EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 18.04.2018 Bulletin 2018/16

Application number: 16160492.1

Date of filing: 19.01.2012

Oscillating Surgical Rasp
Vibrierende chirurgische raspel
Râpe chirurgicale oscillante

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU MV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Priority: 28.01.2011 US 201113016404

Date of publication of application: 27.07.2016 Bulletin 2016/30

Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
12151782.5 / 2 481 362

Proprietor: DePuy Products, Inc. Warsaw, IN 46581 (US)

Inventors:
- CHAVARRIA, Jason M. Warsaw, IN 46581 (US)
- STONE, Matthew T. Warsaw, IN 46581 (US)

Representative: Curran, Clair et al Urquhart-Dykes & Lord LLP Arena Point Merrion Way Leeds LS2 8PA (GB)

References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to an orthopaedic surgical instrument assembly as defined in claim 1 for use in the performance of an orthopaedic joint replacement procedure.

[0002] During the lifetime of a patient, it may be necessary to perform a total shoulder replacement procedure on the patient as a result of, for example, disease or trauma. In a total shoulder replacement procedure, a humeral component having a prosthetic head is used to replace the natural head of the patient's humerus. The humeral component typically includes an elongated stem that is implanted into the intramedullary canal of the patient's humerus. In such a total shoulder replacement procedure, the natural glenoid surface of the scapula is surfaced or otherwise replaced with a glenoid component that provides a bearing surface upon which the prosthetic head of the humeral component articulates.

[0003] As alluded to above, the need for a shoulder replacement procedure may be created by the presence of any one of a number of conditions. One such condition is the deterioration of the patient's scapula in the area proximate to the glenoid surface as a result of, for example, glenohumeral arthritis. In such a condition, the erosion of the patient's scapula is generally observed posteriorly on the glenoid surface. Such erosion of the scapula renders treatment difficult, if not impossible, with a conventional glenoid component. One way to treat such a condition is by the use of a modified glenoid component, known generally as an augmented glenoid component. An augmented glenoid component has a posterior edge that is thicker than the corresponding anterior edge.

[0004] Simple surgical instruments such as revolving spherical or circular reamers are generally used to prepare the glenoid surface during a glenoid surgical procedure, as described in EP-A-1 639949 and EP-A-142853. This is sufficient since traditional glenoid components (i.e., non-augmented glenoid components) typically have a uniform backside geometry that is either curved or flat, which makes glenoid preparation fairly straightforward. However, the use of glenoid components with complex backside geometries (e.g., augmented glenoid components) makes bone preparation more of a challenge. A surgeon is forced to use a combination of reamers, saws, and burrs in the performance of a free-hand technique that requires frequent interruptions for intraoperative assessment to implant these complex components. WO-A-2006/078511 is the closest prior art to the subject-matter of claim 1 and discloses an orthopaedic surgical instrument assembly for use in the surgical preparation of a joint of a patient prior to implantation of a prosthesis, the surgical instrument assembly comprising: an oscillating surgical rasp comprising an attachment head configured to be secured in a chuck of an oscillating tool, and a cutting head secured to the attachment head, the cutting head comprising a cutting surface extending posteriorly from the longitudinal axis of the oscillating surgical rasp, the cutting surface having a plurality of cutting teeth, and wherein the cutting teeth are arranged in a geometry that, when oscillated along a predetermined path in contact with the joint of the patient, corresponds with the geometry of the augmented prosthesis, and in which the assembly further comprises a rasp guide having a guide surface configured to guide the oscillating surgical rasp during operation thereof along the predetermined path in contact with the joint of the patient, and an anchor surface that is opposite the guide surface and configured to be secured to the joint of the patient. The invention provides an orthopaedic surgical instrument assembly as defined in claim 1 for use in the surgical preparation of a glenoid of a patient prior to implantation of an augmented glenoid prosthesis includes an oscillating surgical rasp.

[0005] The cutting head of the oscillating surgical rasp may include a depth stop extending anteriorly from the longitudinal axis of the oscillating surgical rasp. The guide surface of the rasp guide is configured to guide depth stop of the cutting head of the oscillating surgical rasp during operation thereof.

[0006] Optionally, the anchor surface of the rasp guide includes an anchor peg extending perpendicularly therefrom. The anchor peg is configured to be received into a hole formed in the glenoid of the patient. The guide surface of the rasp guide is concave.

[0007] The anchor surface of the rasp guide may also include a number of pointed anchoring pins extending perpendicularly therefrom. The anchoring pins are configured to be driven into bone tissue of the glenoid of the patient.

[0008] Optionally, the plurality of cutting teeth of the cutting head are arranged in a geometry that, when oscillated along a predetermined path in contact with the glenoid of the patient, corresponds with the geometry of a posterior buttress of the augmented glenoid prosthesis. Constructions are described below by way of example with reference to the accompanying drawings, in which:

FIG. 1 is a perspective view of an augmented glenoid component;
FIGS. 2 and 3 are side elevation views of the augmented glenoid component of FIG. 1;
FIGS. 4 and 5 are perspective views of an oscillating surgical rasp for use in a surgical procedure to implant the augmented glenoid component of FIGS. 1 to 3;
FIGS. 6 and 7 are elevation views of the oscillating rasp of FIGS. 4 and 5;
FIG. 8 is a plan view of the oscillating rasp of FIGS. 4 and 5;
FIG. 9 is a cross sectional view of the oscillating rasp of FIGS. 4 and 5, taken along the line 9-9 of FIG. 6, as viewed in the direction of the arrows;
FIGS. 10 and 11 are perspective views of a rasp guide for use along with the oscillating rasp of FIGS. 4 and 5 in a surgical procedure to implant the aug-
Terms representing anatomical references, from the anterior medial surface 32, with another of the reality of stabilizing pegs 38. One of the pegs 38 extends scapula. The glenoid component 10 also includes a plu-

[0010] Terms representing anatomical references, such as anterior, posterior, medial, lateral, superior and inferior are used throughout this document to refer to both orthopaedic implants and a patient’s natural anatomy. Such terms have well-understood meanings in both the study of anatomy and the field of orthopaedics. Use of such anatomical reference terms in this document is intended to be consistent with their well-understood meanings unless noted otherwise.

