COSMETIC COMPOSITIONS HAVING PERSISTENT TIGHTENING EFFECTS

KOSMETISCHE ZUSAMMENSETZUNGEN MIT ANHALTENDEN STRAFFUNGSEFFEKTPRÉSENTANT DES EFFETS RAFFERMISSANTS PERSISTANTS

- MEI, Bing C.
 Mahwah, New Jersey 07430 (US)

Representative: Dr. Weitzel & Partner
Patent- und Rechtsanwälte mbB
Friedenstrasse 10
89522 Heidenheim (DE)

References cited:
- WO-A2-2012/156965
- US-B2- 7 632 905
CROSS-REFERENCE TO A PRIOR APPLICATION

[0001] This application claims priority to U.S. Patent Application Serial No. 13/826,724, filed on March 14, 2013. The entirety of each of the aforementioned applications is hereby incorporated by reference in its entirety for all purposes.

FIELD OF THE INVENTION

[0003] The present application generally relates to cosmetic compositions that provide prolonged tightening effects and/or curling effects on a human integument. More particularly, the application relates to cosmetic compositions having pH-dependent polymers capable of tightening and/or curling a human integument, in particular skin and/or eye lashes, for a prolonged period of time. The tightening effect and/or curling effect of these compounds are substantially resistant to environmental stresses such as heat and humidity.

BACKGROUND OF THE INVENTION

[0004] The main sign of aging skin in humans is the increased presence of fine lines, deep wrinkles, and sagging skin. These signs of aging are most noticeable on the hands and faces of individuals. Although active agents, such as α-hydroxy acids, β-hydroxy acids and retinoids, are known to combat the underlying causes of wrinkles and fine lines, the prolonged period of time over which administration of these agents is necessary for visible results is inconsistent with the consumer's desire for immediate relief from these signs of aging.

[0005] Various film forming agents have been used as tightening and/or tensioning agents. The tightening effect of the film forming agents results from tension on the underlying substrate generated by the film forming agent as it contracts during its drying process. Thus, when the film forming agents are applied to skin the tension is sufficient to draw the skin tight and thereby temporarily smooth fine lines, mitigate deep wrinkles, and lift sagging skin. These tightening agents also have beneficial effects on other human integuments such as eyelashes such that, when applied, the curl of the eyelash is enhanced lifting and improving the eyelash’s appearance.

[0006] Historically, naturally occurring film forming agents such as albumin derived from egg white or bovine serum have been used. More recently synthetic polymers such as polyvinylpyrrolidone (PVP), polyimides, hydroxyethyl cellulose, polyvinyl alcohol, and acrylate/acylacylamide copolymer have been used to obtain tightening effects and/or curling effects. However, the tightening and/or curling effects of these above-noted film forming agents are not particularly persistent and are often susceptible to environmental influences such as heat and humidity. For example, under conditions of high humidity compositions containing PVP are known to plasticize, thereby diminishing tension exerted upon the skin.

[0007] Accordingly, there is a continuing need in the art for cosmetic compositions that provide a prolonged tightening and/or curling effect substantially resistant to environmental factors such as heat and humidity.

[0008] Certain pH-dependent products are known in the art. For example, U.S. Patent 5,993,831 to Ribier et al., incorporated herein by reference in its entirety, is directed to compositions containing nanoparticles of one or more pH-dependent polymers encapsulating an oily phase containing an active agent such as a cosmetic or pharmaceutical. The nanoparticles are said to be from 100 to 1000 nm in diameter, which allows the particles to slip between the outermost corneocytes of the stratum corneum without reaching the living epidermis.

[0009] As another example, U.S. Patent 4,976,961 to Norbury et al., incorporated herein by reference in its entirety, is similarly directed to cosmetic emollient oils in microcapsules of pH-dependent polymers. Norbury's microcapsules are said to range in size from 50 to 2000 μm in diameter, and are typically crushed on the skin to release the oils contained therein. The microcapsule shell is said to include organic polymers such as phenolic aldehydes, urea-aldehyes, acrylic polymers, gelatin, and agar.

[0010] U.S. Patent 7,053,034 to Shefer et al., incorporated herein by reference in its entirety, is directed to a controlled-release carrier system for targeted delivery of fragrances and active ingredients onto fabric, hair, and skin. Shefer’s system is said to include solid hydrophobic nano-spheres encapsulated in a pH or salt sensitive micro-spheres. The micro-spheres are described as having an average sphere size in the range of from about 20 μm (micrometers) to about 100 μm, and the nano-spheres are said to have an average sphere size in the range of from about 0.01 μm to about 5 μm. Moreover, the micro-spheres may be made from such exemplary pH-sensitive materials as copolymers of acrylate polymers with amino substituents, acrylic acid esters, and polyacrylamides. The micro-spheres of Shefer are formed from high temperature melts emulsified into an aqueous phase.

a surface coated abrasive material, having a water-soluble abrasive core surrounded by a coating that is substantially insoluble in aqueous media during storage but becomes substantially water soluble upon application of substantially large quantities of water or adjustment of the pH of the aqueous medium.

Additionally, European Patents 11806 and 705854 disclose the use of pH-depandent polymers as pH responsive thickening agents.

SUMMARY OF THE INVENTION

It has surprisingly been found that certain film-forming, pH-dependent polymers may be employed within cosmetic compositions to provide tightening effects upon human integuments for a prolonged period of time. It has also been found that the tightening and/or curling effects of these compositions are substantially resistant to environmental factors such as heat and humidity.

In accordance with the foregoing objectives and others, the present invention provides a method for forming a cosmetic film on a human integument. The method includes applying to the human integument a cosmetic composition having a cosmetically acceptable vehicle, optionally, one or more colorants, and a pH-dependent film-forming polymer of poly(methacrylic acid-co-methyl methacrylate) (e.g., Eudragit S100 and Eudragit L100); and/or poly(methacrylic acid-co-ethyl acrylate) (e.g., Eudragit L100-55).

These and other aspects of the invention will be better understood by reading the following detailed description and appended claims.

In one embodiment, a method is utilized for improving the aesthetic appearance of skin effected by aging comprising topically applying thereto an effective amount of a pH-dependent film-forming polymer of poly(methacrylic acid-co-methyl methacrylate) with a ratio of methacrylic acid to methyl methacrylate of 1:1 to 1:2, an acid value of from 150 to 350 mg KOH/g, and a weight average molar mass between about 100,000 and about 150,000 g/mol, in a cosmetically acceptable vehicle for a time sufficient to achieve a tightening effect.

In another embodiment, the ratio of methacrylic acid to methyl methacrylate is 1:1.

In another embodiment, the ratio of methacrylic acid to methyl methacrylate is 1:2.

In another embodiment, the acid value is from 150 to 200 mg KOH/g.

In another embodiment, the acid value is from 300 to 350 mg KOH/g.

In another embodiment, the pH-dependent film forming polymer has a target pH of greater than 6.

In another embodiment, the pH-dependent film forming polymer has a target pH of greater than 7.

In another embodiment, the pH-dependent film forming polymer has a target pH of greater than 5.5.

In another embodiment, the tightening effect is selected from the group consisting of:

- reduction and/or mitigation of the appearance of fine lines and/or wrinkles;
- improvement in skin tautness;
- improvement in skin appearance negatively impacted by aging and or menopause; and
- reduction or mitigation of the appearance of sagging skin.

In another embodiment, the tightening effect is an improvement in skin tightness of at least 0%.

In another embodiment, the tightening effect is an improvement in skin tightness of at least 20%.

In another embodiment, the tightening effect is an improvement in skin tightness of at least 25%.

In another embodiment, the pH-dependent film-forming polymer is in combination with a retinoid.

In another embodiment, the pH-dependent film forming polymer is not in the form of a microcapsule.
average molar mass between 100,000 and 150,000 g/mol.

In another embodiment, the ratio of methacrylic acid to methyl methacrylate is 1:1.

In another embodiment, the ratio of methacrylic acid to methyl methacrylate is 1:2.

In another embodiment, the acid value is from 150 to 200 mg KOH/g.

In another embodiment, the acid value is from 300 to 350 mg KOH/g.

In another embodiment, the pH-dependent film forming polymer has a target pH of greater than 6.

In another embodiment, the pH-dependent film forming polymer has a target pH of greater than 7.

In another embodiment, the acid value is from 150 to 200 mg KOH/g.

In another embodiment, the acid value is from 300 to 350 mg KOH/g.

In another embodiment, the pH-dependent film forming polymer has a target pH of greater than 5.5.

In another embodiment, the pH-dependent film forming polymer is present in an amount of 0.001 wt% to 90% of the total weight of the composition.

In another embodiment, the pH-dependent film forming polymer is present in an amount of 0.01 wt% to 20% of the total weight of the composition.

In another embodiment, the pH-dependent film forming polymer is present in an amount of 0.1 wt% to 0% of the total weight of the composition.

In another embodiment, the pH-dependent film forming polymer is not in the form of a microcapsule.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a bar chart illustrating the increase in skin tightness observed in synthetic Bioskin substrates after application of a cosmetic composition formulated according to one embodiment of the present invention in comparison with those observed after application of a composition containing PVP. Results shown reflect skin tightness reading obtained at: (1) initial administration and (2) three hours of increased temperatures (@ 80° F) and humidity (85% relative humidity (RH)).

FIG. 2 is a bar chart illustrating the increase in skin tightness observed in synthetic BioSkin substrates after application of a cosmetic composition formulated according to one embodiment of the present invention in comparison with those observed after application of a composition containing PVP. Results shown reflect skin tightness readings obtained at: (1) initial administration, (2) three hours of increased temperatures (72° F) and humidity (85% RH), and (3) six days after application.

FIG. 3 is a set of four photos illustrating the curling effect upon false eyelashes of a cosmetic composition formulated according to one embodiment of the present invention.

