EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:
10.10.2018 Bulletin 2018/41

Application number: 14764844.8

Date of filing: 17.03.2014

Int Cl.:
- F21S 13/00 (2006.01)
- H05B 37/00 (2006.01)
- F21S 6/00 (2006.01)
- F21S 10/04 (2006.01)
- F21Y 113/13 (2016.01)
- F21W 121/00 (2006.01)
- F21Y 115/10 (2016.01)

Designated Contracting States:
- AL
- AT
- BE
- BG
- CH
- CY
- CZ
- DE
- DK
- EE
- ES
- FI
- FR
- GB
- GR
- HR
- HU
- IE
- IS
- IT
- LI
- LV
- MC
- MK
- MT
- NL
- NO
- PL
- PT
- RO
- RS
- SE
- SI
- SK
- SM
- TR

Priority:
- 15.03.2013 US 201361798527 P
- 15.03.2013 US 201361798348 P
- 15.03.2013 US 201361798053 P

Date of publication of application:
17.02.2016 Bulletin 2016/07

Proprietor: Li, Xiaofeng
Shenzhen, Guangdong 518056 (CN)

Inventor: Li, Xiaofeng
Shenzhen, Guangdong 518056 (CN)

Representative: Müller-Boré & Partner Patentanwälte PartG mbB
Friedenheimer Brücke 21
80639 München (DE)

References cited:
- WO-A1-2010/009575
- CN-A- 102 748 589

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Cross-reference to Related Applications

Field of the Invention

[0002] The present disclosure relates to novel and advantageous flameless candles. Particularly, the present disclosure relates to novel and advantageous flameless candles simulating a realistic flame-like flicker, are capable of emitting a scent, and/or allow users to more easily control the candles’ operations.

Background of the Invention

[0003] The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.

[0004] Traditional true flame candles, when lit, provide a pleasant ambience in many homes and businesses. Traditional candles may also be scented, adding a pleasant aroma. While the wax typically has a scent, even when the candle is not lit, this scent may be amplified when the candle is lit. Traditional candles however, provide a variety of hazards including risk of fire, damage to surfaces caused by hot wax, and the possible emission of soot. Flameless candles have become increasingly popular alternatives to traditional candles. With no open flame or hot melted wax, flameless candles provide a longer-lasting, safe, and clean alternative. There are flameless candles available that use incandescent lamps or light-emitting diodes (LEDs) as a light source. However, such flameless candles are easily distinguishable from their traditional candle counterparts. One problem is that flameless candles generally cannot suitably simulate the natural flicker of an actual flame as viewed by the naked eye. Another problem is flameless candles have not been able to provide a scented feature that simulates the desired scented feature of a traditional candle, particularly when lit. In addition, flameless candles typically have one or more switches on the base of the candle to turn the candle on, off, or into a flicker mode. This requires the user to awkwardly or inelegantly take the candle off its resting place.

[0005] Thus, there is a need in the art for flameless candle that is aesthetically similar to a traditional candle. More particularly, there is a need for a flameless candle that emits a more natural, flame-like flicker of light, is capable of emitting a scent, and allows the user to relatively easily control the candle’s operations. US 2008/0151563 discloses a flameless candle which can be remotely controlled by means of gestures from a user’s hand.

Brief Summary of the Invention

[0006] The following presents a simplified summary of one or more embodiments of the present disclosure in order to provide a basic understanding of such embodiments. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all embodiments, nor delineate the scope of any or all embodiments.

[0007] The present disclosure, in one embodiment, relates to an electronic flameless candle. The candle may include a body having a top surface, a bottom surface, a sidewall between the top surface and the bottom surface, and a cavity defined by the top surface, the bottom surface and the sidewall, the body configured in shape and size to simulate a true flame candle. The candle may also include a light source operably connected to the body, the light source electrically operated to illuminate in a way that simulates a natural flicker of a real candle flame.

[0008] The present disclosure, in another embodiment, relates to an electronic flameless candle. The candle may include a body having a top surface, a bottom surface, a sidewall between the top surface and the bottom surface, and a body cavity defined by the top surface, the bottom surface and the sidewall, the body configured in shape and size to simulate a true flame candle. The candle may also include a light source operably connected to the body, and a scent component, operably connected to the body, the scent component configured to emit a scent when heated.

[0009] The present disclosure, in another embodiment, relates to an electronic flameless candle. The candle may include a body having a top surface, a bottom surface, a sidewall between the top surface and the bottom surface, and a body cavity defined by the top surface, the bottom surface and the sidewall, the body configured in shape and size to simulate a true flame candle. The candle may also include a light source operably configured in the body, and a sensor component, operably connected to the body, the sensor component configured to sense an environmental condition and affect a mode of the light source upon the sensing of the environmental condition.

[0010] While multiple embodiments are disclosed, still other embodiments of the present disclosure will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the various embodiments of the present disclosure are ca-
pable of modifications in various obvious aspects, all without departing from the spirit and scope of the present disclosure. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.

Brief Description of the Drawings

[0011] While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter that is regarded as forming the various embodiments of the present disclosure, it is believed that the invention will be better understood from the following description taken in conjunction with the accompanying Figures, in which:

FIG. 1A is a perspective view of a flameless pillar candle, according to an embodiment of the present disclosure.

FIG. 1B is a bottom perspective view of a flameless pillar candle, according to an embodiment of the present disclosure.

FIG. 1C shows a top view of a flameless candle, according to an embodiment of the present disclosure.

FIG. 1D is a perspective view of a flameless votive candle, according to an embodiment of the present disclosure.

FIG. 2 is a cross-section of a flameless pillar candle, according to an embodiment of the present disclosure.

FIG. 3 is a cross-section of a control switch assembly, according to an embodiment of the present disclosure.