[0011] Referring to the drawings, FIGS. 1 to 3 show an augmented glenoid component 10 which includes a body 22 having a concave surface 26 on one end thereof. The concave surface 26 of the body 22 provides a smooth bearing surface upon which a natural or prosthetic humeral head articulates. A buttress 24 extends away from the anterior medial surface 32 of the body 22 opposite the concave surface 26. The posterior medial surface 28 of the buttress 24 is substantially flat in the anterior/posterior direction and rounded (i.e., convex) in the superior/inferior direction. The anterior medial surface 32 is rounded (i.e., convex) in all directions, but may include flat portions to fit the need of a given design. A side surface 30 extends perpendicularly from the posterior medial surface 28 to the anterior medial surface 32. Alternatively, the side surface 30 may be angled relative to both surfaces 28, 32.

[0012] The augmented glenoid component 10 also includes an anchor peg 34. The anchor peg 34 extends perpendicularly from the anterior medial surface 32. The anchor peg 34 includes a tapered head 36 that functions as a lead-in to facilitate insertion into a hole drilled or otherwise formed in the glenoid surface of the patient’s scapula. The glenoid component 10 also includes a plurality of stabilizing pegs 38. One of the pegs 38 extends from the anterior medial surface 32, with another of the pegs 38 extending from the posterior medial surface 28 of the buttress 24. Another of the three stabilizing pegs 38 extends from both the anterior medial surface 32 and the buttress 24. The peg therefore straddles the buttress 24 and the anterior medial surface 32. Generally, the stabilizing pegs 38 are shorter than the anchor peg 34. Moreover, some of the stabilizing pegs 38 (e.g., the one extending from the anterior medial surface 32) are shorter than the others, although other configurations may be used. The stabilizing pegs 38 are received into a number of corresponding holes drilled or otherwise formed in the glenoid surface of the patient’s scapula. This particular construction of augmented glenoid component 10 is a monolithic moulded component. That is, the body 22, the anchor peg 34, and the stabilizing pegs 38 are integrally molded using a polymer such as polyethylene. One example of a suitable polyethylene is ultrahigh molecular weight polyethylene (UHMWPE). In addition to polymers, the augmented glenoid component 10 may be made from ceramic, metal, or a composite material. Examples of these materials include alumina, zirconia, and alumina/zirconia composite or composite material.

[0013] The anchor peg 34 includes a plurality of radial fins 40. The fins 40 are deformable. This allows the anchor peg 34 to fit into an anchor bore drilled in the glenoid surface of the patient’s scapula, but resist removal or "pull out" of the anchor peg 34. Any number or size of radial fins 40 may be included on the anchor peg 34. In addition, although the fins 40 are shown as having the same sized outer diameter, it should be appreciated that other configurations are also contemplated for use. For example, the fins 40 may be provided in a tapered configuration in which the respective outer diameters of the fins 40 gradually increases from the distal end of the anchor peg 34 to the proximal end of the anchor peg 34 (i.e. the ring positioned on the distal end of the anchor peg 34 has a smaller diameter relative to the ring positioned near the proximal end of the anchor peg 34).

[0014] The fins 40 are configured to slightly deform when the anchor peg 34 is inserted into an anchor hole drilled in the patient’s glenoid. This is caused when the fins 40 are advanced into the anchor hole since it is drilled to have a diameter which is slightly larger than the diameter of a shaft of the anchor peg 34, yet smaller than the outer diameter of the fins 40 thereby causing deformation of the fins 40 upon contact with the sidewalls of the drilled hole as the fins 40 are "forced" into the hole. Such deformation of the fins 40 secures the augmented glenoid component to the scapula by providing resistance to pull out of the anchor peg 34 from the drilled anchor hole much in the same way that the threads of a screw provide resistance to pull out of the screw from the material into which it is driven. In addition, over a period of time subsequent to implantation of the augmented glenoid component 10 to the patient’s scapula, bone tissue or other types of tissue will grow into the spaces between the fins 40 thereby providing further resistance to pull out of the anchor peg 34 from the drilled hole.
The stabilizing pegs 38 prevent rotation or other types of movement of the augmented glenoid component 10 relative to the scapula once the glenoid component 10 has been implanted. The distal end of each of the stabilizing pegs 38 has a conical tip which functions as a "lead in" to facilitate insertion of the stabilizing pegs 38 into respective stabilizing holes drilled in the glenoid surface of the patient’s scapula.

The stabilizing pegs 38 may be arranged in any orientation on the body 22 that fits the needs of a given design of an augmented glenoid component. In addition, it should be appreciated that any number of stabilizing pegs 38 may be utilized to fit the needs of a given design of an augmented glenoid component. Examples of such variations are disclosed in US-6699289.

FIGS. 4 to 9 show an oscillating rasp 50 which may be used for the surgical preparation of the patient’s glenoid to facilitate implantation of the complex geometry associated with the augmented glenoid component 10. The rasp 50 includes an attachment head 52 that fits into the chuck 102 of an oscillating power tool 100 (see FIG. 7). The oscillating rasp 50 also includes a cutting head 58 secured to the distal end 56 of the attachment head 52. As will be discussed in greater detail below, the geometry of the cutting head 58 corresponds with the geometry of the buttress 24 of the augmented glenoid component 10 when the oscillating rasp 50 is oscillated along a predetermined path in contact with the glenoid of the patient. The cutting head 58 of the oscillating rasp 50 includes a plurality of cutting teeth 60. When the rasp 50 is advanced into engagement with the glenoid surface of the patient’s scapula with oscillating motion, the cutting teeth 60 of the oscillating rasp 50 abrade or otherwise cut the bone tissue of the scapula thereby gradually creating notch possessing the geometry (i.e., the shape) required to accept the buttress 24 of the augmented glenoid component 10. It should be appreciated that although the cutting teeth 60 are herein described as elongated, linear cutting teeth, other constructions of cutting teeth may be used. For example, the cutting teeth 60 may be constructed as diamond knurl-type cutting teeth.

