MOTOR, PUMP AND CLEANING APPARATUS

A motor, a pump and a cleaning apparatus are provided. The motor (22) includes a stator and a rotor (26) rotatable relative to the stator. The stator includes a stator core (54) and stator windings (56) wound around the stator core. The stator core includes a pair of opposing poles (62) and a yoke connected between the poles. Each pole has a pole arc surface (66) facing the rotor, with an air gap formed between the pole arc surface and the rotor. The pair of poles includes opposing circumferential end portions (74) spaced apart from each other, and a ratio of a distance (a1) between the circumferential end portions to a minimum width (a2) of the air gap between the pole arc surface and the rotor is less than 2.
This invention relates to motors particularly suitable for use in fans or water pumps.

BACKGROUND OF THE INVENTION

During the startup process of conventional synchronous motors, the electromagnet of the stator creates an alternating magnetic field which pulls the permanent magnetic rotor to oscillate. As the rotor obtains more kinetic energy, the oscillation magnitude of the rotor increases, and the rotor is eventually accelerated to be in synchronization with the alternating magnetic field of the stator. To ensure the successful startup, the motor is usually configured to have a low starting point, which makes the motor unable to operate at high efficiency operation point and hence leads to a low efficiency.

SUMMARY OF THE INVENTION

Thus, there is a desire for a motor with a higher efficiency.

In one aspect, a motor is provided which includes a stator and a rotor rotatable relative to the stator. The stator includes a stator core and stator windings wound around the stator core. The stator core includes a pair of opposing poles and a yoke connected between the poles. Each pole has a pole arc surface facing the rotor, with an air gap formed between the pole arc surface and the rotor. The pair of poles includes opposing circumferential end portions spaced apart from each other, and a ratio of a distance between the circumferential end portions to a minimum width of the air gap between the pole arc surface and the rotor is less than 2.

Preferably, the pole arc surface is concentric with the rotor such that a uniform main air gap is formed between the pole arc surface and the rotor, and a ratio of the distance between the circumferential end portions to a width of the main air gap is less than 2.

Preferably, an inward-recessed startup groove is formed in the pole arc surface, and the startup groove and the rotor form a non-uniform air gap therebetween.

Preferably, the two startup grooves of the two pole arc surfaces of the two poles are symmetrical with respect to a diameter and extend from the respective circumferential end portions of the poles.

Preferably, the rotor comprises at least one permanent magnets, and when the stator windings are connected to an alternating current power supply in series, the rotor rotates at a constant speed of 60f/p RPM during a steady state, where f is the frequency of the alternating current power supply, and p is the number of pole pairs of the rotor.

Preferably, the motor further includes a drive circuit and a position sensor, wherein a pole axis of the rotor deviates a cute angle from a center axis of the stator when the rotor is stationary, the drive circuit is configured such that, based on magnetic pole position information detected by the position sensor, the stator windings are energized in a predetermined manner to ensure that the rotor has a fixed startup direction each time the motor is powered on.

Preferably, the position sensor is disposed in a range of a cute angle formed between a perpendicular line of the pole axis of the rotor when the rotor is stationary and a perpendicular line of the center axis of the stator.

In another aspect, a pump is provided which includes a pump housing having a pump chamber, an inlet and an outlet in communication with the pump chamber, an impeller rotatably disposed in the pump chamber and driven by a motor described above.

Preferably, the impeller comprises a plurality of curved blades arranged spacedly in a circumferential direction.

In still another aspect, a cleaning apparatus is provided which includes a cleaning chamber, a water supply passage for supplying cleaning water to the cleaning chamber, a drain passage for drainage of water, and a drain pump for pumping the cleaning water in the cleaning chamber to the drain passage, wherein the drain pump comprises the features of the pump as described above.

BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment of the invention will now be described, by way of example only, with reference to figures of the accompanying drawings. In the figures, identical structures, elements or parts that appear in more than one figure are generally labeled with a same reference numeral in all the figures in which they appear. Dimensions of components and features shown in the figures are generally chosen for convenience and clarity of presentation and are not necessarily shown to scale. The figures are listed below.

Fig. 1 illustrates a pump according to one embodiment of the present invention.

