it is found that compounds having such structures have good activity, and exhibit excellent treatment effect for endocrine reproductive system diseases.

SUMMARY OF THE INVENTION

The present invention is directed to provide a compound of formula (I), a tautomer, mesomer, racemate, enantiomer, or diastereomer thereof, or a mixture thereof, and a pharmaceutically acceptable salt thereof:

\[
\text{R}^4 \text{N}^\text{CH}_\text{nR}^\text{5} \text{R}^1 \text{D} \text{G} \text{E} \text{O} \text{N}^\text{CH}_\text{2} \text{R}^2 \text{R}^3 \text{R}^4 \text{R}^5 \text{R}^6 \text{R}^7 \text{R}^8 \text{R}^9 \text{R}^{10}
\]

where:

- when G is N, D is C and E is \(-\text{CH}_2\); when G is C, D and E are N;
- R\(^1\) is selected from the group consisting of alkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl and \(-\text{OR}^6\), wherein the alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each independently optionally further substituted with one or more groups selected from the group consisting of halogen, cyano, alkyl, haloalkyl, hydroxyalkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, \(-\text{OR}^6\), \(-\text{OC(O)}\text{OR}^6\), \(-\text{OC(O)}\text{R}^6\), \(-\text{NHS(O)}\text{mR}^6\), \(-\text{C(O)}\text{R}^6\), \(-\text{NHC(O)}\text{R}^6\), \(-\text{NR}^7\text{R}^8\), \(-\text{OC(O)}\text{NR}^7\text{R}^8\), \(-\text{C(O)}\text{NR}^7\text{R}^8\), \(-\text{NHC(O)}\text{NR}^7\text{R}^8\), \(-\text{NHC(O)}\text{OR}^6\), \(-\text{NHC(O)}\text{NHOR}^6\); R\(^2\) is alkyl, wherein the alkyl is further substituted with one or more groups selected from aryl and heteroaryl, wherein the aryl and heteroaryl are each optionally further substituted with one or more groups selected from the group consisting of halogen, alkyl, haloalkyl, cyano, nitro, \(-\text{C(O)}\text{OR}^6\), \(-\text{C(O)}\text{NR}^7\text{R}^8\), \(-\text{OC(O)}\text{NR}^7\text{R}^8\), \(-\text{OR}^6\), \(-\text{NHS(O)}\text{mR}^6\), \(-\text{NHC(O)}\text{R}^6\) and \(-\text{NR}^7\text{R}^8\), wherein the haloalkyl is preferably trifluoromethyl;
- R\(^3\) is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl are each optionally further substituted with one or more groups selected from the group consisting of halogen, alkyl, haloalkyl, \(-\text{OR}^6\), \(-\text{C(O)}\text{OR}^6\), \(-\text{OC(O)}\text{R}^6\), \(-\text{C(O)}\text{R}^6\), \(-\text{NR}^7\text{R}^8\), \(-\text{OC(O)}\text{NR}^7\text{R}^8\), \(-\text{C(O)}\text{NR}^7\text{R}^8\), \(-\text{NHS(O)}\text{mR}^6\), \(-\text{NHC(O)}\text{R}^6\), \(-\text{NHC(O)}\text{OR}^6\), \(-\text{NHC(O)}\text{NHOR}^6\) and \(-\text{NHC(O)}\text{NHOR}^6\);
- R\(^4\) is alkyl;
- R\(^5\) is selected from the group consisting of hydrogen, cycloalkyl, heterocyclic, aryl, heteroaryl, \(-\text{OR}^5\), \(-\text{NR}^7\text{R}^8\) and \(-\text{NR}^7\text{S(O)}\text{mR}^6\), wherein the alkyl, cycloalkyl, heterocyclic, aryl and heteroaryl are each optionally further substituted with one or more groups selected from the group consisting of halogen, oxo, alkyl, haloalkyl, hydroxyalkyl, \(-\text{OR}^6\), \(-\text{C(O)}\text{OR}^6\), \(-\text{OC(O)}\text{R}^6\), \(-\text{NR}^7\text{S(O)}\text{mR}^6\), \(-\text{S(O)}\text{mR}^6\), \(-\text{C(O)}\text{R}^6\) and \(-\text{NHC(O)}\text{R}^6\);
- R\(^6\) is selected from the group consisting of hydrogen, alkyl, cycloalkyl, heterocyclic, aryl and heteroaryl, wherein the alkyl, cycloalkyl, heterocyclic, aryl and heteroaryl are each independently further substituted with one or more groups selected from the group consisting of halogen, alkyl, hydroxyl, alkoxy, cycloalkyl, heterocyclic, aryl, heteroaryl, carboxylic acid and carboxylic ester;
- R\(^7\) and R\(^8\) are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, heterocyclic, aryl and heteroaryl, wherein the alkyl, cycloalkyl, heterocyclic, aryl and heteroaryl are each independently optionally further substituted with one or more groups selected from alkyl, halogen, hydroxy, alkoxy, cycloalkyl, heterocyclic, aryl, heteroaryl, carboxylic acid and carboxylic ester;
- or, R\(^7\) and R\(^8\) are taken together with the attached N atom to form a heterocyclic, wherein the heterocyclic contains one or more heteroatoms of N, O or S(O)\(^m\), and the heterocyclic is optionally further substituted with one or more
In a preferred embodiment of the present invention, the compound of formula (I) or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, is a compound of formula (II) or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof:

wherein: n, R1∼R5 are as defined in formula (I).

In another preferred embodiment of the present invention, the compound of formula (I) or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, is a compound of formula (III) or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof:

wherein: n, R1∼R5 are as defined in formula (I).

In another preferred embodiment of the present invention, the compound of formula (I) or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, wherein R1 is selected from the group consisting of aryl and heteroaryl, preferably phenyl and pyridazinyl, wherein the aryl and heteroaryl are each optionally further substituted with one or more groups selected from the group consisting of halogen, cyano, nitro, alkyl, haloalkyl, hydroxyalkyl and -OR6.

In another preferred embodiment of the present invention, the compound of formula (I) or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, wherein R2 is benzyl, wherein the benzyl is optionally further substituted with one or more groups selected from the group consisting of halogen, alkyl, haloalkyl, cyano, nitro and -OR6.

In another preferred embodiment of the present invention, the compound of formula (I) or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, wherein R3 is selected from aryl, preferably phenyl, wherein the aryl is optionally further substituted with one or more groups selected from the group consisting of -NHC(O)R6, -NHC(O)OR6, -NHC(O)NHR6 and -NHC(O)NHOR6, preferably -NHC(O)NHR6 and -NHC(O)NHOR6.

In another preferred embodiment of the present invention, the compound of formula (I) or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, wherein R4 is methyl.

In another preferred embodiment of the present invention, the compound of formula (I) or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, wherein R5 is hydrogen, n is 1 or 2.
In another preferred embodiment of the present invention, the compound of formula (I) or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, is a compound of formula (IV) or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof:

![Chemical Structure](IV)

wherein: n, D, E, G, R₁, R₂, R₄ and R⁵ are as defined in formula (I).

R₆ is selected from the group consisting of alkyl and -OR₆, wherein the alkyl is optionally further substituted with one or more groups selected from the group consisting of alkyl, halogen, hydroxy, alkoxy, cycloalkyl, heterocyclyl, aryl, heteroaryl, carboxylic acid and carboxylic ester; and

R₆ is alkyl, wherein the alkyl is optionally further substituted with one or more groups selected from the group consisting of alkyl, halogen, hydroxy, alkoxy, cycloalkyl, heterocyclyl, aryl, heteroaryl, carboxylic acid and carboxylic ester.

Typical compounds of the present invention included, but are not limited to the following:

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Structure and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td> N-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)acetamide</td>
</tr>
<tr>
<td>2</td>
<td> 1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methoxyurea</td>
</tr>
<tr>
<td>Example No.</td>
<td>Structure and Name</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>3</td>
<td> 1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-ethylurea</td>
</tr>
<tr>
<td>4</td>
<td> methyl (4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)carbamate</td>
</tr>
<tr>
<td>5</td>
<td> 1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methylurea</td>
</tr>
<tr>
<td>6</td>
<td> 1-(4-(3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-ethylurea</td>
</tr>
<tr>
<td>7</td>
<td> 1-(4-(3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methoxyurea</td>
</tr>
<tr>
<td>Example No.</td>
<td>Structure and Name</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>8</td>
<td>1-(4-(3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methylurea</td>
</tr>
<tr>
<td>9</td>
<td>1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methylurea</td>
</tr>
<tr>
<td>10</td>
<td>1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-ethylurea</td>
</tr>
<tr>
<td>11</td>
<td>1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methoxyurea</td>
</tr>
<tr>
<td>Example No.</td>
<td>Structure and Name</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>12</td>
<td> 1-(4-(3-((dimethylamino)methyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methylurea</td>
</tr>
<tr>
<td>13</td>
<td> 1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-f][1,2,4]triazin-6-yl)phenyl)-3-ethylurea</td>
</tr>
<tr>
<td>14</td>
<td> 1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-f][1,2,4]triazin-6-yl)phenyl)-3-methylurea</td>
</tr>
<tr>
<td>15</td>
<td> 1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-f][1,2,4]triazin-6-yl)phenyl)-3-methoxyurea</td>
</tr>
</tbody>
</table>
or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof.

[0022] In another aspect, the present invention provides a process for preparing the compound of formula (I), or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, comprising a step of:

reacting a compound of formula (IA) with the amine of NH(R\text{4})(CH_2)^nR_5; optionally reduction or/and acylation of the resulting product to obtain the compound of formula (I); wherein: X is halogen; n, D, E, G and R_1 \sim R_5 are as defined in formula (I).

[0023] Reducing agents include, but are not limited to hydrogen or iron powder; Acylating agents include, but are not limited to carboxylic acids, acyl chloride, sulfuryl chloride, halogenated methyl formate, isocyanate or triphosgene and

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Structure and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>
methoxyamine.

[0024] In another aspect, the present invention provides a process for preparing the compound of formula (I), or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, comprising a step of:

$$\text{(IB)}$$

reacting a compound of formula (IB) with R^2X in the presence of an alkaline reagent; optionally reduction or/and acylation of the resulting product to obtain the compound of formula (I);

wherein: X is halogen, n, D, E, G and $R^1 \sim R^5$ are as defined in formula (I).

[0025] Alkaline reagents include, but are not limited to organic base and inorganic base, wherein the organic base includes, but is not limited to, triethylamine, pyridine, 2,6-lutidine, sodium methoxide, lithium hexamethyldisilazide, sodium hexamethyldisilazide, n-butyllithium, potassium tert-butoxide and tetrabutyl ammonium bromide; the inorganic base includes, but is not limited to, sodium hydride, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, cesium carbonate, lithium hydroxide, sodium hydroxide and potassium hydroxide, preferably potassium carbonate and sodium methoxide;

Reducing agents include, but are not limited to hydrogen and iron powder;

Acylating agents include, but are not limited to carboxylic acids, acyl chloride, sulfuryl chloride, halogenated methyl formate, isocyanate or triphosgene and methoxyamine.

[0026] A compound of formula (IA) or formula (IB), or a pharmaceutically acceptable salt thereof, which is used as an intermediate in the preparation of a compound of formula (I):

$$\text{(IA)}$$

wherein: X is halogen, n, D, E, G and $R^1 \sim R^5$ are as defined in formula (I).

[0027] A process for preparing the compound of formula (IA), or a pharmaceutically acceptable salt thereof, comprising a step of:

$$\text{(Ib)}$$

proceeding a halogenation reaction of a compound of formula (Ib) to obtain the compound of formula (IA);

wherein: D, E, G and $R^1 \sim R^3$ are as defined in formula (I).

[0028] A process for preparing the compound of formula (IB), or a pharmaceutically acceptable salt thereof, comprising a step of:
proceeding a cyclization reaction of a compound of formula (Ig) to obtain the compound of formula (IB);

wherein: n, D, E, G and R₁, R₃ ~ R₅ are as defined in formula (I);
Rᵇ is alkyl.

[0029] Typical compounds of formula (IA) include, but are not limited to the following:

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Structure and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1f</td>
<td> 3-(bromomethyl)-7-(2,6-difluorobenzyl)-5-(2-fluoro-3-methoxyphenyl)-2-(4-nitrophenyl)-2(H)-pyrazolo[3,4-(d)]pyrimidine-4,6(5(H),7(H))-dione</td>
</tr>
<tr>
<td>6b</td>
<td> 3-(bromomethyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-2-(4-nitrophenyl)-2(H)-pyrazolo[3,4-(d)]pyrimidine-4,6(5(H),7(H))-dione</td>
</tr>
<tr>
<td>9e</td>
<td> 3-((dimethylamino)methyl)-5-(6-methoxypyridazin-3-yl)-2-(4-nitrophenyl)-2(H)-pyrazolo[3,4-(d)]pyrimidine-4,6(5(H),7(H))-dione</td>
</tr>
</tbody>
</table>
or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof.

[0030] A compound of formula (IVA), or a pharmaceutically acceptable salt thereof, which is used as an intermediate in the preparation of a compound of formula (IV):

\[
\begin{align*}
\text{Example No.} & \quad \text{Structure and Name} \\
5 & \quad \begin{array}{c}
\text{3-(bromomethyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxy pyridazin-3-yl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6 (5H,7H)-dione}
\end{array} \\
10 & \quad 12d \\
15 & \quad 13h \\
20 & \quad 5-(bromomethyl)-1-(2,6-difluorobenzyl)-3-(2-fluoro-3-methoxyphen yl)-6-(4-nitrophenyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione \\
25 & \quad 16h \\
30 & \quad 5-((dimethylamino)methyl)-3-(6-methoxypyridazin-3-yl)-6-(4-nitrop henyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione \\
35 & \quad (IVA)
\end{align*}
\]

wherein: n, D, E, G, R1, R2, R4 and R5 are as defined in formula (I).

[0031] Typical compounds of formula (IVA) include, but are not limited to the following:
<table>
<thead>
<tr>
<th>Example No.</th>
<th>Structure and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2-(4-aminophenyl)-7-[2,6-difluorobenzyl]-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione</td>
</tr>
<tr>
<td>10</td>
<td>6d</td>
</tr>
<tr>
<td>15</td>
<td>2-(4-aminophenyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione</td>
</tr>
<tr>
<td>20</td>
<td>9g</td>
</tr>
<tr>
<td>25</td>
<td>2-(4-aminophenyl)-7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxypyridazin-3-yl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione</td>
</tr>
<tr>
<td>30</td>
<td>12f</td>
</tr>
<tr>
<td>35</td>
<td>2-(4-aminophenyl)-3-((dimethylamino)methyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxypyridazin-3-yl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione</td>
</tr>
</tbody>
</table>
or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof.

[0032] A process for preparing the compound of formula (IV), comprising a step of:

Further reacting the compound of formula (IVA) with an acylating agent to obtain a compound of formula (IV); wherein: n, D, E, G, R₁, R₂, R₄ and R₅ are as defined in formula (I).

[0033] Acylating agents include, but are not limited to carboxylic acids, acyl chloride, sulfuryl chloride, halogenated methyl formate, isocyanate or triphosgene and methoxyamine.

[0034] The present invention further relates to a pharmaceutical composition, comprising a therapeutically effective amount of a compound of formula (I), or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable carrier, diluent or excipient.

[0035] The present invention further relates to use of the compound of formula (I), or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition comprising the same, in the preparation of a medicament as GnRH receptor antagonist.

[0036] The present invention further relates to use of the compound of formula (I), or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition comprising the same, in the preparation of a medicament for the treatment of gonadal hormone-related diseases.

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Structure and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>13j</td>
<td></td>
</tr>
<tr>
<td>16j</td>
<td></td>
</tr>
</tbody>
</table>
The present invention further relates to the use of the compound of formula (I), or a tautomer, mesomer, racemate, enantiomer, diastereomeric mixture, or mixture thereof, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition comprising the same, in the preparation of medicaments for treatment or prevention of diseases of sex hormone-dependent cancers (e.g., prostatic cancer, uterine cancer, breast cancer, pituitary cancer, etc.), bone metastasis of sex hormone-dependent cancers, prostatic hyperplasia, uterine leiomyoma, endometriosis, uterine fibroids, precocious puberty, amenorrhea, premenstrual syndrome, dysmenorrhea, multicellular ovary syndrome, polycystic ovary syndrome, acne, alopecia, Alzheimer's disease, infertility, irritable bowel syndrome, benign or malignant tumors which are hormone-independent and LH-RH sensitive, or flush; or in the preparation of reproductive regulator, contraceptive, and an ovulation evocator; or in the preparation of medicaments for the treatment or prevention of postoperative recurrence of sex hormone-dependent cancer, preferably prostate cancer, uterine cancer, breast cancer, endometriosis or uterine leiomyoma.

The present invention further relates to a method for inhibiting GnRH receptor activity, comprising administering to a subject in need thereof a therapeutically effective amount of the compound of formula (I), or a tautomer, mesomer, racemate, enantiomer, diastereomers, or mixture thereof, or a pharmaceutically acceptable salt thereof, or the pharmaceutical composition containing the same.

The present invention further relates to a method for treating a gonadal hormone-related disease, comprising administering to a subject in need thereof a therapeutically effective amount of the compound of formula (I), or a tautomer, mesomer, racemate, enantiomer, diastereomers, or mixture thereof, or a pharmaceutically acceptable salt thereof, or the pharmaceutical composition containing the same, for use as a medicament for the treatment of sex hormone-dependent cancers (prostate cancer, uterine cancer, breast cancer, pituitary cancer, etc.), bone metastatic of sex hormone-dependent cancer, prostatic hyperplasia, uterine leiomyoma, endometriosis, uterine fibroids, precocious puberty, amenorrhea, premenstrual syndrome, dysmenorrhea, multicellular ovary syndrome, polycystic ovary syndrome, acne, alopecia, Alzheimer’s disease, infertility, irritable bowel syndrome, benign or malignant tumors which are hormone-independent and LH-RH sensitive, or flush, preferably prostate cancer, uterine cancer, breast cancer, endometriosis, or uterine leiomyoma; or for regulating reproduction, contraception or evocating ovulation; or for the prevention of postoperative recurrence of sex hormone-dependent cancer.

The present invention also relates to a compound of the formula (I), or a tautomer, mesomer, racemate, enantiomer, diastereomers, or mixture thereof, or a pharmaceutically acceptable salt thereof, or the pharmaceutical composition containing the same, for use as a medicament for inhibiting the activity of GnRH receptor.

The present invention further relates to a compound of the formula (I), or a tautomer, mesomer, racemate, enantiomer, diastereomers, or mixture thereof, or a pharmaceutically acceptable salt thereof, or the pharmaceutical composition containing the same, for use as a medicament for the treatment of sex hormone-related diseases.

The present invention further relates to a compound of the formula (I), or a tautomer, mesomer, racemate, enantiomer, diastereomers, or mixture thereof, or a pharmaceutically acceptable salt thereof, or the pharmaceutical composition containing the same, for use as a preventive or therapeutic agent for sex hormone-dependent cancers (e.g., prostatic cancer, uterine cancer, breast cancer, pituitary cancer, etc.), prostatic hyperplasia, uterine leiomyoma, endometriosis, uterine fibroids, precocious puberty, amenorrhea, premenstrual syndrome, dysmenorrhea, multicellular ovary syndrome, polycystic ovary syndrome, acne, alopecia, Alzheimer's disease, infertility, irritable bowel syndrome, benign or malignant tumors which are hormone-independent and LH-RH sensitive, or flush, preferably prostate cancer, uterine cancer, breast cancer, endometriosis, or uterine leiomyoma; or for regulating reproduction, contraception or evocating ovulation; or for the prevention of postoperative recurrence of sex hormone-dependent cancer.

