A METHOD FOR PREDICTING THE RISK OF GETTING CANCER OR DIAGNOSING CANCER IN A SUBJECT

VERFAHREN ZUR VORHERSAGE DES RISIKOS VON KREBS ODER ZUR DIAGNOSTIZIERUNG VON KREBS BEI EINEM PATIENTEN

PROCÉDÉ DE PRÉDICATION DU RISQUE QU'UN SUJET DÉVELOPPE UN CANCER OU DE DIAGNOSTIC DU CANCER CHEZ UN SUJET

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Priority: 08.01.2013 EP 13150564

Date of publication of application: 18.11.2015 Bulletin 2015/47

Proprietor: SphingoTec GmbH
16761 Hennigsdorf (DE)

Inventor: BERGMANN, Andreas
13465 Berlin (DE)

Representative: Kilger, Ute
Boehmert & Boehmert
Anwaltspartnerschaft mbB
Pettenkoferstrasse 22
80336 München (DE)

References cited:
WO-A2-2005/103712

KHAN IRFAN ULLAH ET AL: "Targeted tumor diagnosis and therapy with peptide hormones as radiopharmaceuticals", ANTI-CANCER AGENTS IN MEDICINAL CHEMISTRY, BENTHAM SCIENCE PUBLISHERS LTD, NL, vol. 8, no. 2, 1 February 2008 (2008-02-01), pages 186-199, XP009163917, ISSN: 1871-5206

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Subject matter of the present invention is a method for predicting the risk of getting breast cancer in a female subject that does not suffer from cancer comprising:

- determining the level of Pro-Tachykinin that is SEQ ID No. 1, or Pro-Tachykinin 1-37 that is SEQ ID No. 2 in a bodily fluid obtained from said female subject; and

- correlating said level of Pro-Tachykinin that is SEQ ID No. 1, or Pro-Tachykinin 1-37 that is SEQ ID No. 2 with a risk for getting cancer, wherein a reduced level is predictive for an enhanced risk of getting breast cancer, wherein a reduced level means a level below a certain threshold level and wherein the bodily fluid is blood or plasma or serum.

Substance P (SP) is a neuropeptide: an undecapeptide that functions as a neurotransmitter and as a neuromodulator. It belongs to the tachykinin neuropeptide family. Substance P and its closely related neuropeptide neurokinin A (NKA) are produced from a polyprotein precursor after differential splicing of the prePro-Tachykinin A gene. In the CNS, Substance P participates in the pain transmission system.

 Substance P plays roles in inflammatory processes (Ang et al., 2011) and possesses antiapoptotic activity in cancer cells (Munoz et al., 2005).

The Substance P receptor (Neurokinin1 receptor) plays a crucial role in the development of cancer (Fries et al., 2003; Munoz et al., 2010; Rameshwar, 2007; Schulz et al., 2006). Blocking the Substance P pathway markedly reduced tumor cell growth in vitro (for review see Munoz and Rossow, 2009).

The use of vasoactive peptides for prediction of cancer risks in males has been reported by Belting et al., Cancer, Epidemiology, Biomarkes & Prevention. MR-pro-ANP, MR-pro-ADM and copeptin was measured in the fasting plasma from participants of the Malmö Diet and Cancer Study that were free from cancer prior to the baseline exam in 1991 to 1994 (1768 males and 2293 females). The authors stated that among females, there was no relationship between biomarkers and cancer incidence.

WO 2005/103712 discloses the use of precursors of tachykinins and/or the fragments in medical diagnostic. There is no disclosure of a method for the prediction of the risk of getting breast cancer in a feeble subject.

Turner et al. (Gut 2006;55:1586-1591) discloses circulating markers of prognosis and response to the treatment in patients with midgut carcinoid tumours.

Ardill, J. and Eriksson, B. (Endocrine-Related Cancer (2003) 10 459-462) report on the importance of the measurements of circulating markers in patients with neuroendocrine tumours of the pancreas and the gut.

Khan, I. and Beck-Sickinger (Anti-Cancer Agents in Medicinal Chemistry; 2008, 8, 186-199) report on targeted tumour diagnosis and therapy with peptide hormones as radiopharmaceuticals.

Alumets, J. et al., (Ultrastructural Pathology, 5:55-72, 1983 disclose neuro hormonal peptides in endpoint tumours of the pancreas, stomach and upper small intestine in an immunohistochemical study of 27 cases.

Thus, subject matter of the present invention is a method for predicting the risk of getting breast cancer in a female subject that does not suffer from cancer comprising:

- determining the level of Pro-Tachykinin that is SEQ ID No. 1, or Pro-Tachykinin 1-37 that is SEQ ID No. 2 in a bodily fluid obtained from said female subject; and

- correlating said level of Pro-Tachykinin that is SEQ ID No. 1, or Pro-Tachykinin 1-37 that is SEQ ID No. 2 with a risk for getting cancer, wherein a reduced level is predictive for an enhanced risk of getting breast cancer, wherein a reduced level means a level below a certain threshold level and wherein the bodily fluid is blood or plasma or serum.

In another subject of the invention said method additionally comprises the following steps: determining additionally the level of Pro-Neurotensin that is SEQ ID No. 14 or Pro-Neurotensin 1-117 that is SEQ ID No. 18 in a bodily fluid.
obtained from said female subject; and

• correlating additionally said level of Pro-Neurotensin or Pro-Neurotensin 1-117 with a risk for getting cancer, wherein an increased level of Pro-Neurotensin is predictive for an enhanced risk of getting breast cancer.

[0016] According to another embodiment of the invention the above methods may additionally comprise the following steps:

• determining additionally the level of Pro-Enkephalin that is SEQ ID No. 23 or MRPENK that is SEQ ID No. 28 in a bodily fluid obtained from said female subject; and

• correlating additionally Pro-Enkephalin or MRPENK with a risk for getting cancer, wherein an reduced level of Pro-Enkephalin or MRPENK is predictive for an enhanced risk of getting breast cancer.

[0017] According to another embodiment of the invention the above methods may additionally comprise the following steps:

• determining additionally the level of Insulin in a bodily fluid obtained from said female subject; and

• correlating additionally said level of Insulin with a risk for getting breast cancer, wherein an reduced level of Insulin is predictive for an enhanced risk of getting breast cancer.

[0018] Thus, the methods according to the present invention comprise the determination of the level of Pro-Tachykinin, Pro-Tachykinin 1-37, in a bodily fluid and may optionally further comprise at least one further determination and additional correlation with the risk of cancer selected from the group comprising:

• determination of the level of Pro-Neurotensin or Pro-Neurotensin 1-117 and

• determination of the level of Pro-Enkephalin or MRPENK acids and

• determination of the level of Insulin.

[0019] In one embodiment of the invention at least one of the before mentioned additional biomarkers is further determined and additionally correlated with said breast cancer risk in addition to Pro-Tachykinin or Pro-Tachykinin 1-37. In one embodiment of the invention at least two of the before mentioned additional biomarkers are further determined and additionally correlated with said risk in addition to Pro-Tachykinin or Pro-Tachykinin 1-37. In one embodiment all of the above four biomarkers are determined.

[0020] In one specific embodiment of the above methods wherein in addition to Pro-Tachykinin or Pro-Tachykinin 1-37 further biomarkers are determined and correlated with said risk “additionally correlating” means a combined analysis of the determined biomarker levels by taking into account the relative risk factors for cancer development obtained by the individual biomarkers.

[0021] The combined analysis of more than one marker is as an example explained in Example 5. The person skilled in the art knows statistical methods that may perform combined analysis of more than one marker or parameter.

[0022] In one embodiment of the above methods a reduced level of Pro-Tachykinin Tachykinin or Pro-Tachykinin 1-37 is a level below a threshold wherein said threshold is about or below 100 pmol/l, preferably about or below 80 pmol/l, preferably about or below 60 pmol/L, preferably about or below 50 pmol/L, preferably about or below 45,6 pmol/L, preferably about 40 pmol/L.

[0023] In one embodiment of the above methods an increased level of Pro-Neurotensin or Pro-Neurotensin 1-117 is a level above a threshold wherein said threshold is about or above 78 pmol/l PNT, preferably about or above 100 pmol/l, more preferred about or above 150 pmol/l.

[0024] In one embodiment of the above methods a reduced level of Pro-Enkephalin or MRPENK is a level below or below 100 pmol/l, preferably about or below 75 pmol/l, preferably about or below 50 pmol/L, preferably about or below 4,4 pmol/L.

[0025] In one embodiment of the above methods a reduced level of Insulin is a level below a threshold wherein said threshold is about or above 70 pmol/l.

[0026] Thresholds have to be seen in light of the calibration method used and the above values have to be seen in light of the assays and calibration methods used in the present examples 1, 3 and 4.

[0027] In the embodiments of the present invention said subject is female and said cancer is breast cancer.

[0028] Throughout the specification the term Pro-Tachykinin and Pro-Tachykinin A (PTA) are used synonymously. The term includes Pro-Tachykinin 1-37.
Determining the level of Pro-Tachykinin or Pro-Tachykinin 1-37 means that usually the immunoreactivity towards a region within the before mentioned molecules is determined. This means that it is not necessary that a certain fragment is measured selectively. It is understood that a binder which is used for the determination of the level of Pro-Tachykinin or or Pro-Tachykinin 1-37 binds to any fragment that comprises the region of binding of said binder. Said binder may be an antibody or antibody fragment or a non-IgG Scaffold.

