A wheel holder for a bicycle carrier

The present invention relates to a wheel holder (1) for a bicycle (2) and a bicycle carrier comprising the wheel holder (1). The wheel holder comprises two distinct support points (21, 22, 25, 25') which are separated by a void so that a portion of the wheel can be received in the void (23).
Description

TECHNICAL FIELD

[0001] The present invention relates to a wheel holder for a bicycle carrier and a bicycle carrier having at least one wheel holder. The wheel holder is configured to provide a rigid and stable connection with the wheel.

BACKGROUND

[0002] Bicycle carriers, sometimes referred to as bicycle racks, are used to transport bicycles on vehicles. When transporting bicycles on vehicles manufacturers have constantly struggled with the problem of readily attaching the bicycle to the bicycle carrier to prevent accidents. The US patent application no. US 2007/0164065 A1 disclose a bicycle holder for a bicycle rack. The bicycle holder comprises two engagement members adapted to engage in two tracks. The engagement members embrace the bicycle rack and are said to be configured to be slideably engaged with the tracks. A securing portion in the form of a strap is used to secure the wheel of the to the bicycle carrier.

[0003] The German patent application DE 10 2005 058 861 A1, Volkswagen AG, disclose a bicycle wheel holder comprising a plate and a lever. The wheel is pinched between the plate and the lever. It has now been found that wheel holders for bicycle carriers can be improved.

[0004] The wheel holder describes above suffers from the drawbacks. None of the above mentioned publications provides for a wheel holder which imparts stability to the wheel while being retained to the wheel holder. The wheels may be destabilized by air turbulence for example as the vehicle moves, such air turbulence may cause wheel to wobble for example. If a wheel wobbles, there will be a disturbing sound and vibrations in the vehicle. In the long run it may also increase the risk for fatigue breakdown of the material in the wheel holder or in other parts of the bicycle carrier. An attempt to address this problem has been to have wheel holder having cradles which support the wheel sides. These attempts have not been very successful.

SUMMARY

[0005] It is an object of the present disclosure to provide for an improved wheel holder for a bicycle carrier which removes or at least reduces the drawbacks described above. The objects are at least partly met by a wheel holder for a bicycle carrier for a vehicle. The wheel holder is configured to receive and retain a wheel having a tread and comprises at least one body providing a first and a second wheel receiving surface. The first and the second wheel receiving surfaces are separated by a rotation plane of the wheel of the bicycle after the wheel has been mounted to the wheel holder. At least one fastening member is adapted to retain the wheel of the bicycle to the first and the second wheel receiving surfaces of the body.

[0006] A void is formed between the first and second wheel receiving surfaces, the void is adapted to receive a portion of the wheel of the bicycle so that the first and second wheel receiving surfaces provide two distinct support points to the tread of the wheel separated by the void when the fastening member retains the wheel of the bicycle to the body of the wheel holder.

[0007] The wheel holder provides for a compact wheel holder which also provides for stability to the wheel. A compact wheel holder has the benefits of providing low wind resistance especially when a bicycle is not mounted thereto. The wheel holder has two distinct support points for supporting the outer wheel circumference, i.e. the tread of the wheel. The first and the second wheel receiving surfaces provide the wheel with first and a second distinct support points which are separated at least with respect to the length of the wheel holder.

[0008] The distinct support points can be separate support points. In such as case, the void can be a support point free zone. In some cases however, the tread of the wheel may rest gently on the underlying surface. In such cases, the main support to the wheel is imparted at the separated support points. In general terms, the first and second wheel receiving surfaces provide two separated main support points to the tread of the wheel when the fastening member retains the wheel of the bicycle to the body of the wheel holder. In both the above mentioned cases, the support points are distinct as they carry a high majority of the weight and force imparted to the wheel holder. The support points substantially carry the weight of the wheel and the bicycle.