The attachment head 52 includes a keying slot 55 and a number of drive holes 50. The hub 102 of the oscillating power tool 100 includes a number of features such as detents (not shown) that are received into the keying slot 55 and drive holes 50 to couple the oscillating rasp 50 to the oscillating power tool 100 (see FIG. 7). Although the attachment head 52 is herein shown with a specific exemplary mounting configuration (i.e., the configuration including the keying slot 55 and the drive holes 64), other mounting configurations are contemplated for use in the design of the attachment head 52 to allow the rasp 50 to be coupled to specific types of oscillating power tools 100. Moreover, the attachment head 52 may be arranged with a "universal" mounting configuration to allow the same rasp 50 to be coupled to multiple different oscillating power tools 100.

The cutting head 58 includes a cutting surface 66 that extends posteriorly from the longitudinal axis 68 of the oscillating rasp 50 (see FIG. 6). The cutting surface 66 of the cutting head 58 mimics the shape of the posterior medial surface 28 of the buttress 24 of the augmented glenoid component 10 when the oscillating rasp 50 is oscillated along a predetermined path in contact with the glenoid of the patient. That is, when the oscillating rasp 50 is oscillated along a predetermined path in contact with the glenoid of the patient, the cutting surface 66 produces a rasped surface that is substantially flat in the anterior/posterior direction and rounded (i.e., convex) in the superior/inferior direction. The cutting surface 66 is defined by the outer surfaces of a plurality of the cutting teeth 60. As can be seen in FIG. 6, to create such a geometry that mimics the shape of the posterior medial surface 28 of the buttress 24 of the augmented glenoid component 10, the cutting surface 66 (i.e., the outer surfaces of the cutting teeth 60) is angled upwardly when viewed front-to-back (i.e., in the anterior-to-posterior direction). This is shown geometrically in FIG. 6 where an imaginary line 80 extends posteriorly from the longitudinal axis 68 of the oscillating rasp 50 along the outer surface of each of the plurality of cutting teeth 60 (i.e., along the cutting surface 66). The imaginary line 80 intersects the longitudinal axis 68 of the oscillating rasp 50 to define an angle of intersection (θ) between them. In an example, the angle of intersection (θ) is between 30 and 90°. In a more specific example, the angle of intersection (θ) is between 30 and 89° to produce a rounded surface in the superior/inferior direction. In a more specific example, the angle of intersection (θ) is approximately 75°. In another more specific example, the angle of intersection (θ) is 76.7°.

The oscillating rasp 50 may also be constructed as a tool for preparing the patient’s glenoid for implantation of revision component such as a vault-type component. In particular, a revision surgery may be performed to replace a glenoid component. In such a revision surgery, the previously implanted glenoid component is surgically removed and a replacement glenoid component is implanted in the patient’s glenoid. The subcondylar plate may be damaged or missing subsequent to revision surgery. Revision surgery may also result in defects, some of which may be fairly large, in the cancellous bone of the glenoid vault of the scapula. Vault-filling (i.e., vault-type) revision glenoid components have been developed that include a metal backing that extends into (i.e., "fills") the glenoid vault to replace the lost bone. A bearing component, generally made of polyethylene (e.g., UHMWPE) or other materials such as ceramics or metals, is then fixed to the implanted metal backing to create the bearing surface upon which the proximal end (e.g., a prosthetic head) of the humeral component articulates. Such a vault-type component includes a number of inclined side walls which form a wedge-shaped body. In the case of a
rasp for use in implanting a vault-type revision glenoid component, the angle of intersection (ii) between the imaginary line 80 and the longitudinal axis 68 of the oscillating rasp 50 is between 20 and 30°.

[0021] As described above, the cutting surface 66 of the cutting head 58 mimics the shape of the posterior medial surface 28 of the buttress 24 of the augmented glenoid component 10 when the oscillating rasp 50 is oscillated along a predetermined path in contact with the glenoid of the patient. In the exemplary construction described herein, the throw of the oscillating tool 100 is 8° (i.e., the rasp is advanced through a 4° path in each direction from centre). However, the configuration of the oscillating surgical rasp 50 allows it to accommodate any number of the different throws created by different oscillating tools 100.

[0022] As can be seen in the plan view of FIG. 8, the cutting teeth 60 of the rasp’s cutting head 58 angle toward one another when viewed front-to-back (i.e., in the anterior-to-posterior direction). In particular, the cutting teeth 60 include a number of superior cutting teeth 82 and a number of inferior cutting teeth 84. The inferior cutting teeth 84 are positioned inferiorly relative to the superior cutting teeth 82. In the example shown in the drawing, the superior cutting teeth 82 are parallel to one another, and the inferior cutting teeth 84 likewise are parallel to one another. The superior cutting teeth 82 and the inferior cutting teeth 84 extend posteriorly away from the longitudinal axis 68 of the oscillating rasp at an angle relative to one another so as to converge toward one another. This is shown in FIG. 8 where the anterior end 86 of a given superior cutting tooth 82 is spaced apart from the anterior end 88 of a given inferior cutting tooth 84 by a distance that is greater than the distance in which the posterior end 90 of the same superior cutting tooth 82 is spaced apart from the posterior end 92 of the same inferior cutting tooth 84. In other words, the distance between the posterior ends of a given pair of teeth 82, 84 is shorter than the distance between the same pair of teeth’s anterior ends. Such an angled arrangement allows the cutting teeth 82, 84 to efficiently expel removed bone tissue during operation of the oscillating rasp 50.