Thus, subject matter of the present invention is in one embodiment the determination of the susceptibility of a woman to acquire breast cancer.

Data obtained in the Malmö study revealed a correlation between the risk of getting cancer in male subjects with the level of Pro-Tachykinin, its splice variants or fragments thereof of at least 5 amino acids in a bodily fluid obtained from said male subject; this correlation however, was not that statistically significant for the present data set although there was a clear trend for an increased cancer risk at reduced levels of Pro-Tachykinin, its splice variants or fragments thereof also in males. Thus, there is a value for the method according to the invention also for male subjects but in the present study the observed effect was not as strong for males as compared to females. This may be primarily due to the low number of cancer incidents in the male population.

The term "subject" as used herein refers to a female human subject.

The term "reduced level" means a level below a certain threshold level. The term "increased level" means a level above a certain threshold. A bodily fluid may be selected from the group comprising blood, serum, or plasma.

In one embodiment of the invention said subject has never had a diagnosed cancer at the time the sample of bodily fluid is taken from said subject.

In another embodiment said subject has been diagnosed before with having cancer and has been cured at the time the sample of bodily fluid is taken from said subject and the risk of reoccurrence of getting cancer is determined or alternatively the re-occurrence of cancer is predicted.

Pro-Tachykinin may have the following sequence(s):

SEQ ID NO.1 (Pro-Tachykinin A (1-107))

EEIGANDDLNYWSWYDSDQIKEELPEPFEHLLQRIARRPKPQQFFGLMGKRDADESSIE
KQVALKALYGHQISHKRHKTDSFVGLMGKRALNSVAYERSAMQNYYERRR

A fragment of Pro-Tachykinin that may be determined in a bodily fluid is:

SEQ ID NO.2 (Pro-Tachykinin 1-37, P37)
EEIGANDDLNYWSWYDSDQIKEELPEPFEHLLQRIA

Also disclosed herein are:

SEQ ID NO.3 (Substance P)
RPKPQOQFFGLM(-NH2)

SEQ ID NO. 4 (Neuropeptide K)
DADSSIEKQVALLKALYGHQISHKRHKTDSFVGLM(-NH2)

SEQ ID NO. 5 (Neuropeptide Gamma)
GHQISHKRHKTDSFVGLM(-NH2)

SEQ ID NO. 6 (Neurokinin 1)
HKTDSFVGLM(-NH2)

SEQ ID NO. 7 (C-terminal flanking peptide, PTA 1 92-107)
ALNSVAYERSAMQNYE

SEQ ID NO. 8 (PTA Isoform alpha)

EEIGANDDLNYWSWYDSDQIKEELPEPFEHLLQRIARRPKPQQFFGLMGKRDADESSIE
KQVALKALYGHQISHKMAYERSAMQNYYERRR

SEQ ID NO. 9 (PTA Isoform beta)

EEIGANDDLNYWSWYDSDQIKEELPEPFEHLLQRIARRPKPQQFFGLMGKRDADESSIE
KQVALKALYGHQISHKRHKTDSFVGLMGKRALNSVAYERSAMQNYYERRR
[0039] Determining the level of PTA or PTA 1-37 may mean that the immunoreactivity towards PTA or PTA 1-37 is determined. A binder used for determination of PTA or PTA 1-37 depending of the region of binding may bind to more than one of the above displayed molecules. This is clear to a person skilled in the art.

[0040] In a more specific embodiment of the method according to the present invention the level of P37 (PTA 1-37, SEQ ID NO. 2, EEIGANDDLNYWSDWYSDQIKEELPEPFEHLLQRI) is determined. In an even more specific embodiment according to the present invention at least one or two binders are used that bind to PTA 1-37, SEQ ID NO. 2, EEIGANDDLNYWSDWYSDQIKEELPEPFEHLLQRI, in case of more than one binder they bind preferably to two different regions within PTA 1-37, SEQ ID NO. 2, EEIGANDDLNYWSDWYSDQIKEELPEPFEHLLQRI. Said binder(s) may preferably be an antibody or a binding fragment thereof.

[0041] In an even more specific embodiment binder(s) are used for the determination of PTA its variants and fragments that bind to one or both, respectively, of the following regions within PTA 1-37:

<table>
<thead>
<tr>
<th>GANDDLNWYSDWYSDQIK</th>
<th>PTA 2-22 (SEQ ID NO. 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKEELPEPFEHLLQRI</td>
<td>PTA 21-36 (SEQ ID NO. 13)</td>
</tr>
</tbody>
</table>

[0042] In a specific embodiment the level of PTA or PTA 1-37 are measured with an immunoassay using antibodies or fragments of antibodies binding to PTA or PTA 1-37. An immunoassay that may be useful for determining the level of PTA or PTA 1-37 may comprise the steps as outlined in Example 1. All thresholds and values have to be seen in correlation to the test and the calibration used according to Example 1. A person skilled in the art may know that the absolute value of a threshold might be influenced by the calibration used. This means that all values and thresholds given herein are to be understood in context of the calibration used in herein (Example 1).

According to the invention the diagnostic binder to PTA or the other additional biomarkers is selected from the group consisting of antibodies e.g. IgG, a typical full-length immunoglobulin, or antibody fragments containing at least the F-variable domain of heavy and/or light chain as e.g. chemically coupled antibodies (fragment antigen binding) including but not limited to Fab-fragments including Fab minibodies, single chain Fab antibody, monovalent Fab antibody with epitope tags, e.g. Fab-V5Sx2; bivalent Fab (mini-antibody) dimerized with the CH3 domain; bivalent Fab or multivalent Fab, e.g. formed via multimerization with the aid of a heterologous domain, e.g. via dimerization of dHLX domains, e.g. Fab-dHLX-FSx2; F(ab')2-fragments, scFv-fragments, multimerized multivalent or/and multispecific scFv-fragments, bivalent and/or bispecific diabodies, BITE® (bispecific T-cell engager), trifunctional antibodies, polyclonal antibodies, e.g. from a different class than G; single-domain antibodies, e.g. nanobodies derived from camelid or fish immunoglobulins.

[0043] In a specific embodiment the level of PTA or PTA 1-37 or the other additional biomarkers is measured with an assay using binders selected from the group comprising aptamers, non-Ig scaffolds as described in greater detail below binding to PTA or PTA 1-37 or alternatively to the additional biomarkers.

[0044] Binder that may be used for determining the level of PTA or PTA 1-37 exhibit an affinity constant to PTA or PTA 1-37 of at least 10^7 M^-1, preferred 10^8 M^-1, preferred affinity constant is greater than 10^9 M^-1, most preferred greater than 10^10 M^-1. A person skilled in the art knows that it may be considered to compensate lower affinity by applying a higher dose of compounds and this measure would not lead out-of-the-scope of the invention. Binding affinity may be determined
Subject matter of the invention is further an assay for determining PTA or PTA 1-37 in a sample as defined above comprising two binders that bind to two different regions within the region of PTA that is amino acids 3-22 (GANDDLNYSDWYDSQIK, SEQ ID NO. 12) and amino acids 21-36 (IKEELPEPFEHLLQRI, SEQ ID NO. 13) wherein each of said regions comprises at least 4 or 5 amino acids.

[0051] In one embodiment of the assays for determining PTA or PTA 1-37 in a sample according to the present invention the analytical assay sensitivity of said assay is able to quantify the PTA or PTA 1-37 of healthy subjects and is < 20 pmol/l, preferably < 10 pmol/l and more preferably < 5 pmol/l.

[0052] In one embodiment of the assays for determining PTA or PTA 1-37 in a sample according to the present invention such assay is a sandwich assay, preferably a fully automated assay. It may be an ELISA, a fully automated assay or a manual assay. It may be a so-called POC-test (point-of-care). Examples of automated or fully automated assay comprise assays that may be used for one of the following systems: Roche Elecsys®, Abbott Architect®, Siemens Centaur®, Brahms Kryptor®, Biomerieux Vidas®, Alere Triage®. Examples of test formats are provided above.

[0053] In one embodiment of the assays for determining PTA or PTA 1-37 in a sample according to the present invention at least one of said two binders is labelled in order to be detected. Examples of labels are provided above.

[0054] In one embodiment of the assays for determining PTA or PTA 1-37 in a sample according to the present invention at least one of said two binders is bound to a solid phase. Examples of solid phases are magnetic beads, polystyrene tubes or microtiterplates. In one embodiment a homogenous assay is used, i.e. using Time Resolved Amplified Cryptate Emission (TRACE) technologies.

[0055] In one embodiment of the assays for determining PTA or PTA 1-37 in a sample according to the present invention said label is selected from the group comprising chemiluminescent label, enzyme label, fluorescence label, radioiodine label.

[0056] A further subject of the present invention is a kit comprising an assay according to the present invention wherein the components of said assay may be comprised in one or more container.