FIG. 4 is a schematic of a circuit board, according to an embodiment of the present disclosure.

FIG. 5 is a schematic of a circuit board, according to an embodiment of the present disclosure.

FIG. 6 is a perspective view of a scent cartridge, according to an embodiment of the present disclosure.

FIG. 7 is a cross-section of a flameless pillar candle, according to an embodiment of the present disclosure.

FIG. 8 is a schematic of a circuit board with a heating element, according to an embodiment of the present disclosure.

FIG. 9A is a perspective view of a flameless candle with a sensor, according to an embodiment of the present disclosure.

FIG. 9B is a top view of a flameless candle with a sensor, according to an embodiment of the present disclosure.

FIG. 10 illustrates how a motion sensor functions with a flameless pillar candle, according to an embodiment of the present disclosure.

FIG. 11 is an exploded view of a flameless candle, according to an embodiment of the present disclosure.

FIG. 12 is a schematic of a circuit board with a motion sensor, according to an embodiment of the present disclosure.

FIG. 13 illustrates how a motion sensor functions with a flameless votive candle, according to an embodiment of the present disclosure.

Detailed Description

[0012] The present disclosure relates to novel and advantageous flameless candles. Particularly, the present disclosure relates to novel and advantageous flameless candles simulating a realistic flame-like flicker, are capable of emitting a scent, and/or allow users to more easily control the candles’ operations.

[0013] The present disclosure relates, in some embodiments, to a flameless candle that uses, in at least one embodiment, a LED light source to provide a natural, flame-like flicker of light. The flameless candle may include a body having a top surface, a bottom surface upon which the body rests, and a sidewall between the bottom surface and the top surface. One or more control switches may be located on the top surface, the bottom surface, or on the sidewall. Each of these control switches may provide a variety of functions when activated separately or together, including, but not limited to, turning the light source on or off, operating the light source in static or random flicker mode, changing the color of the light, dimming or brightening of the light source, or operating a timer to the light on or off. The natural flicker may be created by a circuit board which provides a signal to the light. The signal may be comprised of random frequencies and amplitudes of current. The circuit board may also control pulse-width modulation and the frequency and duty ratio of the signal received by the light. The signal transmitted randomly to one or more of the diodes of the LED may cause the LED to produce a natural “flicker” of light to the human eye. In various embodiments, the flameless candle may alternatively or additionally include a scent diffusing component to diffuse a pleasant aroma into the surrounding area and/or a sensing component to sense one or more environmental conditions, including but not limited to, motion, light, or sound and control operation of the candle based on the sensed environmental condition.

A Flameless Candle

[0014] The flameless candles described herein provide a substantially more realistic flame-like light from a light source. In this regard, a flameless candle of the present disclosure may be comprised of one or more components that may function to mimic a natural flame’s flicker. Referring to FIG. 1A, a flameless candle 10 may be comprised of a body 20, a control switch 30, and an electrical assembly 50. In various embodiments, the flameless candle 10 may also include a scent component 40, and a sensor component 70.
Generally, as illustrated in the flameless pillar candle of FIG. 1A, the body 20 of a flameless candle 10 may be comprised of a top surface 22, a bottom surface 24 upon which the candle rests, and a sidewall 26 between the top surface 22 and the bottom surface 24. The body 20 may have desirable translucent, luminescent, and aesthetic properties to mimic the look and feel of a traditional candle. The body 20 may be made from one or more materials, including but not limited to, wax, paraffin, glass, polymeric materials, or any combination thereof.

The top surface 22 may include an indented central portion 28 to resemble a top surface of a used or partially melted traditional candle, where the wax may have been reduced by melting from the heat of the open flame in order to continue feeding the flame. In other embodiments, the central portion may not be indented. The sidewall 26 and indented central portion 28 may cooperate to create a lip 21 on the top surface 22. As seen in the embodiment of FIG. 1A, the sidewall 26 and lip 21 may cooperate to have a varied height thereby resembling the visual appearance of a used traditional candle where the wax has been reduced. The sidewall 26 may have a constant height, in other embodiments. The top surface 22 and bottom surface 24 may be circular and the sidewall 26 may extend circumferentially around the longitudinal axis, resulting in a cylindrical body 20. However, other shapes or configurations are possible and within the scope of the invention including, but not limited to, a cube, a cuboid, a cone, a pyramid, or a sphere. The bottom surface 24 may generally be flat, resulting in a stable condition of the candle when placed on a table, shelf, or other suitable flat surface. The top surface 22, bottom surface 24, and sidewall 26 cooperate to form a cavity 48, schematically illustrated in FIG. 1A. As seen in FIG. 1B, the bottom surface 24 may also include a cover 34, that may allow easy access to the cavity 48.

Referring to FIG. 1D, the present disclosure may also be embodied in a votive flameless candle 100. The candle 100 may comprise a body 120. The body comprising a top side 122, a bottom side 124, and a sidewall 126 between the top surface 122 and bottom surface 124. Such a flameless candle 100 may generally be sized and shaped to simulate a traditional true flame votive candle, in some embodiments.

The Control Switch

As illustrated in FIGS. 1A and 1C, disposed in the center of the base of the central portion 28 of top surface 22 may be an upper control switch 30. The upper control switch 30 may be a push button, toggle, slide, rotary selector switch, or any other suitable control. In alternative or additional embodiments, the bottom surface 24 may include a lower control switch 32, as seen in FIG. 1B. An upper control switch 130 may also be seen in the embodiment in FIG. 1D. By activating the control switches 30 or 130 and/or 32 separately or in conjunction, one or more functions may be activated, such as the light source 56 may begin to flicker. In at least one embodiment, the control switch 30 may house the light source 56, as seen in FIG. 3.