[0023] The rasp’s cutting head 58 also has a number of non-cutting surfaces. In particular, a substantially flat, smooth anterior sidewall 70 extends upwardly from the anterior end 72 of the cutting head 58. As shown in FIG. 6, the anterior sidewall 70 is devoid of cutting teeth. A posterior sidewall 74 extends upwardly from the posterior end 76 of the cutting surface 66 to a backside surface 78 of the cutting head 58. Like the anterior side wall 70, the posterior sidewall 74 and the backside surface 78 are devoid of cutting teeth.

[0024] As can be seen in FIG. 7, the cutting surface 66 of the oscillating surgical rasp 50 has a radius of curvature R1. As can be seen in FIG. 7, the origin of the cutting surface’s radius of curvature is the center of the keying slot 62. This represents the center of oscillation when the rasp 50 is operated. As described above, the posterior medial surface 28 of the buttress 24 of the augmented glenoid component 10 is rounded (i.e., convex) in the superior/inferior direction. As can be seen in FIG. 2, the rounded surface of the posterior medial surface 28 of the buttress 24 has a radius of curvature R2. The oscillating rasp 50 is arranged such that the radius of curvature R1 of its cutting surface 66 closely mimics the radius of curvature R2 of the posterior medial surface 28 of the buttress 24 of the augmented glenoid component 10. In one construction, the length of the radius of curvature R1 of the rasp’s cutting surface 66 is within 5 mm of the length of the radius of curvature R2 of the posterior medial surface 28 of the buttress 24 of the augmented glenoid component 10. In a preferred arrangement, the length of the radius of curvature R1 of the rasp’s cutting surface 66 is within 3 mm of the length of curvature R2 of the posterior medial surface 28 of the buttress 24 of the augmented glenoid component 10. In one preferred arrangement, the length of the radius of curvature R1 of the rasp’s cutting surface 66 is equal to the length of the radius of curvature R2 of the posterior medial surface 28 of the buttress 24 of the augmented glenoid component 10. In the arrangement shown in the drawings, both the length of the radius of curvature R1 of the rasp’s cutting surface 66 and the length of the radius of curvature R2 of the posterior medial surface 28 of the buttress 24 of the augmented glenoid component 10 are 32.97 mm.

[0025] The cutting head 58 of the oscillating rasp 50 also includes a depth stop 96. The depth stop 96 extends in the direction opposite to the cutting surface 66. In other words, the depth stop 96 extends anteriorly from the longitudinal axis 68 of the oscillating rasp 50. As will be described below in greater detail, the depth stop 96 bottoms out on a rasp guide 110 secured to the reamed surface of the patient’s glenoid to ensure the posterior glenoid surface is prepared to the desired depth relative to the anterior glenoid surface. In other words, the depth stop 96 creates a spatial relationship (i.e., a depth) between the surgically-prepared anterior and posterior glenoid surfaces which matches the distance between the posterior medial surface 28 of the glenoid component’s buttress 24 and its anterior medial surface 32. Such a distance is defined by the height of the side surface 30 that extends perpendicularly from the posterior medial surface 28 of the buttress 24 to the anterior medial surface 32 of the augmented glenoid component 10 (see FIGS. 1 to 3).

[0026] The depth stop 96 may be constructed as a number of different structures. For example, the depth stop 96 may be constructed as one or more tabs, bars, flanges, other similar structures configured to bottom out on the rasp guide 110 secured to the anterior surface of the patient’s glenoid to prevent further penetration of the cutting head 58 into the posterior surface of the patient’s glenoid. In the arrangement shown in the drawings, the depth stop 96 is a generally oval-shaped bar that has its edge secured to the anterior sidewall 70 of the rasp’s
In the arrangement shown in the drawings, the oscillating surgical rasp 50 is a monolithic component. Hence, the attachment head 52 is integrally formed with the cutting head 58. The oscillating surgical rasp 50 may be constructed from a medical-grade metal such as stainless steel, a cobalt chromium alloy, or titanium, although other metals or alloys may be used. Rigid polymers such as polyaryletheretherketone (PEEK) may also be used.

Figs. 10 to 14 show a rasp guide 110 for use along with the oscillating rasp 50 in a surgical procedure to implant the augmented glenoid component 10. The rasp guide 110 includes a body 122 having a concave guide surface 126 on one end thereof. The concave guide surface 126 of the body 122 provides a smooth guide surface upon which depth stop 96 bottoms out and then articulates during operation of the oscillating surgical rasp 50. An anchor surface 132 is formed in the side of the body 122 opposite the concave surface 126. The anchor surface 132 is rounded (i.e., convex) and configured to be secured to the glenoid of the patient.

The rasp guide 110 also includes an anchor peg 134. The anchor peg 134 extends perpendicularly from the anchor surface 132. The anchor peg 134 includes a tapered head 136 that functions as a lead-in to facilitate insertion into a hole drilled or otherwise formed in the glenoid surface of the patient’s scapula. In the example shown in the drawings, the anchor peg 134 of the rasp guide 110 shares a common configuration (e.g., length and diameter) with the anchor peg 34 of the augmented glenoid component 10. The rasp guide 110 also includes a number of pointed anchoring pins 138. The anchoring pins 138 extend perpendicularly away from the anchor surface 132 of the rasp guide 110. The anchoring pins 138 may be driven into the glenoid of the patient to stabilize the rasp guide 110 (e.g., prevent it from rotating about the anchor peg 134). As can be seen in Fig. 13 and 14, a hole 140 extends through the body 122 if the rasp guide 110. A separate anchoring pin (not shown) can be inserted through the hole 140 and driven into the glenoid of the patient to further stabilize the rasp guide 110.