Fig. 2 is an axial cross-sectional view of the pump of Fig. 1.

Fig. 3 is an axial cross-sectional view of a motor rotor of the pump of Fig. 1.

Fig. 4 illustrates a magnet of the rotor of Fig. 3.

Fig. 5 is a radial cross-sectional view of the motor rotor of Fig. 3.

Fig. 6 is a partial, plane view of a motor of the pump of Fig. 1.
Fig. 7 is a plane view of a stator core of the motor of Fig. 6.

Fig. 8 illustrates another embodiment of insulating winding brackets of the stator of the motor of Fig. 6.

Fig. 9 is a view showing the insulating winding brackets of the stator of the motor of Fig. 6 are arranged end to end in the horizontal direction.

Fig. 10 illustrates a pump housing cover body of the pump of Fig. 1.

Fig. 11 is a view of the pump of Fig. 1 with the pump housing cover body removed.

Fig. 12 illustrates mounting structures of the motor rotor of the pump of Fig. 1.

Fig. 13 is a bottom view of a bottom plate of the pump of Fig. 1.

Fig. 14 illustrates an impeller of the pump of Fig. 1.

Fig. 15 illustrates a dishwasher employing the pump according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0015] Referring to Fig. 1 and Fig. 2, a pump 10 according to one embodiment of the present invention includes a pump housing 14 having a pump chamber 12, an inlet 16 and an outlet 18 in fluid communication with the pump chamber 12, an impeller 20 and a motor 22 for driving the impeller 20. Preferably, the motor 22 is a synchronous motor including a stator and a rotor 26 rotatable relative to the stator. The pump described herein is particularly suitable for use in cleaning apparatus such as dishwashers or laundry machines.

[0016] Referring to Fig. 3 through Fig. 5, the rotor 26 includes a rotary shaft 28 and magnets 30 fixed to the rotary shaft 28. In the illustrated embodiment, the rotor 26 includes two permanent magnets 30 forming two poles with opposite polarities. The permanent magnets 30 are fixed to the rotary shaft 28 by an over-molding piece 32. The over-molding piece 32 includes an inner ring 34, an outer ring 36, and two end plates 38 disposed to interconnect opposite axial ends of the inner and outer rings 34, 36. The outer ring 36 is over-molded on the magnets 30 and has an outer surface concentric with the rotary shaft 28. The inner ring 34 is over-molded on the rotary shaft 28. The two magnets 30 are fixed radially between the inner ring 34 and the outer ring 36 and fixed axially between the two end plates 38. A concave-convex structure 39 is formed on an outer surface of the rotary shaft 28 to strengthen the bonding force between the over-molding piece 32 and the rotary shaft 28. Each magnet 30 covers a half of the circumference along the circumferential direction, including a radial outer surface 40, a radial inner surface 42, and two coplanar connecting surfaces 44 that connect the radial outer surface 40 and the radial inner surface 42 at opposite ends of the magnet 30. The radial outer surface 40 includes an arc section 46 and two plane sections 48 extending from opposite circumferential ends of the arc portion 46 to the connecting surfaces 44. The magnets 30 may be sintered from powder material. The plane sections 48 may be used to position the formed magnet 30 for subsequent processing such as grinding. The arc section 46 of the outer surface 40 may be concentric with the radial inner surface 42. The radial inner surfaces 42 of the two magnets 30 cooperatively define an inner bore 50 for the rotary shaft 28 to pass therethrough. The inner ring 34 of the over-molding piece 32 is formed between the radial inner surface 42 and the rotary shaft 28.

