DYNAMIC HEADROOM FOR ENVELOPE TRACKING

DYNAMISCHE RESERVE FÜR HÜLLKURVENVERFOLGUN

MARGE DE SÉCURITÉ DYNAMIQUE POUR SUIVI D’ENVELOPPE

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND

Field

[0001] The disclosure relates to envelope tracking for power amplifiers.

Background

[0002] Envelope tracking is a technique for increasing the efficiency of power amplifiers. In an envelope tracking (ET) system, the supply voltage of a power amplifier is dynamically adjusted to keep the power amplifier operating with sufficient headroom to maintain linearity, while nevertheless minimizing DC power consumption. The supply voltage of the power amplifier is commonly generated using a separate linear amplifier that tracks the envelope of the power amplifier output. In certain prior art implementations, the linear amplifier is itself coupled to an amplifier supply voltage generated by a boost converter, which is capable of generating a boosted supply voltage for the linear amplifier that exceeds the maximum supply voltage otherwise available to the system, e.g., a battery voltage. In this manner, the power amplifier output can reach and even exceed the battery voltage when necessary. An example can be found in patent document WO 2011/007556.

[0003] The amplifier supply voltage is typically set to be higher than the peak required power amplifier output plus some additional headroom voltage. In certain prior art implementations, this headroom voltage is a static value that is pre-programmed and not updated over time. However, as the preferred headroom voltage may vary considerably across different operating scenarios, e.g., across different processes, temperatures, load conditions, etc., a single static value for the headroom voltage may not be optimal in all cases. Furthermore, the headroom voltage that is chosen too low may undesirably lead to startup failure in the boost converter, which would compromise the linearity of the system.

[0004] It would be desirable to provide techniques for dynamically determining the optimal headroom voltage for an ET system according to the particular operating scenario, and further for preventing startup failure for boost converters in ET systems.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG 1 illustrates a prior art implementation of an envelope tracking (ET) system.

FIG 2 illustrates an implementation of an ET system wherein Ven and Vtarget are generated in the particular manner shown.

FIG 3 illustrates an alternative implementation of an ET system.

FIG 4 illustrates an exemplary embodiment of an ET system according to the present disclosure.

FIG 5 illustrates an exemplary embodiment of a method that may be implemented by the dynamic headroom generation block.

FIGs 6 and 7 illustrate an exemplary operating scenario according to the techniques of the present disclosure described hereinabove.

FIG 8 illustrates an exemplary embodiment of the ET system according to the present disclosure, wherein a specific exemplary embodiment of the dynamic headroom generation block is shown.

FIG 9 illustrates an exemplary embodiment of a method according to the present disclosure.

DETAILED DESCRIPTION

[0006] Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.

[0007] The detailed description set forth below in connection with the appended drawings is intended as a description of exemplary aspects of the invention and is not intended to represent the only exemplary aspects in which the invention can be practiced. The term "exemplary" used throughout this description means "serving as an example, instance, or illustration," and should not necessarily be construed as preferred or advantageous over other exemplary aspects. The detailed description includes specific details for the purpose of providing a thorough understanding of the exemplary aspects of the invention. It will be apparent to those skilled in the art that the exemplary aspects of the invention may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the novelty of the exemplary aspects presented herein. In this specification
and in the claims, the terms "module" and "block" may be used interchangeably to denote an entity configured to perform the operations described.

[0008] Note in this specification and in the claims, the denotation of a signal or voltage as being "high" or "low" may refer to such signal or voltage being in a logical "high" or "low" state, which may (but need not) correspond to a "TRUE" (e.g., = 1) or "FALSE" (e.g., = 0) state for the signal or voltage. It will be appreciated that one of ordinary skill in the art readily modify the logical conventions described herein, e.g., substitute "high" for "low" and/or "low" for "high," to derive circuitry having functionality substantially equivalent to that described herein. Such alternative exemplary embodiments are contemplated to be within the scope of the present disclosure.

[0009] FIG 1 illustrates a prior art implementation of an envelope tracking (ET) system 100. Note FIG 1 is shown for illustrative purposes only, and is not meant to limit the scope of the present disclosure to any particular implementation of an ET system. For example, the techniques described hereinbelow may readily be applied to systems incorporating alternative or additional modules not shown, such as a buck converter coupling Vbatt to Vamp for simultaneously generating a stepped-down voltage supply for the power amplifier.

[0010] In FIG 1, a power amplifier (PA) 130 receives an input voltage IN and generates an amplified output voltage OUT. A voltage Vamp, also denoted a "tracking supply voltage," is provided to the PA 130 as a supply voltage. Vamp is generated at least in part by an amplifier 140, which may be a linear amplifier. The amplifier 140 is supplied by a voltage VDD_Amp, also denoted an "amplifier supply voltage." In certain implementations of an ET system, to generate Vamp, the amplifier 140 may amplify a voltage Env which tracks the envelope of the PA output voltage OUT.

[0011] The tracking supply voltage Vamp provided to the PA 130 may be maintained at a level sufficient to ensure linear operation of the PA 130, i.e., provided with sufficient "headroom," while reducing unnecessary DC power consumption. Note as mentioned hereinabove, in certain implementations, a buck converter (not shown) may be concurrently provided to supply the PA 130, e.g., coupled to the PA 130 at Vamp to increase the power driving capability of the PA 130.