The pharmaceutical compositions containing the active ingredient may be in a form suitable for oral administration, such as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs. Oral compositions may be prepared according to any known method for the preparation of pharmaceutical compositions in the art. Such compositions may contain one or more additives selected from the group consisting of sweetener, flavoring agents, colorant and preservatives, to provide a pleasing and palatable pharmaceutical formulation. Tablets contain the active ingredient and nontoxic pharmaceutically acceptable excipients, such as starch, gelatin, alginate, sugar, talc, magnesium stearate, calcium phosphate, or the like. Tablets may be coated with a shellac or other suitable material to provide a covered surface for the tablet. The tablets may be uncoated or coated by means of known technique which can mask drug taste or delay the disintegration and absorption of the drug in the gastrointestinal tract, thereby providing sustained release over an extended period. For example, the water soluble taste masking material which can be used in the present invention is such as hydroxypropyl methylcellulose or hydroxypropyl cellulose, or the period extended material which can be used in the present invention is such as ethyl cellulose, cellulose acetate butyrate.

Oral formulations may also be provided as hard gelatin capsules in which the active ingredient is mixed with
an inert solid diluent, such as calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules in which the active ingredient is mixed with a water soluble carrier such as polyethyleneglycol or an oil medium, for example peanut oil, liquid paraffin, or olive oil.

Aqueous suspension contains the active ingredient in admixture with excipients suitable for the manufacture of aqueous suspension. Such excipients suspending agent, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinylpyrrolidone and gum acacia; dispersant or humectant which may be a naturally occurring phosphatide, such as lecithin, or condensation products of an alkylene oxide with fatty acids, such as polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohol, such as heptadecaethlenoxey cetanol, or condensation products of ethylene oxide with part esters derived from fatty acids and hexitol anhydrides, such as polyoxyethylene sorbitan monooleate. The aqueous suspension may also contain one or more preservatives, such as ethylparaben or n-propylparaben, one or more colorant, one or more flavoring agents, and one or more sweetener, such as sucrose, saccharin or aspartame.

Oil suspension may be formulated by suspending the active ingredient in a vegetable oil, such as arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oil suspension may contain a thickener, such as beeswax, hard paraffin or cetyl alcohol. The aforesaid sweetener and flavoring agents may be added to provide a palatable preparation. These compositions may be preserved by the addition of an antioxidant such as butylated hydroxyanisole or α-tocopherol.

Dispersible powders and granules suitable for the preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersant or wetting agent, suspending agent or one or more preservatives. Suitable dispersant or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, such as sweetener, flavoring agent and colorant, may also be added. These compositions may be preserved by the addition of an antioxidant such as ascorbic acid.

The present pharmaceutical composition may also be in the form of oil-in-water emulsion. The oil phase may be a vegetable oil, such as olive oil or arachis oil, or a mineral oil, such as liquid paraffin or mixture thereof. Suitable emulsifying agent may be naturally occurring phosphatides, such as soy bean lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, such as sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, such as polyoxyethylene sorbitol monooleate. The emulsion may also contain sweetener, flavoring agent, preservative and antioxidant. Syrup and elixir may be formulated with sweetener, such as glycerol, propylene glycol, sorbitol or sucrose.

Such formulations may also contain a demulcent, a preservative, a colorant and an antioxidant.

The pharmaceutical composition may be in the form of sterile injectable aqueous solution. The acceptable vehicles and solvents that may be employed are water, Ringer’s solution and isotonic sodium chloride solution. The sterile injectable preparation may also be a sterile injectable oil-in-water microemulsion in which the active ingredient is dissolved in the oil phase. For example, the active ingredient may be firstly dissolved in a mixture of soybean oil and lecithin, the oil solution then is introduced into a mixture of water and glycerol and processed to form a microemulsion. The injectable solutions or microemulsions may be introduced into an individual’s bloodstream by local bolus injection. Alternatively, it may be advantageous to administer the solution or microemulsion in such a way as to maintain a constant circulating concentration of the present compound. In order to maintain such a constant concentration, a continuous intravenous delivery device may be utilized. An example of such device is Deltec CADD-PLUS. TM. 5400 intravenous injection pump.

The pharmaceutical composition may be in the form of a sterile injectable aqueous or oily suspension for intramuscular and subcutaneous administration. Such suspension may be formulated with suitable dispersant or wetting agents and suspending agent as described above according to known techniques. The sterile injectable preparation may also be a sterile injectable oil-in-water microemulsion or suspension prepared in a nontoxic parenterally acceptable diluent or solvent, for example, a solution prepared in 1,3-butandiol. Moreover, a sterile fixed oils may easily be used as a solvent or suspending medium. For this purpose, any reconcile fixed oils including synthetic mono- or di-glyceridecan be employed. Moreover, fatty acids such as oleic acid may be employed in the preparation of injection.

The present compound may be administrated in the form of suppositories for rectal administration. These pharmaceutical compositions can be prepared by mixing drug with a suitable non-irritating excipients which is solid at ordinary temperatures but liquid in rectum, thereby melting in the rectum to release the drug. Such materials include cocoa butter, glycerinated gelatin, hydrogenated vegetable oils, mixture of polyethylene glycols and fatty acid esters of polyethylene glycol with various molecular weight.

It is well known for those skilled in the art that the dosage of a drug depends on a variety of factors, including but are not limited to the following factors: activity of particular compound, age of patient, weight of patient, general health of patient, behavior of patient, diet of patient, time of administration, route of administration, rate of excretion, drug combination and the like. In addition, the best treatment, such as treatment model, daily dose of the compound of formula (I) or the type of pharmaceutically acceptable salt thereof can be verified by the traditional therapeutic regimen.
Unless otherwise stated, the terms used in the specification and claims have the meanings described below.

"Alkyl" refers to a saturated aliphatic hydrocarbon group including C₁-C₆ linear and branched chain groups, preferably alkyl having 1 to 10 carbon atoms, more preferably an alkyl having 1 to 6 carbon atoms, and most preferably methyl. Representative examples include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, 2-methylbutyl, 3-methylbutyl, n-hexyl, 1-ethyl-2-methylpropyl, 1,1,2-trimethylpropyl, 1,1-dimethylnbutyl, 1,2-dimethylnbutyl, 2,2-dimethylnbutyl, 1,3-dimethylnbutyl, 2-ethylbutyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2,3-dimethylpentyl, n-heptyl, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 2,3-dimethylpentyl, 2,4-dimethylpentyl, 2,2-dimethylpentyl, 3,3-dimethylpentyl, 2-ethylpentyl, 3-ethylpentyl, n-octyl, 2,3-dimethylhexyl, 2,4-dimethylhexyl, 2,5-dimethylhexyl, 2,2-dimethylhexyl, 3,3-dimethylhexyl, 4,4-dimethylhexyl, 2-ethylhexyl, 3-ethylhexyl, 4-ethylhexyl, 2-methyl-2-ethylpentyl, 2-methyl-3-ethylpentyl, n-nonyl, 2-methyl-2-ethylpentyl, 2-methyl-3-ethylhexyl, 2,2-diethylhexyl, and branched isomers thereof. More preferably, an alkyl group is a lower alkyl having 1 to 6 carbon atoms. Representative examples include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, 2-methylbutyl, 3-methylbutyl, n-hexyl, 1-ethyl-2-methylpropyl, 1,1,2-trimethylpropyl, 1,1-dimethylnbutyl, 1,2-dimethylnbutyl, 2,2-dimethylnbutyl, 1,3-dimethylnbutyl, 2-ethylbutyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2,3-dimethylpentyl, and the like. The alkyl group can be substituted or unsubstituted. When substituted, the substituent group(s) can be substituted at any available connection point, and the substituent group(s) is preferably one or more groups independently selected from the group consisting of alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, halogen, thiol, hydroxy, nitro, cyano, cycloalkyl, heterocyclyl, aryl, heteroaryl, cycloalkoxy, heterocycloalkoxy, cycloalkylthio, heterocycloalkylthio, oxo, amino, haloalkyl, hydroxyalkyl, carboxyl, alkoxy carbonyl, -OR₆, -C(O)OR₆, -OC(O)R₆, -NHS(O)mR₆, -C(O)R₆, -NHC(O)R₆, -NHC(O)OR₆, -NR₇R₈, -OC(O)NR₇R₈, -NHC(O)NR₇R₈, -OH, -NHC(O)NR₇R₈, -NHC(O)OR₆ and -NHC(O)NR₇R₈.

"Alkenyl" refers to an alkyl defined as above that has at least two carbon atoms and at least one carbon-carbon double bond, for example, vinyl, 1-propenyl, 2-propenyl, 1-, 2-, or 3-butene, etc., preferably C₂-C₁₀ alkenyl, more preferably C₂-C₆ alkenyl. The alkenyl group can be substituted or unsubstituted. When substituted, the substituent group(s) is preferably one or more groups independently selected from the group consisting of alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, halogen, thiol, hydroxy, nitro, cyano, cycloalkyl, heterocyclyl, aryl, heteroaryl, cycloalkoxy, heterocycloalkoxy, cycloalkylthio, heterocycloalkylthio, oxo, amino, haloalkyl, hydroxyalkyl, carboxyl, alkoxy carbonyl, -OR₆, -C(O)OR₆, -OC(O)R₆, -NHS(O)mR₆, -C(O)R₆, -NHC(O)R₆, -NHC(O)OR₆, -NR₇R₈, -OC(O)NR₇R₈, -NHC(O)NR₇R₈, -OH, -NHC(O)NR₇R₈, -NHC(O)OR₆ and -NHC(O)NR₇R₈.

"Alkynyl" refers to an alkyl defined as above that has at least two carbon atoms and at least one carbon-carbon triple bond, for example, ethynyl, 1-propynyl, 2-propynyl, 1-, 2-, or 3-butynyl, etc., preferably C₂-C₁₀ alkynyl, more preferably C₂-C₆ alkynyl, and most preferably C₂-C₄ alkynyl. The alkynyl group can be substituted or unsubstituted. When substituted, the substituent group(s) is preferably one or more groups independently selected from the group consisting of alkynyl, alkenyl, alkoxy, alkylthio, alkylamino, halogen, thiol, hydroxy, nitro, cyano, cycloalkyl, heterocyclyl, aryl, heteroaryl, cycloalkoxy, heterocycloalkoxy, cycloalkylthio, heterocycloalkylthio, oxo, amino, haloalkyl, hydroxyalkyl, carboxyl, alkoxy carbonyl, -OR₆, -C(O)OR₆, -OC(O)R₆, -NHS(O)mR₆, -C(O)R₆, -NHC(O)R₆, -NHC(O)OR₆, -NR₇R₈, -OC(O)NR₇R₈, -NHC(O)NR₇R₈, -OH, -NHC(O)NR₇R₈, -NHC(O)OR₆ and -NHC(O)NR₇R₈.

"Heterocyclyl" refers to a 3 to 20 membered saturated or partially unsaturated monocyclic or polycyclic hydrocarbon group having 3 to 20 carbon atoms, preferably 3 to 12 carbon atoms, more preferably 3 to 10 carbon atoms, and most preferably 3 to 6 carbon atoms. Representative examples of monocyclic heterocyclyl include, but are not limited to, pyrroldinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl, homopiperazinyl, pyranyl, tetrahydrofuranyl, 17
and the like. Polycyclic heterocyclcyl includes the heterocyclcyl having a spiro ring, fused ring or bridged ring. The heterocyclcyl group can be substituted or unsubstituted. When substituted, the substituent group(s) is preferably one or more groups independently selected from the group consisting of alkyl, alkenyl, alkyloxyl, alkylthiol, alkylamin, halogen, thiol, hydroxy, nitro, cyano, cycloalkyl, heterocyclcyl, aryl, heteroaryl, cycloalkoxy, heterocycloalkoxy, cycloalkylthio, heterocycloalkylthio, oxo, amino, haloalkyl, hydroxalkyl, carboxyl, alkyloxycarbonyl, -OR, -C(O)OR, -OC(O)R, -NHS(O)mR, -C(O)R, -NHC(O)R, -NR, -OC(O)NR, -C(O)NR, -NHC(O)NR, and -NHC(O)NHOR.

[0061] "Aryl" refers to a 6 to 14 membered all-carbon monocyclic ring or polycyclic fused ring (a "fused" ring system means that each ring shares an adjacent pair of carbon atoms with another ring in the system), which has a completely conjugated \(\pi \) electron system. An aryl is preferably 6 to 10 membered, more preferably phenyl and napthyl, and most preferably phenyl. The aryl can be fused to the ring of a heteroaryl, heterocyclcyl or cycloalkyl, wherein the ring bound to the parent structure is aryl. Representative examples include, but are not limited to, the following groups:

![Diagram](image)

[0062] The aryl group can be substituted or unsubstituted. When substituted, the substituent group(s) is preferably one or more groups independently selected from the group consisting of alkyl, alkenyl, alkyloxyl, alkylthiol, alkylami- no, halogen, thiol, hydroxy, nitro, cyano, cycloalkyl, heterocyclcyl, aryl, heteroaryl, cycloalkoxy, heterocycloalkoxy, cycloalkylthio, heterocycloalkylthio, -OR, -C(O)OR, -OC(O)R, -NHS(O)mR, -C(O)R, -NHC(O)R, -NR, -OC(O)NR, -C(O)NR, -NHC(O)NR, and -NHC(O)NHOR.

[0063] "Heteroaryl" refers to 5 to 14 membered all-carbon monocyclic ring or polycyclic fused ring having 1 to 4 heteroatoms selected from the group consisting of O, S and N, which has a completely conjugated \(\pi \) electron system. A heteroaryl is preferably 5- to 10- membered, more preferably 5- or 6- membered, and most preferably furyl, thiienyl, pyridinyl, pyrrolyl, N-alkyl pyrrolyl, pyrimidinyl, imidazolyl, tetrazolyl, and the like. The heteroaryl can be fused with the ring of an aryl, heterocyclcyl or cycloalkyl, wherein the ring bound to the parent structure is heteroaryl. Representative examples include, but are not limited to, the following groups:

![Diagram](image)

[0064] The heteroaryl group can be substituted or unsubstituted. When substituted, the substituent group(s) is preferably one or more groups independently selected from the group consisting of alkyl, alkenyl, alkyloxyl, alkylthiol, alkylamin, halogen, thiol, hydroxy, nitro, cyano, cycloalkyl, heterocyclcyl, aryl, heteroaryl, cycloalkoxy, heterocycloalkoxy, cycloalkylthio, heterocycloalkylthio, -OR, -C(O)OR, -OC(O)R, -NHS(O)mR, -C(O)R, -NHC(O)R, -NR, -OC(O)NR, -C(O)NR, -NHC(O)NR, and -NHC(O)NHOR.

[0065] "Alkoxy" refers to both an -O-(alkyl) and an -O-(unsubstituted cycloalkyl) group, wherein the alkyl and cycloalkyl are defined as above. Representative examples include, but are not limited to, methoxy, ethoxy, propoxy, butoxy, cyclopropoxy, cyclobutyl oxy, cyclohexyloxy, and the like. The alkoxy can be substituted or unsubstituted. When substituted, the substituent group(s) is preferably one or more groups independently selected from the group consisting of alkyl, alkenyl, alkyloxyl, alkylthiol, alkylamin, halogen, thiol, hydroxy, nitro, cyano, cycloalkyl, heterocyclcyl, aryl, heteroaryl, cycloalkoxy, heterocycloalkoxy, cycloalkylthio, heterocycloalkylthio, amino, haloalkyl, hydroxalkyl, carboxyl, alkyloxycarbonyl, -OR, -C(O)OR, -OC(O)R, -NHS(O)mR, -C(O)R, -NHC(O)R, -NR, -OC(O)NR, -C(O)NR, -NHC(O)NR, and -NHC(O)NHOR.
EP 3 064 498 A1

-OC(O)NR7R8, -C(O)NR7R8, -NHC(O)NHR6 and -NHC(O)NHOR6.

[0066] "Haloalkyl" refers to an alkyl group substituted by one or more halogens, wherein the alkyl is as defined above.
"Hydroxy" refers to an -OH group.
"Hydroxy alkyl" refers to an alkyl group substituted by a hydroxy group, wherein the alkyl is as defined above.
"Halogen" refers to fluorine, chlorine, bromine or bromine.
"Amino" refers to an -NH2 group.
"Cyano" refers to a -CN group.
"Nitro" refers to a -NO2 group.
"Oxo group" refers to a =O group.
"Carboxylic acid" refers to an (alkyl) or (cycloalkyl) -C(O)OH.
"Sulfuryl chloride" refers to an (alkyl) or (cycloalkyl) -S(O)m-X (halo).
"Isocyanate" refers to an (alkyl) or (cycloalkyl) -N=C=O.
"Triphosgene" refers to a bis(trichloromethyl)carbonate.
"Carboxyl" refers to a -C(O)OH group.

[0067] "Alkoxycarbonyl" refers to a -C(O)O(alkyl) or (cycloalkyl) group, wherein the alkyl and cycloalkyl are defined as above.

[0068] "Optional" or "optionally" means that the event or circumstance described subsequently can, but not necessary occur. Such expression means the case that the event or circumstance does or does not occur. For example, "the heterocyclic group optionally substituted by an alkyl" means that an alkyl group can be, but not necessary be present, and such expression includes the case that the heterocyclic group is substituted with an alkyl and the heterocyclic group is not substituted with an alkyl.

[0069] "Substituted" refers to one or more hydrogen atoms in a group, preferably up to 5, more preferably 1 to 3 hydrogen atoms, each independently replaced with corresponding number of substituents. It goes without saying that the substituents exist in their only possible chemical position. The person skilled in the art is able to determine whether the substitution is possible or impossible without paying excessive efforts by experiment or theory. For example, when amino or hydroxy group having free hydrogen is binding with carbon atoms having unsaturated bonds (such as olefinic) may be unstable.

[0070] A "pharmaceutical composition" refers to a mixture of one or more of the compounds described in the present invention or physiologically/pharmaceutically acceptable salts or prodrugs thereof and other chemical components such as physiologically/pharmacologically acceptable carriers and excipients. The purpose of a pharmaceutical composition is to facilitate administration of a compound to an organism, which is conducive to the absorption of the active ingredient, thus displaying biological activity.

Wherein R6−R8 are as defined in formula (I).

SYNTHESIS METHOD OF THE PRESENT COMPOUND

[0071] In order to achieve the object of the present invention, the present invention applies the following technical solution:

A process for preparing a compound of formula (I), or a tautomer, mesomer, racemate, enantiomer, diastereomer, or a mixture thereof, or a pharmaceutically acceptable salt thereof, comprises the steps as following:

\[
\text{Scheme 1}
\]

a compound of formula (Ia) is reacted with R2X in the presence of an alkaline reagent to obtain a compound of formula (Ib); the compound of formula (Ib) is subject to halogenating reaction under a catalyst to obtain a compound of formula (IA), wherein the catalyst is preferably azobisisobutyronitrile, and the halogenating agent is preferably N-bromosuccinimide; the compound of formula (IA) is reacted with the amine of NH(R4)(CH2)nR5 to obtain a compound of formula (I); wherein X is halogen; n, D, E, G, and R1−R5 are as defined in formula (I);
R³ is preferably an aryl, more preferably a phenyl, wherein the aryl is optionally further substituted with one or more groups selected from the group consisting of -NHC(O)NHR⁶ and -NHC(O)NHOR⁶.