When the rasp guide 110 is secured to the patient’s glenoid, the posterior edge 142 of the rasp guide 110 defines a vertical boundary between the anterior and posterior portions of the glenoid. As such, the rasp guide 110 protects the anterior surface and the center hole (i.e., the hole into which the anchor peg 34 of the augmented glenoid component 10 is inserted). As will be discussed below in greater detail, during rasping with the oscillating rasp 50, the cutting head 58 is prevented from cutting anteriorly of the edge 142 of the rasp guide 110, resulting in the creation of a wall of bone in the center of the glenoid that serves as the perpendicular step between the anterior and posterior halves of the medial surface of the augmented glenoid component 10. A surgically prepared surface is therefore created which corresponds with the side surface 30 of the augmented glenoid component 10.

As can be seen in FIG. 12, the guide surface 126 of the rasp guide 110 has a radius of curvature R3. As described above and as can be seen in FIG. 2, the rounded surface of the posterior medial surface 28 of the buttress 24 has a radius of curvature R2. The cutting guide 11 is arranged such that the radius of curvature R3 of its guide surface 126 is similar to the radius of curvature R2 of the posterior medial surface 28 of the buttress 24 of the augmented glenoid component 10. In one construction, the length of the radius of curvature R3 of the guide’s guide surface 126 is within 5 mm of the length of the radius of curvature R2 of the posterior medial surface 28 of the buttress 24 of the augmented glenoid component 10. In a preferred arrangement, the length of the radius of curvature R3 of the guide’s guide surface 126 is equal to the length of the radius of curvature R2 of the posterior medial surface 28 of the buttress 24 of the augmented glenoid component 10.

Moreover, in some arrangements, rigid polymers such as polyaryletheretherketone (PEEK) may also be used.

Referring now to FIGS. 15 to 20, there is shown a surgical procedure in which the oscillating rasp 50 is used to surgically prepare the patient’s glenoid 184 for implantation of the augmented glenoid component 10. The surgical procedure begins with preoperative planning in which, amongst other things, a thin cut (for example, 1 mm) axial CT scan with the gantry positioned perpendicular to the plane of the glenoid and plane of the scapula is obtained. A single axial slice just below the mid-equator of the glenoid is obtained for measurement of glenoid version. Correction of retroversion may then be individualized to the patient. With the preoperative planning complete, the patient’s soft tissue is dissected and retracted in order to allow access to the glenoid. Full (i.e., 360°) exposure of the bony glenoid is typically achieved.

As shown in FIG. 15, a guide pin 186 is then inserted in the centre of the glenoid 184 in an orientation that will allow for the desired amount of retroversion correction. This can be accomplished using one of a number of different pin placement devices. The guide pin 186
may be scored in locations along its length to allow for controlled breakage to adjust the length of the pin 186 subsequent to being inserted. Specifically, at any point in the procedure, the guide pin 186 can be shortened to a more desirable length by placing a handle just above a score mark and a needle driver just below the same score mark and bending the pin 186 at the score mark. It can be appropriate for about 50 to about 75 mm (2 to 3 inches) of the pin 186 protrude laterally from the glenoid.

[0035] A sizer pin guide (not shown) may then be placed over the guide pin 186. The sizer pin guide is used to determine the optimal size augmented glenoid component for the patient’s glenoid. Typically, a desired size of an augmented glenoid component covers as much of the glenoid surface as possible without overhanging the periphery of the bone surface.

[0036] The anterior surface 188 of the patient’s glenoid 184 is then reamed in a typical manner. In particular, as shown in FIG. 16, a spherical reamer 182 is used over the guide pin 186 to ream the anterior surface 188 of the glenoid and create an even, concave surface from the superior edge of the glenoid 184 (i.e., 12 o’clock) to the inferior edge of the glenoid 184 (i.e., 6 o’clock). This reamed surface 190 is the final surgically-prepared surface that contacts the anterior medial surface 32 of the augmented glenoid component 10 when it is implanted. It should be appreciated that if the spherical reamer 182 used is smaller than the superior/inferior dimension of the augmented glenoid component 10, a small amount of bone on the superior and/or inferior aspects of the anterior glenoid will remain. This remaining bone may be removed with a peripheral reamer (not shown). A hand burr (not shown) may be alternatively used to remove the remaining bone. The reamed surface 190 of the patient’s anterior glenoid 184 is shown in FIG. 17.

[0037] A depth gauge (not shown) may then be placed over the guide pin 186. The contact and conformity between the back surface of the depth gauge and the prepared anterior glenoid surface 190 is the determined. Further preparation of the bone may then be performed if the contact and conformity is not to the surgeon’s satisfaction. The maximum depth of the posterior glenoid defect is measured by inserting a depth probe (not shown) through the depth gauge. Optionally, three holes in the posterior half of the depth gauge are provided so that three different locations and their respective depths can be evaluated. In most cases the greatest depth of the defect is on the posterior, inferior quadrant of the glenoid. Such an evaluation allows for implant selection (i.e., selection of a particularly sized augmented glenoid component 10). For example, if the maximum depth is 3 mm or less, an augmented glenoid component 10 with a 3 mm augment (i.e., a 3 mm thick buttress 24) is needed. If the depth measured is between 3 mm and 5 mm, an augmented glenoid component 10 with a 5 mm augment is needed. If the depth measured is between 5 mm and 7 mm, an augmented glenoid component 10 with a 7 mm augment is needed. For example, if the depth measured is more than 7 mm, additional bone may need to be removed from the anterior surface 188 of the patient’s glenoid 184. In this case, the amount of additional bone to be removed is equal to the maximum defect minus 7 mm.

[0038] The appropriate size posterior preparation guide (not shown) is then placed over the guide pin 186 so that it firmly and concentrically contacts the prepared anterior glenoid surface 190. The posterior window in the guide defines the boundaries of the posterior surface 194 of the glenoid 184 to be prepared to accept the buttress 24 of the augmented glenoid component 10, and it can be used as a template for marking these boundaries with either a sterile pen, saw blade, or a bovie.