[0012] In certain operating scenarios, to maintain sufficient headroom for the PA, it may be necessary to drive Vamp to a level that exceeds the level of Vbatt, also denoted a "boost supply voltage," which is a maximum supply voltage otherwise available to the system, e.g., a supply voltage from a battery of the system. To allow the amplifier 140 to generate an output Vamp that is higher than Vbatt, a boost converter 110 may be provided to generate VDD_Amp. The boost converter 110 may boost VDD_Amp to a higher level than Vbatt according to principles of operation not shown in FIG 1 but known in the art, e.g., using a plurality of switches alternately configured to charge and discharge an inductor to generate a boosted output voltage.

[0013] To increase the efficiency of the ET system, the boost converter 110 may be turned on or enabled only when necessary, e.g., when it is determined that VDD_Amp needs to rise above Vbatt to maintain sufficient headroom for the PA 130. As such, the boost converter 110 may receive as input an "enable" signal voltage Ven indicating when VDD_Amp should be boosted to a level higher than Vbatt. The boost converter 110 may also be provided with a target voltage VTarget to which VDD_Amp should be boosted when the boost converter 110 is enabled. It will be appreciated that when it is not necessary to provide VDD_Amp higher than Vbatt, then the boost converter 110 may be turned off or disabled, or otherwise provided in a "bypass" mode that directly couples Vbatt to VDD_Amp.

[0014] FIG 2 illustrates an implementation of an ET system 200 wherein Ven and VTarget are generated in the particular manner shown. Note FIG 2 is shown for illustrative purposes only, and is not meant to limit the scope of the present disclosure to any particular techniques for generating Ven and/or VTarget.

[0015] In FIG 2, a specific implementation 130.1 of the PA 130 generates a voltage HR_reach, also denoted a "headroom reached signal," indicating when a voltage headroom of the PA 130.1 is (or is close to being) insufficient to maintain PA linearity. For example, HR_reach may be asserted high whenever one or more transistors (not shown) in the PA 130.1 becomes saturated. For example, in an exemplary embodiment, a voltage amplifier may be provided to sense the voltage drop across the drain and source of a transistor of the PA 130.1, and the sensed voltage drop may be compared to a predetermined threshold voltage by a voltage comparator. If the voltage drop across the transistor is less than or equal to the predetermined threshold voltage, then HR_reach may be asserted high. In this case, the predetermined threshold voltage may correspond to a value at which the corresponding transistor is expected to be saturated.

[0016] In FIG 2, HR_reach is directly coupled to the boost converter 110 as Ven. In this manner, whenever HR_reach indicates that the voltage headroom of the PA 130.1 is insufficient, the boost converter 110 is also enabled. Note in alternative implementations, a latch or other memory element may also be provided to process HR_reach prior to supplying to the boost converter 110, to hold the value of Ven for, e.g., a predetermined amount of time, in view of potential transient toggling in the value of HR_reach.

[0017] Further shown in FIG 2 is a peak detector 230 coupled to Vamp to generate a voltage Vpd corresponding to the detected peak value of Vamp, e.g., over a predetermined time interval. A headroom generation block 220 is also provided to generate a predetermined "headroom voltage" Vhd. In the implementation shown, Vhd is added to Vpd using an adder 210 to generate the boost target voltage VTarget, or 210a. It will be appreciated that, when enabled, the boost converter 110 may drive the
amplifier supply voltage V_{DD_Amp} to the target voltage V_{target}.

[0018] Note FIG 2 is shown for illustrative purposes only, and is not meant to limit the scope of the present disclosure to ET systems wherein V_{en} and V_{target} are necessarily generated as shown. For example, in certain implementations, V_{target} may be generated as shown in FIG 2, while V_{en} may be generated using other techniques known in the art (not shown in FIG 2); similarly V_{en} may be generated as shown, and V_{target} generated using other techniques. Such alternative implementations are contemplated to be within the scope of the present disclosure.

[0019] FIG 3 illustrates an alternative implementation 300 of an ET system. Note similarly labeled elements in FIGs 2 and 3 may correspond to elements performing similar functionality, unless otherwise noted. Note the boost converter 310 in FIG 3 is shown for illustrative purposes only, and it will be appreciated that the boost converter 110 in FIG 1 may also be used in the ET system 300 by modifying the signaling conventions in a manner that will be apparent to one of ordinary skill in the art. Such alternative exemplary embodiments are contemplated to be within the scope of the present disclosure.

[0020] In FIG 3, as in the ET system 200, V_{target} for the boost converter 110 is generated as the output 210a of the adder 210. A voltage V_{ok} is generated at the output of a comparator 330, which compares V_{DD_Amp} at its positive (+) input terminal with the output 210a of the adder 210 at its negative (-) input terminal. It will be appreciated that V_{ok} being high indicates that the current amplifier supply voltage V_{DD_Amp} exceeds V_{target}; in this case, the boost converter 310 need not be enabled, as there is ample headroom in the PA.

[0021] Note when the boost converter 310 is enabled, V_{DD_Amp} may have a DC value equal to V_{target}, yet there may be an AC component in V_{DD_Amp}, and therefore V_{ok} may be alternately toggling between high and low values over time. Accordingly, V_{en} can thus be generated as a filtered and/or latched version of the inverse of V_{ok}. In particular, in certain exemplary embodiments, logic circuitry (not shown) may be provided to derive V_{en} from V_{ok} using, e.g., an inverter (not shown), as well as a latch for periodically latching the potentially alternately toggling value of V_{ok}.