[0072] A process for preparing a compound of formula (I), or a tautomer, mesomer, racemate, enantiomer, diastereomer, or a mixture thereof, or a pharmaceutically acceptable salt thereof, comprises the steps as following:

reacting the compound of formula (Ic) is subject to a halogenating reaction under a catalyst to obtain a compound of formula (Id), wherein the catalyst is preferably azobisisobutyronitrile, and the halogenating agent is preferably N-bromosuccinimide; the compound of formula (Id) is reacted with the amine of NH(R⁴)(CH₂)nR⁵ to obtain a compound of formula (Ie); the compound of formula (Ie) is further heated under trifluoroacetic acid to obtain a compound of formula (If); the compound of formula (If) is reacted with triphosgene and an amine of R¹NH₂ successively to obtain a compound of formula (Ig); the compound of formula (Ig) is subject to cyclization reaction under an alkaline to obtain a compound of formula (IB); the compound of formula (IB) is reacted with R²X in the presence of an alkaline reagent to obtain a compound of formula (I); wherein:

X is halogen; Rb is alkyl;
n, D, E, G, R¹–R⁵ are as defined in formula (I); and

R³ is preferably an aryl, more preferably a phenyl, wherein the aryl is optionally further substituted with one or more groups selected from the group consisting of -NHC(O)NHR⁶ and -NHC(O)NHOR⁶.

[0073] A process for preparing a compound of formula (II), or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, comprises the steps as following:

the compound of formula (IIa) is heated under trifluoroacetic acid to obtain a compound of formula (IIb); the compound of formula (IIb) is reacted with triphosgene and an amine of R¹NH₂ successively to obtain a compound of formula (IIc);
the compound of formula (IId) is reacted with R²X in the presence of an alkaline reagent to obtain a compound of formula (Ile); the compound of formula (Ile) is subject to halogenating reaction under a catalyst to obtain a compound of formula (IIA), wherein the catalyst is preferably azobisisobutyronitrile, and the halogenating agent is preferably N-bromosuccinimide; the compound of formula (IIA) is reacted with an amine of NH(R⁴)(CH₂)nR⁵ to obtain a compound of formula (II); wherein: X is halogen; Rb is alkyl; n, R¹–R⁵ are as defined in formula (I); R³ is preferably an aryl, more preferably a phenyl, wherein the aryl is optionally further substituted with one or more groups selected from the group consisting of -NHC(O)NHR⁶ and -NHC(O)NHOR⁶.

[0074] A process for preparing a compound of formula (III), or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, comprises the steps as following:

![Scheme 4](image)

the compound of formula (IIIa) is reacted with triphosgene and an amine of R¹NH₂ successively to obtain a compound of formula (IIIb); the compound of formula (IIIb) is reacted under an alkaline to obtain a compound of formula (IIIc); the compound of formula (IIIc) is with R²X in the presence of an alkaline reagent to obtain a compound of formula (IIId); the compound of formula (IIId) is subject to halogenating reaction under a catalyst to obtain a compound of formula (IIIA), wherein the catalyst is preferably azobisisobutyronitrile, and the halogenating agent is preferably N-bromosuccinimide; the compound of formula (IIIA) is reacted with an amine of NH(R⁴)(CH₂)nR⁵ to obtain a compound of formula (III); wherein: X is halogen; Rb is alkyl; n, R¹–R⁵ are as defined in formula (I); R³ is preferably an aryl, more preferably a phenyl, wherein the aryl is optionally further substituted with one or more groups selected from the group consisting of -NHC(O)NHR⁶ and -NHC(O)NHOR⁶.

[0075] A process for preparing a compound of formula (IV), or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, comprises the steps as following:

![Scheme 5](image)
formula (IVA) is prepared according to schemes 1-4; the compound of formula (IVa) is reacted with R²X in the presence of an alkaline reagent to obtain a compound of formula (IVb); the compound of formula (IVb) is subject to a halogenating reaction under a catalyst to obtain a compound of formula (IVc), wherein the catalyst is preferably azobisobutyronitrile, and the halogenating agent is preferably N-bromosuccinimide; the compound of formula (IVc) is reacted with an amine of NH(R₄)(CH₂)nR₅ to obtain a compound of formula (IVd); the compound of formula (IVd) is subject to reduction reaction with iron in the presence of ammonium chloride to reduce a nitro group to an amino group to obtain a compound of formula (IVA); the compound of formula (IVA) is further reacted with an acylation reagent to obtain a compound of formula (IV); wherein: X is halogen, n, D, E, G, Ra, R₁-R₅ are as defined in formula (I).

In the aforesaid technical solutions, the alkaline condition is provided by an organic base or an inorganic base, wherein the organic base includes, but are not limited to, triethylamine, pyridine, 2,6-lutidine, sodium methoxide, lithium hexamethyldisilazide, sodium hexamethyldisilazide, n-butyllithium, potassium tert-butoxide or tetrabutyl ammonium bromide; and the inorganic base includes, but is not limited to, sodium hydride, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, cesium carbonate, lithium hydroxide, sodium hydroxide or potassium hydroxide. In the method of the present invention, the alkaline condition of cyclization is preferably an organic base, and more preferably is sodium methoxide.

Reducing agent includes, but is not limited to, hydrogen or iron powder; Acylating agent includes, but is not limited to, carboxylic acid, acyl chloride, sulfuryl chloride, halogenated methyl formate, isocyanate or triphosgene and methoxymine.

The invention will be further illustrated with reference to the following specific examples. It should be understood that these examples are merely intended to demonstrate the invention without limiting the scope of the invention.

The known starting materials of the present invention can be prepared by conventional synthesis methods in the art, or can be purchased from ABCR GmbH & Co. KG, Acros Organics, Aldrich Chemical Company, Accela ChemBio Inc., or Dari Chemical Company, etc.

The experimental reagents for which no specific sources are indicated will be conventional reagents which are commercial available.

Examples

Compound structures are identified by nuclear magnetic resonance (NMR) and/or mass spectrometry (MS). NMR chemical shift (δ) is given in 10⁻⁶ (ppm). NMR is determined by Bruker AVANCE-400. The solvents for NMR are deuterated-dimethyl sulfoxide (DMSO-d₆), deuterated-chloroform (CDCl₃) and deuterated-methanol (CD₃OD), with tetramethylsilane (TMS) as an internal standard.

MS is determined by a FINNIGAN LCQAdv (ESI) mass spectrometer (manufacturer: Thermo, type: Finnigan LCQ advantage MAX).

High performance liquid chromatography (HPLC) is determined on an Agilent 1200DAD high pressure liquid chromatography spectrometer (Sunfire C18 150x4.6 mm chromatographic column) and a Waters 2695-2996 high pressure liquid chromatography spectrometer (Gimini C18 150x4.6 mm chromatographic column).

The average inhibition rate of kinase and IC₅₀ are determined by a NovoStar ELISA (BMG Co., Germany).

The elution system for purification of the compounds by column chromatography and thin layer chromatography (TLC). The dimension of the plates used in TLC was 0.15 mm to 0.2 mm, and the dimension of the plates used in product purification is 0.4 mm to 0.5 mm.

The known starting materials of the present invention can be prepared by conventional synthesis methods in the art, or can be purchased from ABCR GmbH & Co. KG, Acros Organics, Aldrich Chemical Company, Accela ChemBio Inc., or Dari Chemical Company, etc.

Unless otherwise stated, the reactions can be carried out under nitrogen atmosphere or argon atmosphere.

The term "argon atmosphere or "nitrogen atmosphere" means that a reaction flask is equipped with a 1 L argonor nitrogen balloon.

Unless otherwise stated, the solution in the examples refers to an aqueous solution.

The reaction process is monitored by thin layer chromatography (TLC), and the system of the developing solvent includes: A: dichloromethane and methanol system, B: n-hexane and ethyl acetate system, C: petroleum ether and ethyl acetate system, D: acetone. The ratio of the solvent can be adjusted according to the polarity of the compounds.

The elution system for purification of the compounds by column chromatography and thin layer chromatography includes: A: dichloromethane and methanol system, B: n-hexane and ethyl acetate system, C: dichloromethane and acetone system, D: ethyl acetate and dichloromethane system, E: ethyl acetate and dichloromethane and n-hexane system, F: ethyl acetate and dichloromethane and acetone system. The volume ratio of the solvent can be adjusted
according to the polarity of the compounds, and sometimes a little alkaline reagent such as triethylamine or acidic reagent such as acetic acid may also be added.

Example 1

\[N-(4-((7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)acetamide \]
Step 1

Ethyl 3-amino-5-methyl-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate

[0093] Ethyl 3-(tert-butylamino)-5-methyl-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate 1a (12.10 g, 34.93 mmol, prepared by a well known method disclosed in "Synthesis, 1988, (3), 203-207") and 100 mL of trifluoroacetic acid were added to a 250 mL of eggplant shaped flask successively. The mixture was stirred for 2.5 hours at 85°C, and then the reaction was stopped. The reaction solution was cooled to room temperature, and concentrated under reduced pressure. The residues were added dropwise with saturated sodium bicarbonate solution to adjust the pH> 7, and filtrated. The filter cake was dissolved in dichloromethane and the organic phase was dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were slurried with 50 mL of a mixture of dichloromethane and methanol (V/V = 20:1), and filtered. The product was dried to obtain 5.30 g of yellow solid. The mother solution was concentrated under reduced pressure and the residues were purified by silica gel column chromatography with elution systems A to obtain the title compound ethyl 3-amino-5-methyl-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate 1b (total product 6.07 g, yellow solid), yield: 60.1%.

MS m/z (ESI): 291.2 [M+1]

Step 2

Ethyl 3-(3-(2-fluoro-3-methoxyphenyl)ureido)-5-methyl-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate

[0094] Ethyl 3-amino-5-methyl-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate 1b (550 mg, 1.89 mmol) was dissolved in 50 mL of dichloromethane. The mixture which was insufficiently soluble at room temperature was added with triethylamine (0.66 mL, 4.75 mmol) and triphosgene (225 mg, 0.76 mmol), and stirred until it was dissolved completely. After stirring for 30 minutes, the reaction solution was added with 2-fluoro-3-methoxyaniline (283 mg, 2 mmol) and stirred for 12 hours at room temperature, then the reaction was stopped. The reaction solution was concentrated under reduced pressure and the residues were added with 20 mL of water, extracted with dichloromethane (50 mL x 2). The organic phases were combined, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by silica gel column chromatography with elution systems A to obtain the title compound ethyl 3-(3-(2-fluoro-3-methoxyphenyl)ureido)-5-methyl-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate 1c (640 mg, white solid), yield: 73.9%.

MS m/z (ESI): 458.1 [M+1]

Step 3

5-(2-fluoro-3-methoxyphenyl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione

Ethyl

[0095] 3-(3-(2-fluoro-3-methoxyphenyl)ureido)-5-methyl-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate 1c (640 mg, 1.40 mmol) was dissolved in 30 mL of ethanol, and then added with sodium methoxide (190 mg, 3.52 mmol). After reacting for 3 hours at room temperature, the reaction solution was heated to 80°C and further reacted for 1 hour. Then reaction was stopped. The reaction solution was cooled to room temperature, and then added with 3.5 mL of 1 M hydrochloric acid solution, and filtered. The filter cake was washed with water (20 mL x 1), ethanol (10 mL x 1) and methyl tert-butyl ether(5 mL×1) successively, and dried to obtain the title compound 5-(2-fluoro-3-methoxyphenyl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 1d (536 mg, light yellow solid), yield: 93.2%.

MS m/z (ESI): 412.2 [M+1]

Step 4

7-(2,6-difluorobenzyl)-5-(2-fluoro-3-methoxyphenyl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazol o[3,4-d]pyrimidine-4,6(5H,7H)-dione

[0096] 5-(2-fluoro-3-methoxyphenyl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 1d (530 mg, 1.29 mmol), 2-(chloromethyl)-1,3-difluorobenzene (230 mg, 1.41 mmol), potassium iodide (235 mg, 1.41 mmol) and potassium carbonate (196 mg, 1.42 mmol) were dissolved in 15 mL of N,N-dimethyl formamide successively. After reacting for 24 hours at room temperature, the reaction was stopped, and the reaction solution was concentrated under reduced pressure. The residues were added with 30 mL of water and 20 mL of methyl tert-butyl ether under stirring, and
then filtered. The filter cake was dissolved in 50 mL of dichloromethane, and filtered. The filtrate was concentrated under reduced pressure to obtain 570 mg of solid. The mother solution was extracted, the organic phase was washed with water (20 mL x 3), saturated sodium chloride solution (20 mL x 1) successively, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were slurried with 15 mL of a mixture of n-hexane and methyl tert-butyl ether (V/V = 1: 1), and filtered. The filter cake was dried to obtain 110 mg of solid. The title compound 7-(2,6-difluorobenzyl)-5-(2-fluoro-3-methoxyphenyl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 1e (total product 680 mg, tan solid) was obtained, yield: 98.3%.

MS m/z (ESI): 538.2 [M+1]

Step 5

3-(bromomethyl)-7-(2,6-difluorobenzyl)-5-(2-fluoro-3-methoxyphenyl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione

[0097] Under argon atmosphere, 7-(2,6-difluorobenzyl)-5-(2-fluoro-3-methoxyphenyl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 1e (660 mg, 1.23 mmol), azobisisobutyronitrile (24 mg, 0.15 mmol) and N-bromosuccinimide (262 mg, 1.47 mmol) were dissolved in 20 mL of chlorobenzene successively. After reacting for 12 hours at 85°C, the reaction was stopped and the reaction solution was cooled to room temperature, and then washed with saturated sodium chloride solution (15 mL x 1) and saturated sodium thiosulfate solution (15 mL x 1) successively. The aqueous phase was extracted with dichloromethane (20 mL x 3). The organic phases were combined, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure to obtain the crude title compound 3-(bromomethyl)-7-(2,6-difluorobenzyl)-5-(2-fluoro-3-methoxyphenyl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 1f (900 mg, light yellow solid), which was used directly in the next step.

MS m/z (ESI): 616.1 [M+1]

Step 6

7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione

[0098] The crude 3-(bromomethyl)-7-(2,6-difluorobenzyl)-5-(2-fluoro-3-methoxyphenyl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 1f (900 mg, 1.46 mmol) was dissolved in 3 mL solution of dimethylamine in tetrahydrofuran. After reacting for 12 hours at room temperature, the reaction was stopped and the reaction solution was concentrated under reduced pressure. The residues were purified via silica gel column chromatography with eluent systems D to obtain 627 mg of crude compound. The crude compound was purified by thin-layer chromatography with eluent systems E to obtain the title compound 7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 1g (223 mg, light yellow solid), yield: 31.0%.

MS m/z (ESI): 581.3 [M+1]

Step 7

2-(4-aminophenyl)-7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxy phenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione

[0099] 7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 1g (212 mg, 0.36 mmol) was dissolved in 8 mL of formic acid, and then added with 0.25 mL solution of 4 M HCl in 1,4-dioxane and palladium 10% on carbon (40 mg). The mixture was purged with hydrogen for three times and reacted for 2 hours under hydrogen atmosphere and normal pressure, then reaction was stopped and the reaction mixture was filtered. The filter cake was washed with methanol (20 mL x 2). The organic phase was concentrated under reduced pressure. The residues were added with 50 mL of dichloromethane and 15 mL of saturated sodium bicarbonate solution, and stirred for 10 minutes. The saturated sodium bicarbonate solution was added dropwise to adjust the pH>7, and the aqueous phase was subject to extraction. The aqueous phase was extracted with dichloromethane (20 mL x 3). The organic phases were combined, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by thin-layer chromatography with eluent systems A to obtain the title compound 2-(4-aminophenyl)-7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxy phenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 1h (180 mg, white solid), yield: 89.5%.

MS m/z (ESI): 551.3 [M+1]
Step 8

N-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)acetamide

[0100] 2-(4-aminophenyl)-7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 1h (33 mg, 0.059 mmol) was dissolved in 5 mL of dichloromethane, added with triethylamine (13 µL, 0.094 mmol) and acetic anhydride (7 µL, 0.072 mmol). After reacting for 12 hours at room temperature, the reaction was incomplete. 5 µL of acetic anhydride was then supplemented and the mixture was heated to 35°C and further reacted for 2 hours. The reaction was stopped and the reaction solution was added with 2 mL of saturated sodium bicarbonate solution, stirred for 10 minutes, and extracted. The aqueous phase was extracted with dichloromethane (15 mL x 3). The organic phases were combined, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by thin layer chromatography with elution systems A to obtain the title compound N-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)acetamide 1 (25 mg, white solid), yield: 71.4%.

MS m/z (ESI): 593.1 [M+1]

1H NMR (400MHz, CDCl3) δ 7.89 (d, 2H), 7.67 (d, 2H), 7.36 (s, 1H), 7.25-7.30 (m, 1H), 7.19 (t, 1H), 7.08 (t, 1H), 7.89-7.94 (m, 3H), 5.45 (s, 2H), 3.93 (s, 3H), 3.69-3.70 (m, 2H), 2.35 (s, 6H), 2.25 (s, 3H).

Example 2

1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methoxyurea

[0101]
addition of methoxyamine (100 mg, 1.20 mmol) and continued reaction for 2 hours at 35°C. The reaction was stopped and the reaction solution was added with 10 mL of saturated sodium bicarbonate solution, and extrated. The aqueous phase was extracted with dichloromethane (15 mL x 3). The organic phases were combined, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by thin layer chromatography with elution systems A to obtain the title compound 1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methoxyurea 2 (12 mg, pale yellow solid), yield: 35.3%.

MS m/z (ESI): 624.5 [M+1]

1H NMR (400MHz, CDCl3) □□□ 7.90 (d, 2H), 7.71 (s, 1H), 7.67 (d, 2H), 7.20-7.30 (m, 3H), 7.06-7.08 (m, 1H), 6.89-6.94 (m, 3H), 5.45 (s, 2H), 3.94 (s, 3H), 3.87 (s, 3H), 3.86 (s, 2H), 2.35 (s, 6H).

Example 3

1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-ethylurea

[0104]

Step 1

1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-ethylurea

[0105] 2-(4-aminophenyl)-7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 1h (26mg, 0.047 mmol) was dissolved in 3 mL of tetrahydrofuran and added with ethyl isocyanate (55 μL, 0.69 mmol), and reacted for 12 hours at 35°C. The reaction was stopped and the reaction solution was concentrated under reduced pressure. The residues were added with 10 mL of water and 20 mL of dichloromethane, and extrated. The aqueous phase was extracted with dichloromethane (15 mL x 3). The organic phases were combined, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by thinlayer chromatography with elution systems A to obtain the title compound 1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-ethylurea 3 (12 mg, white solid), yield: 41.4%.