[0039] Once the boundaries of the buttress 24 have been marked, the posterior glenoid is surgically prepared. At the outset, as shown in FIG. 17, a cannulated centre drill 180 of the appropriate length based on the step height of the buttress 24 of the selected augmented glenoid component 10 is inserted over the guide pin 186. The drill is then used to prepare (i.e., drill) the glenoid 184 to accept the anchor peg 34 of the augmented glenoid component 10. The drill 180 is advanced until it bottoms out on the reamed anterior surface 190 of the glenoid 184. Once the centre hole 178 for the anchor peg 34 has been drilled, a pin puller or other instrument (not shown) is used to grasp and remove the guide pin 186.

[0040] As shown in FIG. 18, the appropriate sized rasp guide 110 is then secured to the reamed anterior surface 190 of the glenoid 184. To do so, the tapered head 136 of the rasp guide’s anchor peg 134 is inserted into the centre hole 178 drilled in the reamed anterior surface 190 of the glenoid 184. The rasp guide 110 may then be tapped with a surgical mallet (not shown) or other instrument to drive the anchoring pins 138 of the rasp guide 110 into the glenoid 184 of the patient to stabilize the rasp guide 110 (e.g., prevent it from rotating about the anchor peg 134). Optionally, an additional anchoring pin 176 can be inserted through the hole 140 and driven into the glenoid 184 of the patient to further stabilize the rasp guide 110.

[0041] As can be seen in FIG. 18, when the rasp guide 110 is secured to the patient’s glenoid 184, the posterior edge 142 of the rasp guide 110 defines a vertical boundary between the reamed anterior surface 190 and the posterior surface 194 of the glenoid 184 that is to be rasped. As such, the rasp guide 110 protects the prepared anterior surface 190 and the centre hole 178. In the example shown in the drawings, the rasp guide is centred in the anterior/posterior direction. As such, the vertical boundary created by the guide’s posterior 142 divides the glenoid 184 into two equally sized halves in the anterior/posterior direction. As will be discussed below with reference to FIG. 19, during rasping with the oscillating rasp 50, the cutting head 58 is prevented from cutting anteriorly of the edge 142 of the rasp guide 110, resulting in the creation of a wall of bone in the centre of the glenoid 184 that serves as the perpendicular step.
between the anterior and posterior halves of the medial surface of the augmented glenoid component 10. A surgically prepared surface is therefore created which corresponds with the side surface 30 of the augmented glenoid component 10.

[0042] An oscillating rasp 50 sized to match the buttress 24 of the selected augmented glenoid component 10 is then obtained from a number of differently-sized rasps 50 and used to complete the posterior preparation. The attachment head 52 of the selected oscillating rasp 50 is then secured within the chuck 102 of the oscillating power tool 100 (see FIG. 7). Once chucked, the rasp 50 is advanced into contact with the posterior portion of the glenoid 184. As shown in FIG. 19, the surgeon then activates the oscillating power tool 100 and advances the cutting surface 66 of the cutting head 58 into contact with the posterior surface 194 of the glenoid 184. As the rasp 50 is advanced inwardly toward the patient’s glenoid 184, the oscillating motion of the rasp 50 abrades the bone and continues to remove bone until the leading surface 94 of the depth stop 96 (see FIGS. 4 to 7) bottoms out on the concave guide surface 126 of the rasp guide 110. The surgeon continues to oscillate the rasp 50 with the depth stop 96 riding on the concave guide surface 126 thereby using the rasp guide 110 as a preparation guide. This ensures the posterior glenoid surface 194 is prepared to the desired depth relative to the anterior glenoid surface 190. In other words, the depth stop 96 creates a spatial relationship (i.e., a depth) between the surgically-prepared anterior surface 190 and the posterior glenoid surface 194 which matches the distance between the posterior medial surface 28 of the glenoid component’s buttress 24 and its anterior medial surface 32. Such a distance is defined by the height of the side surface 30 that extends perpendicularly from the posterior medial surface 28 of the buttress to the anterior medial surface 32 of the augmented glenoid component 10 (see FIGS. 1 to 3). When the depth stop 96 of the rasp 50 contacts the concave guide surface 126 thereby using the rasp guide 110 in such a manner, the posterior preparation of the posterior glenoid surface 198 of the glenoid 184 is complete (see FIG. 20).

[0043] It should be appreciated that a number of differently-sized rasps 50 may be used to complete the rasped posterior glenoid surface 198 instead of a single rasp 50. In particular, a number of progressively larger-sized rasps 50 may be used to produce the desired final size. For example, initial rasping may be performed with a rasp 50 having a relatively small cutting head 58. Thereafter, one or more additional rasps 50 having progressively larger cutting heads 58 may be used to perform subsequent rasping to form a larger cavity of the desired final size.

[0044] A bone preparation assessor (not shown), which is sized according to the medial surfaces of the selected augmented glenoid component 10, is then used to determine whether the anterior reaming and posterior rasping of the bony surfaces was sufficient to accommo-

date the selected augmented glenoid component 10. The bone preparation assessor generally makes full and concentric contact with the prepared glenoid surfaces. If high spots on the bone are preventing the bone preparation assessor from seating completely, an impactor, tamp, or other instrument may be used to make the prepared glenoid surfaces more conforming. The fit of the bone preparation assessor may then be assessed again.

[0045] A peripheral drill guide (not shown) specific to the selected augmented glenoid component 10 is then inserted into the drilled centre hole. The holes for the stabilizing pegs 38 are then drilled with the assistance of the drill guide.

[0046] An implant trial (not shown) is placed into the prepared glenoid 184, and its fit is assessed. Full and concentric contact between the medial side of the trial and the prepared surfaces of the bone is generally desired. If this is not the case, some or all of the prior bone preparation steps may be repeated. If the fit is adequate, the trial is removed.