[0022] According to the ET system 300, when the sum of the detected peak (V_{pd}) and the headroom V_{hd} exceeds V_{DD_Amp}, then V_{ok} will be low (e.g., V_{en} will be low), and the boost converter 310 will be enabled. Per the description hereinabove, it will be appreciated that V_{ok} will be low only when the detected peak level V_{pd} of V_{amp} is within a voltage drop V_{hd} of V_{DD_Amp}, i.e., when $V_{pd} > V_{DD_Amp} - V_{hd}$. In this specification and in the claims, the state of V_{ok} being low is also denoted as corresponding to a signal indicating that the amplifier supply voltage is less than the sum of the headroom voltage and the peak of the tracking supply voltage.

[0023] Note FIG 3 and related exemplary embodiments are shown for illustrative purposes only, and are not meant to limit the scope of the present disclosure to any particular exemplary embodiments shown. One of ordinary skill in the art may readily derive alternative, equivalent logical signaling schemes in light of the present disclosure. For example, the comparator 330 may instead be configured to generate V_{ok}' (i.e., the logical inverse of V_{ok}) by switching the signal voltages coupled to the positive (+) and negative (-) input terminals, and the boost converter 310 may in that case be alternatively configured to directly process V_{en}, rather than V_{ok}. Such alternative exemplary embodiments are contemplated to be within the scope of the present disclosure.

[0024] Furthermore, it will be appreciated that while components shown in FIG 3 (and any other figure of the present specification) may generally process analog input and/or output voltages, any of such analog components may incorporate one or more digital-to-analog converters (DAC’s) and/or analog-to-digital converters (ADC’s) to allow internal digital processing of the signals. For example, the headroom generation block may incorporate a DAC (not shown).

[0025] In certain prior art implementations, the headroom generation block 220 in both FIGs 2 and 3 may be configured to generate V_{hd} as a fixed predetermined voltage. In this case, the fixed value of V_{hd} may be chosen by design to approximate an "optimal" value V_{hd_opt} for the required headroom, e.g., a value for the headroom voltage that allows distortion-free operation of the PA 130 while simultaneously minimizing the DC power consumption. During normal operation, however, it will be appreciated that such an optimal value V_{hd_opt} may vary significantly across different operating scenarios, e.g., across different processes, temperatures, and load conditions. For example, in an instance, V_{hd_opt} may range from 150 mV to 400 mV depending on, e.g., the operating temperature of the PA 130.

[0026] It will be appreciated that if the fixed setting of V_{hd} is greater than the optimal headroom V_{hd_opt} for a given scenario, e.g., $V_{hd} > V_{hd_opt}$ and therefore V_{hd} overestimates V_{hd_opt}, then the supply voltage V_{DD_Amp} for the amplifier 140 may be over-boosted. In this case, although the PA 130 operates distortion-free, power is unnecessarily wasted. On the other hand, if V_{hd} is less than the optimal headroom V_{hd_opt} for a given scenario, e.g., $V_{hd} < V_{hd_opt}$ and therefore V_{hd} underestimates V_{hd_opt}, then distortion may be undesirably introduced into the output of amplifier 130.

[0027] For the specific ET system 300 shown in FIG 3, it will be appreciated that a further problem associated with $V_{hd} < V_{hd_opt}$ is that the boost converter 310 may fail to start up altogether in certain cases. In particular, to maintain sufficient headroom, the boost converter 310 should be enabled when V_{amp} exceeds ($V_{DD_Amp} - V_{hd_opt}$); however, given that $V_{hd} < V_{hd_opt}$, the boost converter 310 will in fact not be enabled until V_{amp} exceeds ($V_{DD_Amp} - V_{hd}$), which would be a level higher.
It would be desirable to provide techniques for setting the headroom voltage V_{hd} to optimize the trade-offs between maximizing linearity and minimizing power consumption, and further to minimize the possibility of boost startup failure.

FIG 4 illustrates an exemplary embodiment of an ET system 400 according to the present disclosure. In FIG 4, a dynamic headroom generation block 420 receives the voltage HR_{reach} from PA 130.1, and generates a headroom voltage V_{hd}* to be added to V_{pd} by adder 410. In an exemplary embodiment, V_{hd}* is updated over time from an initial headroom voltage $V_{hd, init}$ to one or more subsequent values that more closely approximates $V_{hd, opt}$ for a given operating scenario. The headroom generation block 420 may be understood as generating a "dynamic" headroom voltage that changes at least once over time.

In particular, FIG 5 illustrates an exemplary embodiment of a method 500 that may be implemented by the dynamic headroom generation block 420. Note the method 500 is shown for illustrative purposes only, and is not meant to limit the scope of the present disclosure to any particular method shown, or to restrict the dynamic headroom generation block 420 to only those exemplary embodiments implementing the method 500.

In FIG 5, at block 510, V_{hd}* is set to an initial value $V_{hd, init}$. In an exemplary embodiment, $V_{hd, init}$ may be chosen to correspond to a fixed predetermined value, e.g., 400 mV. Note $V_{hd, init}$ may generally be chosen to correspond to an initial best estimate for the required V_{hd}.