[0009] The wheel holder provides stability and reduces wobbling particularly during transport. It can also reduce wear on the rim, the frame, the wheel holder itself, and thus also the bike carrier as a whole. It reduces risk that something breaks due to material fatigue, which could be disastrous should a bicycle or wheel accidentally fall off a bicycle carrier.

[0010] The void can be at least partly formed by the at least one body of the wheel holder, preferably by an aperture formed in one body or by a void formed between two separate bodies. If there are two separate bodies providing the first and the second wheel receiving surfaces, each body has a wheel receiving surface. The enable two distinct support points, a combination of raised ridges and an aperture is advantageous as such a wheel holder has been found to be easy to manufacture and require less material.

[0011] The wheel can be retained to the wheel holder in different manners. One advantageous configuration is if the at least one fastening member is adapted to extend substantially between the first and the second support points. In such case the fastening member can extend across the rim of the wheel diagonal with respect to the rotation plane of the wheel and the first plane. It is be-
that may assist in retaining the wheel in a preferred direction. It may also assist in the positioning of the wheel holder with respect to a load carrier foot of a load carrying bar, or roof rack, when a bicycle carrier comprising at least one wheel holder is mounted to such load carrying bar. The fastening member can be tightened in different manners to the wheel holder using a fastening mechanism or simply by hooking it onto a portion of the wheel holder. The fastening member may be formed by a strap which can be elastic or substantially non-elastic.

At least one of the first and second wheel receiving surfaces can be displaceably arranged to the body so that the distance between the first and second wheel receiving surfaces can be changed. If the first and/or the second wheel receiving surfaces are formed by ridges for example, the first and/or the second ridges can be slideably arranged on the body of the wheel holder to enable the displacement.

It has been found that a simple and sturdy construction is achieved is the body and the first and the second wheel receiving surfaces are integrally formed in one piece of material. One way of forming the body and the first and the second wheel receiving surfaces in one piece of material is by moulding the wheel holder using plastic material.

The first and second wheel receiving surfaces can be formed by a first and a second ridge portion. The first and/or the second ridge portion can comprise at least one an arc shaped ridge extending along the first plane. The wheel holder may thus comprise at least two separated arc shaped ridges separated in the first plane. The at least two separated arc shaped ridges separated in the first are preferably aligned with each other. The wheel holder preferably comprises at least two pair of aligned arc shaped ridges. The arc shaped ridges can preferably be separated a distance perpendicular to the first plane so that the wheel is not pinched between the two arc shaped ridges, but rather rests upon the arc shaped ridges.

The at least two pair of arc shaped ridges has two opposing sides facing towards each other and two opposing sides facing away from each other. The two opposing sides facing towards each other are substantially vertical and/or the two opposing sides facing away from each other are substantially angled with respect to a vertical axis. Having angled sides facing away from each other provides for rigid arc shaped ridges, or rigid ridges if the ridges have any other form. The rigidity of the ridges is advantageous if the wheel of the bicycle is being imparted with a force to turn e.g. via the wind resistance during transportation of the bicycle. It may also have the advantage that the raised portions have a tendency to cut into the wheel, rather than having the wheel flattened out onto the raised ridges.

The ridge portions may be hollow to save material in the manufacturing process.

The first and/or the second ridge portion can comprise at least two arc shaped ridges having different height, preferably different maximum height. Ridges of different heights enable wheel of different thickness, or different sizes to be safely secured to the wheel holder. The wheel holder can thus be configured to be compatible with wheels having a thickness of up to 30 cm, preferably from 1-10 cm. The height difference between two ridges, preferably arc shaped ridges, can be from 0.3-3.0 cm, preferably from 0.5-1.5 cm.

The wheel holder is preferably configured so that it can slide along the length of the bicycle carrier when mounted thereto. If the wheel holder in not positioned underneath the wheel of the bicycle directly, the wheel holder can be configured to be slip along the length of the bicycle carrier underneath the wheel. Such manœuvre is simplified by having the wheel receiving surfaces formed by arc shaped ridges. The arc shaped ridges thus operates as wedges when slid underneath the wheel.