[0017] Preferably, a ratio of a pole arc angle \(\theta \) of each magnet 30 to the angle of 180 degrees is in the range of 0.75 to 0.95, and more preferably in the range of 0.9 to 0.95. The term "pole arc angle" as used herein refers to the angle formed by hypothetical lines connecting the two circumferential ends of the arc surface section 46 of the radial outer surface 40 and a center axis of the rotary shaft 28. The two plane surface sections 48 of the radial outer surfaces 40 of the two magnets 30 at one same side are coplanar. A distance \(d_1 \) between two circumferential ends of the two coplanar plane surface sections 48 is in the range of 2mm to 9.5mm. A ratio of a distance \(d_2 \) between two outer ends of the two coplanar connecting surfaces 44 to a diameter \(d_3 \) of the outer surface of the over-molding piece 32 is in the range of 0.82 to 0.95. In one embodiment, the pole arc angle \(\theta \) of the magnet 30 is greater than 166 degrees, and the distance \(d_1 \) between the two circumferential ends of the two coplanar plane surface sections 48 is in the range of 2mm to 2.5mm. The axial end of the outer ring 36 of the over-molding piece 32 defines at least two positioning grooves 52 spacedly disposed in the circumferential direction, for positioning the two magnets 30 during the process of forming the over-molding piece 32. Each positioning groove 52 is disposed at an area where the two magnets 30 contact with each other, with the two plane surface sections 48 at the same side of the two magnets 30 completely exposed.

[0018] In comparison with the conventional arc magnet, the pole arc angle of the magnet of the rotor in the present embodiment is increased, which reduces the cogging torque of the motor, making rotation of the rotor smoother. In comparison with the ring-shaped magnet, the arc magnet of the present embodiment reduces the cost.

[0019] Referring to Fig. 6 and Fig. 7, the stator includes a stator core 54 and stator windings 56 wound around the stator core 54. In the present embodiment, the stator...
core 54 includes a bottom 58, two branches 60 extending from opposite ends of the bottom 58, and a pair of opposing poles 62 formed on the two branches 60. Preferably, the bottom 58 is bar-shaped, the two branches 60 extend in parallel from opposite ends of the bottom 58, and the two poles 62 are formed on the two branches 60 at ends thereof away from the bottom 58. Each pole 62 includes two side surfaces 64, 65 extending from the corresponding branch 60 and substantially parallel to the bottom 58 and a recessed pole arc surface 66 between the two side surfaces 64 and 65. The outer surface of the rotor faces the pole arc surface 66, with an air gap formed therebetween.

[0020] Preferably, the bottom 58 and the two branches 60 may be separately formed. The bottom 58 may be formed by a stack of multiple plate-shaped bottom members, and the branch 60 may be formed by a stack of multiple plate-shaped branch members. Each of the bottom members and branch members defines an assembly hole 68 for mounting the stacked plate-shaped member together. A protrusion 70 projects from an end surface of an end of each branch 60 adjacent the bottom 58, and the opposite ends of the bottom 58 correspondingly form two recessed portions 72. After the bottom members and branch members are assembled to form their respective lamination structures, the protrusions 70 of the two branches 60 are snappingly connected with the two recessed portions 72 of the bottom 58 to form the stator core. Alternatively, the protrusion 70 may be formed on the bottom 58 and the recessed portion 72 may be formed in the branch 60. In the present embodiment, a maximum width b1 of the bottom 58 is not greater than a minimum distance b2 between the two branches 60 after they are spliced together. A maximum length b3 of the bottom 58 is not greater than a maximum distance b4 between the side surface 64 of the branch 60 facing the bottom and the farthest point of the end of the branch 60 adjacent the bottom (the distal end of the protrusion 70 in the present embodiment). In the stator core as constructed above, the bottom 58 may be formed by the material between the two branches 60 that was removed during the process of forming the branches 60, thus saving the material and hence reducing the cost. In addition, the maximum length b3 of the bottom 58 may be greater than a distance b5 between the side surface 64 of the branch 60 facing the bottom 58 and the end surface of the end of the branch 60 adjacent the bottom 58.

[0021] The two stator poles 62 form opposing circumferential end portions 74 at each of two circumferential ends of the stator poles. An open slot 75 is defined between the opposing circumferential end portions, which forms a large magnetic resistance and reduces magnetic leakage. In the present embodiment, the open slot 75 extends radially through the two poles thus separating the two poles apart. The pole arc surfaces 66 of the stator poles 62 and the outer surface of the rotor 26 form a substantially uniform air gap therebetween. The phraseology "substantially uniform air gap" refers to the situation where a uniform air gap is formed between most part of the stators and most part of the rotor, and only a few part of the air gap is non-uniform. Preferably, the pole arc surfaces 66 of the stator poles are concentric with the rotor thus forming a uniform main air gap 76. Each pole arc surface 66 forms an inward-recessed startup groove 78, such that a non-uniform air gap is formed between the startup groove 78 and the outer surface of the rotor 26. Preferably, the two startup grooves 78 of the pole arc surfaces of the two poles 62 are symmetrical with respect to a diameter of the rotor and each extend from a corresponding one of the circumferential end portions 74. This configuration can ensure that a pole axis S1 (Fig. 5) of the rotor 26 deviates an angle from a center axis S2 of the stator pole 62 when the rotor 26 is stationary, such that the rotor has a fixed starting direction each time the motor is powered on. The pole axis refers to the boundary between two different magnetic poles (the two magnets in this present embodiment), and the center axis of the stator pole refers to a line passing centers of the two poles 62.