At block 520, it is checked whether HR_{reach} is high. This may indicate, e.g., that one or more transistors (not shown) in the PA 130 are saturated, as previously described hereinabove. If HR_{reach} is high, then the method may proceed to block 530. If not, then the method may repeat block 520.

Responsive to detecting HR_{reach} being high, a voltage $V_{hd, def}$, also denoted a "deficiency voltage," is computed as follows (Equation 1):

$$V_{hd, def} = V_{DD, Amp} - (V_{pd} + V_{hd, init}).$$

In particular, the sum of the detected peak voltage V_{pd} and the initial headroom voltage $V_{hd, init}$ is subtracted from the current supply voltage $V_{DD, Amp}$ of the amplifier 140. Due to this subtraction being performed concurrently with detecting HR_{reach} to be high, it will be appreciated that $V_{hd, def}$ provides a measure of the deficiency (or surplus) in the headroom voltage when one or more transistors of PA 130 reach saturation. In an exemplary embodiment, Equation 1 is computed soon after detecting HR_{reach} is high, such that the value of V_{pd} may accurately (e.g., with minimal delay) reflect the corresponding value in V_{amp} that caused HR_{reach} to be asserted high.

At block 540, V_{hd}* is updated as follows (Equation 2):

$$V_{hd}* = V_{hd, init} + V_{hd, def} + V_{margin};$$

wherein V_{margin}, also denoted a "voltage margin," is a fixed predetermined positive margin, e.g., 50 mV.

Note per Equation 1, if $V_{hd, def}$ is a positive quantity, i.e., $V_{DD, Amp} > (V_{pd} + V_{hd, init})$, this may correspond to the case wherein $V_{hd, init} < V_{hd, opt}$, i.e., $V_{hd, init}$ is too low an estimate of $V_{hd, opt}$. In this case, per Equation 2, V_{hd}* may be increased by adding $V_{hd, def}$ (a positive quantity) to $V_{hd, init}$ plus a margin V_{margin}. On the other hand, if $V_{hd, def}$ is a negative quantity, i.e., $V_{DD, Amp} < (V_{pd} + V_{hd, init})$, this may correspond to the case wherein $V_{hd, init} > V_{hd, opt}$, i.e., $V_{hd, init}$ is too high an estimate of $V_{hd, opt}$. In this case, per Equation 2, V_{hd}* may be decreased by adding $V_{hd, def}$ (a negative quantity) to $V_{hd, init}$ plus a margin V_{margin}.

In an exemplary embodiment, following the update of V_{hd}* at block 540, no further updates to V_{hd}* need be performed, and the ET system 400 may function with the updated value of V_{hd}*. In alternative exemplary embodiments (not shown), additional updates to V_{hd}* may further be performed following block 540.

Note in certain cases, $V_{hd, init} > V_{hd, opt}$ would result in HR_{reach} being low when the detection at block 520 is performed, and thus the method 500 may not progress to blocks 530, 540 in these cases.

Per the operations described above, it will be appreciated that V_{hd}* is updated at a time corresponding to HR_{reach} being detected to be high, and V_{hd}* may accordingly be updated to a value corresponding to the headroom required at the time when HR_{reach} is detected to be high.

In an exemplary embodiment, following the update of V_{hd}* at block 540, no further updates to V_{hd}* need be performed, and the ET system 400 may function with the updated value of V_{hd}*. In alternative exemplary embodiments (not shown), additional updates to V_{hd}* may further be performed following block 540.

Returning to FIG 4, it will be seen that the dynamic headroom generation block 420 will initially output a value of V_{hd}* corresponding to $V_{hd, init}$, e.g., when the method 500 is executing block 510, 520, or 530. Subsequently, in response to detecting HR_{reach} being high, V_{hd}* may be updated as according to Equations 1 and 2 described hereinabove, and the updated value of V_{hd}* may be subsequently asserted, e.g., after the method
Note as shown in FIG 4, Vhd* is utilized in the generation of both Vtarget and Ven. In particular, Vhd* may be added to Vpd by adder 410 to directly generate 410a or Vtarget, which is provided to the boost converter 310 to set the target level for VDD_Amp. Furthermore, the voltage 410a or Vtarget is provided to the negative (-) terminal of comparator 330 to generate Ven, which may be utilized (e.g., following latching and logical inversion) by the boost converter 310 to derive the enable voltage Ven.

FIGS 6 and 7 illustrate an exemplary operating scenario according to the techniques of the present disclosure described hereinabove. Note the operating scenario of FIGS 6 and 7 is described for illustrative purposes only, and is not meant to limit the scope of the present disclosure in any way.

In FIG 6, an initial state of the ET system 400 prior to a time t0 is shown, wherein Vhd* is initially set to Vhd_init in an exemplary embodiment, Vhd_init may be, e.g., 400 mV. Prior to time t0, Vhd_init provides sufficient headroom for the PA 130.1, and accordingly HR_reach will be low. The output 410a of adder 410 will correspond to (Vpd + Vhd_init), and the difference between the positive (+) and negative (-) terminals of comparator 330 is VDD_Amp - (Vpd + Vhd_init). Note VDD_Amp - (Vpd + Vhd_init) is expected to be positive prior to t0, and thus the output Vok of comparator 330 is expected to be high, with the boost converter 310 being OFF or in bypass mode. Further shown in FIG 6 is that HR_reach transitions from low to high at time t0 in response to, e.g., detection that the PA 130.1 has insufficient headroom, as previously described hereinabove.