The Electrical Assembly

The cavity 48 may contain the electrical assembly 50, schematically illustrated in FIG. 1A. The electrical assembly may comprise one or more components, including but not limited to, a control switch assembly 58 (shown in greater detail in FIG. 3), a power source 52, at least one circuit board 54, and a light source 56. The upper control switch 30 may be in communication with the light source 56 of the flameless candle 10. Or, as stated above, the control switch 30 may house the light source.

Control Switch Assembly

Referring to FIG. 2, the control switch assembly 58 may retain the control switch 30. The control switch assembly 58 may be comprised of one or more components. In one embodiment as seen in FIG. 3, the control switch assembly 58 components may include, but are not limited to, a push button control switch 30, a spring 59, and a retaining assembly 60. The spring 59 may be disposed between the light source 56 and the circuit board 54. In other embodiments, the light source may be positioned below the spring and the circuit board. The light source 56 may be brought into electrical and mechanical communication with the circuit board 54. For example, a push button control switch 30 may be pressed down so that it is in an "on" position resulting in the spring 59 compressing. The light source 56 may become electrically engaged with the circuit board 54. When the push button for the control switch is pressed down again, the spring 59 may be released and the push button returns to an "off" position. In at least one such embodiment, when the spring 59 is released, the light source 56 is electrically disengaged from the circuit board 54. In other embodiments, for example those not using a push button, a spring may not be present.

The control switch assembly 58 may further comprise a retaining assembly 60. The retaining assembly 60 may have a circumferential outer conical portion 68 that mates with a circular opening within the top surface of the candle body. In at least one embodiment, the retaining assembly 60 may have a central lumen 69 through which the control switch 30 may be able to slide. In at least one embodiment, when installed within the top surface, the retaining assembly 60 is flush with the surrounding surface of the indented central portion 28 of the body 20. The retaining assembly 60 may comprise sev-
eral components that are assembled to hold the control switch assembly 58 within the candle body. The components may, in some embodiments, comprise a plurality of concentric mating rings, each with a different inner and outer diameter. In the embodiment of FIG. 3, there may be an inferior ring 62, a superior inner ring 64, and a superior outer ring 66. In various embodiments, the circumferential outer conical portion 68 may be comprised within the superior inner ring 64. While the retaining assembly 60 described and shown herein comprises a plurality of concentric mating rings, other shapes or configurations are possible and are within the scope of the invention. Such other shapes or configurations include but are not limited to cubes, rectangular solids, cones, pyramids, spheroids, and irregular shapes. In some embodiments, the retaining assembly components are integrally formed. In some embodiments, the retaining assembly is made from a wax, paraffin, glass, polymeric materials, or combinations thereof. In some embodiments, the configuration of the retaining assembly 60 and the selected material may have desirable translucent, luminescent and aesthetic properties to mimic the look and feel of a traditional candle.

Power Source

[0022] Referring back to FIG. 2, the power source may provide power to the electrical assembly, resulting in the light source being illuminated. The power source 52 may be disposed within a power source compartment 36. As shown in the embodiment of FIG. 2, the power source 52 may comprise one or more batteries. The power source 52 may be adjacent to the cover 34 and centrally located, allowing an ease of access to change the battery. In other embodiments, the power compartment may be located proximal to the sidewall 26, superior to the rest of the electrical assembly, or exterior to the flameless candle 10. The power compartment may be located in any suitable location. The power source may be one or more standard alkaline batteries, one or more rechargeable batteries, a USB charged power source, a power cord, a power source charged by induction charging, any other suitable source, or any combination thereof.

Light Source

[0023] The light source may illuminate the flameless candle. The light source may be a LED that comprises one or more diodes, in various embodiments. The light source may be an incandescent lamp, in other embodiments. The light source may be a gas discharge lamp, in yet another embodiment. It should be understood that any suitable light source may be used. The light source may preferably be located on a midline of the body 20 of the candle in order to mimic traditional candles, as seen in FIG. 2. In other embodiments, the light source may be located more proximal to the sidewall. In at least one embodiment, the light source may be located superior to the transverse plane, or in the top half of the candle. However, a light source located at any point within the body of the candle is within the scope of the present disclosure.

[0024] Referring to FIG. 3, the light source 56 may be built into a customized housing 57, in some embodiments. The customized housing 57, in one embodiment, has a concave top surface, but in other embodiments can be convex or may be a flat top surface. The customized housing 57 may also have a concave bottom surface, convex bottom surface, or flat surface. In some embodiments, the customized housing 57 may be made of a clear, translucent or opaque material. In at least one embodiment, the customized housing may be coated with a plurality of specks of an orange or yellow coating arranged in a specific pattern to make the light appear more natural. In at least one embodiment, as shown in FIG. 3, the light source 56 and the customized housing 57 may form a push button of the control switch 30.

[0025] In some embodiments, the light source may be comprised of one or more lights, or one or more LED diodes. In various embodiments, different colored lights may be used to better mimic the color of a flame. For example, in one embodiment, the light source may be comprised of a LED that comprises combination of red, yellow, orange, and/or white LEDs. The lights may cooperate to mimic the colors of a natural flame.

Circuit Board

[0026] As seen in the example of FIG. 4, a circuit board 54 may be in electrical communication with the power source 52, the light source 56, and any control switch 30, 32. The circuit board may be comprised of one or more components. In one embodiment, the circuit board components may include, but are not limited to, a clock 76, an analog-to-digital converter 80, a random address generator 84, a random sequence generator 90, and an output 92. The output 92 may be in communication with the light source 56. The functionality of the circuit board 54 is discussed below.