The distance between the arc shaped ridges in the first plane, is preferably selected to be such that when a wheel of the intended size rests on the arc shaped ridges, it is substantially only the facing sides of the opposing arc shaped ridges, with respect to the first plane, which provide to distinct support points to the wheel.

The height of at least one arc shaped ridge can be adjusted. This may enable more support points to the wheel. The wheel receiving surface can be formed by ridges for example, such ridge can be hinged in vertical tracks and be height adjusted by moving a wedge horizontally which pushes the ridge up and down in the track.

At least one of the first and the second ridge portions comprises two ridges. The two ridges are interspaced in a direction perpendicular to the first plane. Preferably a distance from the first plane of the wheel holder, the distance is preferably from 0.5 - 4.0 cm. Each of the first and the second ridge portions may comprise comprises two or more ridges, such as four ridges as described below. When having four ridges, the outer pair of ridges is preferably twice the distance from the first as the inner pair of ridges.

The wheel has a rim with a hub and a tyre. The hub and a first portion of the tyre, preferably the tread of the tyre, are positioned on either side of a line drawn between the first and second wheel receiving surfaces. The first and second wheel receiving surfaces can be made more or less prominent as support points by adjusting the height of the first and second wheel receiving surfaces. If the tread of the tyre is positioned on 1-40 cm from the line drawn between the first and second wheel receiving surfaces, the first and second wheel receiving surfaces are providing for good support points to the wheel.

The first portion of the tyre comprises a point on the tyre which intersects with a vertical axis, the vertical axis extends through the hub of the wheel. The point on the tire is preferably the lowest point on the tyre.
The bicycle carrier comprises at least one wheel holder, or two or more wheel holders, disclosed herein. The at least one wheel holder can be slideably arranged to the bicycle carrier extending along the X axis, the height along the Y axis and the width along the Z axis, as shown in figure 1. Each wheel has a rotation axis, a plane RP, parallel with the Y-X plane, in which the wheel would rotate about its rotation axis.

For the purpose of orientation, the length of the bicycle carrier extends along the X axis, the height along the Y axis and a width along the Z axis, as shown in figure 1. Likewise, the length of the wheel holder extends along the X axis, the height along the Y axis and the width along the Z axis, as shown in figure 1. Each wheel has a rotation plane RP, parallel with the Y-X plane, in which the wheel would rotate about its rotation axis.

The substantially U-shaped cross section, or V-shaped cross section, adapted to receive parts the wheels 3, 4 of the bicycle 2. The substantially U-shaped cross section is formed by a groove which also is adapted to cooperate with the wheel holder 10 to partly retain the wheel holder 10 to the bicycle carrier 1 and to permit the wheel holder 10 to slide along the length of the bicycle carrier 1, i.e. along the X axis. The wheel holder 10 can be displaced, in this case slide, along the length of the bicycle carrier 1 and more precisely the bar 18 of the bicycle carrier 1, and thus be positioned substantially at an infinite number of different positions. In comparison, bicycle carriers having predetermined positions for wheel holders only permits a limited number of positions for the wheel holders, and thus also a limited number of different sizes of bicycles which can be transported.