FIG 7 illustrates a state of the ET system 400 following t0, e.g., after Vhd* has been updated according to Equation 2 as described with reference to block 540 hereinabove. In FIG 7, the updated Vhd* is equal to Vhd_init + Vhd_def + Vmargin. The output 410a of adder 410 will thus correspond to (Vpd + Vhd_init + Vhd_def + Vmargin), or VDD_Amp + Vmargin. Per Equation 1 defining Vhd_def, the difference between the positive (+) and negative (-) terminals of comparator 330 simplifies to -Vmargin. As Vmargin is set to a positive value, and -Vmargin is thus negative, the output of comparator 330 is expected to be low. In this case, Ven derived by the boost converter 310 will be high, causing the boost converter 310 to be enabled, and VDD_Amp will accordingly be driven to the target voltage Vtarget corresponding to Vhd_init + Vhd_def + Vmargin + Vpd.

As illustrated in FIG 7, providing the additive term Vmargin in the updated Vhd* advantageously ensures timely startup of the boost converter 310, as the presence of Vmargin above the required headroom of VDD_Amp - Vpd (when HR_reach is high) will cause the output Vok of comparator 330 to toggle from high to low (and, accordingly, Ven to toggle from low to high).

FIG 8 illustrates an exemplary embodiment 400.1 of the ET system 400 according to the present disclosure, wherein a specific exemplary embodiment 420.1 of the dynamic headroom generation block 420 is shown. Note FIG 8 is shown for illustrative purposes only, and is not meant to limit the scope of the present disclosure to any particular exemplary embodiment of a dynamic headroom generation block shown.

In FIG 8, the dynamic headroom generation block 420.1 includes an AND gate 820 and a counter 810 driven by a clock signal CLK. The counter 810 may include, e.g., an N-bit register (not shown) initialized to a value corresponding to Vhd_init. When the output EN of the AND gate 820 is low, the counter 810 is disabled, and the counter output Vhd* is constant at Vhd_init. Upon detecting the output EN of the AND gate 820 to be high, the counter 810 is enabled, and thereby starts to increment its N-bit register value on each rising (or alternatively, falling) edge of CLK. When EN is low, the counter 810 is disabled, and thereby stops incrementing its register contents. In an exemplary embodiment, a digital-to-analog converter (DAC) 815 may be provided at the output of the counter 810 to convert the digital output of the counter 810 to an analog signal.

The real-time operation of the dynamic headroom generation block 420.1 in the ET system 400.1 may be described as follows. In an initial state, HR_reach is low, and Vok is high. This corresponds to a state wherein the PA 130.1 is operating with sufficient headroom, and VDD_Amp is greater than Vpd + Vhd*. The output EN of AND gate 820 is thus low, and thus the counter 810 is disabled, with Vhd* being equal to the initial value of Vhd_init.

In a second state, HR_reach is detected to be high, indicating that the PA 130.1 does not have sufficient headroom. As HR_reach and Vok are both high, the output EN of AND gate 820 is also high, and the counter 810 is accordingly enabled. While EN is high, the counter 810 increments its register value successively on every rising edge of CLK. The incrementing continues until EN transitions low, at which time the counter 810 is disabled. Note EN may transition low in response to, e.g., Vok transitioning from high to low, and this may in turn be caused by, e.g., Vhd* + Vpd, or voltage 410a eventually exceeding VDD_Amp by some margin, due to the continual incrementing in Vhd*. Note once the counter 810 is disabled, the then-existing value of the N-bit register in counter 810 is preserved, and thereafter maintained as the updated headroom voltage Vhd*.

FIG 9 illustrates an exemplary embodiment of a method 900 according to the present disclosure. Note FIG 9 is shown for illustrative purposes only, and is not meant to limit the scope of the present disclosure to any particular exemplary embodiment of a method shown.

In FIG 9, at block 910, a tracking supply voltage is generated using an amplifier to supply a power amplifier configured to amplify an input voltage to generate an output voltage.

At block 920, an amplifier supply voltage is generated for the amplifier, wherein the amplifier supply volt-
age is configurable to be higher than a boost supply voltage.

At block 930, the amplifier supply voltage is configured to be higher than the boost supply voltage in response to the sum of a headroom voltage and a peak of the tracking supply voltage being greater than the amplifier supply voltage.

At block 940, the headroom voltage is updated from an initial value in response to detecting a headroom reached voltage, e.g., HR_reach. In an exemplary embodiment, the HR_reach signal indicates whether the amplifier is operating with insufficient headroom.

In this specification and in the claims, it will be understood that when an element is referred to as being "connected to" or "coupled to" another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being "directly connected to" or "directly coupled to" another element, there are no intervening elements present. Furthermore, when an element is referred to as being "electrically coupled to" another element, it denotes that a path of low resistance is present between such elements, while when an element is referred to as being simply "coupled" to another element, there may or may not be a path of low resistance between such elements.

Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.

Those of skill in the art would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the exemplary aspects disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the exemplary aspects of the invention.

The various illustrative logical blocks, modules, and circuits described in connection with the exemplary aspects disclosed herein may be implemented or performed with a general purpose processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.

The steps of a method or algorithm described in connection with the exemplary aspects disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.

In one or more exemplary aspects, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage medium may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-Ray disc where disks usually reproduce data magnetically, while discs repro-
duce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.

