Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
FIELD OF INVENTION

This invention is in the field of poly alpha-1,3-glucan derivatives. Specifically, this invention pertains to poly alpha-1,3-glucan esters, methods of their preparation, and films made therefrom.

BACKGROUND

Driven by a desire to find new structural polysaccharides using enzymatic syntheses or genetic engineering of microorganisms or plant hosts, researchers have discovered polysaccharides that are biodegradable, and that can be made economically from renewable resource-based feedstocks. One such polysaccharide is poly alpha-1,3-glucan, a glucan polymer characterized by having alpha-1,3-glycosidic linkages. This polymer has been isolated by contacting an aqueous solution of sucrose with a glucosyltransferase enzyme isolated from Streptococcus salivarius (Simpson et al., Microbiology 141:1451-1460, 1995). Films prepared from poly alpha-1,3-glucan tolerate temperatures up to 150 °C and provide an advantage over polymers obtained from beta-1,4-linked polysaccharides (Ogawa et al., Fiber Differentiation Methods 47:353-362, 1980).

U.S. Patent 7,000,000 disclosed the preparation of a polysaccharide fiber comprising hexose units, wherein at least 50% of the hexose units within the polymer were linked via alpha-1,3-glycosidic linkages using an S. salivarius gtfJ enzyme. This enzyme utilizes sucrose as a substrate in a polymerization reaction producing poly alpha-1,3-glucan and fructose as end-products (Simpson et al., 1995). The disclosed polymer formed a liquid crystalline solution when it was dissolved above a critical concentration in a solvent or in a mixture comprising a solvent. From this solution, continuous, strong, cotton-like fibers, highly suitable for use in textiles, were spun and used.

Information regarding preparation of various derivatives of poly alpha-1,3-glucan and their application is sparse.

Yui et al. (Int. J. Biol. Macromol. 14:87-96, 1992) disclose using poly alpha-1,3-glucan extracted from the fruiting body of the fungus, Laetiporus sulphureus, to synthesize poly alpha-1,3-glucan triacetate. The structure of this polymer was analyzed by X-ray crystallography.

Ogawa et al. (Carb. Poly. 3:287-297, 1983) used three different samples of poly alpha-1,3-glucan to prepare poly alpha-1,3-glucan triacetate. One sample was isolated from a bacterial extracellular polysaccharide, and the other two samples were extracted from fruiting bodies of fungi. The structures of these polymers were analyzed by X-ray crystallography.

Development of new poly alpha-1,3-glucan ester derivatives and methods of preparing such derivatives is desirable given their potential utility in various applications, such as film production.

SUMMARY OF INVENTION

In one embodiment, the invention concerns a composition comprising a poly alpha-1,3-glucan ester compound represented by the structure:

\[
\text{OR} \\
\text{O} \\
\text{OR} \\
\text{O} \\
\text{OR} \\
\text{O} \\
\text{n}
\]

wherein

(i) \(n \) is at least 6,
(ii) each \(R \) is independently an \(H \) or acyl group, and
(iii) the compound has a degree of substitution of 0.05 to 3.0;
wherein the compound contains two or more types of said acyl group.

In a second embodiment, the two or more types of said acyl group are selected from the group consisting of acetyl, propionyl, butyryl, pentanoyl, hexanoyl, heptanoyl, and octanoyl.

In a third embodiment, the two or more types of the acyl group can be (i) acetyl and propionyl, or (ii) acetyl and butyryl.

In a fourth embodiment, the invention concerns a method for producing a poly alpha-1,3-glucan ester compound. This method comprises contacting poly alpha-1,3-glucan in a reaction that is substantially anhydrous with at least one acid catalyst, at least one acid anhydride, and at least one organic acid. An acyl group derived from the acid anhydride is esterified to the poly alpha-1,3-glucan in this contacting step, thereby producing a poly alpha-1,3-glucan ester compound represented by the structure:

\[
\text{OR} \quad \text{OR} \quad \text{n}
\]

wherein

(i) \(n\) is at least 6,
(ii) each \(R\) is independently an H or acyl group, and
(iii) the compound has a degree of substitution of 0.05 to 3.0, wherein the compound contains two or more types of acyl group.

A poly alpha-1,3-glucan ester produced by this method can optionally be isolated.