[0057] Subject of the present invention is also a method for predicting the risk of getting breast cancer in a female, wherein the level of PTA or PTA 1-37 in a bodily fluid obtained from said subject either alone or in conjunction with other predictive laboratory or clinical parameters is used for the prediction of a subject's risk for getting breast cancer by a method which may be selected from the following alternatives:

- Comparison with the median of the level of PTA or PTA 1-37 in a bodily fluid obtained from said subject in an ensemble of pre-determined samples in a population of "healthy" or "apparently healthy" subjects,

- Comparison with a quantile of the level of PTA or PTA 1-37 in a bodily fluid obtained from said subject in an ensemble of pre-determined samples in a population of "healthy" or "apparently healthy" subjects,
• Calculation based on Cox Proportional Hazards analysis or by using Risk index calculations such as the NRI (Net Reclassification Index) or the IDI (Integrated Discrimination Index).

[0058] In one embodiment of the invention subject of the present invention is also a method for predicting the risk of getting breast cancer in a female according to any of the preceding embodiments, wherein the level of PTA or PTA 1-37 in a bodily fluid obtained from said subject either alone or in conjunction with other predictive biomarkers.

[0059] Such a useful additional biomarker may be Pro-Neurotensin or Pro-Neurotensin 1-117 or Pro-Enkephalin or MRPENK or Insulin.

[0060] In one specific embodiment of the method according to the present invention the level of Pro-Neurotensin 1-117 is determined in addition to the determination of PTA or PTA 1-37.

[0061] When it is referred to fragments throughout the present application said fragments comprise at least four or five amino acids.

[0062] Thus, subject matter of the present invention is also a method for predicting the risk of getting breast cancer in a female subject that does not suffer from cancer:

1. determining the level of PTA or PTA 1-37 in a bodily fluid obtained from said subject as defined above; and
2. determining the level of Pro-Neurotensin or Pro-Neurotensin 1-117 in a bodily fluid obtained from said subject as defined above; and
3. correlating said level of PTA or PTA 1-37 and Pro-Neurotensin or Pro-Neurotensin 1-117 with a risk for getting breast cancer, wherein an reduced level of PTA or PTA 1-37 is predictive for an enhanced risk of getting breast cancer and wherein an increased level of Pro-Neurotensin or Pro-Neurotensin 1-117 is predictive for an enhanced risk of getting breast cancer.

[0063] Pro-Neurotensin has the following sequence:

SEQ ID NO. 14 (Pro-Neurotensin 1-147)

SDSEEEMKAL EADFLTNMHT SKISKAHVPS WKMTLLNVCS LVNNLNSPAE ETGEVHEEEL VARRKLPTAL DGFSLEAMLTYQLHKICHS RAFQHWELIQ EDILDGTGNDK NGKEEVIKR KIPYILKRQLY ENKPRRPYIL KRDSYYY

Also disclosed is SEQ ID NO. 15 (Pro-Neurotensin 1-125 (large neuromedin N))

SDSEEEMKAL EADFLTNMHT SKISKAHVPS WKMTLLNVCS LVNNLNSPAE ETGEVHEEEL VARRKLPTAL DGFSLEAMLTI YQLHKICHS RAFQHWELIQ EDILDGTGNDK NGKEEVIKR KIPYIL

SEQ ID NO. 16 (neuromedin N)

KIPYIL

SEQ ID NO. 17 (neurotensin)

pyroLYENKPRRP YIL

[0064] In accordance with the claims, SEQ ID NO. 18 (Pro-Neurotensin 1-117) is:

SDSEEEMKAL EADFLTNMHT SKISKAHVPS WKMTLLNVCS LVNNLNSPAE ETGEVHEEEL VARRKLPTAL DGFSLEAMLTI YQLHKICHS RAFQHWELIQ EDILDGTGNDK NGKEEVIKR

[0065] Further disclosed are:
In a specific embodiment the level of Pro-Neurotensin is measured with an immunoassay. More specifically an immunoassay is used as described in Ernst et al. (Peptides (2006), (27) 1787-1793). An immunoassay that may be useful for determining the level of Pro-Neurotensin or Pro-Neurotensin 1-117 may comprise the steps as outlined in Example 3. All thresholds and values have to be seen in correlation to the test and the calibration used according to Example 3. A person skilled in the art may know that the absolute value of a threshold might be influenced by the calibration used. This means that all values and thresholds given herein are to be understood in context of the calibration used in herein (Example 3). A human Pro-Neurotensin-calibrator is available by ICI-Diagnostics, Berlin, Germany. Alternatively, the assay may also be calibrated by synthetic or recombinant P-NT 1-117 or fragments thereof (see also Ernst et al, 2006).

Binder that may be used for determining the level of Pro-Neurotensin or Pro-Neurotensin 1-117 exhibit an affinity constant to Pro-Neurotensin or Pro-Neurotensin 1-117 of at least 10^7 M^-1, preferred 10^8 M^-1, preferred affinity constant is greater than 10^9 M^-1, most preferred greater than 10^10 M^-1. A person skilled in the art knows that it may be considered to compensate lower affinity by applying a higher dose of compounds and this measure would not lead out-of-the-scope of the invention. Binding affinity may be determined using the Biacore method, offered as service analysis e.g. at Biaffin, Kassel, Germany (http://www.biaffin.com/de/), see also above.

The threshold for determining the risk of getting cancer in a subject or diagnosing cancer in a subject, in particular breast cancer in a female subject, according to the methods of the present invention is about or above 78 pmol/l PNT, preferred about or above 100 pmol/l, more preferred about or above 150 pmol/l. In a specific embodiment said threshold is about or above 100 pmol/l. These thresholds are related to the below mentioned calibration method. A PNT value above said threshold means that the subject has an enhanced risk of getting cancer or has already cancer.

In addition to the determination of the level of PTA or PTA 1-37 in a bodily fluid obtained from said female subject; and/or the determination of the level of Pro-Neurotensin (PNT) or Pro-Neurotensin 1-117 in said bodily fluid obtained from said female subject; Pro-Enkephalin (PENK) or MRPENK may be measured in a bodily fluid obtained from said female subject. It has to be understood that in addition to the determination of the level of PTA or PTA 1-37, Pro-Enkephalin (PENK) or MRPENK may be measured in a bodily fluid obtained from said female subject. This means that the level of either PTA alone or in combination with either PENK or PNT is measured or a determination of PTA and PNT and PENK is combined and correlated with said risk.

In a more specific embodiment of the method according to the present invention the level Pro-Enkephalin (PENK) or MRPENK is determined in addition to the determination of the level of Pro-Neurotensin 1-117 in a bodily fluid obtained from said female subject; and/or the determination of the level of Pro-Neurotensin or Pro-Neurotensin 1-117 in said bodily fluid obtained from said subject; and

• determining the level of PTA or PTA 1-37 in a bodily fluid selected from blood, plasma or serum obtained from said subject; and
• determining the level of Pro-Neurotensin or Pro-Neurotensin 1-117 in said bodily fluid obtained from said subject; and /or
• determining the level of Pro-Enkephalin or MRPENK in said bodily fluid obtained from said subject; and
EP 2 943 792 B1

correlating said level of PTA or PTA 1-37 and Pro-Neurotensin or Pro-Neurotensin 1-117 and / or the level of Pro-Enkephalin or MRPENK with a risk for getting breast cancer, wherein an reduced level of PTA or PTA 1-37 is predictive for an enhanced risk of getting breast cancer and wherein an increased level of Pro-Neurotensin or Pro-Neurotensin 1-117 is predictive for an enhanced risk of getting breast cancer and wherein a reduced level of Pro-Enkephalin or MRPENK is predictive for an enhanced risk of getting breast cancer.

[0072] The correlation between the above biomarker and biomarker combinations and breast cancer incidents in females is in particular remarkable according the present invention.

[0073] Pro-Enkephalin and also disclosed fragments may have the following sequence:

SEQ ID NO. 23 (Pro-Enkephalin (1-243))

ECSQDCATCSYRLVRPADINFLACVMECEGKLPSLLKIWETCKELLQLSKPELPQDGTSTL RENSKPEESHLLAKRYGGFMKRYGGFMMKKMDELYMPMPEDFEEANGSEILAKRYGGFMK KDAEEDDSLANSDDLKELLETGDNRERSHHQDGSNENVVSKRYGGFMRLKRSPQL EDEAKEQKRYGGFMRVGRPEWWMDYQKRYGGFKLRFAEALPSDEEGESYSKEVPMEKRYGGFMRF

Fragments of Pro-Enkephalin are disclosed in:

SEQ ID NO. 24 (Syn-Enkephalin, Pro-Enkephalin 1-73)

ECSQDCATCSYRLVRPADINFLACVMECEGKLPSLLKIWETCKELLQLSKPELPQDGTSTL RENSKPEESHLLA

SEQ ID NO. 25 (Met-Enkephalin)
YGGFM

SEQ ID NO. 26 (Leu-Enkephalin)
YGGFL

SEQ ID NO. 27 (Pro-Enkephalin 90-109)
MDELYMPMEEEANGSEIL

[0074] According to the present invention, SEQ ID NO. 28 (Pro-Enkephalin 119-159, Mid regional Pro-Enkephalin-fragment, MRPENK) corresponds to:

DAEEDDSLANSDDLKELLETGDNRERSHHQDGSNENVVSKRYGGFMRLKRSPQL

Further disclosed are:

SEQ ID NO. 29 (Met-Enkephalin-Arg-Gly-Leu)
YGGFMRGL

SEQ ID NO. 30 (Pro-Enkephalin 172-183)
SPQLEDEAKEQ SEQ ID NO. 9 (Pro-Enkephalin 193-203)
VGRPEWWMDYQ

SEQ ID NO. 31 (Pro-Enkephalin 213-234)
FAEALPSDEEGESYSKEVPEME

SEQ ID NO. 32 (Pro-Enkephalin 213-241)
FAEALPSDEEGESYSKEVPEMEKRYGGFM

SEQ ID NO. 33 (Met-Enkephalin-Arg-Phe)
[0076] Determining the level of Pro-Enkephalin including, in general but not in context of the present invention, Leu-Enkephalin and Met-Enkephalin or fragments thereof may mean that the immunoreactivity towards Pro-Enkephalin or fragments thereof including Leu-Enkephalin and Met-Enkephalin is determined. A binder used for determination of Pro-Enkephalin including Leu-Enkephalin and Met-Enkephalin or fragments thereof depending of the region of binding may bind to more than one of the above displayed molecules. This is clear to a person skilled in the art.