[0047] Finely morselised bone retrieved during the glenoid preparation is used to create a “bone paste.” This bone paste is interposed between the fins 40 of the anchor peg 34 of the augmented glenoid component 10 to facilitate tissue integration. Bone cement, such as PMMA-based bone cement, is placed in the peripheral holes (i.e., the holes for the stabilizing pegs 38) of the prepared glenoid 184 and pressurized using a fingertip. The augmented glenoid component 10 is then inserted, and a glenoid impactor (not shown) is used to seat the component 10 until there is complete contact with the perimeter of the glenoid 184. Pressure on the implanted component 10 is maintained until the cement has hardened.

[0048] It should be appreciated that modifications to the above-described surgical procedure are contemplated. For example, some surgeons may prefer to perform the rasping procedure “free hand” without the use of the rasp guide 110. In such a case, once the boundaries of the buttress 24 have been marked, the surgeon may use a saw blade or other surgical tool to create a channel in the midline of the patient’s glenoid 184 in the superior/inferior direction. The depth of such a channel is guided by the etch marks on the saw blade. For example, for a 3 mm augment, the saw blade should be advanced until the 3 mm etch mark is at the same level as the surface of the glenoid 184. This creates a wall of bone in the centre of the glenoid 184 that serves as the perpendicular step between the anterior and posterior halves of the medial surface of the augmented glenoid component 10. A surgically prepared surface is therefore created which corresponds with the side surface 30 of the augmented glenoid component 10.

[0049] The surgeon may then rasp the posterior glenoid surface 194 using the surgically-prepared anterior surface 190 as a guide surface. Namely, the surgeon may rasp the posterior glenoid surface 194 with the depth stop 96 riding on the surgically-prepared anterior surface 190 thereby using the reamed anterior glenoid surface...
Claims

1. An orthopaedic surgical instrument assembly for use in the surgical preparation of a glenoid of a patient prior to implantation of an augmented glenoid prosthesis (10), the surgical instrument assembly comprising:

an oscillating surgical rasp (50) comprising (i) an attachment head (52) configured to be secured in a chuck (102) of an oscillating tool (100), and (ii) a cutting head (58) secured to the attachment head, the cutting head comprising a cutting surface (66) extending posteriorly from the longitudinal axis (68) of the oscillating surgical rasp, the cutting surface having a plurality of cutting teeth (60), the cutting teeth are arranged in a geometry that, when oscillated along a predetermined path in contact with the glenoid of the patient, corresponds with the geometry of the augmented glenoid prosthesis, and in which the assembly further comprises a rasp guide (110) having a guide surface (126) configured to guide the oscillating surgical rasp during operation thereof along the predetermined path in contact with the glenoid of the patient, and an anchor surface (132) that is opposite the guide surface and configured to be secured to the glenoid (184) of the patient, wherein the guide surface (126) is concave.

2. The orthopaedic surgical instrument assembly of claim 1, in which the cutting head (58) of the oscillating surgical rasp (50) further comprises a depth stop (96) extending anteriorly from the longitudinal axis (68) of the oscillating surgical rasp, and the guide surface (126) of the rasp guide (110) is configured to guide the depth stop of the cutting head of the oscillating surgical rasp during operation thereof.

3. The orthopaedic surgical instrument assembly of claim 1, in which the anchor surface (132) of the rasp guide (110) comprises an anchor peg (134) extending perpendicularly therefrom, the anchor peg being configured to be received into a hole formed in the glenoid (184) of the patient.

4. The orthopaedic surgical instrument assembly of claim 1, in which the anchor surface (132) of the rasp guide (110) comprises a number of pointed anchoring pins (138) extending perpendicularly therefrom, the anchoring pins being configured to be driven into bone tissue of the glenoid (184) of the patient.

5. The orthopaedic surgical instrument assembly of claim 1, in which the plurality of cutting teeth (60) of the cutting head (50) are arranged in a geometry that, when oscillated along a predetermined path in contact with the glenoid (84) of the patient, corresponds with the geometry of a posterior buttress (24) of the augmented glenoid prosthesis (10).

6. An apparatus comprising an orthopaedic surgical instrument assembly of any preceding claim and an augmented glenoid component (10).

7. The apparatus of claim 6, in which the length of the radius of curvature of the cutting surface (66) of the cutting head (50) is within 5 mm of the length of the radius of curvature of a rounded posterior medial surface (28) of a buttress (24) of the augmented glenoid component (10).

8. The apparatus of claim 7, in which the length of the radius of curvature of the cutting surface (66) of the cutting head (50) is within 3 mm of the length of the radius of curvature of a rounded posterior medial surface (28) of a buttress (24) of the augmented glenoid component (10).

9. The apparatus of claim 8, in which the length of the radius of curvature of the cutting surface (66) of the cutting head (50) is equal to the length of the radius of curvature of a rounded posterior medial surface (28) of a buttress (24) of the augmented glenoid component (10).

10. The apparatus of claim 6, in which the length of the radius of curvature of the guide surface (126) of the rasp guide (110) is within 5 mm of the length of the radius of curvature of a rounded posterior medial surface (28) of a buttress (24) of the augmented glenoid component (10).

11. The apparatus of claim 6, in which the length of the radius of curvature of the guide surface (126) of the rasp guide (110) is within 3 mm of the length of the radius of curvature of a rounded posterior medial surface (28) of a buttress (24) of the augmented glenoid component (10).

12. The apparatus of claim 6, in which the length of the radius of curvature of the guide surface (126) of the rasp guide (110) is equal to the length of the radius of curvature of a rounded posterior medial surface (28) of a buttress (24) of the augmented glenoid component (10).