Figure 2 shows the wheel holder 10 and the bar 18 of the bicycle carrier 1 in greater detail. The wheel holder 10 comprises a body 20 formed by a thermoplastic material such as polypropylene, acrylonitrile butadiene styrene (ABS), polyurethane, or the like. The wheel holder 10 is adapted to be positioned on the bar 18 of the bicycle carrier 10 and hence the shape and the form of the bar facing side of the wheel holder corresponds to that of the bar facing side of the wheel holder 10 described herein. The bicycle carrier could also be provided with a support arm adapted to hold the bicycle to the bicycle carrier 1. Such support arms can be provided with a clamping jaw adapted be attached to the frame of the bicycle for example.
The wheel holder 10 comprises a first and a second wheel receiving surface 21, 22. Each of the wheel receiving surfaces 21, 22 is formed by a plurality of raised ridges 24 extending along the length of the wheel holder 10, i.e. the X axis. A void 23 is formed between the first and the second wheel receiving surface 21, 22, and is adapted to receive a portion of the wheel (not shown). The first and the second wheel receiving surfaces 21, 22 are formed in one unitary piece of material with the body 20 but could be formed by separate components. In figure 2, each wheel receiving surface 21, 22 comprises two pairs of parallel raised ridges 24', 24". Each pair is intended to cooperate with a wheel having a predetermined size and width, enabling the wheel holder 10 to be compatible with wheels of different sizes. The wheel holder 10 is intended to receive the wheel along a first plane P1, which is equivalent with the rotation plane of the wheel.

The void 23 separates the first and the second wheel receiving surfaces 21, 22, in this case the ridges 24 of the first and the second wheel receiving surfaces 21, 22. The void 23 receives a portion of the wheel when the wheel is retained to the wheel holder 10. As a portion of the wheel is received in the void 23, the first and the second wheel receiving surfaces 21, 22 will form separated support points 25, 25' for the wheel with respect to the first plane P1 and the void 23. The purpose and function of this will be described in greater detail below. The ridges 34 have an arc shaped form, or a convex form, which run are parallel with respect to each other and with respect to the first plane P1 and thus the rotation plane of the wheel after the wheel has been mounted to the wheel holder 10.

As mentioned, the fastening member 15, shown in figures 1 and 2, is arranged to the body 20 and adapted to extend cross the rim of the wheel to retain the wheel to the wheel holder 10. As is noticeable in figures 2, 3, and 6, the at least one arc shaped ridge 24 is substantially symmetrically arc shaped but could be partly arc shaped if desirable.

Figure 3 shows the wheel holder 10 in greater detail. The body 20 comprises a first and a second aperture 51, 52. The apertures 51, 52 can be used to attach the fastening member 15 (not shown in figure 3) to the body 20 of the wheel holder 10 in two different positions dependent if the present wheel holder 10 is a front or a rear wheel holder. It should be noted that the fastening member can be attached to the wheel holder in any other suitable manner.

The shape and form of the first and the second wheel receiving surface 21, 22 may vary. The important aspect is however that the first and the second wheel receiving surfaces 21, 22 provide the wheel with two distinct support points 25, 25' when the wheel has been retained to the wheel holder. The distinct support points may be separated as shown in figure 3, or be main support points, i.e. receiving a high majority of the load imparted by the wheel. The two support points should be separated by a void which permits a portion of the wheel to be received therein. The force imparted by the fastening member acting on the portion of the wheel which has been received in the void of the wheel member, should be significantly less than the force imparted by the fastening member acting at the support points, i.e. at the first and the second wheel receiving surfaces. Preferably, the wheel, or more precisely the tyre of the wheel, is not imparted with any force component at all at the portion which has been received in the void of the wheel holder.

Figure 4 shows the wheel holder 10 of figure 3 from above. The first plane P1, equivalent with the rotation plane of the wheel when mounted to the wheel holder 10, is indicated in figure 4 with dashed lines. The first and the second wheel receiving surfaces 21, 22 will provide the wheel with first and a second support point 25, 25' onto which the wheel is pressed as the fastening member (not shown) is tightened. As the void 23 is arranged between the support points 25, 25', and thus separates the support points 25, 25', the wheel will be held towards the wheel holder 10 in a very tight and stable manner. The void 23 is partly formed, or defined, by the first and the second wheel receiving surfaces 21, 22, which are formed by the plurality of raised ridges 24. The plurality of raised ridges 24 extends along the length of the wheel holder 10, i.e. along the first P1. Hence, the first and the second wheel receiving surfaces 21, 22 provide the wheel with first and a second support point 25, 25' which are separated at least with respect to the length of the wheel holder 10. The void 23 is also partly formed by an aperture 30 between the first and the second wheel receiving surfaces 21, 22. The aperture 30 intersects with the first plane P1 of the wheel holder 10 and provides additional space for the tyre 9 when the wheel 3 has been mounted to the wheel holder 10. It should be noted that instead of having an aperture, a recess can provide additional space for the tyre 9 when the wheel 3 has been mounted to the wheel holder 10. In general terms, the void 23 can be formed by raised portions of the body, such as raised ridges 24 and/or by an aperture or recess in the body 20. Further shown in figure 4 are the apertures 51, 52 which can be used to attach a fastening member to the body 20 of the wheel holder 10.