[0077] In a more specific embodiment of the method according to the present invention the level of MRPNK. (SEQ ID NO. 28: (Pro-Enkephalin 119-159; Mid regional Pro-Enkephalin-fragment, MRPNK) which is DAEEDSSLANSDDLLKELLETGDNRERSHHQDSNDNEEVS is determined.

[0078] In a specific embodiment the level of Pro-Enkephalin or MRPNK is measured with an immunoassay using antibodies or fragments of antibodies binding to Pro-Enkephalin or fragments thereof. An immunoassay that may be useful for determining the level of Pro-Enkephalin or MRPNK may comprise the steps as outlined in Example 4. All thresholds and values have to be seen in correlation to the test and the calibration used according to Example 4. A person skilled in the art may know that the absolute value of a threshold might be influenced by the calibration used. This means that all values and thresholds given herein are to be understood in context of the calibration used in herein (Example 4).

[0079] According to the invention the diagnostic binder to pro-Enkephalin (and/or Pro-Neurotensin / Pro-Neurotensin 1-117) is selected from the group consisting of antibodies e.g. IgG, a typical full-length immunoglobulin, or antibody fragments containing at least the F-variable domain of heavy and/or light chain as e.g. chemically coupled antibodies (fragment antigen binding) including but not limited to Fab-fragments including Fab minibodies, single chain Fab antibody, monovalent Fab antibody with epitope tags, e.g. Fab-V5x2; bivalent Fab (mini-antibody) dimerized with the CH3 domain; bivalent Fab or multivalent Fab, e.g. formed via multimerization with the aid of a heterologous domain, e.g. via dimerization of dHLX domains, e.g. Fab-dHLX-FSx2; F(ab')2-fragments, scFv-fragments, multimerized multivalent or/am multispecific scFv-fragments, bivalent and/or bispecific diabodies, BITE® (bispecific T-cell engager), trifunctional antibodies, polyvalent antibodies, e.g. from a different class than G; single-domain antibodies, e.g. nanobodies derived from cameld or fish immunoglobulines.

[0080] In a specific embodiment the level of Pro-Enkephalin or MRPNK ((and/or Pro-Neurotensin and Pro-Neurotensin 1-117)) are measured with an assay using binders selected from the group comprising aptamers, non-Ig scaffolds as described in greater detail below binding to Pro-Enkephalin or MRPNK thereof.

[0081] Binders that may be used for determining the level of Pro-Enkephalin or MRPNK (and/or Pro-Neurotensin and Pro-Neurotensin 1-117) thereof exhibit an affinity constant to Pro-Enkephalin (and/or Pro-Neurotensin and Pro-Neurotensin 1-117) of at least 10^7 M^-1, preferred 10^8 M^-1, preferred affinity constant is higher than 10^9 M^-1, most preferred more than 10^10 M^-1. A person skilled in the art knows that it may be considered to compensate lower affinity by applying a higher dose of compounds and this measure would not lead out-of-the-scope of the invention. Binding affinity may be determined using the Biacore method, offered as service analysis e.g. at Biaffin, Kassel, Germany (http://www.biaffin.com/de/), see also above.

[0082] A human Pro-Enkephalin control human sample is available by ICI-Diagnostics, Berlin, Germany http://www.ici-diagnostics.com/. The assay may also be calibrated by synthetic (for our experiments we used synthetic MRPNK, SEQ ID NO. 28) or recombinant Pro-Enkephalin or fragments thereof.

[0083] The Pro-Enkephalin (PENK) threshold for determining the risk of getting breast cancer, in a female subject according to the methods of the present invention is about or below 100 pmol/l, preferably about or below 75 pmol/L, preferably about or below 50 pmol/L, preferably about or below 40.4 pmol/L. In a specific embodiment said threshold is about 40.4 pmol/L. These thresholds are related to the below mentioned calibration method. A PENK value below said threshold means that the subject has an enhanced risk of getting cancer or has already cancer.

[0084] In one embodiment of the invention said method is performed more than once in order to monitor the risk of getting breast cancer in a female subject, or in order to monitor the course of treatment. In one specific embodiment said monitoring is performed in order to evaluate the response of said subject to preventive and/or therapeutic measures taken.

[0085] In one embodiment of the invention the method is used in order to stratify said female subjects, into risk groups.

[0086] Subject of the present invention is also a method for predicting the risk of getting breast cancer in a female subject according to any of the preceding embodiments, wherein the level of Pro-Tachykinin or Pro-Tachykinin 1-37 in a bodily fluid as defined above obtained from said subject either alone or in conjunction with other predictive laboratory or clinical parameters is used for the prediction of a subject’s risk for getting breast cancer by a method which may be selected from the following alternatives:

- Comparison with the median of the level of Pro-Tachykinin or Pro-Tachykinin 1 - 37- in a bodily fluid obtained from said subject in an ensemble of pre-determined samples in a population of "healthy" or "apparently healthy"
Comparison with a quantile of the level of Pro-Tachykinin or Pro-Tachykinin 1-37 in a bodily fluid obtained from said subject in an ensemble of pre-determined samples in a population of “healthy” or “apparently healthy” subjects,

Calculation based on Cox Proportional Hazards analysis or by using Risk index calculations such as the NRI (Net Reclassification Index) or the IDI (Integrated Discrimination Index).

In one embodiment of the invention said method is performed more than once in order to monitor the risk of getting breast cancer in a female subject, or in order to monitor the course of treatment. In one specific embodiment said monitoring is performed in order to evaluate the response of said subject to preventive and/or therapeutic measures taken.

In one embodiment of the invention the method is used in order to stratify said subjects into risk groups.

FIGURE DESCRIPTION

Figure 1: shows a typical PTA dose/signal curve. Standard curve PTA.

Figure 2: Kaplan Meier graphs, illustrating the cumulative breast cancer diagnosis in women quartile (Q) 1 (below 45.6 pmol/l) quartile 2 (45.6-55.3 pmol/l), quartile 3 (55.4-65.9 pmol/l), quartile 4 (above 65.9 pmol/l). Decreased PTA indicates an increased long term risk of breast cancer development. Since any women with cancer history at day of baseline (blood sampling) were excluded, PTA is highly predictive for future breast cancer development. Over all, women from Q 1 have more than 2.1 times higher risk to develop breast cancer than women from Q 4.

Figure 3: shows a typical PNT dose/signal curve. Standard curve PNT

Figure 4: shows a typical MR PENK dose/signal curve. Standard curve MR PENK

Figure 5: Illustration example of combined analysis of PTA and PNT for breast cancer prediction the risk groups are displayed as defined in Table 9.

Examples

Example 1 PTA-immunoassay

Development of anti PTA Antibodies

Peptides/ conjugates for Immunization:

Peptides for immunization were synthesized (JPT Technologies, Berlin, Germany) with an additional N-terminal Cystein residue for conjugation of the peptides to bovine serum albumin (BSA). The peptides were covalently linked to BSA by using Sulfo-SMCC (Perbio-science, Bonn, Germany). The coupling procedure was performed according to the manual of Perbio.

<table>
<thead>
<tr>
<th>Peptide for immunization</th>
<th>PTA Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)GANDDLNYWSDWYDSDQIK</td>
<td>3-22 (SEQ ID NO. 12)</td>
</tr>
<tr>
<td>(C)IKEELPEPFEHLLQRI</td>
<td>21-36 (SEQ ID NO. 13)</td>
</tr>
</tbody>
</table>

The antibodies were generated according to the following method: A BALB/c mouse was immunized with 100 μg peptide-BSA-conjugate at day 0 and 14 (emulsified in 100 μl complete Freund’s adjuvant) and 50 μg at day 21 and 28 (in 100 μl incomplete Freund’s adjuvant). Three days before the fusion experiment was performed, the animal received 50 μg of the conjugate dissolved in 100 μl saline, given as one intra-peritonal and one intravenous injection.
Splenocytes from the immunized mouse and cells of the myeloma cell line SP2/0 were fused with 1 ml 50 % polyethylene glycol for 30 s at 37 °C. After washing, the cells were seeded in 96-well cell culture plates. Hybrid clones were selected by growing in HAT medium [RPMI 1640 culture medium supplemented with 20% fetal calf serum and HAT-supplement]. After two weeks the HAT medium is replaced with HT Medium for three passages followed by returning to the normal cell culture medium.

The cell culture supernatants were primary screened for antigen specific IgG antibodies three weeks after fusion. The positive tested microcultures were transferred into 24-well plates for propagation. After retesting the selected cultures were cloned and recloned using the limiting-dilution technique and the isotypes were determined.