MS m/z (ESI): 622.5 [M+1]

1H NMR (400MHz, CDCl3) □□□ 7.80 (d, 2H), 7.45 (d, 2H), 7.22-7.26 (m, 2H), 7.13-7.15 (m, 1H), 6.99-7.04 (m, 1H), 6.84-6.89 (m, 3H), 6.45 (s, 1H), 5.40 (s, 2H), 3.89 (s, 3H), 3.65 (s, 2H), 3.33-3.35 (m, 2H), 1.20 (t, 3H).
Example 4

Methyl

(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)carbamate

[0106]

Step 1

Methyl

(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)carbamate

[0107]

2-(4-aminophenyl)-7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 1h (35 mg, 0.064 mmol) was dissolved in 5 mL of dichloromethane and added with triethylamine (0.8 mL, 5.8 mmol) and methyl chloroformate (0.5 mL, 4.14 mmol). After reacting for 12 hours at 35°C, the reaction was stopped and cooled to room temperature. The reaction solution was added with 10 mL of saturated sodium bicarbonate solution, and extracted. The aqueous phase was extracted with dichloromethane (15 mL x 3). The organic phases were combined, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by thin layer chromatography with elution systems A to obtain the title compound methyl (4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)carbamate 4 (24 mg, white solid), yield: 61.5%.

MS m/z (ESI): 609.5 [M+1]

1H NMR (400MHz, CDCl3) δ 7.88 (d, 2H), 7.55 (d, 2H), 7.25-7.27 (m, 1H), 7.18-7.20 (m, 1H), 7.06-7.08 (m, 1H), 6.88-6.94 (m, 3H), 6.78 (s, 1H), 5.45 (s, 2H), 3.93 (s, 3H), 3.85 (s, 3H), 3.65-3.73 (m, 2H), 2.35 (s, 6H).

Example 5

1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methylurea

[0108]
Step 1

1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methylurea

[0109] Acetic acid (46 mg, 0.77 mmol) was dissolved in 1 mL of toluene and added with N,N-diisopropylethylamine (0.2 mL, 1.13 mmol) and diphenylphosphoryl azide (0.16 mL, 0.73 mmol). The mixture was stirred for 1 hour at 70°C, and then cooled in ice bath, followed by addition of 2-(4-aminophenyl)-7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxy phenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 1h (30 mg, 0.050 mmol) and 2 mL dichloromethane in ice bath. The mixture was reacted for 12 hours at room temperature. The reaction was stopped and the reaction solution was added with 10 mL of saturated sodium bicarbonate solution, and extracted with dichloromethane (25 mL x 1). The organic phase was washed with water (10 mL x 1) and saturated sodium chloride solution (10 mL x 1), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by thinlayer chromatography with elution systems A to obtain the title compound 1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methylurea 5 (8 mg, white solid), yield: 24.4%.

MS m/z (ESI): 607.9 [M+1]^{-}

H NMR (400MHz, CDCl3) □ 7.79 (d, 2H), 7.50 (d, 2H), 7.27-7.30 (m, 1H), 7.19 (t, 1H), 7.06 (t, 1H), 6.880-6.93 (m, 4H), 5.44 (s, 2H), 4.95 (s, 1H), 3.92 (s, 3H), 3.78 (s, 2H), 2.88 (d, 3H), 2.39 (s, 6H).

Example 6

1-(4-(3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-ethylurea

[0110]
Step 1

5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione

[0111] 5-(2-fluoro-3-methoxyphenyl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6 (5H,7H)-dione 1d (1.90 g, 4.62 mmol), 2-(bromomethyl)-1-fluoro-3-(trifluoromethyl)benzene (1.31 g, 5.10 mmol), potassium iodide (844 mg, 5.08 mmol) and potassium carbonate (702 mg, 5.09 mmol) were dissolved in 54 mL of N,N-dimethylformamide successively. After stirring for 20 hours at room temperature, the reaction was stopped and the reaction solution was concentrated under reduced pressure. The residues were added with water and ether to slurrying for 1 hour, and filtered. The filter cake was washed with ether (10 mL x 3) and dried to obtain the title compound 5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 6a (1.91 g, white solid), yield 70.7%. MS m/z (ESI): 588.1 [M+1]

Step 2

3-(bromomethyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione

[0112] 5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 6a (1.81 g, 3.08 mmol), azobisisobutyronitrile (61 mg, 0.37 mmol) and N-bromo-succinimide (660 mg, 3.71 mmol) was dissolved in 53 mL of chlorobenzene. The resulting solution was purged with argon for three times, and reacted for 19 hours at 85°C under argon atmosphere. The reaction was stopped and the reaction solution was washed with saturated sodium thiosulfate solution (30 mL x 1) and saturated sodium chloride solution (50 mL x 2), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure to obtain the crude title compound 3-(bromomethyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 6b (2.18 g, pale yellow solid), which was used directly in the next step.

MS m/z (ESI): 666.0 [M+1]
Step 3
3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione

[0113] The crude 3-(bromomethyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 6b (2.18 g, 3.27 mmol) and dimethylamine (2 M solution in THF) (6.8 mL 13.6 mmol) were added to the reaction flask and stirred for 12 hours at room temperature. The reaction was stopped and the reaction solution was concentrated under reduced pressure. The residues were purified by preparative separation method to obtain the title compound 3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 6c (455 mg, white solid), yield: 22.1%. MS m/z (ESI): 630.8 [M+1]

Step 4
2-(4-aminophenyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 6d (200 mg, 0.32 mmol) was dissolved in 8 mL of formic acid, and added with 0.25 mL solution of 4 M HCl in 1,4-dioxane and 10% of Pd / C (50 mg). The mixture was purged with hydrogen for three times and stirred for 2 hours at room temperature. The reaction was stopped and filtered. The filter cake was washed with a small amount of methanol. The filtrate was concentrated under reduced pressure, added with 50 mL of dichloromethane and 20 mL of sodium bicarbonate solution, and stirred for 10 minutes. The aqueous phase was adjusted to pH 8, and extracted. The aqueous phase was extracted with dichloromethane (25 mL x 2) and the organic phases were combined, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by thinlayer chromatography with elution systems A to obtain the title compound 2-(4-aminophenyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 6d (135 mg, white solid), yield: 71.1%. MS m/z (ESI): 600.9 [M+1]

Step 5
1-(4-(3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-ethylurea

[0115] 2-(4-aminophenyl)-(3-(dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-ethylurea a

1H NMR (400MHz, CDCl3) □ 7.75 (d, 2H), 7.51 (d, 1H), 7.46 (d, 2H), 7.37-7.40 (m, 1H), 7.18-7.24 (m, 2H), 7.15 (t, 1H), 6.91 (t, 1H), 6.85 (s, 1H), 5.60 (s, 2H), 4.92 (s, 1H), 3.90 (s, 3H), 3.69-3.76 (m, 2H), 3.28-3.35 (m, 2H), 3.19-3.26 (m, 2H), 2.35 (s, 6H), 1.19 (t, 3H).

Example 7
1-(4-(3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methoxy urea

[0116]
Step 1

1-(4-(3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methoxyurea

[0117] 2-(4-aminophenyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 6d (30 mg, 0.050 mmol) was dissolved in 3 mL of dichloromethane, and added with triethylamine (0.07 mL, 0.50 mmol) and triphosgene (15 mg, 0.051 mmol). After reacting for 1 hour at room temperature, the reaction was stopped and the reaction solution was added with 10 mL of water, and then extracted with dichloromethane (25 mL × 1). The organic phase was washed with saturated sodium bicarbonate solution (10 mL × 1), water (10 mL × 1) and saturated sodium chloride solution (10 mL × 1) successively, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by thinlayer chromatography with elution systems A to obtain the title compound 1-(4-(3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methoxyurea7 (12 mg, white solid), yield: 33.6%.

MS m/z (ESI): 673.8 [M+1]

1H NMR (400MHz, CDCl3) □ 7.85 (d, 2H), 7.64-7.70 (m, 3H), 7.53 (d, 1H), 7.39-7.42 (m, 1H), 7.23-7.28 (m, 3H), 7.06 (t, 1H), 6.92 (t, 1H), 5.57-5.65 (m, 2H), 3.93 (s, 3H), 3.87 (s, 3H), 3.72 (s, 2H), 2.36 (s, 6H).

Example 8

1-(4-(3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methylurea

[0118]
Step 1

1-(4-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methylurea

[0119] Acetic acid (62 mg, 1.03 mmol) was dissolved in 1 mL of toluene, and added with N,N-diisopropylethylamine (0.28 mL, 1.58 mmol) and diphenylphosphoryl azide (0.20 mL, 0.98 mmol). After reacting for 1.5 hours at 70°C, the reaction solution was added with 2-(4-aminophenyl)-3-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 6d (30 mg, 0.050 mmol) and 1 mL of dichloromethane, and further reacted for 12 hours at room temperature. The reaction was stopped. The reaction solution was added with 5 mL of saturated sodium bicarbonate, and then extracted with dichloromethane (25 mL x 1). The organic phase was washed with water (10 mL x 1) and saturated sodium chloride solution (10 mL x 1), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by thinlayer chromatography with elution systems A to obtain the crude title compound, which was further purified by thinlayer chromatography with elution systems A to obtain the title compound 1-(4-((dimethylamino)methyl)-5-(2-fluoro-3-methoxyphenyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methylurea (13 mg, white solid), yield 39.4%.

MS m/z (ESI): 658.2 [M+1]

1H NMR (400MHz, CDCl3) \(\delta \) 7.76 (d, 2H), 7.51-7.53 (m, 1H), 7.47 (d, 2H), 7.39-7.40 (m, 1H), 7.24 (t, 1H), 7.19 (t, 1H), 7.04 (t, 1H), 6.89 (t, 1H), 6.74 (m, 1H), 5.56-5.64 (m, 2H), 4.85 (s, 1H), 3.92 (s, 3H), 3.77 (s, 2H), 2.88 (d, 3H), 2.38 (s, 6H).

Example 9

1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methylurea

[0120]
Step 1

Ethyl 5-(bromomethyl)-3-(tert-butylamino)-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate

[0121] Ethyl 3-(tert-butylamino)-5-methyl-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate 1a (23 g, 66.40 mmol), azobisisobutyronitrile (2.18 g, 13.28 mmol), N-bromosuccinimide (14.18 g, 79.68 mmol) and 400 mL of chlorobenzene was added to a 1 L of single-port reaction flask. The reaction solution was stirred uniformly and purged with argon for three times. After reacting for 64 hours at 85°C, the reaction was stopped. The reaction solution was concentrated under reduced pressure. The residues were added with 300 mL of dichloromethane, and washed with water (100 mL), saturated sodium thiosulfate solution (100 mL) and saturated sodium chloride solution (100 mL) successively. The organic phase was dried over anhydrous sodium sulfate, filtered and the filtrate was concentrate under reduced pressure to obtain the crude title compound ethyl 5-(bromomethyl)-3-(tert-butylamino)-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate 9a (25 g, brown oil), which was used directly in the next step.

MS m/z (ESI): 427.1 [M+2]
Step 2

Ethyl 3-(tert-butylamino)-5-((dimethylamino)methyl)-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate

[0122] The crude ethyl 5-(bromomethyl)-3-(tert-butylamino)-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate 9a (25 g, 58.78 mmol), a solution of dimethyl amine in THF (88 mL, 176.35 mmol) and 120 mL of THF were added to a 500 mL of single-port reaction flask and stirred until dissolution. After stirring for 3 hours at room temperature, the reaction was stopped. The reaction solution was concentrated under reduced pressure. The residues were purified by silica gel column chromatography with eluent systems C to obtain the title compound ethyl 3-(tert-butylamino)-5-((dimethylamino)methyl)-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate 9b (6 g, brown oil), yield 26.2%.

MS m/z (ESI): 390.2 [M+1]

Step 3

Methyl 3-amino-5-((dimethylamino)methyl)-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate

[0123] Methyl 3-amino-5-((dimethylamino)methyl)-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate 9b (6 g, 15.41 mmol) and 80 mL of trifluoroacetic acid were added to a 100 mL of single-port reaction flask and stirred uniformly. The mixture was heated to reflux for 1 hour and the reaction was stopped. The reaction solution was concentrated under reduced pressure. The residues were added with 50 mL of dichloromethane, and then added dropwise with saturated sodium bicarbonate solution to adjust the pH >7. The organic phase was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The residues were added with 100 mL of methanol and 20 mL of dichloromethane, and stirred to dissolution. The resulting solution was added with potassium carbonate (6.37 g, 46.16 mmol), and stirred for 17 hours at room temperature, and then filtered. The filtrate was concentrated under reduced pressure and the residues were purified by silica gel column chromatography with eluent systems B to obtain the title compound methyl 3-amino-5-((dimethylamino)methyl)-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate 9c (3.30 g, yellow solid), yield 67.1 %.

MS m/z (ESI): 320.2 [M+1]

Step 4

Methyl 5-((dimethylamino)methyl)-3-(3-(6-methoxypyridazin-3-yl)ureido)-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate

[0124] Methyl 3-amino-5-((dimethylamino)methyl)-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate 9c (3.30 g, 10.33 mmol) and 100 mL of dichloromethane were added to a 250 mL of single-port reaction flask and stirred uniformly. The resulting solution was added with triethylamine (5.8 mL, 41.32 mmol) and triphosgene (1.84 g, 6.20 mmol), and then stirred for 1 hour at room temperature. The reaction solution was added with 3-amino-6-methoxypyridazine (1.94 g, 15.50 mmol, prepared by a known method disclosed in “Journal of Medicinal Chemistry, 2006, 49(14), 4409-4424”), and stirred for 2 hours at room temperature, and then the reaction was stopped. The reaction solution was added with 200 mL of water, and extracted with dichloromethane (100 mL x 3). The organic phase was concentrated under reduced pressure and the residues were purified by silica gel column chromatography with eluent systems B to obtain the title compound methyl 5-((dimethylamino)methyl)-3-(3-(6-methoxypyridazin-3-yl)ureido)-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate 9d (2.80 g, yellow solid), yield 57.6%.

MS m/z (ESI): 470.9 [M+1]

Step 5

3-((dimethylamino)methyl)-5-(6-methoxypyridazin-3-yl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione

[0125] 5-((dimethylamino)methyl)-3-(3-(6-methoxypyridazin-3-yl)ureido)-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate 9d (2.80 g, 5.95 mmol) and 120 mL of methanol were added to a 250 mL of single-port reaction flask, and stirred.
uniformly. The resulting solution was added with sodium methoxide (1.61 g, 29.76 mmol). The mixture was heated to 50°C and stirred for 4 hours, and then the reaction was stopped. The reaction solution was concentrated under reduced pressure. The residues were added with 100 mL of water, and then added dropwise with concentrated hydrochloric acid to adjust the pH to 5–6. The solution was extracted with dichloromethane (100 mL x 3). The organic phase was concentrated under reduced pressure and the residues were purified by silica gel column chromatography with elution systems

Step 6

7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxy pyridazin-3-yl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 9e (1.80 g, yellow solid), yield 69.0%.

MS m/z (ESI): 438.9 [M+1]

Step 7

2-(4-aminophenyl)-7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxy pyridazin-3-yl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione

Step 8

1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxy pyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methylurea

[0129]

Acetic acid (483 mg, 8.04 mmol) and 15 mL of toluene were stirred to dissolution in 600 mL autoclave. The resulting solution was added with N,N-dimethylformamide (2.1 mL, 12.07 mmol) and diphenylphosphoryl azide (2.22 g, 8.07 mmol) successively. The mixture was heated to 75°C and stirred for 1.5 hours. The reaction solution was added with 10 mL solution of 2-(4-aminophenyl)-7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxy pyridazin-3-yl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 9f (1 g, 1.77 mmol), palladium 10% on carbon (200 mg) and 80 mL of methanol were added to a 250 mL of single-neck reactor flask, and stirred uniformly. The resulting solution was added with 2,6-difluorobenzyl chloride (367 mg, 2.26 mmol) and potassium carbonate (850 mg, 6.16 mmol). The mixture was heated to 40°C and stirred for 17 hours, then the reaction was stopped. The reaction solution was added with 250 mL of water, and stirred for 20 minutes. The mixture was filtered, and the filter cake was dried in vacuo to obtain the title compound 7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxy pyridazin-3-yl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 9f (1.10 g, yellow solid), yield 94.9%. MS m/z (ESI): 564.9 [M+1]

Step 7

2-(4-aminophenyl)-7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxy pyridazin-3-yl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione

Step 8

1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxy pyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methylurea

[0129]

Acetic acid (483 mg, 8.04 mmol) and 15 mL of toluene were stirred to dissolution in 600 mL autoclave. The resulting solution was added with N,N-disopropylmethyleamine (2.1 mL, 12.07 mmol) and diphenylphosphoryl azide (2.22 g, 8.07 mmol) successively. The mixture was heated to 75°C and stirred for 1.5 hours. The reaction solution was added with 10 mL solution of 2-(4-aminophenyl)-7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxy pyridazin-3-yl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 9g (480 mg, 0.80 mmol) in THF in an ice bath at 0°C. After completion of addition, the reaction solution was heated to 55°C and stirred for 16 hours, then the reaction was stopped. The reaction solution was added with 20 mL of dichloromethane and 20 mL of water, and subject to extraction. The organic phase was washed with saturated sodium bicarbonate solution (50 mL x 1), water (50 mL x 1) and saturated sodium chloride solution (50 mL x 1) successively. The organic phase was dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by silica gel column chromatography with elution systems A to obtain the crude product 3-((dimethylamino)methyl)-5-(6-methoxy pyridazin-3-yl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 9g (785 mg, yellow solid), yield 82.9%.

MS m/z (ESI): 534.9 [M+1]
total yield: 36.0%.

MS m/z (ESI): 592.3[M+1]

1H NMR (400MHz, CDCl3) □ 8.17 (s, 1H), 7.54 (s, 1H), 7.42-7.45 (m, 4H), 7.24-7.30 (m, 2H), 6.88 (t, 2H), 5.95 (s, 1H), 5.38 (s, 2H), 4.23 (s, 3H), 3.69 (s, 2H), 2.91 (s, 3H), 2.33 (s, 6H).

Example 10

1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-ethylurea

Example 11

1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methoxyurea

Step 1

1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-ethylurea

Step 1

1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methoxyurea

Example 11

1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methoxyurea

[0130]
Step 1

1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxypyridazin-3-yl)-4,6-dio xo-4,5,6,7-tetrahydro-
2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methoxyurea

[0134] 2-(4-aminophenyl)-7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxypyridazi n-3-yl)-2H-pyrazo-
lo[3,4-d]pyrimidine-4,6(5H,7H)-dione 9g (100 mg, 0.18 mmol) was dissolved in 5 mL of dichloromethane, and added with
N,N-diisopropylethylamine (0.5 mL, 2.90 mmol) and triphosgene (46 mg, 0.15 mmol). The mixture was reacted for 45
minutes at room temperature, and then added with methoxyamine hydrochloride (92 mg, 1.12 mmol). The mixture was
further reacted for 12 hours at 40°C, and then the reaction was stopped. The reaction solution was added with 5 mL of
saturated sodium bicarbonate solution, and then extracted with dichloromethane (25 mL × 1). The organic phase was
washed with water (10 mL × 1) and saturated sodium chloride solution (10 mL × 1) successively, dried over anhydrous
sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by
thin layer chromatography with elution systems A to obtain 62 mg of crude product which was further purified by thin
layer chromatography with elution systems A for two times to obtain the title compound 1-(4-(7-(2,6-difluorobenzyl)-
3-((dimethylamino)methyl)-5-(6-methoxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-
yl)phenyl)-3-methoxyurea 11 (45 mg, white solid), yield: 24.7%.