DETAILED DESCRIPTION

Detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely illustrative of the invention that may be embodied in various forms. In addition, each of the examples given in connection with the various embodiments of the invention are intended to be illustrative, and not restrictive. Further, the figures are not necessarily to scale, and some features may be exaggerated to show details of one embodiment’s components. In addition, any measurements, specifications and the like shown in the figures are intended to be illustrative, and not restrictive. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.

The present invention provides for cosmetic compositions which comprise an effective amount of a pH dependent film forming polymer that provides a curling and/or tightening effect upon topical application to a human. The curling effect upon lashes may include an enhanced degree and/or percentage of curling of the eyelashes. The tightening effect of such compositions may increase the tightness of the skin resulting in a smoothing out of the skin and immediately inducing, indeed bringing about, the disappearance and/or mitigation of the appearance of wrinkles, fine lines, and/or sagging skin. Tightening effects include without limitation: (1) reduction and/or mitigation of the appearance of fine lines and/or wrinkles; (2) improvement in skin tautness; (3) improvement in skin appearance negatively impacted by aging and/or menopause; (4) reduction or mitigation of the appearance of sagging skin; and/or (5) improvement in the form of an increased feeling of skin tautness. In practice, the compositions of the invention are applied to a human integument
(e.g., skin, lashes, lips, hair, etc.) which suffers from a deficiency or loss in any of the foregoing attributes or which would otherwise benefit from improvement in any of the foregoing attributes. Surprisingly, these effects may be maintained for prolonged periods of time under adverse environmental conditions when the current inventive cosmetic compositions are applied.

[0051] The cosmetic compositions may be in the form of solids (e.g., powders and pressed powders); suspensions; serums; lotions; aqueous, dilute alcoholic or oily gels; dispersions; emulsions (e.g., oil-in-water emulsions and water-in-oil emulsions); liquids, and the like. As used herein, the term liquid is intended to include very thin to very viscous materials including non-Newtonian liquids having high initial viscosities (e.g., up to 2,000,000 cps at 25 °C), as well as gels and other materials capable of dispensation from a container onto a human integument. Preferred cosmetics include, without limitation, mascara, foundation, sunscreen, pressed powder, eyeshadow, aqueous lip products (e.g., lipstick and lipgloss), skin cream, skin gel, and the like.

[0052] In one embodiment the composition is intended for use as a non-therapeutic treatment. In another embodiment, the composition is an article intended to be rubbed, poured, sprinkled, or sprayed on, introduced into, or otherwise applied to the human body for cleansing, beautifying, promoting attractiveness, or altering the appearance, in accordance with the US FD&C Act, sec. 201 (i).

[0053] The cosmetic compositions comprise one or more pH-dependent, film-forming polymers. Generally, these polymers comprise anionic copolymers with monomers comprised of acrylic acid/acyclic acid derivatives. In particular, the copolymers may consist of methacrylic acid and methyl methacrylate or ethyl acrylate copolymers in a random, block, or alternating configuration. The polymers are insoluble in water at a pH below a trigger pH due to non-ionized (i.e., protonated) carboxylic acid groups. However, as the pH of a solution is increased to the trigger pH, the polymers experience ionization of the carboxylic acid group, resulting in increased aqueous solubility and consequent dissolution of the polymer and removal from the integument.

[0054] Without wishing to be bound to any particular theory, the inventors believe that the pH-dependent, film forming polymers within the tightening/curling cosmetic composition of the current invention contribute to the long-lasting and substantial environmental resistance of the compounds. In particular, it is hypothesized that the film-forming pH dependent polymers utilized within the current invention do not dissolve but remain as stable films at the pH of water. Therefore, the polymers are able to maintain their tightening and curling effects in the presence of ambient humidity and/or sweat (in other words, maintain tightening / curling effects of a film forming polymer at skin physiological pH).

[0055] All terms used herein are intended to have their ordinary meaning in the art unless otherwise provided. All concentrations are in terms of percentage by weight of the specified component relative to the entire weight of the cosmetic composition. Unless otherwise defined, the phrase "substantially free" refers to an amount of a component that is sufficiently low such that the component contributes no significant properties to the bulk and, in any event, will be less than 0.5 % by weight and in one embodiment less than 0.1 % by weight.

[0056] As used herein, the term "consisting essentially of" is intended to limit the invention to the specified materials or steps and those materials or steps that do not materially affect the basic and novel characteristics of the claimed invention, as understood from a reading of this specification. All percentages are by weight based on the total weight of the composition, unless otherwise indicated.

[0057] By "cosmetically acceptable" it is meant that a particular component is generally regarded as safe and nontoxic at the levels employed.

[0058] The term "active amount" refers to the amount of film-forming pH dependent polymer, absent diluent, solvent, carrier, filler or any other ingredient. An "amount effective" or an "effective amount" to provide a particular tightening and/or curling benefit to a human integument, e.g carrier, filler or any other ingredient. An "amount effective" or an "effective amount" to provide a particular tightening and/or curling benefit to a human integument, e.g. skin, hair, eyelashes, lips, etc., refers to the "active amount" of film-forming pH dependent polymer required to provide a clinically measurable improvement in the particular manifestation of skin aging when applied for a time sufficient to provide a measurable improvement in the particular manifestation of aged skin.

[0059] The phrase "individual in need thereof" refers to a human who could benefit from improved dermal /integument (e.g. skin, hair, eyelashes, lips, etc.) appearance or health, including males or females.

[0060] In certain embodiments of the invention, the pH-dependent film-forming polymer typically has a molar ratio of methacrylic acid to ethyl acrylate of 1:1, an acid value of from 150 to 350 mg KOH/g, and a weight average molar mass between 200,000 and 350,000 g/mol. Typically the pH-dependent film forming polymer may have the following structure:
wherein m and n are integers so that the weight average molar mass is between 200,000 and 350,000 g/mol and so that the molar ratio of methacrylic acid to ethyl acrylate is 1:1. Examples of these polymers are available as EUDRAGIT® L 100-55 from Evonik Degussa-Huls Corporation and are generally insoluble at pH values less than 6.

In further embodiments of the invention, the pH-dependent film-forming polymer typically has a molar ratio of methacrylic acid to methyl methacrylate of 1:1 to 1:2, an acid value of from 150 to 350 mg KOH/g, and a weight average molar mass between 100,000 and 150,000 g/mol. These pH-dependent film forming polymers may have the following structure

wherein m and n are integers so that the weight average molar mass is between 100,000 and 150,000 g/mol and so that the molar ratio of methacrylic acid to methyl methacrylate is 1:1 to 1:2. Examples of these polymers are available as EUDRAGIT® S 100 and EUDRAGIT® L 100 from Evonik Degussa-Huls Corporation, and they are generally insoluble at pH values less than about 7 (EUDRAGIT® S 100) / less than 6 (EUDRAGIT® L 100). / less than 5.5 (EUDRAGIT® L 100-55).

Exemplary pH-dependent polymers according to the invention will comprise methacrylic acid and methyl methacrylate or ethyl acrylate copolymers in a molar ratio from 1:1 to 1:2 (e.g., 1:1, and 1:2). The polymers typically comprise an acid value of 150 to 350 mg KOH/g, including exemplary ranges such as, but not limited to, 150 to 200 mg KOH/g and 300 KOH/g to 350 KOH /g. Acid values of 190 mg KOH/g and 315 mg KOH/g are particularly preferred. Moreover, in certain embodiments, the methacrylic co-methyl methacrylate pH-dependent polymers will typically have an average molar mass from 100,000 to 150,000 g/mol, and most typically 125,000 g/mol. In other embodiments, the methacrylic co-ethyl acrylate pH-dependent polymers will typically have an average molar mass from 200,000 to 350,000 g/mol, in one embodiment 250,000 g/mol.

In one embodiment, pH-dependent film-forming polymers are sold under the names EUDRAGIT® S 100, EUDRAGIT® L 100, and EUDRAGIT® L100-55 by Evonik Degussa-Huls Corporation. Films or coatings of such polymers are insoluble at pH values less than 7 (EUDRAGIT® S 100), less than 6 (EUDRAGIT® L 100), and less than 5.5 (EUDRAGIT® L 100-55). Accordingly, these polymers may be included in cosmetic compositions either alone or in combination, such that the pH-dependent solubility of a film produced thereby may be selected to be from 5.5 to 7, including but not limited to 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 and 7.0. Such selection will typically be based on the desired use of the cosmetic composition. However, it may be broadly stated that the pH-dependent, film-forming polymers will be selected such that the film is insoluble in water at the prevalent environmental conditions. Accordingly, the film-forming polymers may be chosen such that the cosmetic composition is soluble at a pH greater than 5.0, greater than 5.5, greater than 6.0, greater than 6.5, greater than 7.0, or greater than 7.5, depending on the intended use.

The amount of pH-dependent polymer(s) present in the tightening compositions will typically range from 0.1 to 10 % by weight of the composition, but may be higher or lower depending on the desired properties. Typically, the
cosmetic compositions will comprise the pH-dependent polymers in an amount of from 0.1 % to 10 % by weight, more typically from 0.2 to 8 % by weight, and most typically from 0.5 to 5 % by weight. It has been found that cosmetic compositions comprising such pH-dependent polymers are both easy to apply to and remove from the skin, yet remain in contact with the skin for long periods of time, i.e. do not rub-off. Cosmetic compositions comprising pH-dependent polymers may remain on the skin for greater than 4, 12, 24, 48, or even greater than 72 hours.