Monoclonal antibody production

Antibodies were produced via standard antibody production methods (Marx et al., Monoclonal Antibody Production (1997), ATLA 25, 121) and purified via Protein A-chromatography. The antibody purities were > 95 % based on SDS gel electrophoresis analysis.

Labelling and coating of antibodies.

All antibodies were labelled with acridinium ester according the following procedure: Labelled compound (tracer, anti PTA 3-22): 100 µg (100 µl) antibody (1 mg/ml in PBS, pH 7.4, was mixed with 10 µl Acridinium NHS-ester (1 mg/ml in acetonitrile, InVent GmbH, Germany) (EP 0353971) and incubated for 20 min at room temperature. Labelled antibody was purified by gel-filtration HPLC on Bio-Sil SEC 400-5 (Bio-Rad Laboratories, Inc., USA) The purified labelled antibody was diluted in (300 mmol/l potassium phosphat, 100 mmol/l NaCl, 10 mmol/l Na-EDTA, 5 g/l bovine serum albumin, pH 7.0). The final concentration was approx. 800.000 relative light units (RLU) of labelled compound (approx. 20 ng labeled antibody) per 200 µl. Acridiniumester chemiluminescence was measured by using an AutoLumat LB 953 (Berthold Technologies GmbH & Co. KG).

Solid phase antibody (coated antibody):

Solid phase: Polystyrene tubes (Greiner Bio-One International AG, Austria) were coated (18 h at room temperature) with anti PTA 22-36 antibody (1.5 µg antibody/0.3 ml 100 mmol/l NaCl, 50 mmol/l Tris/HCl, pH 7.8). After blocking with 5 % bovine serum albumine, the tubes were washed with PBS, pH 7.4 and vacuum dried.

PTA Immunoassay:

50 µl of sample (or calibrator) was pipetted into coated tubes, after adding labeled antibody (200µl), the tubes were incubated for 2 h at 18-25 °C Unbound tracer was removed by washing 5 times (each 1 ml) with washing solution (20 mmol/l PBS, pH 7.4, 0.1 % Triton X-100). Tube-bound labelled antibody was measured by using a Luminumeter LB 953, Berthold, Germany.

Calibration:

The assay was calibrated, using dilutions of synthetic P37, diluted in 20 mM K2PO4, 6 mM EDTA, 0,5% BSA, 50µM Amastatin, 100µM Leupeptin, pH 8.0. PTA control plasma is available at ICI-diagnostics, Berlin, Germany.

Figure 1 shows a typical PTA dose/ signal curve.

The analytical assay sensitivity was (the median signal generated by 20 determinations of 0-calibrator (no addition of PTA) + 2SD2 standard deviations (SD), the corresponding PTA concentration is calculated from a standard curve) 4,4 pmol/L.

Example 2 Population study/ PTA

We measured PTA in fasting plasma from 2559 female participants of the population based Malmö Diet and Cancer Study baseline exam in 1991-1994 (age 58 ± 6 years). We used multivariable adjusted (all traditional cardio-
vascular risk factors, diabetes risk factors and in analyses of cancer also heredity for cancer) Cox proportional hazards models to relate baseline PTA (hazard ratio per each standard deviation increase of log-transformed PTA) to the time to the first event of each of the studied endpoints during a median follow-up time of more than 12 years. Endpoints were retrieved through the Swedish National Hospital Discharge Registry, the Swedish Myocardial Infarction Registry, the Stroke in Malmö Registry and the Swedish Cancer Registry. Retrieval of endpoints through these registries has been validated and found to be accurate (see also Belting et al. Cancer Epidemiol Biomarkers Prev; 1-10. 2012 AACR). Insulin was measured by standard laboratory methods.

Table 2

<table>
<thead>
<tr>
<th>Clinical characteristics of females in the study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive Statistics</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Age at MDCS screening</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
</tr>
<tr>
<td>body-mass-index (weight/kg x kg)</td>
</tr>
<tr>
<td>WAIST (cm)</td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
</tr>
<tr>
<td>High density lipoprotein (mmol/l)</td>
</tr>
<tr>
<td>Low density lipoprotein (mmol/l)</td>
</tr>
<tr>
<td>P-Insulin</td>
</tr>
</tbody>
</table>

Distribution of PTA in the females population (N=2559):

[0103] The mean value of PTA in the female population was 54.3 pmol/L, standard deviation +/- 1.4 pmol/L. All results were within the measurement range of the assay, the lowest PTA concentration was 9.1 pmol/L. These results indicating the suitability of the used assay (assay sensitivity 4.4 pmol/L).

PTA and prediction of breast cancer

[0104] We assessed the relationship between PTA and breast cancer (Table 3). All women with previous cancer (N=459) were excluded from the evaluation. There was a strong relationship between PTA and breast cancer in females. In a fully adjusted model each SD of decrease of PTA (we used reversed quartiles, revPTA, see table 3/4) was associated with a 28.2 % increased risk of future breast cancer (table 3) and the top versus bottom quartile of PTA identified a more than 2.1-fold difference in risk of breast cancer (see table 5 and fig 2). Insulin without PTA in the equation was not significantly associated with future breast cancer development, but, surprisingly, if PTA is part of the equation Insulin became significant (p=0.035). Increased Insulin was associated with a 34.6% decrease risk per SD of future breast cancer. The predictive power of PTA was not influenced by Insulin.

Table 3: Variables in the Equation

<table>
<thead>
<tr>
<th>Variables in the Equation</th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95,0% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>AGE</td>
<td>-.003</td>
<td>.016</td>
<td>.035</td>
<td>1</td>
<td>.851</td>
<td>.997</td>
<td>.966</td>
</tr>
<tr>
<td>BMI_B</td>
<td>.027</td>
<td>.025</td>
<td>1,194</td>
<td>1</td>
<td>.275</td>
<td>1,027</td>
<td>.979</td>
</tr>
<tr>
<td>LNINS</td>
<td>-.423</td>
<td>.200</td>
<td>4,465</td>
<td>1</td>
<td>.035</td>
<td>.655</td>
<td>.442</td>
</tr>
<tr>
<td>HER_CANCER_0</td>
<td>-.006</td>
<td>.184</td>
<td>.001</td>
<td>1</td>
<td>.973</td>
<td>.994</td>
<td>.693</td>
</tr>
<tr>
<td>Q_REV_PTA</td>
<td>.249</td>
<td>.085</td>
<td>8,629</td>
<td>1</td>
<td>.003</td>
<td>1,282</td>
<td>1,086</td>
</tr>
</tbody>
</table>
Example 3

Pro-Neurotensin assay

[0105] Antibodies were generated as described above. The antibody for labelling (LA) was generated against P-NT 1-19 (H-CSDSEEMKALEADFLTNMH (SEQ ID NO. 33)) and the solid phase antibody (SPA) was generated against peptide P-NT 44-62 (CNLNSPAEETGEVHEEELVA (SEQ ID NO. 34). Antibody development and - production was performed as described above.

Immuoassay for the quantification of human Pro-Neurotensin

[0106] The technology used was a sandwich coated tube luminescence immunoassay, based on Acridinium ester labelling.

[0107] Labelled compound (tracer): 100 µg (100 µl) LA (1 mg/ml in PBS, pH 7.4, was mixed with 10 µl Acridinium NHS-ester (1 mg/ml in acetonitrile, InVent GmbH, Germany) (EP 0353971) and incubated for 20 min at room temperature. Labelled LA was purified by gel-filtration HPLC on Bio-Sil SEC 400-5 (Bio-Rad Laboratories, Inc., USA). The purified LA was diluted in (300 mmol/l potassium phosphate, 100 mmol/l NaCl, 10 mmol/l Na-EDTA, 5 g/l bovine serum albumin, pH 7.0). The final concentration was approx. 800.000 relative light units (RLU) of labelled compound (approx. 20 ng labelled antibody) per 200 µl. Acridinium ester chemiluminescence was measured by using an AutoLumat LB 953 (Berthold Technologies GmbH & Co. KG).

[0108] Solid phase: Polystyrene tubes (Greiner Bio-One International AG, Austria) were coated (18 h at room temperature) with SPA (1.5 µg SPA/0.3 ml 100 mmol/l NaCl, 50 mmol/l Tris/HCl, pH 7.8). After blocking with 5 % bovine serum albumine, the tubes were washed with PBS, pH 7.4 and vacuum dried.

Calibration:

[0109] The assay was calibrated, using dilutions of Pro-Neurotensin containing human serum. A pool of human sera with high Pro-Neurotensin immunoreactivity (InVent Diagnostika, Henningsdorf, Germany) was diluted with horse serum (Biochrom AG, Deutschland) (assay standards).

[0110] The standards were calibrated by use of the human Pro-Neurotensin-calibrator (ICL-Diagnostics, Berlin, Germany). Alternatively, the assay may be calibrated by synthetic or recombinant P-NT 1-117 or fragments thereof (see also Ernst et al., 2006).

ProNT Immunoassay:

[0111] 50 µl of sample (or calibrator) was pipetted into SPA coated tubes, after adding labelled LA (200µl), the tubes were incubated for 16-22 h at 18-25 °C. Unbound tracer was removed by washing 5 times (each 1 ml) with washing solution (20 mmol/l PBS, pH 7.4, 0.1 % Triton X-100). Tube-bound LA was measured by using a Luminometer LB 953.
Results were calculated from the calibration curve. A typical calibration curve is shown in figure 3.