[0060] The previous description of the disclosed exemplary aspects is provided to enable any person skilled in the art to make or use the invention. Various modifications to these exemplary aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other exemplary aspects without departing from the scope of the invention as defined by the appended claims. Thus, the present disclosure is not intended to be limited to the exemplary aspects shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims

1. An apparatus (400) comprising:
 a boost converter (310) configurable to generate an amplifier supply voltage for an amplifier, the amplifier configured to output a tracking supply voltage, the tracking supply voltage configured to be supplied to a power amplifier configured to amplify an input voltage to generate an output voltage, wherein the amplifier supply voltage is configurable to be higher than a boost supply voltage coupled to the boost converter, and the boost converter is configured to be enabled in response to the sum of a headroom voltage and a peak of the tracking supply voltage being greater than the amplifier supply voltage; and
 a dynamic headroom generation block (420) configured to generate the headroom voltage, wherein the headroom voltage is updated from an initial headroom voltage in response to detecting a headroom reached signal.

2. The apparatus of claim 1, the power amplifier comprising at least one transistor, the headroom reached signal indicating that the at least one transistor is in saturation.

3. The apparatus of claim 1, wherein the updated headroom voltage comprises the sum of the initial headroom voltage, a deficiency voltage, and a voltage margin.

4. The apparatus of claim 3, wherein the deficiency voltage comprises the difference between the amplifier supply voltage and the sum of the peak of the tracking supply voltage and the initial headroom voltage.

5. The apparatus of claim 1, wherein the updated headroom voltage comprises the sum of a voltage margin and the difference between the amplifier supply voltage and the peak of the tracking supply voltage.

6. The apparatus of claim 1, wherein the boost converter is configurable to drive the amplifier supply voltage to a target voltage, the target voltage corresponding to the sum of the headroom voltage and the peak of the tracking supply voltage.

7. The apparatus of claim 1, wherein the peak of the tracking supply voltage corresponds to the peak of the tracking supply voltage over a predetermined time interval.

8. The apparatus of claim 1, the dynamic headroom generation block comprising:
 a counter initialized with a value corresponding to the initial headroom voltage, the counter configured to be enabled in response to detecting the headroom reached signal and a signal indicating that the amplifier supply voltage is less than the sum of the headroom voltage and the peak of the tracking supply voltage.

9. The apparatus of claim 8, the counter being coupled to a clock, the counter configured to, when enabled, increment its value in response to a rising edge of the clock.

10. The apparatus of claim 1, wherein the dynamic headroom generation block is configured to update the headroom voltage once in response to detecting the headroom reached signal.

11. A method (900) comprising:
 generating (910) a tracking supply voltage using an amplifier to supply a power amplifier configured to amplify an input voltage to generate an output voltage;
 generating (920) an amplifier supply voltage for the amplifier, wherein the amplifier supply voltage is configurable to be higher than a boost supply voltage;
 configuring (930) the amplifier supply voltage to be higher than the boost supply voltage in response to the sum of a headroom voltage and a peak of the tracking supply voltage being greater than the amplifier supply voltage; and
 updating (940) the headroom voltage once in response to detecting a headroom reached signal.

12. The method of claim 11, the detecting the headroom reached signal comprising detecting that at least one transistor of the power amplifier is in saturation.

13. The method of claim 11, wherein the boost supply
voltage is a battery voltage.

14. The method of claim 11, the updating comprising:

initializing a counter with the initial value; in response to detecting the headroom reached signal and a signal indicating that the amplifier supply voltage is less than the sum of the tracking voltage and the peak of the tracking supply voltage, incrementing the counter on every rising edge of a clock signal; disabling the counter when either the headroom reached signal is false or when the amplifier supply voltage is not less than the sum of the tracking voltage and the peak of the tracking supply voltage.

15. The method of claim 11, the updating comprising updating the headroom voltage once in response to detecting a headroom reached signal.

Patentansprüche

1. Eine Vorrichtung (400), die Folgendes aufweist:

-einen Boost- bzw. Aufwärtswandler (310), der konfigurierbar ist, um eine Verstärkerversorgungsspannung für einen Verstärker zu generieren, wobei der Verstärker konfiguriert ist zum Ausgeben einer Tracking- bzw. Nachverfolgungssorgungsspannung, wobei die Nachverfolgungssorgungsspannung konfiguriert ist, um an einen Leistungsverstärker geliefert zu werden, der konfiguriert ist zum Verstärken einer Eingangsspannung, um eine Ausgangsspannung zu erzeugen, wobei die Verstärkerversorgungsspannung konfigurierbar ist, so dass sie höher als eine Boost-Versorgungsspannung ist, die an den Boost-Wandler gekoppelt ist, und wobei der Boost-Wandler konfiguriert ist, um ansprechend darauf aktiviert zu werden, dass die Summe einer Reservebereichs- bzw. Headroom-Spannung und eines Spitzenwertes der Nachverfolgungssorgungsspannung größer ist als die Verstärkerversorgungsspannung; und

einen dynamischen Headroom-Generierungsblock (420), der konfiguriert ist, um die Headroom-Spannung zu generieren, wobei die Headroom-Spannung von einer anfänglichen Headroom-Spannung angesprechend auf Detektieren eines Headroom-Erreicht-Signals aktualisiert wird.