[0065] The film-forming polymer is not in the form of an encapsulant, and is particularly not utilized such as those described in U.S. Patent Nos 7,053,034, 4,976,961, 5,993,831 and U.S. Patent App. Pub. No. 2006/0127427, each of which is described above and incorporated herein by reference in their entirety. As used herein, the term "microcapsule" refers to a structure having a polymeric membrane (i.e., shell) surrounding a core material (e.g., an active ingredient). The term "microcapsule" is intended to be generic, and is not limited to a particular size (i.e., nano, micro, etc.).

[0066] Another embodiment of the invention encompasses compositions comprising a cosmetically or dermatologically acceptable formulation which is suitable for contact with living animal tissue, including human tissue, with virtually no adverse physiological effect to the user. Compositions embraced by this invention can be provided in any cosmetically and/or dermatologically suitable form, in one embodiment as a lotion or cream, but also in an anhydrous or aqueous base, as well as in a sprayable liquid form. Other suitable cosmetic product forms for the compositions of this invention include, for example, an emulsion, a cream, a balm, a gloss, a lotion, a mask, a serum, a toner, an ointment, a mousse, a patch, a pomade, a solution, a spray, a wax-based stick, a gellant-based stick or a towelette. In addition, the compositions contemplated by this invention can include one or more compatible cosmetically acceptable adjuvants commonly used and known by the skilled practitioner, such as colorants, fragrances, emollients, humectants, preservatives, vitamins, chelators, thickeners, perilla oil or perilla seed oil (WO 01/66067 to a "Method of Treating a Skin Condition," and the like, as well as other botanicals such as aloe, chamomile, and the like, and as further described below.

[0067] The compositions can include a cosmetically acceptable vehicle. Such vehicles may take the form of any known in the art suitable for application to skin and may include water (e.g., deionized water); vegetable oils; mineral oils; esters such as octyl palmitate, isopropyl myristate and isopropyl palmitate; ethers such as dicapryl ether and dimethyl isosorbide; alcohols such as ethanol and isopropanol; fatty alcohols such as cetyl alcohol, cetaryl alcohol, stearyl alcohol and biphenyl alcohol; isoparaffins such as isoctane, isododecane and is hexadecane; silicone oils such as cyclomethicone, dimethicone, dimethicone cross-polymer, polycosanol and their derivatives, such as organomodified derivatives; hydrocarbon oils such as mineral oil, petrolatum, isoeicosane and polysisobutene; polysilsesquioxanes such as propylene glycol, glycerin, butylene glycol, pentylene glycol and hexylene glycol; waxes such as beeswax and botanical waxes; or any combinations or mixtures of the foregoing.

[0068] The vehicle may comprise an aqueous phase, an oil phase, an alcohol, a silicone phase or mixtures thereof. The cosmetically acceptable vehicle may also comprise an emulsion. Non-limiting examples of suitable emulsions include water-in-oil emulsions, oil-in-water emulsions, silicone-in-water emulsions, water-in-silicone emulsions, water-in-oil emulsions, water-in-oil triple emulsions or the like having the appearance of a cream, gel or microemulsions. The emulsion may include an emulsifier, such as a nonionic, anionic or amphoteric surfactant.

[0069] The oil phase of the emulsion in one embodiment has one or more organic compounds, including emollients; humectants (such as butylene glycol, propylene glycol, Methyl gluceth-20, and glycerin); other water-dispersible or water-soluble compounds including thickeners such as veegeum or hydroxyalkyl cellulose; gelling agents, such as high MW polyacrylic acid, i.e. CARBOPOL 934; and mixtures thereof. The emulsion may have one or more emulsifiers capable of emulsifying the various components present in the composition.

[0070] The compounds suitable for use in the oil phase include without limitation, vegetable oils; esters such as octyl palmitate, isopropyl myristate and isopropyl palmitate; ethers such as dicapryl ether; fatty alcohols such as cetyl alcohol, stearyl alcohol and behenyl alcohol; isoparaffins such as isoctane, isododecane and isoheptadecane; silicone oils such as dimethicones, cyclic silicones, and polycosanols; hydrocarbon oils such as mineral oil, petrolatum, isoeicosane and polysiloxane; natural or synthetic waxes; and the like. Suitable hydrophobic hydrocarbon oils may be saturated or unsaturated, have an aliphatic character and be straight or branched chained or contain alicyclic or aromatic rings. The oil-containing phase may be composed of a singular oil or mixtures of different oils.

[0071] Hydrocarbon oils including those having 6-20 carbon atoms may be utilized, and in one embodiment they may have 10-16 carbon atoms. Representative hydrocarbons include decane, dodecane, tetradecane, tridecane, and C8-20 isoparaffins. Paraffinic hydrocarbons are available from Exxon under the ISOPARS trademark, and from the Permethyl Corporation. In addition, C8-20 paraffinic hydrocarbons such as C12 isoparaffin (isododecane) manufactured by the Permethyl Corporation having the tradename Permethy 99A™ are also contemplated to be suitable. Various commercially available C16 isoparaffins, such as isohexadecane (having the tradename Permethy®) are also suitable. Examples of volatile hydrocarbons include polydecanes such as isododecane and isododecane, including for example, Permethy-99A (Presperse Inc.) and the C7-C9 through C12-C15 isoparaffins such as the Isopar Series available from Exxon Chemicals. A representative hydrocarbon solvent is isododecane.

[0072] The oil phase may comprise one or more waxes, including for example, rice bran wax, carnauba wax, oiticica wax, candellila wax, montan waxes, sugar cane waxes, ozokerite, polyethylene waxes, Fischer-Tropsch waxes, beeswax,
Non-volatile silicone oils will typically comprise polyalkylsiloxanes, polyarylsiloxanes, polyalkylarylsiloxanes, or ethyltrisiloxane, decamethyltetrasiloxane, and dodecamethylpentasiloxane, to name a few. Volatile silicones include low molecular weight polydimethylsiloxane compounds such as hexamethyldisiloxane, octamethylcyclotetrasiloxane, and decamethyl-cyclopentasiloxane. Suitable dimethicones are available from Dow Corning under the name Dow Corning 200® Fluid and have viscosities ranging from 0.65 to 600,000 centistokes or higher. Suitable non-polar, volatile liquid silicone oils are disclosed in U.S. Pat. No. 4,781,917. Additional volatile silicones materials are described in Todd et al., "Volatile Silicone Fluids for Cosmetics", Cosmetics and Toiletries, 91:27-32 (1976). Linear volatile silicones generally have a viscosity of less than about 5 centistokes at 25° C., whereas the cyclic silicones have viscosities of less than about 10 centistokes at 25° C. Examples of volatile silicones of varying viscosities include Dow Corning 200, Dow Corning 244, Dow Corning 245, Dow Corning 344, and Dow Corning 345, (Dow Corning Corp.); SF-1204 and SF-1202 Silicone Fluids (G.E. Silicones), GE 7207 and 7158 (General Electric Co.); and SWS-03314 (SWS Silicones Corp.). Linear, cyclic and linear volatile dimethylsiloxane silicones. In one embodiment, the volatile silicones may include cyclodimethicones, including tetramer (D₄), pentamer (D₅), and hexamer (D₆) cyclomethicones, or mixtures thereof. Particular mention may be made of the volatile cyclohexasiliconec-hexamethyl cyclotrisiloxane, octamethyl-cyclooctasiloxane, and decamethyl-cyclopentasiloxane. Suitable dimethicones are available from Dow Corning under the name Dow Corning 200® Fluid and have viscosities ranging from 0.65 to 600,000 centistokes or higher. Suitable non-polar, volatile liquid silicone oils are disclosed in U.S. Pat. No. 4,781,917. Additional volatile silicones materials are described in Todd et al., "Volatile Silicone Fluids for Cosmetics", Cosmetics and Toiletries, 91:27-32 (1976). Linear volatile silicones generally have a viscosity of less than about 5 centistokes at 25° C., whereas the cyclic silicones have viscosities of less than about 10 centistokes at 25° C. Examples of volatile silicones of varying viscosities include Dow Corning 200, Dow Corning 244, Dow Corning 245, Dow Corning 344, and Dow Corning 345, (Dow Corning Corp.); SF-1204 and SF-1202 Silicone Fluids (G.E. Silicones), GE 7207 and 7158 (General Electric Co.); and SWS-03314 (SWS Silicones Corp.). Linear, cyclic volatile silicones include low molecular weight polydimethylsiloxane compounds such as hexamethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane, and dodecamethylpentasiloxane, to name a few. Non-volatile silicone oils will typically comprise polyalkylsiloxanes, polyarylsiloxanes, polyalkylarylsiloxanes, or mixtures thereof. Polydimethylsiloxanes are non-volatile silicone oils. The non-volatile silicone oils will typically have a viscosity from 10 to 60,000 centistokes at 25° C., in one embodiment between 10 and 10,000 centistokes, and in one embodiment still between 10 and 500 centistokes; and a boiling point greater than 250° C. at atmospheric pressure. Non limiting examples include dimethyl polysiloxane (dimethicone), phenyl trimethicone, and diphenyldimethicone. The volatile and non-volatile silicone oils may optionally be substituted with various functional groups such as alkyl, aryl, amine groups, vinyl, hydroxy, haloalkyl groups, alkylaryl groups, and acrylate groups, to name a few. The water-in-silicone emulsion may be emulsified with a nonionic surfactant (emulsifier) such as, for example, polydimethylosiloxane-polyoxyalkylene block copolymers, including those described in U.S. Pat. No. 4,122,029. These emulsifiers generally comprise a polydimethylosiloxane backbone, typically polydimethylosiloxane, having side chains comprising -(EO)n- and/or -(PO)m- groups, where EO is ethyleneoxy and PO is 1,2-propyleneoxy, the side chains being typically capped or terminated with hydrogen or lower alkyl groups (e.g., C₁₋₆, typically C₁₋₃). Other suitable water-in-silicone emulsifiers are disclosed in U.S. Pat. No. 6,685,952. Commercially available water-in-silicone emulsifiers include those available from Dow Corning under the trade designations 3225C and 5225C FORMULATION AID; SILICONE SF-1528 available from General Electric; ABIL EM 90 and EM 97, available from Goldschmidt Chemical Corporation (Hopewell, Va.); and the SILWET series of emulsifiers sold by OSI Specialties (Danbury, Conn.). Examples of water-in-silicone emulsifiers include, but are not limited to, dimethicone PEG 10/15 crosspolymer, dimethicone copolyol, methyl methicone copolyol, PEG-15 lauryl dimethicone crosspolymer, laurylmethicone crosspolymer, cyclomethicone and dimethicone copolyol, dimethicone copolyol (and) caprylic/capric triglycerides, polyglyceryl-4 isostearate (and) methyl dimethicone copolyol (and) hexyl laureate, and dimethicone copolyol (and) cyclopentasiloxane. In one embodiment examples of water-in-silicone emulsifiers include, without limitation, PEG/PPG-18/18 dimethicone (trade name 5225C, Dow Corning), PEG/PPG-19/19 dimethicone (trade name BY25-337, Dow Corning), Cetyl PEG/PPG-10/1 dimethicone (trade name Abil EM-90, Goldschmidt Chemical Corporation), PEG-12 dimethicone (trade name SF 1288, General Electric), lauryl PEG/PPG-18/18 methicone (trade name 5200 FORMULATION AID, Dow Corning), PEG-12 dimethicone crosspolymer (trade name 5040 and 9011 silicone elastomer blend, Dow Corning), PEG-10 dimethicone crosspolymer (trade name KSG-20, Shin-etsu), dimethicone PEG-10/15 crosspolymer (trade name KSG-210, Shin-Etsu), and dimethicone PEG-7 isostearate.
The water-in-silicone emulsifiers typically will be present in the composition in an amount from 0.001% to 10% by weight, in another embodiment in an amount from 0.01% to 5% by weight, and in a further embodiment in an amount below 1% by weight.