Example 4:

Pro-Enkephalin Immunoassay

Development of Antibodies

Peptides/ conjugates for Immunization:

- Peptides for immunization were synthesized (JPT Technologies, Berlin, Germany) with an additional N-terminal Cystein residue for conjugation of the peptides to bovine serum albumin (BSA). The peptides were covalently linked to BSA by using Sulfo-SMCC (Perbio-science, Bonn, Germany). The coupling procedure was performed according to the manual of Perbio.

| Table 6: |
|------------------|------------------|
| Peptide for immunization | Pro-Enkephalin-sequence |
| (C)LKELLETG (SEQ ID NO. 35) | 133-140 |
| (C)SDNEEEVS (SEQ ID NO. 36) | 152-159 |

- The antibodies were generated according to the following method: A BALB/c mouse was immunized with 100 μg peptide-BSA-conjugate at day 0 and 14 (emulsified in 100 μl complete Freund’s adjuvant) and 50 μg at day 21 and 28 (in 100 μl incomplete Freund’s adjuvant). Three days before the fusion experiment was performed, the animal received 50 μg of the conjugate dissolved in 100 μl saline, given as one intraperitoneal and one intravenous injection.

- Splenocytes from the immunized mouse and cells of the myeloma cell line SP2/0 were fused with 1 ml 50 % polyethylene glycol for 30 s at 37 °C. After washing, the cells were seeded in 96-well cell culture plates. Hybrid clones were selected by growing in HAT medium [RPMI 1640 culture medium supplemented with 20 % fetal calf serum and HAT-supplement]. After two weeks the HAT medium is replaced with HT Medium for three passages followed by returning to the normal cell culture medium.

- The cell culture supernatants were primary screened for antigen specific IgG antibodies three weeks after fusion. The positive tested microcultures were transferred into 24-well plates for propagation. After retesting the selected cultures were cloned and recloned using the limiting-dilution technique and the isotypes were determined.

- Antibodies were produced via standard antibody production methods (Marx et al., Monoclonal Antibody Production (1997), ATLA 25, 121) and purified via Protein A-chromatography. The antibody purities were > 95 % based on SDS gel electrophoresis analysis.

| Table 7: |
|------------------|------------------|
| Peptide for immunization | Pre-Pro-Enkephalin-sequence | Antibody name |
| (C)LKELLETG (SEQ ID NO. 35) | 133-140 | MR-MRPENK (used as coated tube antibody) |
| (C)SDNEEEVS (SEQ ID NO. 36) | 152-159 | CT-MRPENK (used as labelled antibody) |

Monoclonal antibody production

- Antibodies were produced via standard antibody production methods (Marx et al., Monoclonal Antibody Production (1997), ATLA 25, 121) and purified via Protein A-chromatography. The antibody purities were > 95 % based on SDS gel electrophoresis analysis.

Labelling and coating of antibodies.

- Labelled compound (tracer, CT-MRPENK antibody): 100 μg (100 μl) antibody (1 mg/ml in PBS, pH 7.4), was mixed with 10 μl Acridinium NHS-ester (1 mg/ml in acetonitrile, InVent GmbH, Germany) (EP 0353971) and incubated
for 20 min at room temperature. Labelled antibody was purified by gel-filtration HPLC on Bio-Sil SEC 400-5 (Bio-Rad Laboratories, Inc., USA) The purified labelled antibody was diluted in (300 mmol/l potassium phosphate, 100 mmol/l NaCl, 10 mmol/l Na-EDTA, 5 g/l bovine serum albumin, pH 7.0). The final concentration was approx. 800,000 relative light units (RLU) of labelled compound (approx. 20 ng labeled antibody) per 200 μl. Acridiniumester chemiluminescence was measured by using an AutoLumat LB 953 (Berthold Technologies GmbH & Co. KG).

Solid phase antibody (coated tube antibody, MR-MRPENK antibody):

[0119] Solid phase: Polystyrene tubes (Greiner Bio-One International AG, Austria) were coated (18 h at room temperature) with antibody (1.5 μg antibody/0.3 ml 100 mmol/l NaCl, 50 mmol/l Tris/HCl, pH 7.8). After blocking with 5 % bovine serum albumine, the tubes were washed with PBS, pH 7.4 and vacuum dried.

Pro-Enkephalin Immunoassay:

[0120] 50 μl of sample (or calibrator) was pipetted into coated tubes, after adding labelled antibody (200ul), the tubes were incubated for 2 h at 18-25 °C. Unbound tracer was removed by washing 5 times (each 1 ml) with washing solution (20 mmol/l PBS, pH 7.4, 0.1 % Triton X-100). Tube-bound labelled antibody was measured by using the Luminometer 953.

Calibration:

[0121] The assay was calibrated, using dilutions of synthetic MRPENK, diluted in 20 mM K2PO4, 6 mM EDTA, 0.5% BSA, 50 μM Amastatin, 100 μM Leupeptin, pH 8.0. Pro-Enkephalin control plasma is available at ICI-diagnostics, Berlin, Germany.

[0122] Figure 4 shows a typical Pro-Enkephalin dose / signal curve.

[0123] The assay sensitivity (20 determinations of O-calibrator (no addition of MRPENK) + 2SD) was 5.5 pmol/L.

Example 5

Combination analysis of PTA, Pro Neurotensin and HRT and, PTA, Pro-Neurotensin, Pro-Enkephalin and Insulin for breast cancer prediction.

[0124] Since increasing Pro-Neurotensin and Pro-Enkephalin recently were shown to be highly predictive for breast cancer, we combined these biomarkers for breast cancer prediction. We added HRT (Hormone replacement therapy) as known risk factor for breast cancer to show the incremental value of PTA.

First, we combined PTA/ProNeurotensin/HRT/Insulin:

[0125] There was no significant correlation between PTA and Pro-Neurotensin (p= 0.71). In a combined model including Insulin and hormone replacement therapy (HRT) using PTA and PNT (Table 8), we found them both independent in breast cancer prediction. Both markers were highly significant (p=0.005 for PTA and p<0.001 for PNT).

[0126] In a fully adjusted model each SD increase of PNT was associated with a 45.5% risk increase of future breast cancer. Each SD increase of PTA was associated with a 18.9% decreased risk (per SD) of future breast cancer.

[0127] HRT, as expected, was significant in the same model, but Insulin, surprisingly, was on top predicting breast cancer (p=0,027). Each SD increase of Insulin was associated with a 35.7% decrease of future breast cancer.

[0128] These data show that PTA, PNT, Insulin and HRT, each add significant information for breast cancer prediction.

Table 8: combined analysis of PNT and PTA for breast cancer prediction.

<table>
<thead>
<tr>
<th>Variables in the Equation</th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95,0% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>AGE</td>
<td>-.004</td>
<td>.016</td>
<td>.048</td>
<td>1</td>
<td>.826</td>
<td>.996</td>
<td>.966</td>
</tr>
<tr>
<td>BMI_B</td>
<td>.029</td>
<td>.025</td>
<td>1,342</td>
<td>1</td>
<td>.247</td>
<td>1,029</td>
<td>.980</td>
</tr>
<tr>
<td>LNINS</td>
<td>-.441</td>
<td>.199</td>
<td>4,889</td>
<td>1</td>
<td>.027</td>
<td>.643</td>
<td>.435</td>
</tr>
<tr>
<td>hrt_curr</td>
<td>.612</td>
<td>.197</td>
<td>9,656</td>
<td>1</td>
<td>.002</td>
<td>1,844</td>
<td>1,254</td>
</tr>
<tr>
<td>HER_CANCER_0</td>
<td>.014</td>
<td>.184</td>
<td>.006</td>
<td>1</td>
<td>.938</td>
<td>1,014</td>
<td>.707</td>
</tr>
</tbody>
</table>
In a Kaplan Meier analysis we illustrate the combinatory information of PTA and PNT, Table 9 and Figure 5:

We combined quartiles of PTA and PNT:

Since low PTA values indicating an increased risk of breast cancer development, we reversed the PTA quartiles (revPTA):

1st quartile PTA = 4th quartile revPTA; 2nd quartile PTA = 3rd quartile revPTA; 3rd quartile PTA = 2nd quartile revPTA; 4th quartile PTA = 1st quartile revPTA. (Table 9)

Combining highest quartile of PNT and lowest PTA quartile (group 6) vs. lowest PNT- and highest PTA quartile (group 1) showed a combined risk of 4.9 for future breast cancer (see fig.5).

Combined analysis of PTA, Pro Enkephalin, HRT, Insulin and PNT in the female population:

There was a significant correlation between PTA and Pro-Enkephalin (p< 0.001, r= 0.35). In a combined model including Insulin, PTA, PNT and Pro-Enkephalin, we found all markers independently adding information for breast cancer prediction (Table 10). All markers were highly significant (p=0.028 for PTA, p=0.001 for PNT, p= 0.009 for Insulin and p< 0.001 for Pro Enkephalin). PTA remains independent although it is highly correlated to Pro Enkephalin. In a fully adjusted model each SD increase of PNT was associated with a 47.8 % risk increase of future breast cancer. Increase of PTA was associated with a 15.8% decreased risk (per SD) of future breast cancer. Increase of Pro-Enkephalin was associated with a decreased risk of 26.4% (per SD)- and increase of Insulin was associated with a decreased risk of 40.4% (per SD) of future breast cancer.