MS m/z (ESI): 608.3 [M+1]

1H NMR (400MHz, CDCl3) □ 7.90 (d, 2H), 7.73 (s, 1H), 7.68 (d, 2H), 7.41 (d, 1H), 7.26-7.30 (m, 1H), 7.22 (s, 1H), 7.13
(s, 1H), 6.92 (t, 2H), 5.44 (s, 3H), 4.21 (s, 3H), 3.88 (s, 3H), 3.70 (s, 2H), 2.35 (s, 6H).

Example 12

1-(4-(3-((dimethylamino)methyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxypyridazin-3-yl)-4,6-dio xo-4,5,6,7-
tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methylur ea

[0135]
Step 1

Ethyl 3-(3-(6-methoxypyridazin-3-yl) ureido)-5-methyl-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate

[0136] Ethyl 3-amino-5-methyl-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate 1b (10.80 g, 37.20 mmol) was dissolved in 500 mL of dichloromethane, and then added with triethylamine (20 mL, 144 mmol) and triphosgene (5.20 g, 17.5 mmol) successively. After reacting for 1 hour at room temperature, the reaction solution was added with 3-amino-6-methoxypyridazine (6.60 g, 52.3 mmol), and stirred for 12 hours at room temperature, then reaction was stopped. The resulting products were combined, and added with 100 mL of water. The solution was subject to extraction. The organic phase was washed with water (100 mL x 1) and saturated sodium chloride solution (100 mL x 1), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by silica gel column chromatography with eluent systems C to obtain the title compound ethyl 3-(3-(6-methoxypyridazin-3-yl)ureido)-5-methyl-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate e12a (8.72 g, pale yellow solid), yield: 53.0%.
Step 2

5-(6-methoxypyridazin-3-yl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione

[0137] 3-(3-(6-methoxypyridazin-3-yl)ureido)-5-methyl-1-(4-nitrophenyl)-1H-pyrazole-4-carboxylate e 12a (8.72 g, 19.70 mmol) was dissolved in 150 mL of methanol, and added with sodium methoxide (2.70 g, 50 mmol). The mixture was heated to 55°C and stirred for 12 hours, then the reaction was stopped. The reaction solution was concentrated under reduced pressure. The residues were added dropwise with 1 M hydrochloric acid solution to adjust the pH < 7, and filtered. The filter cake was washed with water (30 mL x 1), methanol (30 mL x 1) and ether (20 mL x 1) successively, and dried in vacuo to obtain the crude title compound 5-(6-methoxypyridazin-3-yl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 12b (8.34 mg, light yellow solid), which was used directly in the next step.

MS m/z (ESI): 396.0 [M+1]

Step 3

7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxypyridazin-3-yl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione

[0138] 2-(bromomethyl)-1-fluoro-3-(trifluoromethyl)benzene (purchased from Sinopharm Chemical Reagent Co., Ltd., product number XW239870821) (308 mg, 1.20 mmol) was dissolved in 20 mL of N,N-dimethyl formamide, and added with the crude 5-(6-methoxypyridazin-3-yl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 12b (395 mg, 1 mmol) and potassium carbonate (276 mg, 2 mmol) successively. After reacting for 2 hours at room temperature, the reaction solution was stopped. The reaction solution was poured into 100 mL of water, and filtered. The filter cake was dried to obtain the title compound 7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxypyridazin-3-yl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 12c (465 mg, yellow solid), yield: 81.4%.

MS m/z (ESI): 570.0 [M-1]

Step 4

3-(bromomethyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxypyridazin-3-yl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione

[0139] 7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxypyridazin-3-yl)-3-methyl-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 12c (465 mg, 0.81 mmol), azobisisobutyronitrile (13 mg, 0.081 mmol), N-bromosuccinimide (174 mg, 0.97 mmol) and 20 mL of chlorobenzene were added to a 100 mL of reaction flask. The mixture was reacted for 17 hours at 80°C under argon atmosphere, then the reaction was stopped. The reaction solution was concentrated under reduced pressure to obtain the crude title compound 3-(bromomethyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxypyridazin-3-yl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 12d (600 mg, yellow oil), which was used directly in the next step.

MS m/z (ESI): 650.1 [M+1]

Step 5

3-((dimethylamino)methyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxypyridazin-3-yl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione

[0140] The crude 3-(bromomethyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxypyridazin-3-yl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 12d (15 mg, 0.033 mmol) was dissolved in 20 mL of THF, and added with 2M solution of dimethylamine in THF (1 mL, 2.03 mmol). The mixture was reacted for 2 hours at room temperature, and then reaction was stopped. The reaction solution was concentrated under reduced pressure. The residues were purified by thinlayer chromatography with elution systems A to obtain the title compound 3-((dimethylamino)methyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxypyridazin-3-yl)-2-(4-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 12e (85 mg, yellow solid), yield: 17.0%.

MS m/z (ESI): 615.2 [M+1]
Step 6

2-(4-aminophenyl)-3-((dimethylamino)methyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxypyridazin-3-yl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 12e (100 mg, 0.14 mmol) was dissolved in 5 mL of formic acid, and added with palladium 10% on carbon (48 mg). The mixture was purged with hydrogen under normal pressure for three times and then was reacted for 3 hours at room temperature under hydrogen atmosphere. The reaction was stopped and filtered. The filtrate was poured into 10 mL of water, and then added dropwise with saturated sodium bicarbonate solution to adjust the pH > 7. The solution was extracted with dichloromethane (25 mL x 3). The organic phases were combined, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by thinlayer chromatography with a elution systems A to obtain the title compound 2-(4-aminophenyl)-3-((dimethylamino)methyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxypyridazin-3-yl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 12f (50 mg, white solid), yield: 53.0%.

MS m/z (ESI): 585.2 [M+1]

Step 7

1-(4-(3-((dimethylamino)methyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methylurea 12

Acetic acid (51 mg, 0.85 mmol) and N,N-diisopropylethylamine (0.22 mL, 1.28 mmol) were dissolved in 2 mL of toluene, and added with diphenylphosphoryl azide (236 mg, 0.86 mmol). After reacting for 1.5 hours at 75°C, the reaction solution was added with 2 mL solution of 2-(4-aminophenyl)-3-((dimethylamino)methyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxypyridazin-3-yl)-2H-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione 12f (15 mg, 0.033 mmol) in THF. The resulting solution was reacted for 12 hours at 50°C, and then reaction was stopped. The reaction solution was added with 10 mL of saturated sodium bicarbonate solution, and then extracted with dichloromethane (20 mL x 1). The organic phase was collected and washed with water (10 mL x 1) and saturated sodium chloride (10 mL x 1) successively. The organic phase was concentrated under reduced pressure. The residues were purified by thinlayer chromatography with elution systems A to obtain the title compound 1-(4-(3-((dimethylamino)methyl)-7-(2-fluoro-6-(trifluoromethyl)benzyl)-5-(6-methoxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methylurea 12 (20 mg, white solid), yield: 36.3%.

MS m/z (ESI): 642.3 [M+1]

1H NMR (400MHz, CDCl3) δ 8.19 (s, 1H), 7.56 (d, 1H), 7.43-7.46 (m, 3H), 7.34-7.39 (m, 3H), 7.27 (d, 1H), 7.16 (t, 1H), 6.05 (s, 1H), 5.48 (s, 2H), 4.22 (s, 3H), 3.48 (s, 2H), 2.93 (d, 3H), 2.21 (s, 6H).

Example 13

1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-f][1,2,4]triazin-6-yl)phenyl)-3-ethylurea

[0143]
Step 1

\((E)-4-(\text{dimethylamino})-3-(\text{4-nitrophenyl})\text{but-3-en-2-one}\) 1-(4-nitrophenyl)propan-2-one 13a (3.8 g, 21.21 mmol) and \(N,N\)-dimethyl formamide dimethyl acetal were added to a 50 mL of flask. After reacting for 30 minutes at 100°C, the reaction was stopped and added with 150 mL of dichloromethane under stirring. The resulting product was purified by a silica gel column chromatography with eluent systems A to obtain the title compound \((E)-4-(\text{dimethylamino})-3-(\text{4-nitrophenyl})\text{but-3-en-2-one}\) 13b (3 g, yellow solid), yield: 60.5%.

\[\text{MS m/z (ESI): } 235.0 \ [\text{M}+1]\]

Step 2 Ethyl 3-methyl-4-(4-nitrophenyl)-1H-pyrrole-2-carboxylate

\(\text{(E)-4-(dimethylamino)-3-(4-nitrophenyl) but-3-en-2-one}\) 13b (1.50 g, 6.48 mmol) and 2-aminoacetylacetate hydrochloride (1.40 g, 7.78 mmol) were dissolved in 40 mL of acetic acid. The mixture was reacted at room temperature for 16 hours and at 100°C for 5 hours, then the reaction was stopped. The reaction solution was concentrate under reduced pressure. The residues were added with 120 mL of dichloromethane, and washed with saturated sodium bicarbonate solution (50 mL x 1). The organic phase was dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were slurried with 15 mL of ethylacetate, and then filtered. The filter cake was dried to obtain the title compound ethyl 3-methyl-4-(4-nitrophenyl)-1H-pyrrole-2-carboxylate 13c (412 mg, yellow solid), yield: 24.5%.

\[\text{MS m/z (ESI): } 273.1 \ [\text{M}-1]\]
Step 3
Ethyl 1-amino-3-methyl-4-(4-nitrophenyl)-1\(H\)-pyrrole-2-carboxylate

[0146] Ethyl 3-methyl-4-(4-nitrophenyl)-1\(H\)-pyrrole-2-carboxylate 13c (412 mg, 1.50 mmol) was dissolved in 6 mL of \(N,N\)-dimethyl formamide, and then added with sodium hydride (72 mg, 1.80 mmol) in an ice bath. The mixture was reacted for 30 minutes at room temperature, and then added with 20 mL of chloramines solution. The mixture was further reacted for 2 hours at room temperature and then the reaction was stopped. The reaction solution was added with 50 mL of saturated sodium thiosulfate solution, and stirred for 10 minutes to layering. The aqueous phase was extracted with ether (30 mL x 3). The organic phase was washed with saturated sodium chloride solution (100 mL x 2), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure to obtain the title compound ethyl 1-amino-3-methyl-4-(4-nitrophenyl)-1\(H\)-pyrrole-2-carboxylate 13d (381 mg, yellow solid), yield 87.7%.

MS m/z (ESI): 290.2 [M+1]

Step 4
Ethyl 1-(3-(2-fluoro-3-methoxyphenyl)ureido)-3-methyl-4-(4-nitrophenyl)-1\(H\)-pyrrole-2-carboxylate

[0147] Ethyl 1-amino-3-methyl-4-(4-nitrophenyl)-1\(H\)-pyrrole-2-carboxylate 13d (381 mg, 1.30 mmol) was added to 30 mL of dichloromethane and stirred until dissolution, then added with triethylamine (328 mg, 3.25 mmol) and triphosgene (157 mg, 0.53 mmol). After reacting for 30 minutes at room temperature, the reaction solution was added with 2-fluoro-3-methoxyaniline (202 mg, 1.43 mmol). The mixture was further reacted at room temperature for 2 hours. The reaction was stopped. The reaction solution was filtered. The filter cake was washed with water (10 mL x 2) and ethyl acetate (2 mL x 3) successively, and then dried to obtain the title compound ethyl 1-(3-(2-fluoro-3-methoxyphenyl)ureido)-3-methyl-4-(4-nitrophenyl)-1\(H\)-pyrrole-2-carboxylate 13e (296 mg, yellow solid), yield 49.9%.

MS m/z (ESI): 457.3 [M+1]

Step 5
3-(2-fluoro-3-methoxyphenyl)-5-methyl-6-(4-nitrophenyl)pyrrolo[2,1-\(f\)][1,2,4\(\text{-dione}

[0148] 1-(3-(2-fluoro-3-methoxyphenyl)ureido)-3-methyl-4-(4-nitrophenyl)-1\(H\)-pyrrole-2-carboxylate 13e (290 mg, 0.64 mmol) and sodium hydroxide (128 mg, 3.20 mmol) were dissolved in 10 mL of dichloromethane. After reacting for 2 hours at 80°C, the reaction was stopped. The reaction solution was cooled to room temperature, and then added dropwise with 1 M hydrochloric acid solution to adjust the pH to 3-4. A solid was separated and filtered. The filter cake was washed with water (20 mL x 3) and ethanol (10 mL x 1) successively to obtain the title compound 3-(2-fluoro-3-methoxyphenyl)-5-methyl-6-(4-nitrophenyl)pyrrolo[2,1-\(f\)][1,2,4\(H\),3\(H\)]-dione 13f (192 mg, gray solid), yield 73.3%.

MS m/z (ESI): 411.0 [M+1]

Step 6
1-(2,6-difluorobenzyl)-3-(2-fluoro-3-methoxyphenyl)-5-methyl-6-(4-nitrophenyl)pyrrolo[2,1-\(f\)][1,2,4\(H\),3\(H\)]-dione

[0149] 3-(2-fluoro-3-methoxyphenyl)-5-methyl-6-(4-nitrophenyl)pyrrolo[2,1-\(f\)][1,2,4\(H\),3\(H\)]-dione 13f (192 mg, 0.47 mmol), 2-(chloromethyl)-1,3-difluorobenzene (84 mg, 0.52 mmol) and potassium carbonate (162 mg, 1.75 mmol) were added to 10 mL of \(N,N\)-dimethyl formamide. After reacting for 16 hours at 50°C, the reaction was stopped. The reaction solution was concentrated under reduced pressure. The residues were added with 20 mL of water, (20 mL x 1) and extracted with dichloromethane (20 mL x 1). The aqueous phase was extracted with dichloromethane (10 mL x 3). The organic phases were collected, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by thinlayer chromatography with elution systems A to obtain the title compound 1-(2,6-difluorobenzyl)-3-(2-fluoro-3-methoxyphenyl)-5-methyl-6-(4-nitrophenyl)pyrrolo[2,1-\(f\)][1,2,4\(H\),3\(H\)]-dione 13g (160 mg, yellow solid), yield 63.7%.

MS m/z (ESI): 537.0 [M+1]
Step 7

5-(bromomethyl)-1-(2,6-difluorobenzyl)-3-(2-fluoro-3-methoxyphenyl)-6-(4-nitrophenyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione

[0150] 1-(2,6-difluorobenzyl)-3-(2-fluoro-3-methoxyphenyl)-5-methyl-6-(4-nitrophenyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione 13g (120 mg, 0.22 mmol), azobisisobutyronitrile (8 mg, 0.044 mmol) and N-bromosuccinimide (47 mg, 0.26 mmol) were dissolved in 5 mL of chlorobenzene. The mixture was reacted for 16 hours at 85°C under argon atmosphere, and then reaction was stopped. The reaction solution was cooled to room temperature and concentrated under reduced pressure. The residues were added with 10 mL of water, and extracted with dichloromethane (10 mL x 1). The aqueous phase was extracted with dichloromethane (10 mL x 3). The organic phase was combined, washed with saturated sodium chloride solution (20 mL x 1), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure to obtain the title compound 5-(bromomethyl)-1-(2,6-difluorobenzyl)-3-(2-fluoro-3-methoxyphenyl)-6-(4-nitrophenyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione 13h (130 mg, yellow solid), yield: 96.2%.

MS m/z (ESI): 616.0 [M+1]

Step 8

1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)-6-(4-nitrophenyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione

[0151] The crude 5-(bromomethyl)-1-(2,6-difluorobenzyl)-3-(2-fluoro-3-methoxyphenyl)-6-(4-nitrophenyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione 13h (130 mg, 0.21 mmol) and N,N-diisopropylethylamine (81 mg, 0.63 mmol) were dissolved in 5 mL of THF, and added with 1.6 mL solution of dimethylamine in tetrahydrofuran. The mixture was reacted for 1 hour at 0~5°C and then the reaction was stopped. The reaction solution was concentrated under reduced pressure and the residues were purified by thin-layer chromatography with elution systems A to obtain the title compound 1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)-6-(4-nitrophenyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione 13i (40 mg, yellow solid), yield: 33.1%.

MS m/z (ESI): 580.2 [M+1]

Step 9

6-(4-aminophenyl)-1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione

[0152] 1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)-6-(4-nitrophenyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione 13i (40 mg, 0.069 mmol), ammonium chloride (30 mg, 0.55 mmol) and iron (16 mg, 0.28 mmol) were dissolved in 5 mL mixture of ethanol and water (V : V = 4 : 1). The mixture was reacted for 1 hour at 80°C and then the reaction was stopped. The reaction solution was added with 20 mL of water, and then extracted with dichloromethane (10 mL x 3). The organic phases were combined, washed with saturated sodium chloride solution (20 mL x 1), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by thinlayer chromatography with elution systems A to obtain the title compound 6-(4-aminophenyl)-1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione 13j (20 mg, yellow solid), yield: 52.6%.

MS m/z (ESI): 550.2 [M+1]

Step 10

1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-f][1,2,4]triazin-6-yl)phenyl)-3-ethylurea

[0153] 6-(4-aminophenyl)-1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione 13j (20 mg, 0.036 mmol) and ethyl isocyanate (13 mg, 0.18 mmol) were dissolved in 5 mL of tetrahydrofuran in a 30 mL of sealed tube. After reacting for 16 hours at 50°C, the reaction was stopped. The reaction solution was concentrated under reduced pressure, and the residues were purified by thinlayer chromatography with elution systems A to obtain the title compound 1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-f][1,2,4]triazin-6-yl)phenyl)-3-ethylurea 13 (15 mg, white sol-
Example 14

1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-\textit{f}][1,2,4]triazin-6-yl)phenyl)-3-methylurea

Step 1

1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-\textit{f}][1,2,4]triazin-6-yl)phenyl)-3-methylurea

Acetic acid (70 mg, 1.12 mmol) and \textit{N,N}-diisopropylethylamine (0.32 mL, 1.80 mmol) were dissolved in 1 mL of toluene, and then added with diphenylphosphoryl azide (0.25 mL, 1.20 mmol). After reacting for 1.5 hours at 70°C, the reaction solution was added with 1 mL solution of 6-(4-aminophenyl)-1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)pyrrol[2,1-\textit{f}][1,2,4]triazine-2,4(1\textit{H},3\textit{H})-dione 13\textit{j} (30 mg, 0.054 mmol) in dichloromethane. The reaction solution was further reacted for 12 hours at room temperature, and then added with 15 mL of water, and extracted with dichloromethane (30 mL\times 1). The organic phase was washed with saturated sodium bicarbonate (10 mL\times 1), water (10 mL\times 1) and saturated sodium chloride solution (10 mL\times 1) successively, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by thinlayer chromatography with elution systems A to obtain the title compound 14 (9 mg, white solid), yield: 27.3%.