2. Vorrichtung nach Anspruch 1, wobei der Leistungsverstärker wenigstens einen Transistor aufweist, wobei das Headroom-Erreicht-Signal anzeigt, dass der wenigstens einen Transistor sich in der Sättigung befindet.

3. Vorrichtung nach Anspruch 1, wobei die aktualisierte Headroom-Spannung die Summe der anfänglichen Headroom-Spannung, einer Fehl- bzw. Defizienzspannung und einer Spannungsmarge aufweist.

4. Vorrichtung nach Anspruch 3, wobei die Defizienzspannung die Differenz zwischen der Verstärkerversorgungsspannung und der Summe des Spitzenwertes der Nachverfolgungssorgungsspannung und der anfänglichen Headroom-Spannung aufweist.

5. Vorrichtung nach Anspruch 1, wobei die aktualisierte Headroom-Spannung die Summe einer Spannungsmarge und der Differenz zwischen der Verstärkerversorgungsspannung und dem Spitzenwert der Nachverfolgungssorgungsspannung aufweist.

6. Vorrichtung nach Anspruch 1, wobei der Boost-Wandler konfigurierbar ist, um die Verstärkerversorgungsspannung auf eine Zielspannung zu treiben, wobei die Zielspannung der Summe der Headroom-Spannung und des Spitzenwertes der Nachverfolgungssorgungsspannung entspricht.

7. Vorrichtung nach Anspruch 1, wobei der Spitzenwert der Nachverfolgungssorgungsspannung dem Spitzenwert der Nachverfolgungsspannung über ein vorbestimmtes Zeitintervall entspricht.

8. Vorrichtung nach Anspruch 1, wobei der dynamische Headroom-Generierungsblock Folgendes aufweist:

-einen Zähler, der mit einem Wert initialisiert wird, der der anfänglichen Headroom-Spannung entspricht, wobei der Zähler konfiguriert ist, um aktiviert zu werden, dass die Summe einer Reservebereichs- bzw. Headroom-Spannung und eines Spitzenwertes der Nachverfolgungssorgungsspannung größer ist als die Verstärkerversorgungsspannung; und

einen dynamischen Headroom-Generierungsblock (420), der konfiguriert ist, um die Headroom-Spannung zu generieren, wobei die Headroom-Spannung von einer anfänglichen Headroom-Spannung angesprechend auf Detektieren eines Headroom-Erreicht-Signals aktualisiert wird.

9. Vorrichtung nach Anspruch 8, wobei der Zähler an einen Takt gekoppelt ist, wobei der Zähler konfiguriert ist, um, wenn er aktiviert ist, seinen Wert anzuregend auf eine steigende Flanke des Taktes zu inkrementieren.

10. Vorrichtung nach Anspruch 1, wobei der dynamische Headroom-Generierungsblock konfiguriert ist, um die Headroom-Spannung einmal anzuregend auf Detektieren des Headroom-Erreicht-Signals zu aktualisieren.
11. Ein Verfahren (900), das Folgendes aufweist:

Generieren (910) einer Nachverfolgungsversorgungsspannung unter Verwendung eines Verstärkers, um einen Leistungsverstärker zu versorgen, der konfiguriert ist, eine Eingangsspannung zu verstärken, um eine Ausgangsspannung zu generieren;
Generieren (920) einer Verstärkerversorgungsspannung für den Verstärker, wobei die Verstärkerversorgungsspannung konfigurierbar ist, so dass sie höher ist als eine Boost- bzw. Aufwärtsversorgungsspannung;
Konfigurieren (930) der Verstärkerversorgungsspannung, so dass sie höher ist als die Boostversorgungsspannung ansprechend darauf, dass die Summe einer Headroom-Spannung und eines Spitzenwerts der Nachverfolgungsspannung größer ist als die Verstärkerversorgungsspannung; und
Aktualisieren (940) der Headroom-Spannung von einem anfänglichen Wert ansprechend auf Detektieren eines Headroom-Erreicht-Signals.

14. Verfahren nach Anspruch 11, wobei das Aktualisieren Folgendes aufweist:

Initialisieren eines Zählers mit einem anfänglichen Wert; ansprechend auf Detektieren des Headroom-Erreicht-Signals und eines Signals, das anzeigt, dass die Verstärkerspannung geringer ist als die Summe der Nachverfolgungsspannung und des Spitzenwertes der Nachverfolgungsspannung, Inkrementieren des Zählers bei jeder steigenden Flanke eines Taktsignals; Deaktivieren des Zählers, wenn entweder das Headroom-Erreicht-Signal falsch ist oder wenn die Verstärkerspannungsspannung nicht geringer ist als die Summe der Nachverfolgungsspannung und des Spitzenwertes der Nachverfolgungsspannung.

15. Verfahren nach Anspruch 11, wobei das Aktualisieren einmaliges Aktualisieren der Headroom-Spannung ansprechend auf Detektieren eines Headroom-Erreicht-Signals aufweist.