Patentansprüche

1. Orthopädische chirurgische Instrumentenanord-
nzung zur Verwendung bei der chirurgischen Präparation eines Glenoids eines Patienten vor der Implantation einer augmentierten Glenoidprothese (10), wobei die chirurgische Instrumentenanordnung umfasst:

2. Orthopädische chirurgische Instrumentenanordnung nach Anspruch 1, wobei der Schneidkopf (58) einer oszillierenden chirurgischen Raspel erstreckt, wobei die Schneidfläche (66) umfasst, die sich posterior von der Längsachse (68) der oszillierenden chirurgischen Raspel erstreckt, wobei die Schneidfläche eine Mehrzahl von Schneidzähnen (60) aufweist, wobei die Schneidflächen in einer Geometrie angeordnet sind, die, wenn sie entlang eines vorbestimmten Wegs in Kontakt mit dem Glenoid des Patienten oszilliert werden, der Geometrie der augmentierten Glenoidprothese entspricht.

3. Orthopädische chirurgische Instrumentenanordnung nach Anspruch 1, wobei die Ankerfläche (132), die der Führungsfäche (126) der Raspelführung (110) konfiguriert ist, an dem Glenoid (184) des Patienten befestigt zu werden, wobei die Führungsfäche (126) konkav ist.
Revendications

1. Ensemble instrument chirurgical orthopédique pour la préparation chirurgicale d’une cavité glénoïde d’un patient avant l’implantation d’une prothèse glénoïde augmentée (10), l’ensemble instrument chirurgical comprenant :

 une râpe chirurgicale oscillante (50) comprenant (i) une tête de fixation (52) configurée pour être fixée dans une pièce de serrage (102) d’un outil oscillant (100), et (ii) une tête coupante (58) fixée à la tête de fixation, la tête coupante comprenant une surface coupante (66) s’étendant postérieurement depuis l’axe longitudinal (68) de la râpe chirurgicale oscillante, la surface coupante ayant une pluralité de dents coupantes (60), les dents coupantes sont agencées selon une géométrie qui, lors d’une oscillation le long d’un chemin prédéterminé en contact avec la cavité glénoïde du patient, correspond à la géométrie de la prothèse glénoïde augmentée, et dans lequel l’ensemble comprend en outre un guide (110) de râpe ayant une surface de guidage (126) configurée pour guider la râpe chirurgicale oscillante pendant le fonctionnement de celle-ci en contact avec la cavité glénoïde (184) du patient, dans lequel la surface de guidage (126) est concave.

2. Ensemble instrument chirurgical orthopédique selon la revendication 1, dans lequel la tête coupante (58) de la râpe chirurgicale oscillante (50) comprend en outre une butée de profondeur (96) s’étendant antérieurement depuis l’axe longitudinal (68) de la râpe chirurgicale oscillante, et la surface de guidage (126) du guide (110) de râpe est configurée pour guider la butée de profondeur de la tête coupante de la râpe chirurgicale oscillante pendant le fonctionnement de celle-ci.

3. Ensemble instrument chirurgical orthopédique selon la revendication 1, dans lequel la surface d’ancrage (132) du guide (110) de râpe comprend une cheville d’ancrage (134) s’étendant perpendiculairement depuis celle-ci, la cheville d’ancrage étant configurée pour être reçue dans un trou formé dans la cavité glénoïde du patient.

4. Ensemble instrument chirurgical orthopédique selon la revendication 1, dans lequel la surface d’ancrage (132) du guide (110) de râpe comprend un nombre de tiges d’ancrage pointues (138) s’étendant perpendiculairement depuis celle-ci, les tiges d’ancrage étant configurées pour être entraînées dans le tissu osseux de la cavité glénoïde (184) du patient.

5. Ensemble instrument chirurgical orthopédique selon la revendication 1, dans lequel la pluralité de dents coupantes (60) de la tête coupante (50) est agencée selon une géométrie qui, lors d’une oscillation le long d’un chemin prédéterminé en contact avec la cavité glénoïde (84) du patient, correspond à la géométrie d’un contrefort postérieur (24) de la prothèse glénoïde augmentée (10).

6. Appareil comprenant un ensemble instrument chirurgical orthopédique selon l’une quelconque des revendications précédentes et un composant glénoïde augmenté (10).

7. Appareil selon la revendication 6, dans lequel la longueur du rayon de courbure de la surface coupante (66) de la tête coupante (50) fait dans les 5 mm de la longueur du rayon de courbure d’une surface médiane postérieure arrondie (28) d’un contrefort (24) du composant glénoïde augmenté (10).

8. Appareil selon la revendication 7, dans lequel la longueur du rayon de courbure de la surface coupante (66) de la tête coupante (50) fait dans les 3 mm de la longueur du rayon de courbure d’une surface médiane postérieure arrondie (28) d’un contrefort (24) du composant glénoïde augmenté (10).

9. Appareil selon la revendication 8, dans lequel la longueur du rayon de courbure de la surface coupante (66) de la tête coupante (50) est égale à la longueur du rayon de courbure d’une surface médiane postérieure arrondie (28) d’un contrefort (24) du composant glénoïde augmenté (10).

10. Appareil selon la revendication 6, dans lequel la longueur du rayon de courbure de la surface de guidage (126) du guide (110) de râpe fait dans les 5 mm de la longueur du rayon de courbure d’une surface médiane postérieure arrondie (28) d’un contrefort (24) du composant glénoïde augmenté (10).

11. Appareil selon la revendication 6, dans lequel la longueur du rayon de courbure de la surface de guidage (126) du guide (110) de râpe fait dans les 3 mm de la longueur du rayon de courbure d’une surface médiane postérieure arrondie (28) d’un contrefort (24) du composant glénoïde augmenté (10).

12. Appareil selon la revendication 6, dans lequel la longueur du rayon de courbure de la surface de guidage (126) du guide (110) de râpe est égale à la longueur du rayon de courbure d’une surface médiane postérieure arrondie (28) d’un contrefort (24) du composant glénoïde augmenté (10).
Fig. 17
Fig. 18
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 1639949 A [0004]
- EP 142853 A [0004]
- WO 2006078511 A [0004]
- US 6699289 B [0016]