MS m/z (ESI): 606.9 [M+1]

\textit{H} NMR (400 MHz, CDCl\textsubscript{3}) 8.86 (s, 1H), 7.55 (s, 2H), 7.24-7.35 (m, 3H), 7.68-7.14 (m, 6H), 6.21 (s, 1H), 5.60-5.74 (m, 2H), 4.54-4.59 (m, 2H), 3.97 (s, 3H), 2.77 (s, 3H), 2.55 (s, 6H).
Example 15

1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-f][1,2,4]triazin-6-yl)phenyl)-3-methoxyurea

[0157]

Step 1

1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-f][1,2,4]triazin-6-yl)phenyl)-3-methoxyurea

[0158] 6-(4-aminophenyl)-1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxy phenyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione13j (55 mg, 0.10 mmol) was dissolved in 4 mL of tetrahydrofuran, and then added with 4-nitrophenyl chloroformate (30 mg, 0.15 mmol) and pyridine (32 mg, 0.40 mmol). After reacting for 3 hours at 30°C, the reaction solution was then added with methoxylamine hydrochloride (25 mg, 0.30 mmol), and reacted for 8 hours under sealing. The reaction was stopped and the reaction solution was concentrated under reduced pressure. The residues were purified by thinlayer chromatography with elution systems A for three timesto obtain the title compound 1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(2-fluoro-3-methoxyphenyl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-f][1,2,4]triazin-6-yl)phenyl)-3-methoxyurea15 (5 mg, yellow solid), yield: 8.1 %.

MS m/z (ESI): 623.4 [M+1]

1H NMR (400 MHz, DMSO-d6) 7.90-7.87 (m, 2H), 7.85-7.80 (m, 2H), 7.60 (s, 1H), 7.55-7.25 (m, 4H), 7.09-7.02 (m, 1H), 6.71-6.65 (m, 1H), 4.50 (s, 2H), 3.84(s, 3H), 3.67 (s, 3H), 3.54 (s, 2H), 2.15(s, 6H)

Example 16

1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(6-methoxypyridazin-3-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-f][1,2,4]triazin-6-yl)phenyl)-3-methylurea

[0159]
[0160] Ethyl 3-methyl-4-(4-nitrophenyl)-1H-pyrrole-1-tert-butylcarboxylate-2-carboxylate 13c (4.30 g, 15.70 mmol) was dissolved in 200 mL of dichloromethane, and added with triethylamine (21.7 mL, 157 mmol), 4-dimethylaminopyridine (192 mg, 1.57 mmol) and di-tert-butyl dicarboxyl (5.14 g, 23.50 mmol) successively. After reacting for 12 hours at room temperature, the reaction was stopped. The reaction solution was concentrated under reduced pressure. The residues were added with 100 mL of water, and then extracted with dichloromethane (50 mL x 4). The organic phases were combined, washed with saturated sodium chloride solution(150 mL × 1), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residues were purified by silica gel column chromatography with eluent systems B to obtain the title compound ethyl 3-methyl-4-(4-nitrophenyl)-1H-pyrrole-1-tert-butylcarboxylate-2-carboxylate.
Step 2

Ethyl 3-bromomethyl-4-(4-nitrophenyl)-1H-pyrrole-1-tert-butylcarboxylate-2-carboxylate

[0161] Ethyl 3-methyl-4-(4-nitrophenyl)-1H-pyrrole-1-tert-butylcarboxylate-2-carboxylate 16b (4 g, 10.70 mmol), azo-bisisobutyronitrile (351 mg, 2.14 mmol) and N-bromosuccinimide (2.28 g, 12.80 mmol) were dissolved in 40 mL of chlorobenzene successively. The reaction solution was reacted for 16 hours at 80°C under argon atmosphere. The reaction was stopped and cooled to room temperature. The reaction solution was concentrated under reduced pressure, and dried in vacuo to obtain the title compound ethyl 3-bromomethyl-4-(4-nitrophenyl)-1H-pyrrole-1-tert-butylcarboxylate-2-carboxylate 16c (5.2 g, yellow solid), which was used directly in the next step.

MS m/z (ESI): 453.0 [M-100]

Step 3

Ethyl 3-(dimethylamino)methyl-4-(4-nitrophenyl)-1H-pyrrole-1-tert-butylcarboxylate-2-carboxylate

[0162] Ethyl 3-bromomethyl-4-(4-nitrophenyl)-1H-pyrrole-1-tert-butylcarboxylate-2-carboxylate 16c (4.80 g, 10.70 mmol) was dissolved in 50 mL of tetrahydrofuran, and added with a solution of dimethylamine in tetrahydrofuran (26 mL, 53.50 mmol). After reacting for 3 hours at room temperature, the reaction was stopped. The reaction solution was concentrated under reduced pressure and the residues were purified by silica gel column chromatography with eluant systems A to obtain the title compound ethyl 3-(dimethylamino)methyl-4-(4-nitrophenyl)-1H-pyrrole-1-tert-butylcarboxylate-2-carboxylate 16d (3 g, yellow solid), yield: 67.4%.

MS m/z (ESI): 317.0 [M-100]

Step 4

Ethyl 3-((dimethylamino)methyl)-4-(4-nitrophenyl)-1H-pyrrole-2-carboxylate

[0163] 3-(dimethylamino)methyl-4-(4-nitrophenyl)-1H-pyrrole-1-tert-butylcarboxylate-2-carboxylate 16d (3 g, 7.18 mmol) was dissolved in 30 mL solution of 2 M hydrochloric acid in methanol. After reacting for 3 hours at room temperature, the reaction was stopped and the reaction solution was concentrated under reduced pressure. The residues were added with 30 mL of saturated sodium carbonate solution, and extracted with dichloromethane (30 mL x 4). The organic phases was combined, washed with saturated sodium chloride solution (60 mL x 1), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure to obtain the title compound ethyl 3-((dimethylamino)methyl)-4-(4-nitrophenyl)-1H-pyrrole-2-carboxylate 16e (2 g, yellow solid), yield: 90.9%.

MS m/z (ESI): 318.1 [M+1]

Step 5

[0164] Ethyl 1-amino-3-((dimethylamino)methyl)-4-(4-nitrophenyl)-1H-pyrrole-2-carboxylate

Ethyl 3-((dimethylamino)methyl)-4-(4-nitrophenyl)-1H-pyrrole-2-carboxylate 16e (1.8 g, 5.68 mmol) was dissolved in 20 mL of N,N-dimethylformamide, and added with 60% sodium hydroxide (307 mg, 7.66 mmol). After reacting for 30 minutes at room temperature, the reaction mixture was added with 50 mL of chloramine, and further reacted for 2 hours at room temperature. The reaction was stopped and the reaction solution was added with 200 mL of water, and extracted with ether (50 mL x 3). The organic phases were combined, washed with saturated sodium chloride solution (100 mL x 1), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure to obtain the title compound ethyl 1-amino-3-((dimethylamino)methyl)-4-(4-nitrophenyl)-1H-pyrrole-2-carboxylate 16f (620 mg, yellow solid), yield: 32.9%.

MS m/z (ESI): 333.2 [M+1]
Step 6

Ethyl 3-((dimethylamino)methyl)-1-((3-(6-methoxypyridazin-3-yl)ureido)-4-(4-nitrophenyl)-1H-pyrrole-2-carboxylate

[0165] Ethyl 1-amino-3-((dimethylamino)methyl)-4-(4-nitrophenyl)-1H-pyrrole-2-carboxylate 16f (420 mg, 1.26 mmol) was dissolved in 15 mL of dichloromethane, and then added with triethylamine (382 mg, 3.78 mmol), triphosgene (131 mg, 0.44 mmol) and 3-amino-6-methoxypyridazine (236 mg, 1.89 mmol) successively. After reacting for 2 hours at room temperature, the reaction was stopped and the reaction solution was concentrated under reduced pressure. The residues were purified by thinlayer chromatography with elution systems A to obtain the title compound ethyl 3-((dimethylamino)methyl)-1-(3-(6-methoxypyridazin-3-yl)ureido)-4-(4-nitrophenyl)-1H-pyrrole-2-carboxylate 16g (298 mg, yellow solid), yield: 30.2%.

Step 7

5-((dimethylamino)methyl)-3-(6-methoxypyridazin-3-yl)-6-(4-nitrophenyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione

Ethyl 3-((dimethylamino)methyl)-1-((3-(6-methoxypyridazin-3-yl)ureido)-4-(4-nitrophenyl)-1H-pyrrole-2-carboxylate 16g (260 mg, 0.54 mmol) was dissolved in 10 mL of methanol, and then added with sodium methoxide (151 mg, 2.69 mmol). After reacting for 3 hours at 50°C, the reaction was stopped and the reaction solution was concentrated under reduced pressure. The residues were purified by thinlayer chromatography with elution systems A to obtain the title compound 5-((dimethylamino)methyl)-3-(6-methoxypyridazin-3-yl)-6-(4-nitrophenyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione 16h (76 mg, yellow solid) yield: 32.3%. MS m/z (ESI): 438.3 [M+1]

Step 8

1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(6-methoxypyridazin-3-yl)-6-(4-nitrophenyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione

[0166] 5-(dimethylamino)methyl)-3-(6-methoxypyridazin-3-yl)-6-(4-nitrophenyl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione 16i (72 mg, yellow solid), yield: 72.0%. MS m/z (ESI): 564.1 [M+1]

Step 9

6-(4-aminophenyl)-1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(6-methoxypyridazin-3-yl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione

[0169] 6-(4-aminophenyl)-1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(6-methoxypyridazin-3-yl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione 16j (25 mg, khaki solid), yield: 42.8%. MS m/z (ESI): 534.3 [M+1]
Step 10

1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(6-methoxypyridazin-3-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-f][1,2,4]triazin-6-yl)phenyl)-3-methylurea

[0170] Acetic acid (51 kg, 0.84 mmol) was added to a 25 mL of sealed tube, and added with 2 mL of toluene, N,N-diisopropylethylamine (163 mg, 1.26 mmol) and diphenylphosphoryl azide (231 mg, 0.84 mmol) successively. The mixture was reacted for 1 hour in sealed tube. After cooling down to 0°C, the reaction solution was added with 2 mL solution of 6-(4-aminophenyl)-1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(6-methoxypyridazin-3-yl)pyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione 16 (45 mg, 0.084 mmol) in dichloromethane, and further reacted for 16 hours at 40°C in sealed tube. The reaction was stopped and the reaction solution was concentrated under reduced pressure. The residues were purified by thinlayer chromatography with elution systems A to obtain the title compound 1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(6-methoxypyridazin-3-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-f][1,2,4]triazin-6-yl)phenyl)-3-methylurea 16 (18 mg, white solid), yield: 36.0%.

MS m/z (ESI): 591.3 [M+1]

H NMR (400 MHz, DMSO-d6) δ 7.92-7.87 (m, 2H), 7.77-7.70 (m, 2H), 7.69 (s, 1H), 7.60-7.55 (m, 1H), 7.25-7.13 (m, 2H), 7.05-6.99 (m, 1H), 6.79-6.71 (m, 1H), 4.48 (s, 2H), 4.06 (s, 3H), 3.54 (s, 2H), 2.75 (s, 3H), 2.16 (s, 6H)

Example 17

1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-hydroxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methoxyurea

[0171]

Step 1

1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-hydroxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methoxyurea

[0172] 1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-methoxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methoxyurea 11 (122 mg, 0.20 mmol) was dissolved in 6 mL of tetrahydrofuran and stirred until it was dissolved completely. The solution was added with 40% hydrobromic acid (103 mg, 0.51 mmol), and stirred for 12 hours at room temperature. The reaction was stopped and the reaction solution was added with 5 mL of saturated sodium bicarbonate solution and further stirred for 5 minutes. The resulting mixture was extracted. The organic phases were combined and purified by silica gel column chromatography with elution systems A to obtain the title compound 1-(4-(7-(2,6-difluorobenzyl)-3-((dimethylamino)methyl)-5-(6-hydroxypyridazin-3-yl)-4,6-dioxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-d]pyrimidin-2-yl)phenyl)-3-methoxyurea 17 (16 mg, white solid), yield: 13.5%.
Example 18

1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(6-methoxypyridazin-3-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-f][1,2,4]triazin-6-yl)phenyl)-3-methoxyurea

[0173]

Step 1

1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(6-methoxypyridazin-3-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-f][1,2,4]triazin-6-yl)phenyl)-3-methoxyurea

[0174] 6-(4-aminophenyl)-1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(6-methoxypyridazin-3-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-f][1,2,4]triazine-2,4(1H,3H)-dione 16j (170 mg, 0.319 mmol), methyl 4-nitrophenylmethoxyamino formate (81 mg, 0.382 mmol, prepared by a known method disclosed in "WO 2011090935") and N,N-diisopropylethylamine (109 μL, 0.638 mmol) were dissolved in 10 mL of tetrahydrofuran. After reacting for 4 hours at room temperature, the reaction was stopped and the reaction solution was concentrated under reduced pressure. The residues were purified by thinlayer chromatography with elution systems A to obtain the title compound 1-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(6-methoxypyridazin-3-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrrolo[2,1-f][1,2,4]triazin-6-yl)phenyl)-3-methoxyurea 18 (15 mg, yellow solid), yield: 7.8%. MS m/z (ESI): 607.2 [M+1]

Test Example

Biological Evaluation

Test Example 1. Human GnRHR (GnRH receptor) activity assay of the present compounds

[0175] In vitro GnRHR protein activity is tested by the following methods.

[0176] This assay is used to determine the inhibition effect of the present compound on activity of human GnRHR protein expressed by Human GnRHR/CHO stably transfected cell lines.

1. Experimental Materials and Equipments

[0177]
2. Experimental Protocol

[0178] The mammal expression vector containing human GnRHr gene was transferred into CHO cells by adding Lipofectamine®LTX reagent containing Plus™; antibiotics were added the next day for screening, to pick out the monoclonal cell lines.

[0179] The Human GnRHr/CHO stable transfected cell lines were inoculated in 96-well plates with an inoculation density of 25,000/well. The culture medium was removed the next day, and loading buffer containing Fluo-4 dye was added to the plate (100 μL/well) and incubated for 30 minutes at 37°C. The plate was moved to room temperature and equilibrated for 10 minutes. Each compound was diluted with DMSO to seven concentration gradients of 100µM, 10µM, 1µM, 0.1µM, 0.01µM, 0.001µM, 0.0001µM. Then, 1 μL of each gradient was added to each well and incubated for 10 minutes at room temperature. After all addition of 50μL of GnRH polypeptide stimulant solution, the value was detected at 494/516nM by microplate reader (flexstation 3) immediately. IC50 values of the compounds were calculated by software from different fluorescence signals at various corresponding concentrations.

[0180] The inhibition activity of the present compounds on human GnRHr was determined by the above assay, and IC50 values are shown in Table 1.

Table 1 IC50 of inhibition effect of the present compound on the activity of Human GnRHr

<table>
<thead>
<tr>
<th>Example No.</th>
<th>IC50(nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.46</td>
</tr>
<tr>
<td>3</td>
<td>0.90</td>
</tr>
<tr>
<td>5</td>
<td>0.66</td>
</tr>
<tr>
<td>6</td>
<td>0.96</td>
</tr>
<tr>
<td>7</td>
<td>0.49</td>
</tr>
<tr>
<td>8</td>
<td>0.60</td>
</tr>
<tr>
<td>9</td>
<td>0.42</td>
</tr>
<tr>
<td>10</td>
<td>0.66</td>
</tr>
<tr>
<td>11</td>
<td>4.95</td>
</tr>
<tr>
<td>12</td>
<td>2.24</td>
</tr>
<tr>
<td>13</td>
<td>0.92</td>
</tr>
<tr>
<td>14</td>
<td>0.11</td>
</tr>
<tr>
<td>15</td>
<td>0.43</td>
</tr>
<tr>
<td>16</td>
<td>2.32</td>
</tr>
</tbody>
</table>

[0181] Conclusion: The present compounds have significant human GnRHr inhibitory activity.

Test Example 2. Monkey GnRHr inhibitory activity assay of the present compounds

[0182] This assay is used to determine the inhibition effect of the present compounds on activity of monkey GnRHr protein expressed by monkey GnRHr/CHO stably transfected cell lines.

1. Experimental Materials and Equipments

[0183] 1) Fluo-4 NW Calcium Assay Kits (F36206, invitrogen)
2. Experimental Protocol

[0184] The mammal expression vector containing monkey GnRHR gene was transferred into CHO cells by adding Lipofectamine®LTX reagent containing Plus™; antibiotics were added the next day for screening to pick out the monoclonal cell lines.

[0185] The monkey GnRHR/CHO stable transfected cell lines were inoculated in 96-well plates with an inoculation density of 25,000/well. The culture medium was removed the next day, and loading buffer containing Fluo-4 dye was added to the plate (100 µL/well) and incubated for 30 minutes at 37°C. The plate was moved to room temperature and equilibrated for 10 minutes. Each compound was diluted with DMSO to seven concentration gradients of 100µM, 10µM, 1µM, 0.1µM, 0.01µM, 0.001µM, 0.0001µM. Then, 1 µL of each gradient was added to each well and incubated for 10 minutes at room temperature. After automatic addition of 50µL of GnRH polypeptide stimulant solution, the value was detected at 494/516nM by microplate reader (flexstation 3) immediately. IC50 values of the compounds were calculated by software from different fluorescence signals at various corresponding concentrations.

[0186] The inhibition activity of the present compounds on monkey GnRHR was determined by the above assay, and IC50 values are shown in Table 1.

Table 2 IC50 of inhibition effect of the present compounds on the activity of Human GnRHR

<table>
<thead>
<tr>
<th>Example No.</th>
<th>IC50(nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>23.22</td>
</tr>
<tr>
<td>11</td>
<td>78.57</td>
</tr>
</tbody>
</table>

[0187] Conclusion: The present compounds have significant monkey GnRHR inhibitory activity.

Test Example 3. Rabbit GnRHR inhibitory activity assay of the present compounds

[0188] This assay is used to determine the inhibition effect of the present compound on activity of rabbit GnRHR protein expressed by rabbit GnRHR/CHO stably transfected cell lines.

1. Experimental Materials and Equipments

[0189] 1) Fluo-4 NW Calcium Assay Kits (F36206, invitrogen)
2) DMEM/F12 (SH30023.01B, thermo)
3) G418 (11811-031, invitrogen)
4) FlexStation3Microplate Reader

2. Experimental Protocol

[0190] The mammal expression vector containing rabbit GnRHR gene was transferred into CHO cells by adding Lipofectamine®LTX reagent containing Plus™; antibiotics were added the next day for screening to pick out the monoclonal cell lines.

[0191] The rabbit GnRHR/CHO stable transfected cell lines were inoculated in 96-well plates with an inoculation density of 25,000/well. The culture medium was removed the next day, and loading buffer containing Fluo-4 dye was added to the plate (100 µL/well) and incubated for 30 minutes at 37°C. The plate was moved to room temperature and equilibrated for 10 minutes. Each compound was diluted with DMSO to seven concentration gradients of 100µM, 10µM, 1µM, 0.1µM, 0.01µM, 0.001µM, 0.0001µM. Then, 1 µL of each gradient was added to each well and incubated for 10 minutes at room temperature. After automatic addition of 50µL of GnRH polypeptide stimulant solution, the value was detected at 494/516nM by microplate reader (flexstation 3) immediately. IC50 values of the compounds were calculated by software from different fluorescence signals at various corresponding concentrations.