Function

[0027] The upper control switch 30 and/or lower control switch 32, herein called the control switch, may be in communication with a light source (or light) 56. The control switch may be a push button, toggle switch, slide switch, or any other suitable component. The control switch may be configured to, when selected by the user, modify the frequency of a light’s flicker, the luminescence of the light, the color of the light, or the timer settings of the light. In at least one embodiment, the control switch may be a push button, which when depressed selects a particular mode of the candle. In one embodiment, the modes include, but are not limited to, a flicker mode, a static light mode, and an off mode. For example, depressing the push button of the control switch may activate the
light source in flicker mode. A light in flicker mode may randomly dim and brighten in such a way that mimics a flame from a traditional candle. Depressing the push button a second time may activate the light source in static mode. A light in static mode may be on but may not flicker. Depressing the push button a third time may activate a timer mode. A light in timer mode may automatically turn off after a set time period. Depressing the push button a fourth time may deactivate the light, or result in an off mode. Any suitable means of activation or deactivation of any mode may be used.

In some embodiments, the candle may produce an indication of the mode selected. It at least one embodiment, when the user depresses the control switch, the light source may flash any number of times to indicate a certain mode has been selected.

Flicker Mode

The natural flicker may be controlled by one or more methods, including, but not limited to a random signal method.

A random signal method may generate one or more random signals resulting in a natural "flicker" from the light source. As noted above, FIG. 4 is an electrical schematic for one embodiment of the circuit board 54 of the present disclosure. Clock 76 may be in electrical communication with the power source 52. When the power source 52 is activated by control switch 30, clock 76 may provide an input signal to at least the random address generator 84. The random address generator 84 may provide a random signal to the dynamic random feedback 80. The dynamic random feedback 80 may be or may comprise an analog-to-digital converter, in some embodiments. The random signal may vary in one or more aspects including, but not limited to, amplitude, frequency, and duty cycle. The duty cycle may be the period of time it takes for a signal to complete an on-and-off cycle. In at least one embodiment, the random address generator 84 may use pulse-width modulation to modify the signal, which results in controlling the power supplied to the light source. Pulse-width modulation may be used to manipulate (increase or decrease) the power a light source receives at very high rates. This manipulation may result in a perceived flicker as the light source is quickly changed from high luminescence to low luminescence and back again.

The dynamic random feedback 80 may convert the random signal to a digital signal which is then transmitted to the control module 90. The control module may be or may comprise a random sequence generator, in some embodiments. The control module may control one or more light source aspects, including but not limited to light brightness and time. The control module 90 may manipulate the random signal received from the dynamic random feedback 80 into a second random signal; although such is not required. The second random signal may also vary in one or more aspects to control the brightness and duration in the light source. In one embodiment, the second random signal variations may include, but are not limited to, amplitude, frequency, and duty cycle. In at least one embodiment, the control module 90 may also use pulse-width modulation to modify the signal. The second random signal from the control module 90 may be output via output 92 to the light source 56.

In one embodiment, using LED light diodes, the second random signal may be output to one or more diodes. As illustrated in FIG. 5 the control module 90 may convert the random signal 92a into one or more random signals 92b, 92c, and 92d each being output to a separate diode via output 92. The signal transmitted randomly to one or more of the diodes of the LED 56 may produce a natural "flicker" of light to the human eye.

The natural "flicker" may have a 72-hour cycle, in some embodiments. A 72-hour cycle may provide an optimal battery life, in some embodiments, where a battery is used as the power source. For example, a random, or seemingly random pattern may be used for a 72-hour cycle, at the end of which the random pattern may then repeat. In some embodiments, a 24-hour cycle may be used. In other embodiments, a 48-hour cycle may be used. It should be understood that a cycle of any duration may be used.

Static Mode

A light source in static mode may be on, and may not flicker. In various embodiments, the static mode may be set to varying degrees of luminosity. That is, the light source may be dimmed to one or more levels. The power supply 52, may supply power directly to the light source 56, in some embodiments. In other embodiments, the power supply may pass through the clock 76 before reaching the light source 56, thereby allowing a timer mode to be activated.

Timer Mode

The flameless candle may have a timer, where the light remains on for a predetermined timed period. In some embodiments, the timed period may be automatically set. For example, activation of the timer may keep the light source on for one hour and then turn the candle off. In other embodiments, the user may set the timer to any desired time. In one embodiment, the user may select the timer by depressing a control button until the timer mode is selected. In one example, the light source may flash three times to indicate the timer mode has been selected. The user may then push the control switch any number of desired times, each depression of the control switch adding a predetermined period of time. In other embodiments, there may be a USB port that a user may plug into the candle with preloaded timer settings. In still another, there may be a separate control switch for the timer mode, or two or more control switches may, together, activate the timer mode. Any suitable method to set
a timer for the candle may be used.

Scented Flameless Candle

[0036] A flameless candle of the present disclosure may additionally or alternatively have a scented component that may provide a scent or aroma to the surrounding environment. In some embodiments, the scented component may be a scented cartridge. The scent may be diffused through the cartridge and into the surrounding environment when heat or an electric current is applied to the scent cartridge, in some embodiments.

[0037] Referring to FIG. 6, a scent cartridge 40, may be comprised of a top surface 112, a bottom surface 113, and an outer sidewall 114 that extends between the bottom surface 113 and the top surface 112. In some embodiments, the scent cartridge 40 may further comprise an inner sidewall 115, extending between the bottom surface 113 and the top surface 112, thereby defining a hole 116. The top surface 112, bottom surface 113, and sidewalls 114, 115 may cooperate to define a chamber, or cavity 119 (see in FIG. 7). The cavity 119 may contain one or more fragrance impregnated materials. In one embodiment, the fragrance impregnated material may be a fragrant liquid. In another embodiment, the fragrance impregnated material may be a fragrant disk. Any suitable fragrant material may be used.