The aperture 30 of the body has a length LA and a width WA. The length LA can be from 4-25 cm, preferably 5-15 cm. The width WA can be from 2-12 cm, preferably 3-8 cm.

Figure 5 shows the wheel holder 10 from with a view along the first plane P1. Figure 5 shows the body 20. Figure 5 shows the ridges 24 of the second wheel receiving surface 22. As is noticed, the body 20 of the wheel holder 10 comprises a first and a second side 27, 28, in this case a left and a right side when view as shown in figure 5. The second side 28, i.e. the right side, has a protruding wall section 29 which protrudes past the level of the highest ridge 24 along the height of the wheel hold-
er. The protruding wall section can be adapted to provide rigidity to the wheel if desirable but it is not necessary. It further provides the fastening member with a strong connection provided material for the apertures 51, 52 (shown in figures 3 and 4) which can be used to attach a fastening member to the body 20 of the wheel holder 10. The two pairs of parallel raised ridges 24', 24" has different height and being positioned a distance from the center of the wheel holder 10. Each pair is intended to cooperate with a wheel having a predetermined size and width, enabling the wheel holder 10 to be compatible with wheels of different sizes.

[0043] The ridges 24 are separated a distance from the first plane P1 as indicated in figure 5. The distance to the first P1, and thus between the ridges themselves, may vary depending on which size of the wheel the wheel holder is intended to be used with. A suitable distance to the first plane P1 is from 0.5 - 4.0 cm. When viewed as shown in figure 5, the first plane P1 extends in the center of the lowest part of the U-formed wheel holder. The inner pair of ridges 24 may be positioned a distance of 0.5 cm from the first plane P1 while the outer pair is positioned a distance of 1.0 cm from the first P1. The distance is measured as shown in figure 5, i.e. from the apex of the ridge and to the center of where the rotation plane RP will be positioned. Each of the first and the second ridge portions may comprise two or more ridges, such as four ridges as shown in figures 2-5. When having four ridges, the outer pair of ridges is preferably twice the distance from the first plane as the inner pair of ridges.

[0044] As is further noticeable, the pair of arc shaped ridges 24', 24" has two opposing sides S1 facing towards each other and two opposing sides S2 facing away from each other. The two opposing sides S1 facing towards each other are substantially vertical in figure 5 substantially parallel with the first P1, while the two opposing sides S2 facing away from each other are substantially angled with respect to a vertical axis in figure 5 parallel with the first P1. The angle between the two sides S1, S2 of the arc shaped ridges 24', 24" are when viewed as illustrated in figure 5 from 15-80 degrees.