[0192] The inhibition activity of the present compounds on rabbit GnRHR was determined by the above assay, and IC50 values are shown in Table 1.
Conclusion: The present compounds have significant rabbit GnRHR inhibitory activity.

Pharmacokinetics Evaluation

Test Example 4. Rat pharmacokinetics assay of the compounds of Example 2, Example 3, Example 5, Example 9, Example 10, Example 11 and Example 13 of the present invention

1. Summary

Sprague-Dawley (SD) rats were used as test animals. The plasma concentrations at various times were determined by LC/MS/MS after intragastrically administration of compounds of Example 2, Example 3, Example 5, Example 9, Example 10, Example 11 and Example 13 and intravenously administration of compound of Example 11 to the rats. The pharmacokinetic behavior of the present compounds in rats was studied, and the pharmacokinetic features were evaluated.

2. Test Protocol

2.1 Samples

Compounds of Example 2, Example 3, Example 5, Example 9, Example 10, Example 11 and Example 13

2.2 Test animals

32 healthy adult SD rats (half female and half male) were evenly designated into 8 groups (4 for each group). The animals were purchased from Shanghai Super B&K Laboratory Animal Corp. Ltd (laboratory animal production Certificate No. SCXK (HU)2008-0016).

2.3 Drug formulation

Appropriate amount of sample was weighed, and added with 0.5% CMC-Na to form 1 mg/ml suspension upon ultrasonic treatment;

Appropriate amounts of drugs were weighed, and dissolved with 0.5 ml DMSO and 0.5 ml of Tween 80; saline solution was added to the final volume.

2.4 Administration

32 SD rats (half female and half male) were evenly designated into 8 groups (4 for each group), and administered by oral gavage or intravenous injection (i.v.) (oral gavage at a dosage of 10 mg/kg or 30 mg/kg, and i.v. at a dosage of 5.0 mg/kg) respectively at a volume of 10 ml/kg after fasting overnight,

3. Operation

0.1 ml of blood was sampled before and 0.5, 1, 2, 4, 6, 8, 11, 24 hrs after administration, collected in a heparinized test tube, and centrifuged at 3500 rpm for 10 minutes to separate the plasma, which was stored at -20°C. The animals were allowed to access the feed 2 hrs after administration.

The content of the test compound in the plasma of rats after administration of the compound by oral gavage was determined by LC/MS/MS.

<table>
<thead>
<tr>
<th>Example No.</th>
<th>IC50(nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.27</td>
</tr>
<tr>
<td>9</td>
<td>0.24</td>
</tr>
<tr>
<td>11</td>
<td>0.57</td>
</tr>
</tbody>
</table>
4. Pharmacokinetic parameters

Pharmacokinetic parameters of the present compounds are shown in the following Table 4:

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Oral Bioavailability</th>
<th>Plasm a concentration</th>
<th>Area under curve</th>
<th>Half-life</th>
<th>Residence time</th>
<th>Clearance rate</th>
<th>Apparent volume of distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>--</td>
<td>746±49.3</td>
<td>1546±650</td>
<td>1.24±0.54</td>
<td>2.02±0.67</td>
<td>121±44</td>
<td>14406±10470</td>
</tr>
<tr>
<td>3</td>
<td>--</td>
<td>237±15.8</td>
<td>1072±472</td>
<td>6.17±0.79</td>
<td>6.42±1.39</td>
<td>181±79</td>
<td>96163±42245</td>
</tr>
<tr>
<td>5</td>
<td>--</td>
<td>690±66.0</td>
<td>1290±1028</td>
<td>2.32±0.65</td>
<td>2.47±0.75</td>
<td>247±198</td>
<td>46774±39154</td>
</tr>
<tr>
<td>9</td>
<td>--</td>
<td>146±59</td>
<td>628±369</td>
<td>2.91±1.64</td>
<td>4.67±2.22</td>
<td>332±159</td>
<td>72021±24995</td>
</tr>
<tr>
<td>10</td>
<td>--</td>
<td>598±43.1</td>
<td>1237±593</td>
<td>2.29±0.84</td>
<td>2.96±0.17</td>
<td>168±95</td>
<td>30330±14422</td>
</tr>
<tr>
<td>11</td>
<td>76.6</td>
<td>2438±8</td>
<td>4092±1439</td>
<td>0.84±0.18</td>
<td>1.56±0.34</td>
<td>44.2±13.4</td>
<td>3287±1512</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73 (oral 10 mg/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i.v. (5 mg/kg)</td>
<td>2673±1243</td>
<td>1.59±0.50</td>
<td>2.25±0.06</td>
<td>35.4±12.5</td>
<td>4929±2390</td>
</tr>
<tr>
<td>13</td>
<td>--</td>
<td>103±64</td>
<td>389±298</td>
<td>3.31±0.57</td>
<td>4.48±0.70</td>
<td>915±1046</td>
<td>231402±233610</td>
</tr>
</tbody>
</table>

Conclusion: the present compounds are well absorbed orally in rats, and have obvious pharmacokinetic absorption. Example 11 has particularly preferable oral bioavailability.

Test Example 5. Rabbit Pharmacokinetics assay of Example 11 of the present invention

1. Summary

Rabbits were used as test animals. The plasma concentrations at various times were determined by LC/MS/MS after intragastrically administration of compound of Example 11 and intravenously administration of compound of Example 11 to rabbits. The pharmacokinetic behavior of the present compound in rabbits was studied, and the pharmacokinetic features were evaluated.

2. Test Protocol

2.1 Sample

Compound of Example 11

2.2 Test animals

6 healthy New Zealand Rabbits (female) were evenly designated into 2 groups. The animals were purchased from Jie Sijie Corp. Ltd.

2.3 Drug formulation

Appropriate amount of sample was weighed, and added with 0.5% CMC-Na to form 3 mg/ml suspension upon ultrasonic treatment;

Appropriate amounts of drugs were weighed, and dissolved with 1 ml DMSO and 1 ml of Tween 80; saline solution was added to the final volume.
2.4 Administration

[0208] 6 healthy New Zealand Rabbits (female) were evenly designated into 2 groups, and administered by oral gavage or intravenous injection (i.v.) (oral gavage at a dosage of 30 mg/kg with administration volume of 5 ml/kg, and i.v. at a dosage of 5 mg/kg with administration volume of 2 ml/kg) after fasting overnight.

3. Operation

[0209] 0.2 ml of blood was sampled before and 5 minutes, 0.25, 0.5, 1, 2, 4, 8, 11, 24 hrs after intravenous administration, collected in a heparinized test tube, and centrifuged at 3500 rpm for 10 minutes to separate the plasma, which was stored at -20°C. Blood was sampled before and 0.5, 1, 2, 4, 6, 8, 11, 24 hrs after oral administration, and treated as same as that of intravenous administration group. The content of the test compound in the plasma of rabbits after administration of the compound by oral gavage and intravenous injection was determined by LC/MS/MS.

4. Pharmacokinetic Parameters Results

[0210] Pharmacokinetic parameters of the present compounds are shown in the following Table 5:
<table>
<thead>
<tr>
<th>No</th>
<th>Oral Bioavailability</th>
<th>Rabbit Pharmacokinetic Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F (%)</td>
<td>F (%)</td>
</tr>
<tr>
<td>1</td>
<td>92.9</td>
<td>92.9</td>
</tr>
</tbody>
</table>

| | Cmax (ng/mL) | Cmax (ng/mL) |
| | 5043.7±776 (oral 30 mg/kg) | 5043.7±776 (oral 30 mg/kg) |

| | AUC (ng/mL*h) | AUC (ng/mL*h) |
| | 19008±2312 | 19008±2312 |

| | T1/2 (h) | T1/2 (h) |
| | 4.57±1.06 | 4.57±1.06 |

	Residence time (h)	Residence time (h)
	MRT (h)	MRT (h)
	2.70±1.06	2.70±1.06

| | Clearance rate (ml/min/kg) | Clearance rate (ml/min/kg) |
| | 1.06±0.55 | 1.06±0.55 |

| | Apparent volume of distribution (ml/kg) | Apparent volume of distribution (ml/kg) |
| | 26.6±3.4 | 26.6±3.4 |

| | Half-life (h) | Half-life (h) |
| | 6 | 6 |

	Residence time (h)	Residence time (h)
	MRT (h)	MRT (h)
	3.94±0.55	3.94±0.55

| | Clearance rate (ml/min/kg) | Clearance rate (ml/min/kg) |
| | 2.39±0.50 | 2.39±0.50 |

| | Apparent volume of distribution (ml/kg) | Apparent volume of distribution (ml/kg) |
| | 25.3±5.5 | 25.3±5.5 |

| | Half-life (h) | Half-life (h) |
| | 6 | 6 |

| | Clearance rate (ml/min/kg) | Clearance rate (ml/min/kg) |
| | 3.40±1.82 | 3.40±1.82 |

| | Apparent volume of distribution (ml/kg) | Apparent volume of distribution (ml/kg) |
| | 3862 | 3862 |

| | Half-life (h) | Half-life (h) |
| | 6 | 6 |

| | Clearance rate (ml/min/kg) | Clearance rate (ml/min/kg) |
| | 5.50±2.70 | 5.50±2.70 |

| | Apparent volume of distribution (ml/kg) | Apparent volume of distribution (ml/kg) |
| | 7749 | 7749 |
Conclusion: Example 11 compound of the present invention is well absorbed in rabbits, and has preferable oral bioavailability.

Test Example 6. Beagle Pharmacokinetics assay of Example 11 of the present invention

1. Summary

Beagles were used as test animals. The plasma concentrations at various times were determined by LC/MS/MS after intragastrically administration of compound of Example 11 and intravenously administration of compound of Example 11 to beagles. The pharmacokinetic behavior of the present compound in beagles was studied, and the pharmacokinetic features were evaluated.

2. Test Protocol

2.1 Sample

Compound of Example 11

2.2 Test animals

8 healthy beagles (half female and half male) were evenly designated into 2 groups. The animals were purchased from SuzhouXishan Zhongke Laboratory Animal Corp. Ltd.

2.3 Drug formulation

Appropriate amount of sample was weighed, and added with 0.5% CMC-Na to form 1.0 mg/ml suspension upon ultrasonic treatment;

Appropriate amounts of drugs were weighed, and dissolved with 5 ml DMSO and 5 ml of Tween 80; saline solution was added to the final volume.

2.4 Administration

8 healthy beagles (half female and half male) were evenly designated into 2 groups, and administered by oral gavage or intravenous injection (i.v.) (oral gavage at a dosage of 5 mg/kg with administration volume of 5 ml/kg, and i.v. at a dosage of 2 mg/kg with administration volume of 2 ml/kg) after fasting overnight.

3. Operation

1.0 ml of blood was sampled from foreleg vein before and 0.25, 0.5, 1, 2, 4, 6, 8, 12, 24 hrs after oral administration, collected in a heparinized test tube, and centrifuged at 3500 rpm for 10 minutes to separate the plasma, which was stored at -20°C. The animals were allowed to access the feed 2 hrs after administration. Blood was sampled before and 5 minutes, 0.25, 0.5, 1, 2, 4, 6, 8, 12, 24 hrs after intravenous administration, and treated as same as above. The content of the test compound in the plasma of beagles after administration of the compound by oral gavage and intravenous injection was determined by LC/MS/MS.

4. Pharmacokinetic Parameters Results

Pharmacokinetic parameters of the present compounds are shown in the following Table 6:
Conclusion: Example 11 compound of the present invention is well absorbed in beagles, and has preferable oral bioavailability.

Test Example 7. In vivo Pharmacodynamics Test of Example 11 of the present invention in Rat

1. Summary

Endometriosis model was established with rabbit, pharmacodynamic screening test for rabbit endometriosis treated by the compound of Example 11 was implemented.

2. Test Protocol

2.1 Sample

Compound of Example 11

2.2 Test animals

15 healthy New Zealand rabbits (female) were evenly designated into 3 groups. The animals were purchased from Shanghai Songjiang District Songlian Laboratory Animal Farm (laboratory animal production Certificate No. SCXK (HU) 2008-0016).

2.3 Operation

Rabbits were adaptive fed and quarantined for seven days, and subcutaneously injected 30μg/kg of estradiol benzoate daily for two days before surgery; when the model was established, rabbits were anesthetized with 3% of sodium pentobarbital, laparotomized steriley. Then, one side of the uterus was separated and ligated uterine mes- orectum vessel. Then, a section of the uterus was cut off and put into a warm saline dish, and then dissected longitudinally and separated for myometrium and endometrium. A section of endometrium (about 0.5cm × 0.5cm) was seamed to the abdominal wall rich in blood vessels with the intimal surface facing to the abdominal cavity. Three weeks after endometrium planting, the rabbits were laparotomized to check graft intimal size. 15 animals of successful modeling were randomly divided into 3 groups (5 for each group) which were vehicle control group, low-dose group (10mg/kg of the compound of Example 11) and high-dose group (30mg/kg of the compound of Example 11) respectively. Each group was administered by oral gavage once a day in a volume of 5ml/kg, for continuous 28 days after successfully modeling. Ultimately, the rabbit was weighted and volume of ectopic endometrium was measured to evaluate the effect of the present compound on the endometrial activity.

2.4 Results:

After 30 mg/kg administration of the compound of Example 11 to the rabbit endometriosis model for 4 weeks with oral administration of the same amount of 0.5% CMC-Na as a control, the growth of ectopic endometrium was significantly inhibited, while the inhibition of the compound of Example 11 for the ectopic endometrial volume at 10mg/kg was not obvious. Therefore, the toxicologic NOAEL dose (dose under which no damage effect dose was observed) of the compound of Example 11 in rabbit endometriosis model is 30 mg/kg.

<table>
<thead>
<tr>
<th>No</th>
<th>Oral Bioavailability</th>
<th>Plasma concentration</th>
<th>Area under curve</th>
<th>Half-life</th>
<th>Residence time</th>
<th>Clearance rate</th>
<th>Apparent volume of distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F (%)</td>
<td>Cmax (ng/mL)</td>
<td>AUC (ng/mL*h)</td>
<td>T1/2 (h)</td>
<td>MRT (h)</td>
<td>CL/F (ml/min/kg)</td>
<td>Vz/F (ml/kg)</td>
</tr>
<tr>
<td>10</td>
<td>103.5</td>
<td>1087±350 (oral 5mg/kg)</td>
<td>5942±1345</td>
<td>5.37±1.52</td>
<td>6.40±2.82</td>
<td>14.7±4.2</td>
<td>7246±4373</td>
</tr>
<tr>
<td></td>
<td>i.v. (2 mg/kg)</td>
<td>2296±213</td>
<td>3.34±0.40</td>
<td>4.02±0.50</td>
<td>14.6±1.3</td>
<td>4235±706</td>
<td></td>
</tr>
</tbody>
</table>
Test Example 8 Seven-day toxicokinetic evaluation of the compound of Example 11 in rat

1. Summary

SD rats were used as test animals. The plasma concentrations at various times were determined by LC/MS/MS after administration of the compound of Example 11 by oral gavage for 7 days. The compound toxicity in rodents was preliminarily assessed according to the potential toxicity reaction and severity level of the body.

2. Test Protocol

2.1 Sample

Compound of Example 11

2.2 Test animals

24 healthy adult SD rats (half female and half male) were evenly designated into 4 groups (6 for each group). The animals were purchased from Shanghai SLAC Laboratory Animal Corp. Ltd (laboratory animal production Certificate No. SCXK (HU) 2012-0002).

2.3 Drug formulation

Appropriate amount of sample was accurately weighed, and added with minor 0.5% CMC-Na to form an uniform suspension upon ultrasonicor grinding treatment, and then diluted to the final volume. The rest sample solutions on day 1 and day 7 were kept for the determination of administration concentration of toxicokinetics.

2.4 Administration

Repeat oral doses were 80, 240 and 720 mg/kg, and administration concentrations were 8, 24 and 72 mg/ml respectively. The dosing volume was 10 ml/kg, once daily for 7 days.

3. Operation

The blood was sampled on day 1 and day 7 after administration with sampling time as before and 1, 2, 4, 8 and 24 hrs after oral administration on day 1, and before and 1, 2, 4, 8, 24 and 48 hrs after oral administration on day 7. The blood sample was collected in a heparinized test tube, and centrifuged to separate the plasma, which was stored at -20°C. The content of the test compound in the plasma of rats after administration of compound by oral gavage was determined by LC/MS/MS.

4. Results

4.1. Impact on clinical signs

4.1.1 Death

No. 1 rat in 720 mg/kg toxicity group of compound of Example 11 died on day 7 before dosing; No. 5 rat in 720 mg/kg toxicokinetic group of compound of Example 11 died on day 7 before dosing, and No. 6 died on day 9.

4.1.2 Clinical Observation

During the administration, compared with the vehicle control group, rats in 720 mg/kg toxicity group and toxicokinetic group all presented weight loss and poor mental state after administration of the compound of Example 11 on day 6; rats in 720 mg/kg toxicity group and toxicokinetic group after administration of the compound of Example 11 on day 7 all presented food intake reduction, weight loss, lessened activity, poor mental state, dull back fur, hair stand, roachback, haemorrhage around nose and eyes, diarrhea and filthy crissum.
4.2 Impact on body weight

[0231] Compared with the vehicle control group, the weight change percentage of high dose group exhibited significant decrease (P <0.05) after administration of the compound of Example 11 on day 3 and day 7.

4.3 Impact on food intake

[0232] Compared with the vehicle control group, the food intake of 147280 720 mg/kg dose group has significantly reduced on day 3 and day 7.

4.4 Hematology test results

[0233] Compared with the vehicle control group, WBC (white blood cells), Neut (neutrophils relative value and absolute neutrophils count), Lymph (absolute lymphocyte count), EO (absolute eosinophils cell count) and RET (reticulocyte relative value and absolute reticulocyte count) of rats in 720 mg/kg dose group of the compound of Example 11 were significantly decreased (P <0.05).

4.5 Blood biochemical test results

[0234] Compared with the vehicle control group, BUN (blood urea nitrogen), CHOL (total cholesterol), CREA (creatinine), TBIL (total bilirubin), TP (total protein), AST (aspartate aminotransferase) of rats in 720 mg/kg dose group of the compound of Example 11 were significantly increased (P <0.05). Although no statistical differences in ALT (alanine aminotransferase), the ALT of two animals were significantly increased. ALB (albumin), ALP (alkaline phosphatase) were significantly decreased (P <0.05). Whereas the ion detection result was lack for the shortage of blood samples of SHR 147280 720 mg/kg dose group. No other obvious toxicological abnormalities have been detected.

4.6 Coagulation parameters

[0235] Compared with the vehicle control group, rats in 80mg/kg dose group and 240mg/kg dose group of the compound of Example 11 did not showed significant difference. Coagulation parameters result was lack for the shortage of blood samples of SHR 147280 720 mg/kg dose group.

4.7 The urine test

[0236] Compared with the vehicle control group, the treatment groups showed no regularly abnormal changes in urine indexes.