[0038] The top surface may comprise one or more openings 117 through which a fragrance vapor, or scent, may be diffused. The openings 117 have a diameter that is between five and ten percent of the outer diameter of the scent cartridge 40, in various embodiments. In some embodiments, the openings 117 have a diameter between about two millimeters and twenty millimeters. In other embodiments, the openings may have any suitable diameter. It should also be understood the openings 117 may be circular holes, slats, or any other suitable opening for diffusing the scent. The openings 117 may have a depth that is less than the height of the outer sidewall 114, in some embodiments. In other embodiments, the openings may have a depth equal to the height of the outer sidewall 114. In still other embodiments, there may be openings 117 on the surface of the inner sidewall 115 or outer sidewall 114. The top surface 112 may comprise a plurality of surface features 118. Surface features 118 may include, but are not limited to, bumps, ridges, protrusions, channels, and reliefs. Surface features 118 may further assist with diffusing the scent.

[0039] The bottom surface 113 of the scent cartridge 40 may be flat, in some embodiments. In other embodiments, the bottom surface 113 may have surface features 120 that allow the bottom surface to rest properly without shifting within the flameless candle 10. In at least one embodiment, the bottom surface 113 has a plurality of surface features 120 that engage with surface features on the indented central portion 28 of the flameless candle 10. By rotating the scent cartridge 40, the surface features on the bottom surface 113 may substantially align and/or lock with the surface features on the flameless candle 10 to hold the scented cartridge 110 in place. In some embodiments, the top surface 112 may have the same configuration of surface features 120 as the bottom surface 113 allowing the scent cartridge 40 to be flipped or turned over for prolonged use.

[0040] The light source, as discussed above, may be disposed inside the body of the candle, within the control switch assembly, or in any other suitable position. In at least one embodiment, the light source may be disposed within a central portion of the scent cartridge, allowing the user to replace the light and the scent simultaneously.

[0041] Referring to FIG. 7, a scent cartridge 40 may be disposed within the indented central portion 28 of flameless candle 10. In at least one embodiment, the bottom surface 113 of the scent cartridge 40 may be flush with the base of the indented central portion 28. In other embodiments, as seen in FIG. 7, the hole 116 may be positioned over a control switch 30, the control switch 30 at least partially extending outwardly from the scented cartridge 40. In still other embodiments, the scented cartridge may be positioned to act on the control switch. For example, the scented cartridge which may, for example, have no hole 116, may be placed in the indented central portion 28. A user may be able to push onto the scented cartridge, which may in turn push onto a push button control switch, thereby depressing the control switch. In still other embodiments, a control switch may be integrated into the scent cartridge.

[0042] Activation of a control switch may, in addition to activating a light source, turn on or off a heating element or otherwise activate the scent mode of the candle. To provide heat to the scented cartridge 40, the flameless candle 10 may further comprise a heating element 160, which may be in direct contact with, in nearly direct contact with, adjacent to, or otherwise close to the scent cartridge 40. However, any suitable position allowing the heating element 160 to heat the scent cartridge 40 may be used. The heating element 160 may also be in communication with the circuit board 54. In at least one embodiment, the heating element 160 may be situated between the control switch assembly 58 and the scent cartridge 40. In one embodiment, the heating element 160 may have an outer surface 162 that cooperates, or mates, with the bottom surface 113 of the scent cartridge 40, in order to apply direct heat. When a user selects to activate the heating element 160, heat may be applied to the bottom surface 113 of the scent cartridge 40, resulting in an emission or diffusion, of the fragrant scent.

[0043] FIG. 8 illustrates an example circuit schematic for the circuit board in an embodiment involving a heating element. The circuit 170 may comprise a power source 52, a booster circuit 172, an MCU detection circuit 174, a transistor switch 176, and the heating element 160. In some embodiments, the circuit may also include a light source circuit 180. The light source circuit may, in some embodiments, be a circuit such as that illustrated by FIG. 4, discussed above. The light source circuit and heating
element circuit may share some or all common components. The power source 52 may provide a voltage to the MCU detection circuit 174 through the booster circuit 172, in some embodiments. In other embodiments, the power source 52 may provide a voltage directly to the MCU detection circuit. The booster circuit 172 may amplify the voltage obtained from the power source 52 and provide it to the MCU detection circuit 174. In various embodiments, the booster circuit 172 may provide an amplified voltage to the light source circuit 180. The MCU detection circuit 174 may output high and low electric levels to control the transistor switch 176. The transistor switch 176 may connect the MCU detection circuit 174 with the heating element 160, thereby affecting one or more heating element modes as well as the temperature of the heating element 160. Heating element modes may include, but are not limited to, on, on-high, on-low, or timer.

In various embodiments, based on one or more control switch 30, 32 inputs, the MCU detection circuit 174 may control various high and low electric levels over a desired time period, herein referred to as high-low cycle. The high-low cycle may enable a cyclic on and off interval of heating by turning the transistor switch 176 on and off based on the electric levels. For example, a user may select a scent feature mode having a duration of four hours. The MCU detection circuit 174 may output a high-low cycle resulting in the transistor switch 176 turning the heating element 160 on for thirty minutes, off for two hours, on for ten minutes, off for thirty minutes, on for ten minutes, off for thirty minutes, and then off. In such an embodiment, when the control switch 30, 32 is pressed again, the cycle may be cancelled and the light source 30 may turn off.

The MCU detection circuit 174 may incorporate a temperature sensor 182, as shown in the detailed circuit schematic example of FIG. 9. By converting the temperature change of the heating plate to a voltage change, the temperature of the heating plate can be tested and controlled by the MCU detection circuit 174. When the temperature is equal to or greater than a desired value, the MCU detection circuit 174 may turn the transistor switch 176 off, resulting in cutting off power to the heating element 160. The desired high temperature value may be, at least in part, dependent upon the material properties of the scent cartridge 40. In at least one embodiment, the desired high temperature value may be about forty-five degrees Celsius (about one-hundred degrees Fahrenheit). In general, the desired low temperature value may be between about thirty-eight degrees Celsius (about one-hundred and twenty-two degrees Fahrenheit) and fifty-five degrees Celsius (about one-hundred and twenty-two degrees Fahrenheit). However, it should be understood that any suitable temperature(s) to heat the heating element 160 may be used and are within the scope of the present disclosure.