The aqueous phase of the emulsion may include one or more additional ingredients, such as, but not limited to: active ingredients (e.g., cosmetic, dermatological, and/or pharmaceutical), alcohols, allergy inhibitors, amino acids, anti-acne agents (e.g., salicylic acid), anti-aging agents, antisepsics, antifungal agents, antiperspirants, analgesics, anti-hair loss agents, anti-wrinkle agents, antibacterial agents, anti-microbial agents, anti-oxidants, anti-inflammatory agents, burn healing agents, colorants (e.g., lakes, pigments, and the like), de-pigmentation agents, deodorants, dyes, emollient (e.g., glycerin, butylene glycol), excipients, fatty substances, fillers, film formers (e.g., dimethicone acrylate copolymer, ethylhexyl acrylate copolymer), fragrances, free radical scavengers, fragrance, herbal extracts, humectants (e.g., hyaluronic acid, orotic acid, lipoprotein), insect repellants, medication, moisturizers, non-active carrier oils (e.g., triglycerides, silicone oils, mineral oils), oils, peptides, polypeptides, proteins, perfumes, pigments, preservatives, plasticizers, reflectants, sebum absorbers, skin lightening agents, sunscreens, surfactants, tanning agents, thickening agents (e.g., hydroxyethylcellulose, xanthan gum, carbomer), Vaseline, vasocostrictors, vitamins (e.g., Vitamin A, Vitamin E), water, waxes, and/or combinations thereof.

In addition to the pH-dependent film forming polymers, the inventive cosmetic compositions may comprise any number of additional ingredients, such as, but not limited to: active ingredients (e.g., cosmetic, dermatological, and/or pharmaceutical), alcohols, allergy inhibitors, amino acids, anti-acne agents (e.g., salicylic acid), anti-aging agents, antisepsics, antifungal agents, antiperspirants, analgesics, anti-hair loss agents, anti-wrinkle agents, antibacterial agents, anti-microbial agents, anti-oxidants, anti-inflammatory agents, burn healing agents, colorants (e.g., lakes, pigments, and the like), de-pigmentation agents, deodorants, dyes, emollient (e.g., glycerin, butylene glycol), excipients, fatty substances, fillers, film formers (e.g., dimethicone acrylate copolymer, ethylhexyl acrylate copolymer), fragrances, free radical scavengers, fragrance, herbal extracts, humectants (e.g., hyaluronic acid, orotic acid, lipoprotein), insect repellants, medication, moisturizers, non-active carrier oils (e.g., triglycerides, silicone oils, mineral oils), oils, peptides, polypeptides, proteins, perfumes, pigments, preservatives, plasticizers, reflectants, sebum absorbers, skin lightening agents, sunscreens, surfactants, tanning agents, thickening agents (e.g., hydroxyethylcellulose, xanthan gum, carbomer), Vaseline, vasocostrictors, vitamins (e.g., Vitamin A, Vitamin E), water, waxes, and/or combinations thereof.

The composition of the present invention may also include other cosmetic ingredients such as, but not limited to, humectants, emollients, optical diffusers, moisturizers, anti-wrinkle ingredients, concealers, matte finishing agents, pigments, colorants, proteins, anti-oxidants, bronzer, colorants, emulsifiers, ultraviolet (UV) absorbing agents, oil absorbing agents, anti-foam agents, anti-tack agents, thickeners, fragrances, preservatives, anti-microbials, fungistats, neutralizing agents, vitamins, plasticizers, cohesion agents, basifying and acidifying agents, fillers, solvents, and mixtures thereof.

The compositions may contain additional ingredients such as alakinizing agents, emulsifying agents, emollients, plasticizers, preservatives, humectants, moisturizing agents, solvents, and tonic agents or active ingredients suitable to provide anti-aging benefits. Examples of preferred additional ingredients include glycerin.

Additional ingredients may optionally be added to the inventive compositions as detailed below.

Colorants or pigments: The compositions may comprise one or more cosmetic powders, for example, calcium aluminum borosilicate, PMMA, polyethylene, polystyrene, methyl methacrylate crosspolymer, nylon-12, ethylene/acrylic acid copolymer, boron nitride, Teflon, silica, or the like. Typically the compositions will include colorants or pigments to impart a desired color or effect. Examples are inorganic pigments, organic pigments, and/or lakes. Exemplary inorganic pigments include, but are not limited to, metal oxides and metal hydroxides such as magnesium oxide, magnesium hydroxide, calcium oxide, calcium hydroxides, aluminum oxide, aluminum hydroxide, iron oxides (α-Fe2O3, γ-Fe2O3, Fe3O4, FeO), red iron oxide, yellow iron oxide, black iron oxide, iron hydroxides, titanium dioxide, titanium lower oxides, zirconium oxides, chromium oxides, chromium hydroxides, manganese oxides, cobalt oxides, cerium oxides, nickel oxides and zinc oxides and composite oxides and composite hydroxides such as iron titanate, cobalt titanate and cobalt aluminate. Non-metal oxides also contemplated to be used are alumina and silica, ultramarine blue (i.e., sodium aluminum silicate containing sulfur), Prussian blue, manganese violet, bismuth oxychloride, t alc, mica, sericite, magnesium carbonate, calcium carbonate, magnesium silicate, aluminum magnesium silicate, silica, titanated mica, iron oxide titanated mica, bismuth oxychloride, and the like. Organic pigments can include, but are not limited to, at least one of carbon black, carmine, phthalocyanine blue and green pigment, diarylide yellow and orange pigments, and azo-type red and yellow pigments such as touluidine red, litho red, naphthol red and brown pigments, and combinations thereof.

Lakes generally refer to a colorant prepared from a water-soluble organic dye, (e.g., D&Co FD&C) which has been precipitated onto an insoluble reactive or adsorptive substratum or diluent. The term "D&Co" as used herein means drug and cosmetic colorants that are approved for use in drugs and cosmetics by the FDA. The term "FD&C" as used
rner, bismuth oxychloride, sericite, alumina, aluminum, copper, bronze, silver, calcium, zirconium, barium, and strontium, titannated mica, fumed silica, spherical silica, poly(methylmethacrylate) (PMMA), micronized teflon, boron nitride, acrylate copolymers, aluminum silicate, aluminum starch octenylsuccinate, bentonite, calcium silicate, cellulose, chalk, corn starch, diatomaceous earth, fuller’s earth, glyceryl stear, hectorite, hydrated silica, kaolin, magnesium aluminum silicate, magnesium trisilicate, maltodextrin, montmorillonite, microcrystalline cellulose, rice starch, silica, tical, mica, titanium dioxide, zinc laurate, zinc myristate, zinc rosinate, alumina, attapulgite, calcium carbonate, calcium silicate, dextran, nylon, silica silylate, silk powder, sericite, soy flour, tin oxide, titanium hydroxide, trimagnesium phosphate, walnut shell powder, and mixtures thereof. Suitable lakes include, without limitation, those of red dyes from the monoazo, disazo, fluor, xanthene, or indigoid families, such as Red 4, 6, 7, 17, 21, 22, 27, 28, 30, 31, 33, 34, 36, and Red 40; lakes of yellow pyrazolone, monoazo, fluoran, xanthene, quinoline, dyes or salt thereof, such as Yellow 6, 8, 7, 8, 10, and 11; lakes of violet dyes including those from the anthroquinone family, such as Violet 2. as well as lakes of orange dyes, including Orange 4, 5, 10, 11, and the like. Suitable lakes of D&C and FD&C dyes are defined in 21 C.F.R. § 82.51.