These data show a strong independent and additive information on future breast cancer development by PTA, PNT, Pro-Enkephalin and Insulin.
Claims

1. A method for predicting the risk of getting breast cancer in a female subject that does not suffer from cancer comprising:

 - determining the level of Pro-Tachykinin that is SEQ ID No. 1, or Pro-Tachykinin 1-37 that is SEQ ID No. 2 in a bodily fluid obtained from said female subject; and
 - correlating said level of Pro-Tachykinin that is SEQ ID No. 1, or Pro-Tachykinin 1-37 that is SEQ ID No. 2 with risk for getting cancer, wherein a reduced level is predictive for an enhanced risk of getting breast cancer, wherein a reduced level means a level below a certain threshold level and wherein the bodily fluid is blood or plasma or serum.

2. The method according to claim 1, wherein said threshold level of Pro-Tachykinin that is SEQ ID No. 1, or Pro-Tachykinin 1-37 that is SEQ ID No. 2 that is predictive for an enhanced risk of getting breast cancer is about or below 80 pmol/L.

3. The method according to claim 1, wherein said threshold level of Pro-Tachykinin that is SEQ ID No. 1, or Pro-Tachykinin 1-37 that is SEQ ID No. 2 that is predictive for an enhanced risk of getting breast cancer is about or below 60 pmol/L.

4. The method according to claim 1, wherein said threshold level of Pro-Tachykinin that is SEQ ID No. 1, or Pro-Tachykinin 1-37 that is SEQ ID No. 2 that is predictive for an enhanced risk of getting breast cancer is a level of about or below 45.6 pmol/L.

5. The method according to any one of claims 1 to 4, wherein the following steps are further comprised:

 - determining the level of Pro-Neurotensin that is SEQ ID No. 14 or Pro-Neurotensin 1-117 that is SEQ ID No. 18 in a bodily fluid obtained from said female subject; and
 - correlating additionally Pro-Neurotensin or Pro-Neurotensin 1-117 with a risk for getting cancer, wherein an increased level of Pro-Neurotensin or Pro-Neurotensin 1-117 is predictive for an enhanced risk of getting breast cancer.

6. The method according to any one of claims 1 to 5, wherein the following steps are further comprised:

 - determining the level of Pro-Enkephalin that is SEQ ID No. 23 or MRPENK that is SEQ ID No. 28 in a bodily fluid obtained from said female subject; and
 - correlating additionally Pro-Enkephalin or MRPENK with a risk for getting breast cancer, and wherein an reduced level of Pro-Enkephalin or MRPENK is predictive for an enhanced risk of getting breast cancer.

7. The method according to any of claims 1 to 6, wherein the following steps are further comprised:

 - determining the level of Insulin in a bodily fluid obtained from said female subject; and
 - correlating additionally Insulin with a risk for getting breast cancer, wherein a reduced level of Insulin is predictive for an enhanced risk of getting breast cancer.

Variables in the Equation

<table>
<thead>
<tr>
<th>Variables</th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZLN_PTA</td>
<td>-1.17</td>
<td>.078</td>
<td>4.827</td>
<td>1</td>
<td>.028</td>
<td>.842</td>
<td>.723</td>
</tr>
<tr>
<td>ZLN_PNT</td>
<td>.390</td>
<td>.089</td>
<td>19.328</td>
<td>1</td>
<td>.000</td>
<td>1.478</td>
<td>1.242</td>
</tr>
<tr>
<td>ZLN_PENK</td>
<td>-3.09</td>
<td>.087</td>
<td>12.655</td>
<td>1</td>
<td>.000</td>
<td>.734</td>
<td>.619</td>
</tr>
</tbody>
</table>
8. The method according to any of claims 5 to 7, wherein additionally correlating means a combined analysis of the determined biomarker levels by taking into account the relative risk factors for cancer development obtained by the individual biomarkers.

9. The method according to claims 5 to 8, wherein an increased level of Pro-Neurotensin is a level above a threshold wherein said threshold is about or above 78 pmol/l, preferred about or above 100 pmol/l, more preferred about 150 pmol/l.

10. The method according to any of claims 3 to 7, wherein a reduced level of Pro-Enkephalin is a level below a threshold wherein said threshold is about or below 100 pmol/l, preferably about or below 75 pmol/L, preferably about or below 50 pmol/L, preferably about 40.4 pmol/L.

11. The method according to any of claims 7 to 10, wherein a reduced level of Insulin is a level below a threshold wherein said threshold is about 70 pmol/l.

12. The method according to any of claims 1 to 11, wherein said female subject has never had a history of diagnosis of cancer at the time the sample of bodily fluid is taken from said female subject.

13. The method according to claims 1 to 12, wherein said female subject has had a history of diagnosis of cancer and has been cured at the time the sample of bodily fluid is taken from said female subject and the risk of reoccurrence of breast cancer is determined.

14. The method according to claims 1 to 13, wherein at the time the sample of bodily fluid is taken from said female subject, said female subject has been diagnosed as having a cardiovascular disease or diabetes.

15. The method according to claims 1 to 14, wherein additionally at least one clinical parameter is determined selected from the group comprising: age, presence of diabetes mellitus, current smoking.

16. The method according to any of claims 1 to 15, wherein the level of Pro Tachykinin and Pro-Neurotensin and/or Pro-Enkephalin and/or Insulin is measured with an immunoassay.

17. The method according to any of claims 1 to 16, wherein said method is performed more than once in order to monitor the risk of getting breast cancer in a female subject.

18. The method according to claim 17, wherein said monitoring is performed in order to evaluate the response of said female subject to preventive and/or therapeutic measures taken.

19. The method according to any of claims 1 to 18 in order to stratify said female subjects into risk groups.

Patentansprüche

1. Verfahren zur Vorhersage des Brustkrebsrisikos bei einem weiblichen Subjekt, das nicht an Krebs leidet, umfassend:
 - Bestimmung des Wertes von Pro-Tachykinin mit SEQ-ID-Nr. 1 oder Pro-Tachykinin 1-37 mit SEQ-ID-Nr. 2 in einer dem weiblichen Subjekt entnommenen Körperflüssigkeit; und
 - Korrelation des Wertes von Pro-Tachykinin mit SEQ-ID-Nr. 1 oder Pro-Tachykinin 1-37 mit SEQ-ID-Nr. 2 mit dem Krebsrisiko, wobei ein verringrigerter Wert einem erhöhten Brustkrebsrisiko entspricht,
 wobei ein verringrigerter Wert ein Wert unterhalb eines bestimmten Schwellenwerts ist und wobei die Körperflüssigkeit Blut oder Plasma oder Serum ist.

2. Verfahren nach Anspruch 1, wobei der Schwellenwert von Pro-Tachykinin mit SEQ-ID-Nr. 1 oder Pro-Tachykinin 1-37 mit SEQ-ID-Nr. 2, der einem erhöhten Brustkrebsrisiko entspricht, bei etwa 80 pmol/l oder darunter liegt.

3. Verfahren nach Anspruch 1, wobei der Schwellenwert von Pro-Tachykinin mit SEQ-ID-Nr. 1 oder Pro-Tachykinin 1-37 mit SEQ-ID-Nr. 2, der einem erhöhten Brustkrebsrisiko entspricht, bei etwa 60 pmol/l oder darunter liegt.
4. Verfahren nach Anspruch 1, wobei der Schwellenwert von Pro-Tachykinin mit SEQ-ID-Nr. 1 oder Pro-Tachykinin 1-37 mit SEQ-ID-Nr. 2, der einem erhöhten Brustkrebsrisiko entspricht, bei etwa 45,6 pmol/l oder darunter liegt.

5. Verfahren nach einem der Ansprüche 1 bis 4, welches weiterhin die folgenden Schritte umfasst:

- Bestimmung des Wertes von Pro-Neurotensin mit SEQ-ID-Nr. 14 oder Pro-Neurotensin 1-117 mit SEQ-ID-Nr. 18 in einer dem weiblichen Subjekt entnommenen Körperflüssigkeit; und
- zusätzliche Korrelation des Pro-Neurotensins oder Pro-Neurotensins 1-117 mit dem Krebsrisiko, wobei ein erhöhter Wert von Pro-Neurotensin oder Pro-Neurotensin 1-117 einem erhöhten Brustkrebsrisiko entspricht.

6. Verfahren nach einem der Ansprüche 1 bis 5, welches weiterhin die folgenden Schritte umfasst:

- Bestimmung des Wertes von Pro-Enkephalin mit SEQ-ID-Nr. 23 oder MRPENK mit SEQ-ID-Nr. 28 in einer dem weiblichen Subjekt entnommenen Körperflüssigkeit; und
- zusätzliche Korrelation des Pro-Enkephalins oder MRPENK mit dem Brustkrebsrisiko, wobei ein verringerter Wert von Pro-Enkephalin oder MRPENK einem erhöhten Brustkrebsrisiko entspricht.

7. Verfahren nach einem der Ansprüche 1 bis 6, welches weiterhin die folgenden Schritte umfasst:

- Bestimmung des Insulinspiegels in einer dem weiblichen Subjekt entnommenen Körperflüssigkeit; und
- zusätzliche Korrelation des Insulins mit dem Brustkrebsrisiko, wobei ein verringerter Insulinspiegel einem erhöhten Brustkrebsrisiko entspricht.