[0045] Figure 6 illustrates the function of the wheel holder 10. Figure 6 shows the portions of the wheel holder 10 and the wheel 3. The ridges 24 provide with two separated support points 25, 25', separated by the void 23. The support points 25, 25' are the points at which the wheel holder is imparting the wheel with the main force to retain the wheel to the wheel holder along the Y axis. The support points 25, 25' mainly contacts the tyre 9 on the tread of the tyre 9 but preferably slightly offset to the center of the tread of the tyre 9. It is possible that a wheel holder may have side portions which are intended to stabilize the wheel in direction of the Z axis. One or more support arms (not shown) may be used for this purpose additionally or optionally. A dashed line L1 is drawn in figure 6 between the apexes of the ridges 24. The dashed line L1 is referred to as an imaginary line between the ridges 24, or between the apexes of the ridges 24, i.e. between the first and the second wheel receiving surfaces 21, 22. As is noticeable, a portion of the tyre 9, and especially the periphery of the tyre 9 is arranged between the ridges 24 and on opposite side of the dashed line L1 with respect to the hub 7 of the wheel 3. Further noticeable in figure 6 is that the periphery of the tyre 9 is not contacting the bottom in the void 23. The bottom of the void 23 can be formed by the bar 18 (not shown) of the bicycle carrier 1 or by a portion of the body 20 itself. The surface beneath the void 23 could be a portion of the body 20 and/or the bar 18 of the bicycle carrier 1. When referring to the wheel holder 10 shown in figure 6, the surface beneath the void 23 is the bar 18, as the wheel holder 10 has an aperture between the first and the second wheel receiving surfaces 21, 22.

[0046] The wheel holder 10 is positioned in figure 6 so a first portion of the tyre 9 has a point Pt on the tyre 9 which intersect with a vertical axis, in figure 6 denoted Va, the vertical axis Va extends through the hub 7 of said wheel 3. The vertical axis Va is parallel with the Y axis. The point Pt is the lowest point on the tyre 9 when positioned as shown in figure 6. In a general aspect, the first and the second wheel receiving surfaces 21, 22 and the void 23, is positioned so that the lowest point of the tyre 9 of the wheel is positioned in the void 23 of the wheel holder 10.

[0047] The first and the second wheel receiving surfaces can be arranged to the body so that they have substantially the same height as can be seen in figure 6 for example. In figure 6, the first and the second wheel receiving surfaces 21, 22 each has an apex and are arranged so that the line drawn between the apex of the first wheel receiving surface 21 and the apex of the second wheel receiving surface 22 is substantially horizontal. This provides for an even force distribution between the first and the second wheel receiving surfaces 21, 22 which is advantageous.

[0048] Figures 7a-7b show alternative shapes and forms of the wheel receiving surfaces 21, 22 of the wheel holder 10. Only portions of the wheel 3 have been illustrated. As is noticeable, the wheel receiving surfaces can have different shapes and forms, as long as they provide for a first and a second distinct support point 25, 25'. In figure 7a the wheel receiving surfaces have a circular form and in figure 7b, the wheel receiving surfaces have a triangular form. Combinations of the shapes and forms described above, including the arc shaped form, are of course possible.

Claims

1. A wheel holder (10) for a bicycle carrier (1) for a vehicle, said wheel holder (10) being configured to receive and retain a wheel (3, 4) having a tread, said wheel holder (10) comprising at least one body (20) providing a first and a second wheel receiving sur-
face (21, 22), said first and said second wheel receiving surfaces (21, 22) being separated a distance (D) in a first plane (P1), said first plane (P1) being aligned with a rotation (PL) of said wheel (3, 4) of said bicycle after said wheel (3, 4) has been mounted to said wheel holder (10), at least one fastening member (15, 16) adapted to retain said wheel (3, 4) of said bicycle (2) to said first and said second wheel receiving surfaces (21, 22) of said body (20), wherein a void (23) is formed between said first and second wheel receiving surfaces (21, 22), said void (23) is adapted to receive a portion of said wheel (3, 4) of said bicycle (2) so that said first and second wheel receiving surfaces (21, 22) provide two distinct support points on said tread of said wheel (3, 4) separated by said void (23) when said fastening member (15) retains said wheel (3, 4) of said bicycle (2) to said body (20) of said wheel holder (10).

2. The wheel holder according to claim 1, wherein said void (23) is at least partly formed by said at least one body (20), preferably by an aperture (23) or recess in one body (20), or by a void formed between two separate bodies.