The coloring agents may be optionally surface treated to for example make the particles more hydrophobic or more dispersible in a vehicle. The surface of the particles may, for example, be covalently or ionically bound to an organic molecule or silicon-based molecule or may be adsorbed thereto, or the particle may be physically coated with a layer of material. The surface treatment compound may be attached to the particle through any suitable coupling agent, linker group, or functional group (e.g., silane, ester, etc.). The compound may comprise a hydrophobic portion which may be selected from, for example, alkyl, aryl, vinyl, alkyl-aryl, aryl-alkyl, organosilicone, dimethicones, methicones, polyurethanes, silicone-polyurethanes, and fluoro- or perfluoro-derivatives thereof. Other hydrophobic modifiers include lauryl lysine, Isopropyl Titanium Triisostearate (ITT), ITT and Dimethicone (ITT/Dimethicone) cross-polymer, ITT and Amino Acid, ITT/Triethoxycaprylylsilane Crosspolymer, waxes (e.g., carnauba), fatty acids (e.g., steareates), HDI/Trimethyl Hexylactone Crosspolymer, PEG-8 Methyl Ether Triethoxysilane, aloe, jojoba ester, lecithin, perfluoroalkylphosphate, and Magnesium Myristate (MM), to name a few.

An optional pigment component includes and alkyl silane surface-treated colorant consisting essentially of or comprising an alumina substrate (e.g., platelet shaped) and a pigment, dye, or lake bonded to the alumina substrate by an alkyl silane surface treatment. Typically, the alkyl silane will be octylsilane, and may be formed by treatment with octyl silane. Typically, the alkyl silane will be octylsilane, and may be formed by treatment with octyl silane. The coloring agents may be optionally surface treated to for example make the particles more hydrophobic or more dispersible in a vehicle. The surface of the particles may, for example, be covalently or ionically bound to an organic molecule or silicon-based molecule or may be adsorbed thereto, or the particle may be physically coated with a layer of material. The surface treatment compound may be attached to the particle through any suitable coupling agent, linker group, or functional group (e.g., silane, ester, etc.). The compound may comprise a hydrophobic portion which may be selected from, for example, alkyl, aryl, vinyl, alkyl-aryl, aryl-alkyl, organosilicone, dimethicones, methicones, polyurethanes, silicone-polyurethanes, and fluoro- or perfluoro-derivatives thereof. Other hydrophobic modifiers include lauryl lysine, Isopropyl Titanium Triisostearate (ITT), ITT and Dimethicone (ITT/Dimethicone) cross-polymer, ITT and Amino Acid, ITT/Triethoxycaprylylsilane Crosspolymer, waxes (e.g., carnauba), fatty acids (e.g., steareates), HDI/Trimethyl Hexylactone Crosspolymer, PEG-8 Methyl Ether Triethoxysilane, aloe, jojoba ester, lecithin, perfluoroalkylphosphate, and Magnesium Myristate (MM), to name a few.

An optional pigment component includes and alkyl silane surface-treated colorant consisting essentially of or comprising an alumina substrate (e.g., platelet shaped) and a pigment, dye, or lake bonded to the alumina substrate by an alkyl silane surface treatment. Typically, the alkyl silane will be octylsilane, and may be formed by treatment with triethoxy caprylylsilane. Non-limiting examples of such colorants include, but are not limited to, Alumina/Titanium Dioxide/Triethoxycaprylylsilane 1% (COVALUMINE™ Atlas White AS), Alumina/D&C Red Aluminum Lake CTD/Triethoxycaprylylsilane 1% (COVALUMINE™ Red Rose AS), Alumina/D&C Red Aluminum Lake CTD/Triethoxycaprylylsilane 1% (COVALUMINE™ Sonoma Red AS), Alumina/Black Iron Oxide CTD/Triethoxycaprylylsilane 1% (COVALUMINE™ Sonoma Black AS), Alumina/D&C Red #6 Aluminum Lake CTD/Triethoxycaprylylsilane 1% (COVALUMINE™ Fire Red AS), Alumina/Yellow Iron Oxide CTD/Triethoxycaprylylsilane 1% (COVALUMINE™ Sonoma Yellow AS), Alumina/D&C Blue #1 Aluminum Lake CTD/Triethoxycaprylylsilane 1% (COVALUMINE™ Astral Blue AS), Alumina/Carmine CTD/Triethoxycaprylylsilane 1% (COVALUMINE™ Campari AS), Alumina/Yellow #5 CTD/Triethoxycaprylylsilane 1% (COVALUMINE™ Sunburst AS), Alumina/Triethoxycaprylylsilane 1%, and combinations thereof, each of which is available from SENSIENT™ Cosmetic Technologies LCW.

Interference or pearl pigments may also be included. These are typically comprised of micas layered with about 50 to 300 nm films of TiO₂, Fe₂O₃, or Cr₂O₃ or the like. These include white nacreous materials, such as mica covered with titanium oxide or covered with bismuth oxychloride; and colored nacreous materials, such as titanium mica with iron oxides, titanium mica with ferric blue or chromium oxide, titanium mica with an organic pigment of the aforementioned type. If these materials are used, it is preferred that these materials are used collectively in an amount of less than 1.0 wt %. In one embodiment, the pearlescent component has a bismuth oxychloride based pearlescent ingredient or reflectance pearls. Bismuth oxychloride, better mimics the skin’s natural reflectance, matches the skin’s natural pearlescence more so than compounds such as titanium oxide. However, other pearlescent ingredients may be used. A preferred pearlescent component is called CHROMA-LITE, a combination of colored pigment bonded to BI-LITE 20 (bismuth oxychloride and mica) using calcium stearate. The CHROMA-LITE component is available in various shades/colors from Englehard Corporation (Iselin, N.J.). Other pearlescents include: MicaMira (Sandream Enterprises); SynMira (Sandream Enterprises); GlassMira (Sandream Enterprises); Xirona (EMD Performance Chemicals); Timiron (EMD Performance Chemicals); Colorna (EMD Performance Chemicals); Ronastar (EMD Performance Chemicals); RonaFlair (EMD Performance Chemicals); Reflecks (BASF); Duocrome (BASF); Chione (BASF).
that synergistic improvements may be obtained with such combinations. Exemplary anti-aging components include, without limitation, botanicals (e.g., Butea frondosa extract); thiodipropionic acid (TDPA) and esters thereof; retinoids (e.g., all-trans retinoic acid, 9-cis retinoic acid, phytanic acid and others); hydroxy acids (including alpha-hydroxyacids and beta-hydroxyacids), salicylic acid and salicylates; exfoliating agents (e.g., glycolic acid, 3,6,9-trioxauaundecaneic acid, etc.), estrogen synthetase stimulating compounds (e.g., caffeine and derivatives); compounds capable of inhibiting 5 alpha-reductase activity (e.g., linolenic acid, linoleic acid, finasteride, and mixtures thereof); barrier function enhancing agents (e.g., ceramides, glyclycerides, cholesterol and its esters, alpha-hydroxy and omega-hydroxy fatty acids and esters thereof, etc.); collagenase inhibitors; and elastase inhibitors; to name a few.

[0093] Exemplary retinoids include, without limitation, retinoic acid (e.g., all-trans or 13-cis) and derivatives thereof, retinol (Vitamin A) and esters thereof, such as retinol palmitate, retinol acetate and retinol propionate, and salts thereof.

[0094] In another embodiment, the topical compositions of the present invention may also include one or more of the following: a skin penetration enhancer, an emollient, a skin plumper, an optical diffuser, a sunscreen, an exfoliating agent, and an antioxidant.

[0095] An emollient provides the functional benefits of enhancing skin smoothness and reducing the appearance of fine lines and coarse wrinkles. Examples include isopropyl myristate, petrolatum, isopropyl lanolate, silicones (e.g., methicone, dimethicone), oils, mineral oils, fatty acid esters, cetyl ethylhexanoate, C12-15 alkyl benzoate, isopropyl isostearate, disopropyl dimer dilinooate, or any mixtures thereof. The emollient may be present from 0.1 wt % to 50 wt % of the total weight of the composition.

[0096] A skin plumper serves as a collagen enhancer to the skin. An example of a suitable skin plumper is palmitoyl oligopeptide. Other skin plumpers are collagen and/or other glycosaminoglycan (GAG) enhancing agents. When present, the skin plumper may comprise from 0.1 wt % to 20 wt % of the total weight of the composition.

[0097] An optical diffuser is a particle that changes the surface optometrics of skin, resulting in a visual blurring and softening of, for example, lines and wrinkles. Examples of optical diffusers that can be used in the present invention include, but are not limited to, boron nitride, mica, nylon, polymethylmethacrylate (PMMA), polyurethane powder, sericite, silica, silicone powder, talc, Teflon, titanium dioxide, zinc oxide, titania fibers, polyamide-6 powders or any mixtures thereof. When present, the optical diffuser may be present from 0.01 wt % to 20 wt % of the total weight of the composition.

[0098] A sunscreen for protecting the skin from damaging ultraviolet rays may also be included. In one embodiment sunscreens may include those with a broad range of UVB and UVA protection, such as octocrylene, avobenzene (Parsol 1789), octyl methoxycinnamate, octyl salicylate, oxybenzone, homosyate, benzophenone, camphor derivatives, zinc oxide, and titanium dioxide. When present, the sunscreen may comprise from 0.01 wt % to 70 wt % of the composition.

[0099] Suitable exfoliating agents include, for example, alpha-hydroxyacids, beta-hydroxyacids, oxacids, oxadiacids, and their derivatives such as esters, anhydrides and salts thereof. Suitable hydroxy acids include, for example, glycolic acid, lactic acid, malic acid, tartaric acid, citric acid, 2-hydroxyalkanoic acid, mandelic acid, salicylic acid and derivatives thereof. In one embodiment an exfoliating agent is glycolic acid. When present, the exfoliating agent may comprise from 0.1 wt % to 80 wt % of the composition.