Revendications

1. Dispositif (400) comprenant :
un convertisseur élévateur (310) configurable pour générer une tension d'alimentation d'amplificateur pour un amplificateur, l'amplificateur étant agencé pour fournir une tension d'alimentation de suivi, la tension d'alimentation de suivi étant agencée pour être fournie à un amplificateur de puissance agencé pour amplifier une tension d'entrée pour générer une tension de sortie, dans lequel la tension d'alimentation d'amplificateur est configurable pour être supérieure à une tension d'alimentation à surélevaison couplée au convertisseur élévateur, et le convertisseur élévateur est agencé pour être activé en réponse au fait que la somme d'une tension de garde et d'un pic de la tension d'alimentation de suivi est supérieure à la tension d'alimentation d'amplificateur ; et
un bloc de génération de garde dynamique (420) agencé pour générer la tension de garde, dans lequel la tension de garde est mise à jour à partir d'une tension de garde initiale en réponse à la détection d'un signal de garde atteinte.

2. Dispositif selon la revendication 1, l’amplificateur de puissance comprenant au moins un transistor, le signal de garde atteinte indiquant que ledit au moins un transistor est en saturation.

3. Dispositif selon la revendication 1, dans lequel la tension de garde mise à jour comprend la somme de la tension de garde initiale, d’une tension de carence, et d’une marge de tension.

4. Dispositif selon la revendication 3, dans lequel la tension de carence comprend la différence entre la tension d’alimentation d’amplificateur et la somme du pic de la tension d’alimentation de suivi et de la tension de garde initiale.

5. Dispositif selon la revendication 1, dans lequel la tension de garde mise à jour comprend la somme d’une marge de tension et de la différence entre la tension d’alimentation d’amplificateur et le pic de la tension d’alimentation de suivi.

6. Dispositif selon la revendication 1, dans lequel le convertisseur élévateur est configurable pour piloter la tension d’alimentation d’amplificateur à une tension cible, la tension cible correspondant à la somme de la tension de garde et du pic de la tension d’alimentation de suivi.

7. Dispositif selon la revendication 1, dans lequel le pic de la tension d’alimentation de suivi correspond au
pic de la tension d’alimentation de suivi sur un intervalle de temps prédéterminé.

8. Dispositif selon la revendication 1, le bloc de génération de garde dynamique comprenant :
 un compteur initialisé avec une valeur correspondant à la tension de garde initiale, le compteur étant agencé pour être activé en réponse à une détection du signal de garde atteinte et d’un signal indiquant que la tension d’alimentation d’amplificateur est inférieure à la somme de la tension de garde et du pic de la tension d’alimentation de suivi.

9. Dispositif selon la revendication 8, le compteur étant couplé à une horloge, le compteur étant agencé pour, lorsqu’il est activé, incrémenter sa valeur en réponse à un front montant de l’horloge.

10. Dispositif selon la revendication 1, dans lequel le bloc de génération de garde dynamique est agencé pour mettre à jour la tension de garde une fois en réponse à la détection du signal de garde atteinte.

11. Procédé (900) comprenant :
 générer (910) une tension d’alimentation de suivi en utilisant un amplificateur pour alimenter un amplificateur de puissance agencé pour amplifier une tension d’entrée pour générer une tension de sortie ;
 générer (920) une tension d’alimentation d’amplificateur pour l’amplificateur, la tension d’alimentation d’amplificateur étant configurable pour être supérieure à une tension d’alimentation à surélévation ;
 configurer (930) la tension d’alimentation d’amplificateur pour qu’elle soit supérieure à la tension d’alimentation à surélévation en réponse au fait que la somme d’une tension de garde et d’un pic de tension d’alimentation de suivi est supérieure à la tension d’alimentation d’amplificateur ;
 mettre à jour (940) la tension de garde à partir d’une valeur initiale en réponse à une détection d’un signal de garde atteinte.

12. Procédé selon la revendication 11, la détection du signal de garde atteinte comprenant une détection qu’au moins un transistor de l’amplificateur de puissance est en saturation.

13. Procédé selon la revendication 11, dans lequel la tension d’alimentation à surélévation est une tension de batterie.

14. Procédé selon la revendication 11, dans lequel la
FIG 1
FIG 2
Set Vhd* = Vhd_init

HR_reach high?

NO

YES

Compute Vhd_def

Update Vhd* as Vhd_init + Vhd_def + Vmargin

FIG 5
Prior to t0

Boost converter
OFF or Bypass

Vok = 1

Vtarget

Difference = VDD_Amp - (Vpd + Vhd_init)

Vpd + Vhd_init

410a

Vhd* = Vhd_init

410

420

Dynamic headroom generation

HR_reach

0

1

t0

Peak detector

Vpd

230

Vamp

Amp

Env

IN

PA

OUT

130.1

HR_reach

FIG 6
After t_0

400b

Boost converter ON

$V_{ok} = 0$

V_{target}

V_{DD_Amp}

$V_{DD_Amp} + V_{margin}$

Dynamic headroom generation

$V_{hd*} = V_{hd_init} + V_{hd_def} + V_{margin}$

Peak detector

V_{pd}

Amp

Env

V_{in}

V_{out}

HR_reach

FIG 7
FIG 8
Generate a tracking supply voltage using an amplifier to supply a power amplifier configured to amplify an input voltage to generate an output voltage

Generate an amplifier supply voltage for the amplifier, wherein the amplifier supply voltage is configurable to be higher than a boost supply voltage

Configure the amplifier supply voltage to be higher than the boost supply voltage in response to the sum of a headroom voltage and a peak of the tracking supply voltage being greater than the amplifier supply voltage

Update the headroom voltage from an initial value in response to detecting a headroom reached signal

FIG 9
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• WO 2011007556 A [0002]