3. The wheel holder according to claim 1 or 2, wherein said void (23) is formed by that the wheel receiving surfaces (21, 22) are raised with respect to said at least one body (20).

4. The wheel holder according to any one of the preceding claims, wherein said at least one fastening member (15) is adapted to extend substantially between said first and said second support points (25, 25'),

5. The wheel holder according to any one of the preceding claims, wherein at least one of said first and said second wheel receiving surfaces (21, 22) are displaceably arranged to said at least one body (20) so that the distance between said first and second wheel receiving surfaces (21, 22) can be changed.

6. The wheel holder according to any one of the claims 1-5, wherein said at least one body (20) is one body (20) and said first and said second wheel receiving surfaces (21, 22) are integrally formed in one piece of material with said one body (20).

7. The bicycle carrier according to any one of the preceding claims, wherein said first and second wheel receiving surfaces (21, 22) are formed by a first and a second ridge portion, preferably said first and/or said second ridge portion comprising at least one arc shaped ridge (24) extending along said first plane (P1), said at least one an arc shaped ridge (24) being partly arc shaped or substantially symmetrically arc shaped.

8. The wheel holder according to claim 7, wherein said first and/or said second ridge portion comprises at least two arc shaped ridges (24', 24") having different height, preferably different maximum height.

9. The wheel holder according to claim 8, wherein said at least two arc shaped ridges (24', 24") has two opposing sides (S1) facing towards each other and two opposing sides (S2) facing away from each other, and in that said two opposing sides (S1) facing towards each other are substantially vertical and/or that said two opposing sides (S2) facing away from each other are substantially angled with respect to a vertical axis.

10. The wheel holder according to claim 8 or 9, wherein said height of at least one arc shaped ridge (24) can be adjusted.

11. The wheel holder according to any one of the claims 7-10, wherein said at least one of said first and said second ridge portions comprises two ridges (24') and in that said two ridges are interspaced in a direction perpendicular to said first plane (P1), preferably a distance from the first plane (P1) of the wheel holder (10), said distance preferably is from 0.5 - 4.0 cm.

12. The wheel holder according to any one of the preceding claims, wherein said wheel has a rim (8) with a hub (7) and a tyre (9), and in that said hub (7) and a first portion of said tyre (9) is positioned on either side of a line drawn between said first and second wheel receiving surfaces (21, 22).

13. The wheel holder according to claim 12, wherein said first portion of said tyre (9) comprises a point (Pt) on said tyre (9) which intersects with a vertical axis (Va), said vertical axis (Va) extending through said hub (7) of said wheel (3).

14. The wheel holder according to any one of the preceding claims, wherein said first and second wheel receiving surfaces (21, 22) each has an apex, and in that they are arranged so that a line drawn between said apex of said first wheel receiving surface (21) and the apex of said second wheel receiving surface (22), said line is substantially horizontal.

15. A bicycle carrier (1) comprising at least one wheel holder (10) according to any of one of the preceding claims, said wheel holder (10) is preferably slideably arranged to said bicycle carrier (1).
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>* column 2, line 65 - column 3, line 39; figures 1,2 *</td>
<td>8,11</td>
<td>B60R9/10</td>
</tr>
<tr>
<td>X</td>
<td>US 2011/297712 A1 (SHEN JACK C T [TW]) 8 December 2011 (2011-12-08)</td>
<td>1-3,5,7, 12-15</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>* paragraph [0017]; figures 1,2 *</td>
<td>8,11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 4 - page 6; figures 1-8 *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

Place of search: Berlin
Date of completion of the search: 23 October 2014
Examiner: Granger, Hugo
ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 14 17 1267

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

23-10-2014

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 19934384 A1</td>
<td>25-01-2001</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2011297712 A1</td>
<td>08-12-2011</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003071097 A1</td>
<td>17-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005205626 A1</td>
<td>22-09-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0306277 A1</td>
<td>23-01-2003</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 20070164065 A1 [0002]