Sensing Flameless Candle

A flameless candle of the present disclosure may additionally or alternatively have a sensing component, in various embodiments. In some embodiments, the sensing component may be a motion sensor that may allow a user to use hand motions, or other motions, to select various functions, or modes, of the flameless candle. The modes may include, but are not limited to, whether the light is on or off, whether the light is in a static mode or flicker mode, the duration the light is on, the color of the light, the luminescence of the light, and whether a scent mode is on. In other embodiments, the sensing component may be an optical sensor that may allow one or more modes to be selected based on the ambient light in the surrounding environment. For example, when the ambient light is reduced, such as at dusk, the optical sensor may detect the change and turn the flameless candle’s light on. In still other embodiments, the sensing component may be an audio sensor that may allow the user to use audio cues to select various functions, or modes, of the flameless candle. In one embodiment, the sensing component may be able to detect air movement, allowing a user to select a various mode, such as turning the flameless candle off, by blowing on the sensor, simulating a method of blowing out a traditional true flame candle. In some embodiments, the sensing component may be a Bluetooth, radio, or other wireless component able to receive a wireless signal from a computer, remote, handheld device, or any other suitable device. For example, a user may select a flicker mode on a timer for two hours from her handheld device. The device may transmit a signal that may be received by the sensing component in the wireless candle, resulting in the candle being configured to remain in flicker mode for two hours and then turn off. One or more sensors may be used in various embodiments of the present disclosure.

A flameless candle may comprise a motion sensor, in various embodiments. As seen in FIGS. 9A-9B, motion sensor 70 may be disposed within the indented central portion 28. In some embodiments, the motion sensor 70 may be radially offset from the center of the base 29 of the central portion 28. In various embodiments where a scent cartridge may be used, the motion sensor
A motion sensor assembly may house the motion sensor. Any suitable location to embed the motion sensor 70 may be used and is within the scope of the present disclosure.

A motion sensor assembly may house the motion sensor. Similar to the control switch assembly discussed above, the motion sensor assembly may be in communication with the power source, the light source, and a circuit board. Referring additionally to the exploded view in FIG. 11, when installed within the cavity 49, the motion sensor assembly 61 may be flush with the surrounding surface of the body 20 and/or may be flush with the indented central portion on the top surface 22. In some embodiments, the motion sensor assembly 61 is made from a wax, paraffin, glass, polymeric materials, or combinations thereof. In some embodiments, the configuration of the motion sensor assembly and the selected material may have desirable translucent, luminescent and aesthetic properties to mimic the look and feel of a traditional candle.

The motion sensor may emit electromagnetic waves. By using different hand motions, electromagnetic induction modules may produce different waveform outputs to perform different product function statuses (such as on or off). By activating the motion sensor 70, the light source 56 of the candle may be illuminated, in various embodiments. In at least one embodiment, a control switch may activate the power supply before the motion sensor may change the mode.

Referring additionally to FIG. 12, which is an electrical schematic for one embodiment involving a motion sensor, as power is supplied from the power source 52 optionally through a booster circuit 75 to the motion sensor 70, the motion sensor 70 may emit electromagnetic waves 90a. Based on different motions at a certain distance, the electromagnetic waves may be reflected and the motion sensor 70 may receive the different electromagnetic waves 90b. Through the internal processing of the motion sensor 70, the motion sensor 70 may have a working range of about ten meters. The motion sensor 70 may have any desired working range in various embodiments of the present disclosure.

In the foregoing description various embodiments of the present disclosure have been presented for the purpose of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. The various embodiments were chosen and described to provide the best illustration of the principals of the disclosure and their practical application, and to enable one of ordinary skill in the art to utilize the various embodiments with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the present disclosure as determined by the appended claims when interpreted in accordance with the breadth they are fairly, legally, and equitably entitled.

Claims

1. An electronic flameless candle (10), comprising:
a body (20) comprising a top surface (22), a bottom surface (24), a sidewall (26) between the top surface (22) and the bottom surface (24), and a cavity (48) defined by the top surface (22), the bottom surface (24) and the sidewall (26), the body (20) configured in shape and size to simulate a true flame candle;

a light source (56) operably connected to the body (20), the light source (56) electrically operated to illuminate in a way that simulates a natural flicker of a real candle flame;

a sensor component (70) embedded within the body (20), configured to emit a plurality of electromagnetic waves and to receive different reflected electromagnetic waves that are indicative of different hand motions over a working range of about five meters; and

a control circuit (55) coupled to the sensor component (70) to process output signals corresponding to the different reflected electromagnetic waves and control different functions of the electronic flameless candle (10) based on the different hand motions.

2. The electronic flameless candle (10) of claim 1, wherein the light source (56) comprises an LED light.

3. The electronic flameless candle (10) of claim 1, wherein the light source (56) receives a random digital signal, the random digital signal varying in at least one of amplitude, frequency, and duty cycle.

4. The electronic flameless candle (10) of claim 3, wherein the random digital signal forms part of a pulse-width modulation signal.

5. The electronic flameless candle (10) of claim 1, further comprising a scent component (40), configured to emit a scent.

6. The electronic flameless candle (10) of claim 1, further comprising an optical sensor component (70), configured to sense an ambient light and, upon the sensing of the ambient light, affect a mode of the flameless candle (10).