[0100] Antioxidants scavenge free radicals from skin, protecting the skin from environmental aggressors. Examples of antioxidants that may be used in the present compositions include compounds having phenolic hydroxy functions, such as ascorbic acid and its derivatives/esters; alpha-hydroxyacids; beta-carotene; catechins; curcumin; ferulic acid derivatives (e.g. ethyl ferulate, sodium ferulate); gallic acid derivatives (e.g., propyl gallate); lycopene; reductic acid; rosmarinic acid; tannic acid; tetrahydrocurscum; tocopherol and its derivatives (e.g., tocopheryl acetate); uric acid; or any mixtures thereof. Other suitable antioxidants are those that have one or more thiol functions (-SH), in either reduced or non-reduced form, such as glutathione, lipoic acid, thioglycolic acid, and other sulfhydryl compounds. The antioxidant may be inorganic, such as bisulphites, metabisulphites, sulphites, or other inorganic salts and acids containing sulfur. Compositions of the present invention may comprise an antioxidant in one embodiment from 0.001 wt % to 10 wt %, and in one embodiment from 0.01 wt % to 5 wt %, of the total weight of the composition.

[0101] Other conventional additives include: vitamins, such as tocopherol and ascorbic acid; vitamin derivatives such as ascorbyl monopalmitate; thickeners such as hydroxysteryl cellulose; gelling agents; structuring agents such as bentonite, smectite, magnesium aluminum silicate and lithium magnesium silicate; metal chelating agents such as EDTA; pigments such as zinc oxide and titanium dioxide; colorants; emollients; and humectants.

[0102] Fillers: Fillers can also optionally be added, in an amount from 1% to 20%, in one embodiment from 1% to 10% by weight of the final composition. Examples of fillers include, but are not limited to, silica, PMMA, nylon, alumina, barium sulfate, or any other filler typically used in such compositions.

[0103] Film formers: Polymeric film formers include cellulose, polylefins, polyvinyls, polycrlylates, polyurethanes, silicones, silicone acrylates, polyamides, polysters, fluoropolymers, polyethers, polyacetates, polycarbonates, polimidides, rubbers, epoxies, formaldehyde resins, and homopolymers and copolymers of any of the foregoing.

[0104] Waxes: Waxes which may be used in the invention include, but are not limited to, linear polyethylene, microcrystalline petroleum wax, carnauba wax, lignite wax, ouricour wax, rice bran wax, castor wax, mortar wax, stearone, acrawax, bayberry wax, castor oil, Japan wax, ozokerite, beeswax, candellilla wax, petrolatum, cerasin wax, cocoa
butter, illipe butter, esparto wax, shellac wax, ethylene glycol diesters or triesters of C₁₈-C₃₆ fatty acids, cetyl palmitate, paraffin wax, hard tallow, lanolin, lanolin alcohol, cetyl alcohol, glyceryl monostearate, sugarcane wax, jojoba wax, stearyl alcohol, silicone waxes, and combinations thereof.

[0105] It is understood to those skilled in the art that any other cosmetically acceptable ingredients, i.e., those included in the CFTA Cosmetic Ingredient Dictionary, 3rd Ed., may be used.

[0106] The above-described topical compositions are particularly useful as skin-tightening products for improving the appearance of skin. Such topical compositions can be applied to skin around the eyes, chin, neck and other facial areas to reduce sagginess of the skin and appearance of any wrinkle or fine line there-around, and it can also be applied to other bodily areas containing saggy or wrinkled skin. The resulting polymeric film provides immediate, visible skin-tightening and wrinkle-reduction effects. The film is effective in reducing both fine lines and deeper, greatly visible wrinkles. The tightening effect of such compositions provides the benefits of: (1) reduction and/or mitigation of the appearance of fine lines and/or wrinkles; (2) improvement in skin tautness; (3) improvement in skin appearance negatively impacted by aging and or menopause; and/or (4) reduction or mitigation of the appearance of sagging skin. Further, the polymer film is biocompatible and comfortable to wear, and can therefore be left on the skin for a relatively long period of time to provide long-term skin benefits.

[0107] Further, as noted below in Example 1, and FIGS. 1 and 2, the tightening effect of the cosmetic compositions of the current invention is persistent. FIG. 1 shows that a neat cosmetic composition of a film-forming pH dependent polymer of the current cosmetic composition (30% EUDRAGIT L100-55 in water) maintained the same level of tightening effect after exposure to three hours of high temperatures (@80°C) and high humidity (85% RH) as when it was first applied. The neat composition of PVP (30% high MW PVP in water) lost half of its initial tightening effect over the same period. See FIG. 1. For both the HMV PVP and the Eudragit, the bars on the graph represent (left to right) measurements at initial and 3 hour timepoints. Further, as shown within FIG. 2, the neat cosmetic composition of a film-forming pH dependent polymer of the current cosmetic composition (30% EUDRAGIT L100-55 in water) maintained the same level of tightening six days after its application as when it was first applied onto a synthetic skin substrate. Whereas, the PVP neat composition (30% PVP in water) showed a statistically significant drop in its tightening effect over the same period. For both the HMV PVP and the Eudragit, the bars on the graph represent (left to right) measurements at initial, 3 hour and 6 day timepoints.

[0108] The methods of application in the present invention will depend on the ultimate intended use of composition. The topical composition can be applied locally to the saggy or wrinkled skin, or it can be applied to the entire body of the user. The topical composition of the present invention may be applied to the skin on an as-needed basis, to achieve immediate wrinkle reduction results (typically observable within five or ten minutes). Alternatively, the topical composition can be applied to the skin repeatedly according to a pre-set schedule. The topical composition of the present invention may be applied directly to clean skin, before application of any moisturizer, foundation, make-up, etc. Alternatively, the topical composition of the present invention can be applied over moisturizer, and optionally over foundation and/or make-up. The amount of the topical composition applied each time, the area of application, the duration of application, and the frequency of application can vary widely, depending on the specific need of the user. For example, the topical composition can be applied for a period of at least one month and at a frequency ranging from about once per week, to about twice a week, to about every other day, to about once per day, to about two times per day. For another example, the topical composition is applied for a period of about six months and at a frequency ranging from about three times a week to about three times per day, and in one embodiment about once or twice per day. The topical composition may comprise the active components at a total amount ranging from 0.001% to 90%, in one embodiment from 0.01% to 50%, and more in one embodiment from 0.1% to 30%. However, it should be noted that it is well within the purview of the skilled artisan, such as a dermatologist or other health care provider, to tailor the dosages of the topical compositions of the present invention according to specific patient needs.

[0109] The effect of a composition on skin tightness or the appearance of lines, wrinkles, or saggy skin may be evaluated qualitatively, e.g., by visual inspection, or quantitatively, e.g., by microscopic or computer assisted measurements of wrinkle morphology (e.g., the number, depth, length, area, volume and/or width of wrinkles per unit area of skin), and/or evaluating tightness using procedure noted below in Example 1. In one embodiment, the compositions of the current invention demonstrate an improvement in skin tightness of at least 1%, in another embodiment at least 5%, in another embodiment at least 7.5%, in another embodiment at least 10%, in another embodiment at least 20%, in a further embodiment 25% and in yet another embodiment 27.5%.

[0110] In a further embodiment, a mascara composition is provided for in accordance with this invention. The mascara may be applied to the eyelashes as often as needed or desired to impart the desired curling effect. The composition is typically applied to the lower side of the natural hairs with an outward, extending motion (in the general direction of the extension of the hairs). Application results in a film coating on at least a portion of the eyelashes. The composition then dries through evaporation of solvent and any other volatiles. Periodic re-application may be necessary in the normal course as the film coating wears off. Typically, the composition will be applied once per day. If desired the composition may be applied twice or more per day. The composition will provide curl retention and longevity for in one embodiment.
8 or more hours per day, more in one embodiment 10 or more hours per day, and most in one embodiment 12 or more
hours per day. Longevity means exhibiting substantially no flaking or brittleness on the lash and exhibiting substantially
no smudging or smearing.

[0111] The cosmetic composition for curling effect may comprise the pH dependent film forming polymers active
components at a total amount ranging from 0.001 % to 90%, in one embodiment from 0.01 % to 20%, and more in one
embodiment from 0.1% to 10%.

[0112] In the present method, application of the mascara composition provides a degree of curl to eyelashes corre-
sponding a curl of 7.5% or more, in one embodiment 10% or more, and more in one embodiment 15% or more by the
film former shrinkage test noted below. Degree of curl is determined by measuring degree of curl observed in artificial
eyelashes after application of the mascara composition. Bundles of artificial lashes are glued to the periphery of a holding
cylinder. The mascara composition is applied to the lashes for fourteen strokes with a mascara brush. After at least ten
minutes of drying time, an image, such as photographic or digital image, is taken from a side view. Percent (%) Curl =
[(R - L)/R] X 100%. Length measurement (L) is determined by measuring from the root of a bundle and the tip of a lash
in sharp focus. Curve length measurement (R) is determined by measuring the length of the same lash hair from the
root to the tip in small steps. If the lash hair is not clearly distinguishable from the rest of the bundle, the center of the
bundle is traced.

[0113] As noted above, the cosmetic compositions formulated with the current film-forming pH dependent polymers
exhibit persistent tightening and/or curling effects even when subjected to environmental stresses such as increased
temperature and humidity. It is contemplated that these substantially resistant compositions of the current invention may
maintain the same or similar (within 10%) tightening and/or curling effects as when initially applied when subjected to
temperatures greater than 72 °F, greater than 75° F, and greater than 80° F and/or at relative humidities of greater than
75%, greater than 80%, and greater than 85%. It is contemplated that the compounds will maintain its substantial
resistance to environmental stresses for periods greater than 3 hours, greater than 6 hours and greater than 9 hours.

[0114] The following examples further illustrate various specific embodiments of the present invention, without limiting
the broad scope thereof.