[0022] Preferably, a ratio of a distance a1 between the two opposed circumferential end portions 74 of the two stator poles to a minimum air gap (the main air gap between the pole arc surface and the rotor in the present embodiment) between the pole arc surface and the rotor is less than 2.

[0023] In the present embodiment, the two open slots 75 have the same and uniform width and are parallel to the length direction of the branches 60. Alternatively, each open slot 75 may have a non-uniform width. In this case, the distance a1 between the two opposed circumferential end portions 74 as described above refers to the minimum width of the open slot 75. In addition, the open slot 75 may not extend through the two poles. Rather, the open slot is only formed in an inner surface or outer surface of the two poles as long as a large magnetic resistance is formed between the two poles.

[0024] The motor configuration of the present embodiment can ensure that the rotor has the fixed starting direction and, at the same time, reduce the cogging torque of the motor thus making the rotation of the rotor smoother.

[0025] Referring to Fig. 8 and Fig. 9, preferably, the stator includes a pair of stator windings 56 respectively wound around insulating winding brackets 80 of the two branches 60 of the stator core 54. The motor further includes a circuit board 82 (Fig. 2) mounted to the insulating winding brackets 80 in a direction parallel to the branches 60. An overheat protector 84 is mounted to the circuit board 82. The overheat protector 84 is disposed between the circuit board 82 and the two stator windings 56 and can cut off the power supply in case the temperature of either of the windings 56 is over high. The two stator windings 56 may be formed by winding two separate conductor wires 86 which are then electrically connected to each other. Each conductor wire 86 has an incoming terminal 88 and an outgoing terminal 90. The two windings
may be formed by winding the two conductor wires 86 at the same time, which is time saving. The two incoming terminals 88 of the two stator windings 56 are located at lengthwise ends of the parallel branches 60 and are disposed at inner layers of the windings. The two outgoing terminals 90 are located at the other lengthwise ends of the parallel branches 60 and are disposed at outer layers of the windings. The insulating winding bracket 88 includes a tubular portion 92 and end walls 94 extending outwardly from opposite ends of the tubular portion 92. A winding space 95 is formed between a radial outer surface of the tubular portion 92 and axially opposing surfaces of the two end walls 94, for receiving the windings 56.

The end walls 94 of the two insulating winding brackets 80 at the side where the incoming terminals 88 are disposed each form a wire guiding slot 96. The two incoming terminals 96 of the two stator windings 56 are routed from an outside of the winding brackets 80 through the wire guiding slots 96 to the winding spaces 95 at the inside of the winding brackets 80. An isolating wall 98 is formed between the wire guiding slot 96 and the winding space 95 at the inside of the winding bracket. The isolating wall 98 extends to the outer surface of the tubular portion 92. The incoming terminal 88 is blocked by the isolating wall 98 and does not enter the winding space until reaching the outer surface of the tubular portion 92. Therefore, the incoming terminal 88 is isolated from each layer of coil in the winding space 95, thus avoiding short-circuit of the coils due to frictional contact between the incoming terminal and the coils in the winding space which scrapes off the insulating layer of the conductor wire. Preferably, the two outgoing terminals 90 may be soldered to the circuit board 82 and electrically connected such that the two windings 56 are connected in series. The two incoming terminals 88 of the two windings 56 may be powered by an external single-phase alternating current supply. Preferably, as shown in Fig. 9, the two insulating winding brackets 80 are integrally formed and are arranged in the length direction to have a bar shape. After the two windings 56 are wound around the winding brackets 80, the bar-shaped two winding brackets 80 are bent to be parallel to each other. The two parallel winding brackets 80 are then attached around the two parallel branches 60 of the stator core 54. Preferably, the two incoming terminals of the two windings 56 are disposed at two distal ends of the bar-shaped two winding brackets 80 away from each other or disposed at two adjacent ends of the bar-shaped two winding brackets 80 at a central portion thereof, and the winding direction of the two windings are opposite to each other. As such, once the two winding brackets are bent to be parallel to each other, the two incoming terminals of the two windings are disposed at the same ends, and the magnetic fields generated by the two windings connected in series do not cancel out each other.