4.8 General pathology results

[0237] Autopsy was generally visible. Compared with the vehicle control group, 720 mg/kg dose group of the compound of Example 11 exhibited thymus hemorrhage and atrophy; spleen atrophy and congestion; varying degrees of congestion in leaves of liver with flaky grayred necrotic lesions; lung hyperaemia and hemorrhage; adrenal gland hemorrhage and hypertrophy; ovary hemorrhage and congestion; gastrointestinal wall thinning; white contents in stomach; yellow contents in small intestine, intestinal hemorrhage, colon rectal hemorrhage, and intestine mucoid. In addition, the dead animals showed cardiac necrotic lesions. The rest of the groups presented no visible abnormality.

4.9 Organ coefficient results

[0238] Compared with the vehicle control group, absolute wet weight of thymus, heart, lung and spleen in male rats of 720 mg/kg group of the compound of Example 11 had significantly been decreased (p<0.05), contrarily absolute wet weight of adrenal gland had been increased significantly (p<0.05). Relative organ coefficient of thymus, spleen had been significantly reduced (p<0.05), whereas relative organ coefficient of brain, liver, lung, kidney and adrenal gland had been increased significantly (p<0.05).

4.10 Toxicokinetic Parameters Results

[0239] Toxicokinetic parameters of female rats after intragastric administration
Therefore, toxicology NOAEL dose of Example 11 is 240 mg/kg, and lethal dose is 720 mg/kg. The potential toxic target organs were marrow hematopoietic system, thymus, heart, liver, lung, spleen, adrenal gland, ovary and digestion system.

In conclusion: Comparing the pharmacokinetic test of Test Example 5, pharmacodynamic test of Test Example 7 and toxicological pharmacokinetic test of Test Example 8, preliminary evaluation of the safety window of compound in Example 11 was as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>80 mg/kg</th>
<th>240 mg/kg</th>
<th>720 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_max(h)</td>
<td>1.5</td>
<td>4.0</td>
<td>8.0</td>
</tr>
<tr>
<td>C_max(ng/ml)</td>
<td>17800</td>
<td>19550</td>
<td>41500</td>
</tr>
<tr>
<td>AUC 0→t(ng/ml*h)</td>
<td>173185</td>
<td>282074</td>
<td>639265</td>
</tr>
<tr>
<td>AUC 0→∞(ng/ml*h)</td>
<td>173968</td>
<td>313468</td>
<td>690196</td>
</tr>
<tr>
<td>t1/2(h)</td>
<td>3.15</td>
<td>6.79</td>
<td>5.73</td>
</tr>
<tr>
<td>CLz/F(ml/min/kg)</td>
<td>7.71</td>
<td>-</td>
<td>5.82</td>
</tr>
<tr>
<td>Vz/F(ml/kg)</td>
<td>2092</td>
<td>-</td>
<td>2871</td>
</tr>
<tr>
<td>MRT 0→∞(h)</td>
<td>5.82</td>
<td>9.23</td>
<td>9.63</td>
</tr>
</tbody>
</table>

Note: - indicates the parameters can not be calculated for the lack of data.

Test comparison

<table>
<thead>
<tr>
<th>Test comparison</th>
<th>NOAEL dose (mg/kg) (toxicological pharmacokinetic dose/pharmacodynamic dose)</th>
<th>AUC (ng/ml*h) (in vivo exposure/pharmacokinetic exposure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 11</td>
<td>240/30=8</td>
<td>840450/(19008±2312) =39.4 or 50.3</td>
</tr>
</tbody>
</table>

Claims

1. A compound of formula (I), or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof:

![Chemical structure](image)

(1)

wherein:

- when G is N, D is C and E is -CH-;
- when G is C, D and E are N;
- R1 is selected from the group consisting of alkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl and -OR2, wherein the alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each independently optionally further substituted with one or more groups selected from the group consisting of halogen, cyano, nitro, alkyl, haloalkyl, hydroxalkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, -OR2, -C(O)OR2, -OC(O)R2, -NHS(O)mR2, -C(O)R2, -NHC(O)OR2, -NHC(O)OR2, -NR7R8, -OC(O)NR7R8, -C(O)NR7R8,
-NHC(O)NHR^6 and -NHC(O)NHOR^6;

R^2 is alkyl, wherein the alkyl is further substituted with one or more groups selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl are each optionally further substituted with one or more groups selected from the group consisting of halogen, alkyl, haloalkyl, cyano, nitro, -C(O)OR^6, -C(O)NR^7R^8, -OC(O)NR^7R^8, -OR^6, -NHS(O)mR^6, -NHC(O)R^6 and -NR^7R^8, wherein the haloalkyl is preferably trifluoromethyl;

R^3 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl are each optionally further substituted with one or more groups selected from the group consisting of halogen, alkyl, haloalkyl, -OR^6, -C(O)OR^6, -OC(O)R^6, -C(O)R^6, -NR^7R^8, -OC(O)NR^7R^8, -C(O)NR^7R^8, -NHS(O)mR^6, -NHC(O)R^6, -NHC(O)OR^6, -NHCO(O)NHOR^6 and -NHC(O)NHOR^6;

R^4 is alkyl;

R^5 is selected from the group consisting of hydrogen, cycloalkyl, heterocyclyl, aryl, heteroaryl, -OR^5, -NR^7R^8 and -NR^7S(O)_mR^6, wherein the alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each optionally further substituted with one or more groups selected from the group consisting of halogen, oxo, alkyl, haloalkyl, hydroxyalkyl, -OR^6, -C(O)OR^6, -OC(O)R^6, -SR^6, -C(O)R^6 and -NHC(O)R^6;

R^6 is selected from the group consisting of hydrogen, alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl, wherein the alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each independently optionally further substituted with one or more groups selected from the group consisting of hydrogen, alkyl, heteroaryl, aryl and heteroaryl, wherein the alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each independently optionally further substituted with one or more groups selected from the group consisting of alkyl, haloalkyl, hydroxy, alkoxyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, carboxylic acid and carboxylic ester;

R^7 and R^8 are each independently selected from the group consisting of alkyl, haloalkyl, hydroxy, alkoxyl, cycloalkyl, heterocyclyl, aryl and heteroaryl, wherein the alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl are each independently optionally further substituted with one or more groups selected from the group consisting of alkyl, haloalkyl, hydroxy, alkoxyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, carboxylic acid and carboxylic ester;

or, R^7 and R^8 are taken together with the attached N atom to form a heterocycle, wherein the heterocycle contains one or more heteroatoms of N, O or S(O)_m, and the heterocycle is optionally further substituted with one or more groups selected from the group consisting of alkyl, haloalkyl, hydroxy, alkoxyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, carboxylic acid and carboxylic ester;

m is 0, 1, or 2;

n is 1, 2, 3, or 4; and

p is 0, 1, or 2.

2. The compound of formula (I) according to claim 1, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, which is a compound of formula (II) or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof:

3. The compound of formula (I) according to claim 1, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, which is a compound of formula (III) or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof:
wherein: n and R₁ to R₅ are as defined in claim 1.

4. The compound of formula (I) according to any one of claims 1 to 3, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, wherein R₁ is selected from the group consisting of aryl and heteroaryl, preferably phenyl and pyridazinyl, wherein the aryl and heteroaryl are each optionally further substituted with one or more groups selected from the group consisting of halogen, cyano, nitro, alkyl, haloalkyl, hydroxyalkyl and -OR₆.

5. The compound of formula (I) according to any one of claims 1 to 4, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, wherein R₂ is benzyl, wherein the benzyl is optionally substituted with one or more groups selected from the group consisting of halogen, alkyl, haloalkyl, cyano, nitro and -OR₆.

6. The compound of formula (I) according to any one of claims 1 to 5, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, wherein R₃ is aryl, preferably phenyl, wherein the aryl is optionally further substituted with one or more groups selected from the group consisting of -NHC(O)R₆, -NHC(O)OR₆, -NHC(O)NHR₆ and -NHC(O)NHOR₆, preferably -NHC(O)NHR₆ and -NHC(O)NHOR₆.

7. The compound of formula (I) according to any one of claims 1 to 6, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, wherein R₄ is methyl.

8. The compound of formula (I) according to any one of claims 1 to 7, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, wherein R₅ is hydrogen, and n is 1 or 2.

9. The compound of formula (I) according to claim 1, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, which is a compound of formula (IV) or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof:

wherein: n, D, E, G, R₁, R₂, R₄ and R₅ are as defined in claim 1; R₆ is selected from the group consisting of alkyl and -OR₆, wherein the alkyl is optionally further substituted with one or more groups selected from the group consisting of alkyl, halogen, hydroxy, alkoxy, cycloalkyl, heterocyclyl, aryl, heteroaryl, carboxylic acid and carboxylic ester; and R₇ is alkyl, wherein the alkyl is optionally substituted with one or more groups selected from the group consisting of alkyl, halogen, hydroxy, alkoxy, cycloalkyl, heterocyclyl, aryl, heteroaryl, carboxylic acid and carboxylic ester.

10. The compound of formula (I) according to any one of claims 1 to 9, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, wherein the compound is selected from the group consisting of:
11. A process for preparing the compound of formula (I) according to claim 1, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, comprising a step of:
reacting a compound of formula (IA) with the amine of \(\text{NH}(R^4)(\text{CH}_2)nR^5 \); optionally reduction or and acylation of the resulting product to obtain the compound of formula (I);
wherein: \(X \) is halogen; \(n, D, E, G \) and \(R^1 \) to \(R^5 \) are as defined in claim 1.

12. A process for preparing the compound of formula (I) according to claim 1, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, comprising a step of:

reacting a compound of formula (IB) with \(R^2X \) in the presence of an alkaline reagent; optionally reduction or and acylation of the resulting product to obtain the compound of formula (I);
wherein: \(X \) is halogen; \(n, D, E, G \) and \(R^1 \) to \(R^5 \) are as defined in claim 1.

13. A compound of formula (IA), or a pharmaceutically acceptable salt thereof, which is used as an intermediate in the preparation of a compound of formula (I):

wherein:

\(X \) is halogen;
\(D, E, G \) and \(R^1 \) to \(R^3 \) are as defined in formula (I).

14. A compound of formula (IB), or a pharmaceutically acceptable salt thereof, which is used as an intermediate in the preparation of a compound of formula (I):
wherein:

n, D, E, G, R₁ and R₃ to R₅ are as defined in formula (I).

15. A process for preparing the compound of formula (IA) according to claim 13, or a pharmaceutically acceptable salt thereof, comprising a step of:

proceeding a halogenating reaction of a compound of formula (Ib) to obtain the compound of formula (IA);

wherein: D, E, G and R₁ to R₃ are as defined in claim 1.

16. A process for preparing the compound of formula (IB) according to claim 14, or a pharmaceutically acceptable salt thereof, comprising a step of:

proceeding a cyclization of a compound of formula (Ig) to obtain the compound of formula (IB);

wherein: n, D, E, G, R¹ and R³-R⁵ are as defined in claim 1;
Rᵇ is alkyl.

17. The compound of formula (IA) according to claim 13, or a pharmaceutically acceptable salt thereof, wherein the compound is selected from the group consisting of:
18. A pharmaceutical composition comprising a therapeutically effective amount of the compound of formula (I) according to any one of claims 1 to 10, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable carrier, diluent or excipient.

19. Use of the compound of formula (I) according to any one of claims 1 to 9, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, or the pharmaceutical composition according to claim 18, in the preparation of a medicament as GnRH receptor antagonist.

20. Use of the compound of formula (I) according to any one of claims 1 to 9, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, or the pharmaceutical composition according to claim 18, in the preparation of a medicament for the treatment of gonadal hormone-related diseases.

21. Use of the compound of formula (I) according to any one of claims 1 to 9, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, or the pharmaceutical composition according to claim 18, in the preparation of medicaments for the treatment or prevention of diseases of sex hormone-dependent cancer, bone metastasis of sex hormone-dependent cancers, prostatic hyperplasia, uterine leiomyoma, endometriosis, uterine fibroids, precocious puberty, amenorrhhea, premenstrual syndrome, dysmenorrhea, multicellular ovary syndrome, polycystic ovary syndrome, acne, alopecia, Alzheimer’s disease, infertility, irritable bowel syndrome, benign or malignant tumors which are hormone-independent and LH-RH sensitive, or flush; in the preparation of reproductive regulator, contraceptive pill, ovulation evocator; or in the preparation of medicaments for the prevention of postoperative recurrence of sex hormone-dependent cancer selected from the group consisting of prostate cancer, uterine cancer, breast cancer and pituitary cancer; preferably prostate cancer, uterine cancer, breast cancer, endometriosis or uterine leiomyoma.

22. A method for inhibiting GnRH receptor activity, comprising a step of administering to a subject in need thereof a therapeutically effective amount of the compound according to any one of claims 1 to 9, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, or the pharmaceutical composition according to claim 18.

23. A method for treating a gonadal hormone-related disease, comprising a step of administering to a subject in need thereof a therapeutically effective amount of the compound according to any one of claims 1 to 9, or a tautomer, mesomer, racemate, enantiomer, diastereomer, or mixture thereof, or a pharmaceutically acceptable salt thereof, or the pharmaceutical composition according to claim 18.

24. A method for the prevention or treatment of sex hormone-dependent cancers, bone metastatic sex hormone-dependent cancer, prostatic hyperplasia, uterine leiomyoma, endometriosis, uterine fibroids, precocious puberty, amenorrhhea, premenstrual syndrome, dysmenorrhrea, multicellular ovary syndrome, polycystic ovary syndrome, acne, alopecia, Alzheimer’s disease, infertility, irritable bowel syndrome, benign or malignant tumors which are hormone-independent and LH-RH sensitive, or flush; or for regulating reproduction, contraception or evocating ovulation; or for the prevention of postoperative recurrence of sex hormone-dependent cancer, the method comprising a step of administering a therapeutically effective amount of the compound of formula (I) according to any one of claims 1 to 9, or the tautomer, mesomer, racemate, enantiomer, or diastereomer thereof, or mixture thereof, or the pharmaceutically acceptable salt thereof, or the pharmaceutical composition according to claim 18 to a subject in need thereof, whereas the sex hormone-dependent cancer is selected from the group consisting of prostate cancer, uterine cancer, breast cancer, pituitary cancer; preferably prostate cancer, uterine cancer, breast cancer, endometriosis or uterine leiomyoma.
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>Box No. II</th>
<th>Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ☒ Claims Nos.: 22-24</td>
<td>because they relate to subject matter not required to be searched by this Authority, namely: The subject matter of claims 22-24 relates to a method for the treatment of the human or animal body by therapy and therefore does not warrant an international search according to the criteria set out in Rule 39.1(iv).</td>
</tr>
<tr>
<td>2. ☐ Claims Nos.:</td>
<td>because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:</td>
</tr>
<tr>
<td>3. ☐ Claims Nos.:</td>
<td>because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box No. III</th>
<th>Observations where unity of invention is lacking (Continuation of item 3 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.</td>
<td></td>
</tr>
<tr>
<td>2. ☐ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.</td>
<td></td>
</tr>
<tr>
<td>3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:</td>
<td></td>
</tr>
<tr>
<td>4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:</td>
<td></td>
</tr>
</tbody>
</table>

Remark on protest
- ☐ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.
- ☐ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- ☐ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C07D 487/04 (2006.01) i; A61K 31/519 (2006.01) i; A61K 31/53 (2006.01) i; A61P 35/00 (2006.01) i; A61P 15/00 (2006.01) i; A61P 13/08 (2006.01) i; A61P 17/10 (2006.01) i; A61P 25/28 (2006.01) i; A61P 1/00 (2006.01) i; A61P 17/14 (2006.01) i; A61P 15/18 (2006.01) i; A61P 15/08 (2006.01) i; A61P 5/04 (2006.01) i; A61P 5/24 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: C07D; A61K 31/1-; A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

WPI; EPDOC; CNPAT; CAplus; REG; CNKI; pyrazolopyrimidinone; pyrrolotriazinone; GnRH; LHRH; endometriosis

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2013129879 A1 (SK CHEMICALS CO., LTD) 06 September 2013 (06.09.2013) see the whole document, especially claims 1-8 and embodiments</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>WO 2006074051 A2 (DIAKINE THERAPEUTICS, INC. et al.) 09 July 2006 (09.07.2006) see the whole document</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>CN 101076531 A (DECODE CHEMISTRY, INC.) 21 November 2007 (21.11.2007) see the whole document</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>CN 102807568 A (JIANGSU CHIA TAI TIANQING PHARM CO LTD et al.) 05 December 2012 (05.12.2012) see the whole document</td>
<td>1-21</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C.
See patent family annex.

Date of the actual completion of the international search: 19 December 2014

Date of mailing of the international search report: 12 January 2015

Name and mailing address of the ISA
State Intellectual Property Office of the P. R. China
No. 6, Xitucheng Road, Jimenqiao
Haidian District, Beijing 100088, China
Facsimile No. (86-10) 62019451

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN 102361873 A (GLENMARK PHARMACEUTICALS S.A.) 22 February 2012 (22.02.2012) see the whole document</td>
<td>1-21</td>
</tr>
<tr>
<td>Patent Documents referred in the Report</td>
<td>Publication Date</td>
<td>Patent Family</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>WO 2013129879 A1</td>
<td>06 September 2013</td>
<td>CA 2865547 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2013226661 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130102002 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008300189 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7393827 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1841448 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006160736 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008300189 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7393827 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1841448 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008300189 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7393827 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1841448 A2</td>
</tr>
<tr>
<td>CN 101076531 A</td>
<td>21 November 2007</td>
<td>NO 20072289 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 554492 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1814881 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7714017 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 156636 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006044415 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2583828 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006044415 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 182490 D0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2005295821 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2008515981 A</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX 2007004527 A</td>
<td>21 September 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RU 2007115522 A</td>
<td>27 October 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2006142355 A1</td>
<td>29 June 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2004014916 A1</td>
<td>19 February 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2004038094 A1</td>
<td>26 February 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU 2003253165 A1</td>
<td>25 February 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 102361873 A</td>
<td>22 February 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA 2756518 A1</td>
<td>30 September 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 2411393 A1</td>
<td>01 February 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP 201105887 D0</td>
<td>31 October 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MX 2011009824 A</td>
<td>25 January 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HK 1166075 A1</td>
<td>17 April 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 20110132575 A</td>
<td>08 December 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2010109287 A1</td>
<td>30 September 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK 2411393 T3</td>
<td>07 April 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 2411393 B1</td>
<td>22 January 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES 2456515 T3</td>
<td>22 April 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU 2010227245 A2</td>
<td>27 October 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT 2411393 E</td>
<td>21 February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 2708538 A1</td>
<td>19 March 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU 2010227245 A1</td>
<td>22 September 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA 201190143 A1</td>
<td>30 April 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2012521401 A</td>
<td>13 September 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 07742012 A1</td>
<td>27 June 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG 174402 A1</td>
<td>28 October 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 102361873 B</td>
<td>09 July 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 2411393 A4</td>
<td>01 August 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2014128603 A1</td>
<td>08 May 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI 2411393 T1</td>
<td>31 March 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL215178 D0</td>
<td>29 December 2011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 5171835 A [0006]
• US 20020065309 A [0006]
• WO 2006096785 A [0010]
• WO 2010026993 A [0010]
• WO 2011076687 A [0010]
• WO 2012175514 A [0010]
• WO 2011090935 A [0174]

Non-patent literature cited in the description

• Journal of Medicinal Chemistry, 2006, vol. 49 (14), 4409-4424 [0124]