7. The electronic flameless candle (10) of claim 2, wherein the LED light comprises a plurality of LEDs, each emitting a different color of light.

8. The electronic flameless candle (10) of claim 7, wherein each LED receives an individually randomized digital signal.

9. The electronic flameless candle (10) of claim 1, further comprising a push button control switch comprising the light source (56).

10. The electronic flameless candle (10) of claim 5, wherein the scent component (40) comprises a scent cartridge, the scent cartridge comprising a top surface (112), a bottom surface (113), an outer wall (114) extending between the bottom surface (113) and the top surface (112), and a scent cavity (119) defined at least by the top surface (112), the bottom surface (113), and the outer wall (114), wherein the scent cavity (119) contains a fragrance impregnated material.

11. The electronic flameless candle (10) of claim 5, wherein the scent cartridge is removable and replaceable.

12. The electronic flameless candle (10) of claim 5, further comprising a heating element (160) housed within the body cavity (48), the heating element (160) operated to heat the scent component (40).

13. The electronic flameless candle (10) of claim 12, wherein the scent component (40) is positioned at the top surface (22) of the body (20).

14. The electronic flameless candle (10) of claim 13, wherein the scent component (40) comprises a central bore and the light source (56) is positioned within or through the central bore.

15. The electronic flameless candle (10) of claim 1, further comprising a temperature sensor component (182), configured to sense a temperature associated with the heating element (160), and to cut off power to the heating element (160) based on comparison of the sensed temperature to a threshold temperature.

16. The electronic flameless candle (10) of claim 1, wherein the different functions of the electronic flameless candle (10) include changing the mode of the light source (56) between at least an ON state and an OFF state.

Patentansprüche

1. Elektronische flammenlose Kerze (10), umfassend: einen Körper (20), der eine obere Fläche bzw. Oberfläche (22), eine untere Fläche bzw. Oberfläche (24), eine Seitenwand (26) zwischen der oberen Fläche (22) und der unteren Fläche (24) und einen Hohlraum (48) umfasst, der durch die obere Fläche (22), die untere Fläche (24) und die Seitenwand (26) definiert ist, wobei der Körper (20) in Form und Größe so konfiguriert ist, dass er eine echte Flammenkerze simuliert; eine Lichtquelle (56), die betriebsmäßig mit dem
Körper (20) verbunden ist, wobei die Lichtquelle (56) elektrisch betrieben wird, um auf eine Weise zu beleuchten, die ein natürliches Flackern einer echten Kerzenflamme simuliert; eine Sensorskomponente (70), die in den Körper (20) eingebettet ist und konfiguriert ist, eine Mehrzahl elektromagnetischer Wellen zu emittieren und verschiedene reflektierte elektromagnetische Wellen zu empfangen, die unterschiedliche Handbewegungen über einen Arbeitsbereich von etwa fünf Metern angeben; und eine Steuer- bzw. Regelschaltung (55), die mit der Sensorskomponente (70) gekoppelt ist, um Ausgangssignale entsprechend den verschiedenen reflektierten elektromagnetischen Wellen zu verarbeiten und verschiedene Funktionen der elektronischen flammenlosen Kerze (10) basierend auf den verschiedenen Handbewegungen zu steuern bzw. zu regeln.

2. Elektronische flammenlose Kerze (10) nach Anspruch 1, wobei die Lichtquelle (56) ein LED-Licht umfasst.

3. Elektronische flammenlose Kerze (10) nach Anspruch 1, wobei die Lichtquelle (56) ein zufälliges digitales Signal empfängt, wobei das zufällige digitale Signal in mindestens einer von Amplitude, Frequenz und Tastverhältnis variiert.

4. Elektronische flammenlose Kerze (10) nach Anspruch 1, wobei das zufällige digitale Signal Teil eines Pulsweitenmodulationssignals bildet.

5. Elektronische flammenlose Kerze (10) nach Anspruch 1, wobei umfassend eine Düftkomponente (40), die konfiguriert ist, einen Duft abzugeben.

6. Elektronische flammenlose Kerze (10) nach Anspruch 1, wobei umfassend eine optische Sensorkomponente (70), die konfiguriert ist, ein Umgebungslicht zu erfassen und bei der Erfassung des Umgebungslichts einen Modus der flammenlosen Kerze (10) zu beeinflussen.

7. Elektronische flammenlose Kerze (10) nach Anspruch 2, wobei das LED-Licht eine Mehrzahl von LEDs umfasst, die jeweils eine unterschiedliche Lichtfarbe emittieren.

8. Elektronische flammenlose Kerze (10) nach Anspruch 7, wobei jede LED ein individuell randomisiertes digitales Signal empfängt.

9. Elektronische flammenlose Kerze (10) nach Anspruch 1, wobei umfassend einen Druckknopf-Steuer-bzw. Regelschalter, der die Lichtquelle (56) umfasst.

10. Elektronische flammenlose Kerze (10) nach Anspruch 5, wobei die Düftkomponente (40) eine Duftpatrone umfasst, wobei die Duftkartusche eine obere Fläche bzw. Oberfläche (112), eine untere Fläche bzw. Oberfläche (113), eine Außenwand (114), die sich zwischen der unteren Fläche (113) und der oberen Fläche (112) erstreckt, und einen Duftbehälter (119) umfasst, der zumindest durch die obere Fläche (112), die untere Fläche (113) und die Außenwand (114) definiert ist, wobei der Duftbehälter (119) ein duftstoffimprägniertes Material enthält.

11. Elektronische flammenlose Kerze (10) nach Anspruch 5, wobei die Duftpatrone entfernt und ersetzbar ist.

12. Elektronische flammenlose Kerze (10) nach Anspruch 5, wobei umfassend ein Heizelement (160), das innerhalb des Körperhohlrums (48) untergebracht ist, wobei das Heizelement (160) betrieben wird, um die Düftkomponente (40) zu erwärmen.