8. Verfahren nach einem der Ansprüche 5 bis 7, wobei die zusätzliche Korrelation eine kombinierte Analyse der ermittelten Biomarkerwerte unter Berücksichtigung der durch die einzelnen Biomarker ermittelten relativen Risikofaktoren für die Krebsentstehung bezeichnet.

9. Verfahren nach den Ansprüchen 5 bis 8, wobei ein erhöhter Wert von Pro-Neurotensin ein Wert oberhalb eines Schwellenwertes ist, wobei der Schwellenwert bei etwa 78 pmol/l oder darüber, bevorzugt bei etwa 100 pmol/l oder darüber und weiter bevorzugt über 150 pmol/l liegt.

10. Verfahren nach einem der Ansprüche 3 bis 7, wobei ein verringerter Wert von Pro-Enkephalin ein Wert unterhalb eines Schwellenwertes ist, wobei der Schwellenwert bei etwa 100 pmol/l oder darunter, bevorzugt bei etwa 75 pmol/l oder darunter, bevorzugt bei etwa 50 pmol/l oder darunter und bevorzugt bei etwa 40,4 pmol/l liegt.

11. Verfahren nach einem der Ansprüche 7 bis 10, wobei ein verringerter Insulinspiegel ein Wert unterhalb eines Schwellenwertes ist, wobei der Schwellenwert bei etwa 70 pmol/l liegt.

12. Verfahren nach einem der Ansprüche 1 bis 11, wobei bei dem weiblichen Subjekt zum Zeitpunkt der Entnahme der Körperflüssigkeit keine vorherigen Krebsdiagnosen vorliegen.

15. Verfahren nach den Ansprüchen 1 bis 14, wobei zusätzlich mindestens ein klinischer Parameter, ausgewählt aus der Gruppe bestehend aus Alter, Vorhandensein von Diabetes mellitus, derzeitigen Rauchgewohnheiten, bestimmt wird.

16. Verfahren nach einem der Ansprüche 1 bis 15, wobei der Wert von Pro-Tachykinin und Pro-Neurotensin und/oder Pro-Enkephalin und/oder Insulin mit einem Immunoassay gemessen wird.

17. Verfahren nach einem der Ansprüche 1 bis 16, wobei das Verfahren mehr als einmal durchgeführt wird, um das Brustkrebsrisiko bei einem weiblichen Subjekt zu überwachen.
18. Verfahren nach Anspruch 17, wobei die Überwachung durchgeführt wird, um die Reaktion des weiblichen Subjekts auf getroffene vorbeugende und/oder therapeutische Maßnahmen zu bewerten.

19. Verfahren nach einem der Ansprüche 1 bis 18, um das weibliche Subjekt in Risikogruppen zu stratifizieren.

Revendications

1. Méthode pour prédire le risque de contracter le cancer du sein chez un sujet de sexe féminin qui ne souffre pas de cancer, ladite méthode comprenant :
 - la détermination du taux de pro-tachykinine qui est SEQ ID No. 1, ou pro-tachykinine 1-37 qui est SEQ ID No. 2, dans un fluide corporel prélevé dudit sujet de sexe féminin; et
 - la corrélation dudit taux de pro-tachykinine qui est SEQ ID No. 1, ou pro-tachykinine 1-37 qui est SEQ ID No. 2, avec le risque de contracter le cancer, un taux réduit prédissant un risque élevé de contracter le cancer du sein;

un taux réduit signifiant un taux inférieur à un certain taux seuil et le fluide corporel étant le sang, le plasma ou le sérum.

2. Méthode selon la revendication 1, ledit taux seuil de la pro-tachykinine qui est SEQ ID No. 1, ou pro-tachykinine 1-37 qui est SEQ ID No. 2, qui prédit un risque élevé de contracter le cancer du sein étant environ ou moins de 80 pmol/L.

3. Méthode selon la revendication 1, ledit taux seuil de la pro-tachykinine qui est SEQ ID No. 1, ou pro-tachykinine 1-37 qui est SEQ ID No. 2, qui prédit un risque élevé de contracter le cancer du sein étant environ ou moins de 60 pmol/L.

4. Méthode selon la revendication 1, ledit taux seuil de la pro-tachykinine qui est SEQ ID No. 1, ou pro-tachykinine 1-37 qui est SEQ ID No. 2, qui prédit un risque élevé de contracter le cancer du sein étant environ ou moins de 45,6 pmol/L.

5. Méthode selon l’une quelconque des revendications 1 à 4, comprenant en outre :
 - la détermination du taux de pro-neurotensine qui est SEQ ID No. 14, ou pro-neurotensine 1-117 qui est SEQ ID No. 18, dans un fluide corporel prélevé dudit sujet de sexe féminin; et
 - la corrélation additionnelle de la pro-neurotensine ou de la pro-neurotensine 1-117 avec un risque de contracter le cancer, un taux élevé de pro-neurotensine ou de pro-neurotensine 1-117 prédisant un risque accru de contracter le cancer du sein.

6. Méthode selon l’une quelconque des revendications 1 à 5, comprenant en outre :
 - la détermination du taux de pro-enképhaline qui est SEQ ID No. 23, ou de la MRPENK qui est SEQ ID No. 28, dans un fluide corporel prélevé dudit sujet de sexe féminin; et
 - la corrélation additionnelle de la pro-enképhaline ou de la MRPENK avec un risque de contracter le cancer, un taux réduit de pro-enképhaline ou de MRPENK prédissant un risque élevé de contracter le cancer du sein;

7. Méthode selon l’une quelconque des revendications 1 à 6, comprenant en outre :
 - la détermination du taux d’insuline dans un fluide corporel prélevé dudit sujet de sexe féminin; et
 - la corrélation additionnelle de l’insuline avec un risque de contracter le cancer du sein, un taux réduit d’insuline prédissant un risque élevé de contracter le cancer du sein.

8. Méthode selon l’une quelconque des revendications 5 à 7, la corrélation additionnelle signifiant une analyse combinée des niveaux de biomarqueurs déterminés en prenant en compte les facteurs de risque relatifs de contracter le cancer obtenus par les biomarqueurs individuels.

9. Méthode selon l’une quelconque des revendications 5 à 8, un taux élevé de pro-neurotensine étant un taux supérieure
à un seuil, ledit seuil étant environ ou supérieur à 78 pmol/l, de préférence environ ou supérieur à 100 pmol/l, de manière plus préférée environ 150 pmol/l.

10. Méthode selon l’une quelconque des revendications 3 à 7, un taux réduit de pro-enképhaline étant un taux inférieur à un seuil, ledit seuil étant environ ou moins de 100 pmol/l, de préférence environ ou moins de 75 pmol/L, de préférence environ ou moins de 50 pmol/L, de préférence environ 40,4 pmol/L.

11. Méthode selon l’une quelconque des revendications 7 à 10, un taux réduit d’insuline étant un taux inférieur à un seuil, ledit seuil étant environ 70 pmol/l.

12. Méthode selon une quelconque des revendications 1 à 11, ledit sujet de sexe féminin n’ayant pas d’antécédents de diagnostic de cancer au moment où l’échantillon de fluide corporel est prélevé dudit sujet de sexe féminin.

13. Méthode selon les revendications 1 à 12, ledit sujet de sexe féminin ayant eu des antécédents de diagnostic de cancer et ayant été guéri au moment où l’échantillon de fluide corporel est prélevé dudit sujet de sexe féminin et le risque de réapparition du cancer du sein étant déterminé.

14. Méthode selon l’une quelconque des revendications 1 à 13, ledit sujet de sexe féminin ayant été diagnostiqué comme souffrant d’une maladie cardiovasculaire ou de diabète au moment où l’échantillon du fluide corporel est prélevé dudit sujet de sexe féminin.

15. Méthode selon l’une quelconque des revendications 1 à 14, en outre au moins un paramètre clinique étant déterminé et choisi parmi le groupe comprenant : âge, présence du diabète sucré, tabagisme actuel.

17. Méthode selon l’une quelconque des revendications 1 à 16, ladite méthode étant effectuée plus d’une fois pour surveiller le risque de contracter le cancer du sein chez un sujet de sexe féminin.

18. Méthode selon la revendication 17, ladite surveillance étant effectuée pour évaluer la réponse dudit sujet de sexe féminin aux mesures préventives et/ou thérapeutiques prises.

19. Méthode selon l’une quelconque des revendications 1 à 18 pour classer lesdits sujets en groupes de risque.
Fig. 1:
Fig. 2:

One Minus Survival Functions

FUP_first_tumor_years

One Minus Cum Survival

Q1

Q2

Q3

Q4
Fig. 3:

Calibration Curve PNT
Fig. 4:

![Graph showing the relationship between RLU and MRPEK [pmol/L].]
Fig. 5:

![One Minus Survival Functions graph](image)

- group 6
- group 5
- group 4
- group 3
- group 2
- group 1

FUP_first_tumor_years

One Minus Cum Survival
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2005103712 A [0006]
- EP 0353971 A [0096] [0107] [0118]

Non-patent literature cited in the description

- BELTING et al. Cancer, Epidemiology, Biomarkes & Prevention [0005]
- MARX et al. Monoclonal Antibody Production. ATLA, 1997, vol. 25, 121 [0095] [0117]