EXAMPLES

EXAMPLE 1

TIGHTENING EFFECT

A. High Heat and Humidity

[0115] Two compositions were prepared: (a) a composition with a film-forming pH-dependent polymer of the current
composition: 30% EUDRAGIT L100-55 in water; and (b) a High MW PVP: 30% PVP in water.

[0116] Tightening measurements were obtained using the Texture Analyzer TA-TX2 set to the following settings: Test
Mode - Compression, Pre-test speed - 0.5mm/sec, Test speed - 0.1 mm/sec, Post-test speed - 0.5 mm/sec, Target
mode - force, Force - 60 grams, Trigger type - auto (force), and trigger force - 5 grams. Bioskin plates (US Cosmetics
Corp, Bioskin plate #15, softness 0.66) were used as a substrate for the testing (one for each solution). Prior to use, the
tightness of the untreated Bioskin plates (the blanks) was recorded.

[0117] Then each polymer solution (0.5 mL) was pipetted onto its respective Bioskin plate and rubbed uniformly with
fingertip until dry. The samples were allowed to dry further for 4h at room temperature and then retested. The samples
were then subjected to 85% RH at 80° F for three hours and then retested.

[0118] Percent tightness was calculated as follows:

\[
\left(\frac{\text{Distance sample} - \text{Distance blank}}{\text{Distance blank}} \right) \times 100
\]

[0119] Where distance sample = distance probe travels after 60g of force on Bioskin plate with sample, and distance
blank = distance probe travels for Bioskin plate with no sample.

[0120] As shown in FIG. 1, Eudragit L100-55 was found to have tightening properties that did not significantly change
in the presence of humidity and high temperature (80°F) (@27.5% increase), whereas high MW PVP showed a statistically
significant drop in its tightening effect from its initial application (greater than 50% drop).
B. Time

[0121] The tightening test detailed above was repeated using the following solutions: (a) 30% EUDRAGIT L100-55 in water, and (b) 30% PVP in water. The same protocol was followed with one additional time point at six days following application. As shown in FIG 2, EUDRAGIT L100-55 exhibited the same tightening effect as the PVP initially (@ 25% increase) and maintained the same tightening effect over the six day period. The PVP showed a statistically significant drop in its tightening effect over the six day period.

EXAMPLE 2

CURLING EFFECT

[0122] Two mascara compositions adjusted to pH >7.5 were prepared:

<table>
<thead>
<tr>
<th>CONTROL FORMULA</th>
<th>EUDRAGIT FORMULA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Amount</td>
</tr>
<tr>
<td>Water</td>
<td>47.25</td>
</tr>
<tr>
<td>Conditioning agent</td>
<td>0.2</td>
</tr>
<tr>
<td>Thickener</td>
<td>0.4</td>
</tr>
<tr>
<td>Preservative</td>
<td>1.15</td>
</tr>
<tr>
<td>Polyquaternium-10</td>
<td>0.2</td>
</tr>
<tr>
<td>Chelating agents</td>
<td>0.4</td>
</tr>
<tr>
<td>Triethanolamine</td>
<td>2.1</td>
</tr>
<tr>
<td>Colorant</td>
<td>7</td>
</tr>
<tr>
<td>Shellac Wax</td>
<td>4.4</td>
</tr>
<tr>
<td>VP/Eicosene</td>
<td></td>
</tr>
<tr>
<td>Copolymer</td>
<td>2</td>
</tr>
<tr>
<td>Carnauba Wax</td>
<td>5</td>
</tr>
<tr>
<td>Beeswax</td>
<td>4.1</td>
</tr>
<tr>
<td>Paraffin Wax</td>
<td>9</td>
</tr>
<tr>
<td>Stearic Acid</td>
<td>5.5</td>
</tr>
<tr>
<td>Glycerol esters</td>
<td>1.5</td>
</tr>
<tr>
<td>Isooctahexacontane</td>
<td>1.2</td>
</tr>
<tr>
<td>Cyclomethicone</td>
<td>1.5</td>
</tr>
<tr>
<td>Eudragit S100</td>
<td></td>
</tr>
</tbody>
</table>

[0123] The mascara compositions each were applied to a set of false eyelashes mounted on a holding cylinder for fourteen strokes with a mascara brush. After waiting 10 minutes, 14 more strokes of mascara was added. After at least ten minutes of drying time, an image, such as photographic or digital image, was taken from a side view. Percent (%) Curl = [(R - L)/R] X 100%. Length measurement (L) was determined by measuring from the root of a bundle and the tip of a lash in sharp focus. Curve length measurement (R) was determined by measuring the length of the same lash hair from the root to the tip in small steps. If the lash hair was not clearly distinguishable from the rest of the bundle, the center of the bundle was traced.

[0124] As shown in FIG. 3, the mascara composition with 1% of film-forming pH dependent polymer (EUDRAGIT S100) added increased the curling angle by 5.2° which equaled a 16.7% increase in the curl of the eyelash.

EXAMPLE 3

[0125] Exemplary cosmetic compositions formulated (where applicable) to approximately pH 7.1-8.5 according to the invention are provided in Tables 1 through 6, below.

<table>
<thead>
<tr>
<th>Table 1: Foundation (Oil-in-Water Emulsion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Waxes</td>
</tr>
</tbody>
</table>
Table 2: Foundation (Water-in-Oil Emulsion)

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount (% wt/wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waxes</td>
<td>0-5 %</td>
</tr>
<tr>
<td>Oils</td>
<td>25-50 %</td>
</tr>
<tr>
<td>Solvent</td>
<td>20-35 %</td>
</tr>
<tr>
<td>Colorants</td>
<td>5-15 %</td>
</tr>
<tr>
<td>EUDRAGIT</td>
<td>0.2-10 %</td>
</tr>
<tr>
<td>Emollients</td>
<td>25-50 %</td>
</tr>
<tr>
<td>Other Film Former</td>
<td>2-5 %</td>
</tr>
<tr>
<td>Thickeners</td>
<td>0-1 %</td>
</tr>
</tbody>
</table>

Table 3: Mascara

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount (% wt/wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waxes</td>
<td>15-25 %</td>
</tr>
<tr>
<td>Oils</td>
<td>0-1 %</td>
</tr>
<tr>
<td>Colorants</td>
<td>7-10 %</td>
</tr>
<tr>
<td>Solvent</td>
<td>5-30 %</td>
</tr>
<tr>
<td>EUDRAGIT</td>
<td>0.2-10 %</td>
</tr>
<tr>
<td>Emollients</td>
<td>0-1 %</td>
</tr>
<tr>
<td>Other Film Former</td>
<td>5-25 %</td>
</tr>
<tr>
<td>Thickeners</td>
<td>1-2 %</td>
</tr>
</tbody>
</table>

Table 4: Pressed Powder

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount (% wt/wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waxes</td>
<td>0.5-2 %</td>
</tr>
<tr>
<td>Oils</td>
<td>2-15 %</td>
</tr>
<tr>
<td>Colorants</td>
<td>10-30 %</td>
</tr>
<tr>
<td>EUDRAGIT</td>
<td>0.2-10 %</td>
</tr>
<tr>
<td>Emollients</td>
<td>2-15 %</td>
</tr>
<tr>
<td>Other Film Former</td>
<td>0-2 %</td>
</tr>
</tbody>
</table>

Table 5: Liquid Eyeshadow

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount (% wt/wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waxes</td>
<td>5-15 %</td>
</tr>
<tr>
<td>Oils</td>
<td>5-20 %</td>
</tr>
</tbody>
</table>
As used in the Examples, "EUDRAGIT" may be EUDRAGIT® S100, EUDRAGIT® L100, and/or EUDRAGIT® L100-55. The inventive cosmetic compositions are expected to have surprising properties, i.e. to provide persistent tightening and/or curling effects on an integument even when subjected to environmental stressors such as increased temperature or humidity. Further as noted within, U.S. Patent Application Serial No. 13/325,670 filed December 14, 2011 entitled "Long-Lasting Easy Wash-off Cosmetic Compositions," incorporated herein by reference in its entirety, despite their prolonged effects they may be easily removed by modulation of pH conditions or washing, i.e. by increasing the pH beyond the target pH at which the polymer solubilizes.

The invention having been described by the foregoing description of the preferred embodiments, it will be understood that the skilled artisan may make modifications and variations of these embodiments without departing from the spirit or scope of the invention as set forth in the following claims.

The method as per the invention may further comprise the following steps, in addition to the steps as per claims 1 to 15, either separately or in combination with anyone of the steps as per claims 1 to 15:

- the said acid value is from about 300 to about 350 mg KOH/g;
- the said pH-dependent film forming polymer has a target pH of greater than about 6;
- providing a curling effect to an eyelash in need thereof comprising applying to said eyelash a cosmetic composition having a cosmetically acceptable vehicle, optionally one or more colorants, and an effective amount of a pH-dependent film-forming polymer of poly(methacrylic acid-co-ethyl acrylate) with a ratio of methacrylic acid to ethyl acrylate of about 1:1, an acid value of from about 300 to about 350 mg KOH/g, and a weight average molar mass between about 200,000 and about 350,000 g/mol;
- the said pH-dependent film forming polymer has a target pH of greater than about 5.5;
- the said pH-dependent film forming polymer is present in an amount of about 0.01 wt% to about 20% of the total weight of the composition.

Claims

1. A method for improving the aesthetic appearance of skin affected by aging comprising topically applying thereto an effective amount of a pH-dependent film-forming polymer of poly(methacrylic acid-co-methyl methacrylate) with a ratio of methacrylic acid to methyl methacrylate of 1:1 to 1:2, an acid value of from 150 to 350 mg KOH/g, and a
weight average molar mass between 100,000 and 150,000 g/mol, in a cosmetically acceptable vehicle for a time sufficient to achieve a tightening effect.