13. Elektronische flammenlose Kerze (10) nach Anspruch 12, wobei die Düftkomponente (40) an der oberen Fläche (22) des Körpers (20) positioniert ist.

14. Elektronische flammenlose Kerze (10) nach Anspruch 13, wobei die Düftkomponente (40) eine zentrale Bohrung umfasst und die Lichtquelle (56) innerhalb oder durch die zentrale Bohrung hindurch positioniert ist.

15. Elektronische flammenlose Kerze (10) nach Anspruch 1, wobei umfassend eine Temperatursensorkomponente (182), die konfiguriert ist, eine mit dem Heizelement (160) assozierte bzw. verknüpfte Temperatur zu erfassen und die Leistung für das Heizelement (160) basierend auf einem Vergleich der erfassten Temperatur und einer Schwellentemperatur abzuschalten.

16. Elektronische flammenlose Kerze (10) nach Anspruch 1, wobei die verschiedenen Funktionen der elektronischen flammenlosen Kerze (10) das Ändern des Modus der Lichtquelle (56) zwischen mindestens einem EIN-Zustand und einem AUS-Zustand umfassen.

Revendications

1. Bougie électronique sans flamme (10) comprenant :
 un corps (20) comprenant une surface supérieure (22), une surface inférieure (24), une paroi latérale (26) entre la surface supérieure (22) et la surface inférieure (24), et une cavité (48) définie par la surface supérieure (22), la surface
inférieure (24) et la paroi latérale (26), le corps (20) étant configuré en forme et taille pour simuler une véritable bougie à flamme ;
une source lumineuse (56) connectée de manière opérationnelle au corps (20), la source lumineuse (56) étant opérée électriquement pour éclairer d’une manière qui simule un papillotement naturel d’une flamme de bougie réelle ;
un composant de capteur (70) encastré au sein du corps (20), configuré pour émettre une pluralité d’ondes électromagnétiques et pour recevoir différentes ondes électromagnétiques réfléchies qui sont indicatrices de différents mouvements de main sur une plage de travail d’environ cinq mètres ; et
un circuit de commande (55) couplé au composant de capteur (70) pour traiter des signaux de sortie correspondant aux différentes ondes électromagnétiques réfléchies et commander différentes fonctions de la bougie électronique sans flamme (10) en fonction des différents mouvements de main.

2. Bougie électronique sans flamme (10) selon la revendication 1, dans laquelle la source lumineuse (56) comprend une lumière LED.

3. Bougie électronique sans flamme (10) selon la revendication 1, dans laquelle la source lumineuse (56) reçoit un signal numérique aléatoire, le signal numérique aléatoire variant dans au moins un élément parmi l’amplitude, la fréquence et le cycle de service.

4. Bougie électronique sans flamme (10) selon la revendication 3, dans laquelle le signal numérique aléatoire fait partie d’un signal à modulation d’impulsions en durée.

5. Bougie électronique sans flamme (10) selon la revendication 1, comprenant en outre un composant de parfum (40) configuré pour émettre un parfum.

6. Bougie électronique sans flamme (10) selon la revendication 1, comprenant en outre un composant de capteur optique (70) configuré pour détecter une lumière ambienne et, lors de la détection de la lumière ambienne, affecter un mode de la bougie sans flamme (10).

7. Bougie électronique sans flamme (10) selon la revendication 2, dans laquelle la lumière LED comprend une pluralité de LED émettant chacune une couleur de lumière différente.

8. Bougie électronique sans flamme (10) selon la revendication 7, dans laquelle chaque LED reçoit un signal numérique randomisé individuellement.

9. Bougie électronique sans flamme (10) selon la revendication 1, comprenant en outre un commutateur de commande à bouton-poussoir comprenant la source lumineuse (56).

10. Bougie électronique sans flamme (10) selon la revendication 5, dans laquelle le composant de parfum (40) comprend une cartouche de parfum, la cartouche de parfum comprenant une surface supérieure (112), une surface inférieure (113), une paroi externe (114) s’étendant entre la surface inférieure (113) et la surface supérieure (112), et une cavité de parfum (119) définie au moins par la surface supérieure (112), la surface inférieure (113) et la paroi externe (114), dans laquelle la cavité de parfum (119) contient un matériau imprégné de fragrance.

11. Bougie électronique sans flamme (10) selon la revendication 5, dans laquelle la cartouche de parfum est amovible et remplaçable.

12. Bougie électronique sans flamme (10) selon la revendication 5, comprenant en outre un élément de chauffage (160) hébergé au sein de la cavité de corps (48), l’élément de chauffage (160) étant opéré pour chauffer le composant de parfum (40).

13. Bougie électronique sans flamme (10) selon la revendication 12, dans laquelle le composant de parfum (40) est positionné au niveau de la surface supérieure (22) du corps (20).

14. Bougie électronique sans flamme (10) selon la revendication 13, dans laquelle le composant de parfum (40) comprend un alésage central et la source lumineuse (56) est positionnée au sein de ou à travers l’alésage central.

15. Bougie électronique sans flamme (10) selon la revendication 1, comprenant en outre un composant de capteur de température (182) configuré pour détecter une température associée à l’élément de chauffage (160) et pour couper l’alimentation vers l’élément de chauffage (160) en fonction d’une comparaison de la température détectée à une température seuil.

16. Bougie électronique sans flamme (10) selon la revendication 1, dans laquelle les différentes fonctions de la bougie électronique sans flamme (10) incluent changer le mode de la source lumineuse (56) entre au moins un état allumé ON et un état éteint OFF.
Fig. 1D
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 61798527 B [0001]
- US 61798348 B [0001]
- US 61798053 B [0001]
- US 20080151563 A [0005]