Referring to Fig. 10 through Fig. 12, the pump housing 14 includes a cover body 100, a bottom plate 102 mounted to the cover body 100. The cover body 100 is hermetically connected to the bottom plate 102 by a sealing ring 104. Preferably, the sealing ring 104 is positioned in a radial groove 106 of the bottom plate 102 to prevent the sealing ring 104 from becoming disengaged from the bottom plate 102 before the cover body 100 is mounted to the bottom plate 102. The cover body 100 includes a top plate 108, and a side enclosing plate 110 interconnecting the top plate 108 and the bottom plate 102. The inlet 16 extends generally axially outwardly from the top plate 108, and the outlet 18 extends from the side enclosing plate 110 in a direction generally perpendicular to the axial direction. The cover body 100 and the bottom plate 102 form the pump chamber 12 therebetween, and the impeller 20 is rotatably disposed in the pump chamber 12.
tending circumferentially on an outer surface of the bearing 128. An inner surface of the shock absorber 132 forms a groove 136 for engaging with the ridge 134. This construction can ensure the concentricity between the bearing 128 and the rotor. The bearing 130 may be supported by a bearing seat 138 integrally formed with the rotor housing 124. A plurality of internal teeth 140 is formed on an inner surface of the bearing seat 138, which leads to a non-continuous contact between the inner surface of the bearing seat 138 and the outer surface of the bearing 130. This configuration can reduce vibration generated by the motor during operation.

[0031] The rotor housing 124 is fixed between two stator poles 62. A gap is formed between the outer surface of the rotor 26 and the rotor housing 124, such that the rotor 26 can rotate relative to the rotor housing 124. An axially-extending rib 142 (shown in Fig. 11) is formed on the outer surface of the rotor housing 124. Two adjacent sides of the two insulating winding brackets 80 at the ends adjacent the stator poles 62 cooperatively form a rib 144 (Fig. 6). The rib 142 and the rib 144 are respectively inserted into the two open slots 75 between the circumferential end portions 74 of the two poles 62, thus limiting relative circumferential rotation of the stator core 54. Preferably, an outer surface of the rib 142 of the rotor housing 124 is not higher than the side surface 65 of the stator pole 62 away from the bottom 58.

[0032] Referring to Fig. 11 and Fig. 13, the motor further includes a motor cover body 146 covering the stator windings 56 and the circuit board 82. The motor cover body 146 includes a bottom wall 148 and two side walls 150 extending from the bottom wall 148. The two side walls 150 are disposed at two sides of the stator core 54. The circuit board 82 is disposed between the bottom wall 148 and the stator windings 56.

[0033] In the present embodiment, the motor cover body 146 and the pump housing 14 are mounted to each other by snap locking structures including protruding blocks 152 on the side walls 150 and hooks 154 extending downwardly from the bottom plate 102. The protruding blocks 152 are snappingly engaged with the hooks 154. The bottom plate 102 includes at least one pair of positioning protrusions 156 corresponding to the two side walls 150. Each of the side walls 150 is sandwiched between a corresponding one of the hooks 154 and a corresponding one of the positioning protrusions 156. Preferably, each positioning protrusion 156 is aligned with a void portion of the corresponding hook 154, such that the corresponding side wall 150 can be pressed by the positioning protrusion 156 to deform toward the void portion. As such, the mounting force between the motor cover body 146 and the pump housing 14 is strengthened, which reduces vibration during operation of the motor.