2. The method according to claim 1, wherein said ratio of methacrylic acid to methyl methacrylate is 1:1.

3. The method according to claim 1, wherein said ratio of methacrylic acid to methyl methacrylate is 1:2.

4. The method according to claim 1, wherein said acid value is from 150 to 200 mg KOH/g.

5. The method according to claim 1, wherein said acid value is from 300 to 350 mg KOH/g.

6. The method according to claim 1, wherein said pH-dependent film forming polymer has a target pH of greater than 6.

7. A method for improving the aesthetic appearance of skin effected by aging comprising topically applying thereto an effective amount of a pH-dependent film-forming polymer of poly(methacrylic acid-co-ethyl acrylate) with a ratio of methacrylic acid to ethyl acrylate of 1:1, an acid value of from 300 to 350 mg KOH/g, and a weight average molar mass between 200,000 and 350,000 g/mol, in a cosmetically acceptable vehicle for a time sufficient to achieve a tightening effect.

8. The method according to claim 7, wherein said pH-dependent film forming polymer has a target pH of greater than 5.5.

9. The method according to claim 1, wherein the tightening effect is an improvement in skin tightness of at least 20%.

10. The method according to claim 1, wherein the tightening effect is an improvement in skin tightness of at least 25%.

11. The method according to claim 1, wherein the pH-dependent film forming polymer is present in an amount of 0.1 wt% to 30% of the total weight of the composition.

12. The method according to claim 1, wherein the pH-dependent film forming polymer is not in the form of a microcapsule.

13. A method for providing a curling effect to an eyelash in need thereof comprising applying to said eyelash a cosmetic composition having a cosmetically acceptable vehicle, optionally one or more colorants, and an effective amount of a pH-dependent film-forming polymer of poly(methacrylic acid-co-methyl methacrylate) with a ratio of methacrylic acid to methyl methacrylate of 1:1 to 1:2, an acid value of from 150 to 350 mg KOH/g, and a weight average molar mass between 100,000 and 150,000 g/mol.

14. The method according to claim 13, wherein said ratio of methacrylic acid to methyl methacrylate is 1:1.

15. The method according to claim 13, wherein said acid value is from 150 to 200 mg KOH/g.

Patentansprüche

1. Verfahren zur Verbesserung des ästhetischen Erscheinungsbilds der von Alterung betroffenen Haut, umfassend das topische Auftragen einer wirksamen Menge eines pH-abhängigen filmbildenden Polymers aus Poly(methacrylsäure-co-methylmethacrylat) mit einem Verhältnis von Methacrylsäure zu Methylmethacrylat von 1:1 bis 1:2, einer Säurezahl von 150 bis 350 mg KOH/g und einer gewichtsmittleren Molmasse zwischen 100.000 und 150.000 g/mol in einem kosmetisch akzeptablen Träger während eines Zeitraums, der ausreichend ist, um eine Straffungswirkung zu erzielen.

2. Verfahren nach Anspruch 1, wobei das Verhältnis von Methacrylsäure zu Methylmethacrylat 1:1 beträgt.

3. Verfahren nach Anspruch 1, wobei das Verhältnis von Methacrylsäure zu Methylmethacrylat 1:2 beträgt.

4. Verfahren nach Anspruch 1, wobei die Säurezahl 150 bis 200 mg KOH/g beträgt.

5. Verfahren nach Anspruch 1, wobei die Säurezahl 300 bis 350 mg KOH/g beträgt.

7. Verfahren zur Verbesserung des ästhetischen Erscheinungsbilds der von Alterung betroffenen Haut, umfassend das topische Auftragen einer wirksamen Menge eines pH-abhängigen filmbildenden Polymers aus Poly(methacrylsäure-co-ethylacrylat) mit einem Verhältnis von Methacrylsäure zu Ethylacrylat von 1:1, einer Säurezahl von 300 bis 350 mg KOH/g und einer gewichtsmittleren Molmasse zwischen 200.000 und 350.000 g/mol in einem kosmetisch akzeptablen Vehikel während eines Zeitraums, der ausreichend ist, um eine Straffungswirkung zu erzielen.

9. Verfahren nach Anspruch 1, wobei die Straffungswirkung eine Verbesserung der Hautstraffheit um wenigstens 20% ist.

10. Verfahren nach Anspruch 1, wobei die Straffungswirkung eine Verbesserung der Hautstraffheit um wenigstens 25% ist.

11. Verfahren nach Anspruch 1, wobei das pH-abhängige filmbildende Polymer in einer Menge von 0,1 Gew.-% bis 30 Gew.-% bezogen auf das Gesamtgewicht der Zusammensetzung vorhanden ist.

12. Verfahren nach Anspruch 1, wobei das pH-abhängige filmbildende Polymer nicht in Form einer Mikrokapsel vorliegt.

13. Verfahren zur Verbesserung einer schwungverleihenden Wirkung auf Wimpern, die dies benötigen, umfassend das auf die Wimpern erfolgende Auftragen einer kosmetischen Zusammensetzung, die einen kosmetisch akzeptablen Träger, optional einen oder mehrere Farbstoffe und eine wirksame Menge eines pH-abhängigen filmbildenden Polymers aus Poly(methacrylsäure-co-methylmethacrylat) mit einem Verhältnis von Methacrylsäure zu Methylmethacrylat von 1:1 bis 1:2, einer Säurezahl von 150 bis 350 mg KOH/g und einer gewichtsmittleren Molmasse zwischen 100.000 und 150.000 g/mol aufweist.

15. Verfahren nach Anspruch 13, wobei die Säurezahl 150 bis 200 mg KOH/g beträgt.

Revendications

1. Méthode pour améliorer l'aspect esthétique d'une peau affectée par le vieillissement, comprenant l'application locale sur celle-ci d'une quantité efficace d'un polymère filmogène dépendant du pH en copolymère d'acide méthacrylique et de méthacrylate de méthyle avec un ratio entre acide méthacrylique et méthacrylate de méthyle de 1 pour 1 à 1 pour 2, un indice d'acidité de 150 à 350 mg KOH/g et une masse molaire moyenne comprise entre 100 000 et 150 000 g/mol, dans un véhicule acceptable pour une formulation cosmétique, pendant une durée suffisante pour obtenir un effet tenseur.

2. Méthode selon la revendication 1, dans laquelle ledit ratio entre acide méthacrylique et méthacrylate de méthyle est de 1 pour 1.

3. Méthode selon la revendication 1, dans laquelle ledit ratio entre acide méthacrylique et méthacrylate de méthyle est de 1 pour 2.

4. Méthode selon la revendication 1, dans laquelle ledit indice d'acidité est compris entre 150 et 200 mg KOH/g.

5. Méthode selon la revendication 1, dans laquelle ledit indice d'acidité est compris entre 300 et 350 mg KOH/g.

6. Méthode selon la revendication 1, dans laquelle ledit polymère filmogène dépendant du pH a un pH visé supérieur à 6.

7. Méthode pour améliorer l'aspect esthétique d'une peau affectée par le vieillissement, comprenant l'application locale sur celle-ci d'une quantité efficace d'un polymère filmogène dépendant du pH en copolymère d'acide méthacrylique.
et d'acrylate d'éthyle avec un ratio entre acide méthacrylique et acrylate d'éthyle de 1 pour 1, un indice d'acidité de 300 à 350 mg KOH/g et une masse molaire moyenne comprise entre 200 000 et 350 000 g/mol, dans un véhicule acceptable pour une formulation cosmétique, pendant une durée suffisante pour obtenir un effet tenseur.

8. Méthode selon la revendication 7, dans laquelle ledit polymère filmogène dépendant du pH a un pH visé supérieur à 5,5.

9. Méthode selon la revendication 1, dans laquelle l'effet tenseur est une amélioration de la tension de la peau d'au moins 20 %.

10. Méthode selon la revendication 1, dans laquelle l'effet tenseur est une amélioration de la tension de la peau d'au moins 25 %.

11. Méthode selon la revendication 1, dans laquelle le polymère filmogène dépendant du pH est présent à raison de 0,1 % du poids à 30 % du poids total de la composition.

12. Méthode selon la revendication 1, dans laquelle le polymère filmogène dépendant du pH ne se présente pas sous la forme d'une microcapsule.

13. Méthode pour produire un effet recourbant sur un cil en ayant besoin, comprenant l'application sur ledit cil d'une composition cosmétique contenant un véhicule acceptable pour une formulation cosmétique, facultativement un ou plusieurs colorants et une quantité efficace d'un polymère filmogène dépendant du pH en copolymère d'acide méthacrylique et de méthacrylate de méthyle avec un ratio entre acide méthacrylique et méthacrylate de méthyle de 1 pour 1 à 1 pour 2, un indice d'acidité de 150 à 350 mg KOH/g et une masse molaire moyenne comprise entre 100 000 et 150 000 g/mol.

14. Méthode selon la revendication 13, dans laquelle ledit ratio entre acide méthacrylique et méthacrylate de méthyle est de 1 pour 1.

15. Méthode selon la revendication 13, dans laquelle ledit indice d'acidité est compris entre 150 et 200 mg KOH/g.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 82672413 A [0001]
- US 32567011 A [0002] [0126]
- US 5993831 A, Ribier [0008] [0065]
- US 4976961 A, Norbury [0009] [0065]
- US 7053034 B, Shefer [0010] [0065]
- US 20060127427 A, Vernice [0011] [0065]
- EP 11806 A [0012]
- EP 705854 A [0012]
- WO 0166067 A [0066]
- US 4781917 A [0075]
- US 4122029 A [0077]
- US 6685952 B [0077]
- FR 2758084 A [0083]

Non-patent literature cited in the description