[0034] In the present embodiment, the hooks 154 can also function as the positioning protrusions 156 at the same time. Understandably, the pair of positioning protrusions 156 may also be separately disposed independently of the hooks 154. In the illustrated embodiment, more than one pair of positioning protrusions 156 are formed at each sidewall. Alternatively, a single pair of positioning protrusions 156 may be formed at each side. In the case of more than one pair of positioning protrusions 156, each pair of positioning protrusions 156 may be separately disposed independently of the other pair of positioning protrusions 156. Alternatively, a bar-shaped protrusion 156 is formed in a location corresponding to an inside or outside of the sidewall, and two or more than two pairs of positioning protrusions 156 share the bar-shaped protrusion 156.
The pump described herein is particularly utilize straight type blades. In an alternative embodiment, the impeller 20 may mounting post 170 are connected via a bridging portion surface. The injection molding portion 174 and the inwardly, cooperatively form a continuous closed end injection molding portion 174, which are arranged radially the mounting post 170, the shaft sleeve 172 and an in- axial end of the mounting post 170 away from the motor, the mounting post 170, the shaft sleeve 172 and an in- jection molding portion 174, which are arranged radially inwardly, cooperatively form a continuous closed end surface. The injection molding portion 174 and the mounting post 170 are connected via a bridging portion 176. In an alternative embodiment, the impeller 20 may utilize straight type blades.

Claims

1. A motor (22) comprising a stator and a rotor (26) rotatable relative to the stator, the stator comprising a stator core (54) and stator windings (56) wound around the stator core, the stator core (54) comprising a pair of opposing poles (62) and a yoke connected between the poles, each pole (62) having a pole arc surface (66) facing the rotor, with an air gap formed between the pole arc surface (66) and the rotor (26), the pair of poles comprising opposing circumferential end portions (74) spaced apart from each other, and a ratio of a distance (a1) between the circumferential end portions to a minimum width (a2) of the air gap between the pole arc surface and the rotor being less than 2.

2. The motor of claim 1, wherein the pole arc surface (66) is concentric with the rotor (26) such that a uniform main air gap is formed between the pole arc surface and the rotor, and a ratio of the distance between the circumferential end portions to a width of the uniform main air gap is less than 2.

3. The motor of claim 2, wherein an inward-recessed startup groove (78) is formed in the pole arc surface (66), and the startup groove (78) and the rotor (26) form a non-uniform air gap therebetween.

4. The motor of claim 2, wherein the two startup grooves (78) of the two pole arc surfaces of the two poles are symmetrical with respect to a diameter and extend from the respective circumferential end portions (74) of the poles.

5. The motor of claim 3, wherein the rotor (26) comprises at least one permanent magnet (30), and when the stator windings (56) are connected to an alternating current power supply in series the rotor (26) rotates at a constant speed of 60f/p RPM during a steady state, where f is the frequency of the alternating current power supply, and p is the number of pole pairs of the rotor.

6. The motor of claim 5, further comprising a drive circuit and a position sensor (158), wherein a pole axis (S1) of the rotor deviates a cute angle from a center axis (S2) of the stator when the rotor is stationary, the drive circuit is configured such that, based on magnetic pole position information detected by the position sensor (158), the stator windings (56) are energized in a predetermined manner to ensure that the rotor has a fixed startup direction each time the motor is powered on.

7. The motor of claim 6, wherein the position sensor (158) is disposed in a range of a cute angle formed between a perpendicular line of the pole axis (S1) of the rotor when the rotor is stationary and a perpendicular line of the center axis (S2) of the stator.

8. A pump (10) comprising a pump housing (14) having a pump chamber (12), an inlet (16) and an outlet (18) in communication with the pump chamber (12), an impeller (20) rotatably disposed in the pump cham- ber (20) and driven by a motor (22) of any one of above claims.

9. The pump of claim 8, wherein the impeller comprises a plurality of curved blades (162) arranged spacedly in a circumferential direction.

10. A cleaning apparatus (176) comprising a cleaning chamber (178), a water supply passage (180) for supplying cleaning water to the cleaning chamber...
(178), a drain passage (182) for drainage of water, and a drain pump (10) for pumping the cleaning water in the cleaning chamber (178) to the drain passage (182), wherein the drain pump (10) comprises the features of the pump in accordance with any one of claim 8 or 9.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- CN 201410404474 [0035]
- CN 201410404755 [0035]