In a fifth embodiment, poly alpha-1,3-glucan is acid-exchanged with an organic acid before the contacting step of the method in order to remove water from the poly alpha-1,3-glucan.

In a sixth embodiment, the acid catalyst in the method is an inorganic acid. The inorganic acid is sulfuric acid or perchloric acid in a seventh embodiment.

In an eighth embodiment, the acid anhydride in the method is one or more of acetic anhydride, propionic anhydride, or butyric anhydride; and the organic acid is one or more of acetic acid, propionic acid, or butyric acid. Non-limiting examples of this embodiment corresponding to the ninth embodiment include:

(i) the acid anhydrides are propionic anhydride and acetic anhydride, and the organic acids are propionic acid and optionally acetic acid, wherein the poly alpha-1,3-glucan ester compound produced in the reaction is a poly alpha-1,3-glucan acetate propionate;
(ii) the acid anhydride is propionic anhydride, and the organic acids are propionic acid and acetic acid, wherein the poly alpha-1,3-glucan ester compound produced in the reaction is a poly alpha-1,3-glucan acetate propionate;
(iii) the acid anhydrides are butyric anhydride and acetic anhydride, and the organic acids are butyric acid and optionally acetic acid, wherein the poly alpha-1,3-glucan ester compound produced in the reaction is a poly alpha-1,3-glucan acetate butyrate; and
(iv) the acid anhydride is butyric anhydride, and the organic acids are butyric acid and acetic acid, wherein the poly alpha-1,3-glucan ester compound produced in the reaction is a poly alpha-1,3-glucan acetate butyrate.

In a tenth embodiment, the reaction further comprises an organic solvent.

As used herein, the term "invention" or "disclosed invention" is not meant to be limiting, but applies generally to any of the inventions defined in the claims or described herein. These terms are used interchangeably herein.
The terms "poly alpha-1,3-glucan", "alpha-1,3-glucan polymer" and "glucan polymer" are used interchangeably herein. Poly alpha-1,3-glucan is a polymer comprising glucose monomeric units linked together by glycosidic linkages, wherein at least about 50% of the glycosidic linkages are alpha-1,3-glycosidic linkages. Poly alpha-1,3-glucan is a type of polysaccharide. The structure of poly alpha-1,3-glucan can be illustrated as follows:

![Poly alpha-1,3-glucan structure](image)

The poly alpha-1,3-glucan that can be used for preparing poly alpha-1,3-glucan ester compounds herein can be prepared using chemical methods. Alternatively, it can be prepared by extracting it from various organisms, such as fungi, that produce poly alpha-1,3-glucan. Alternatively still, poly alpha-1,3-glucan can be enzymatically produced from sucrose using one or more glucosyltransferase (gtf) enzymes (e.g., gtfJ), such as described in U.S. Patent No. 7,000,000, and U.S. Patent Appl. Publ. Nos. 2013/0244288 and 2013/0244287, for example.

The terms "glucosyltransferase enzyme", "gtf enzyme", "gtf enzyme catalyst", "gtf", and "glucansucrase" are used interchangeably herein. The activity of a gtf enzyme herein catalyzes the reaction of sucrose substrate to make products poly alpha-1,3-glucan and fructose. Other products (byproducts) of a gtf reaction can include glucose (where glucose is hydrolyzed from the glucosyl-gtf enzyme intermediate complex), various soluble oligosaccharides (DP2-DP7), and leucrose (where glucose of the glucosyl-gtf enzyme intermediate complex is linked to fructose). Leucrose is a disaccharide composed of glucose and fructose linked by an alpha-1,5 linkage. Wild type forms of glucosyltransferase enzymes generally contain (in the N-terminal to C-terminal direction) a signal peptide, a variable domain, a catalytic domain, and a glucan-binding domain. A gtf herein is classified under the glycoside hydrolase family 70 (GH70) according to the CAZy (Carbohydrate-Active EnZymes) database (Cantarel et al., Nucleic Acids Res. 37:D233-238, 2009).

The percentage of glycosidic linkages between the glucose monomer units of poly alpha-1,3-glucan used to prepare poly alpha-1,3-glucan ester compounds herein that are alpha-1,3 is at least about 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% (or any integer value between 50% and 100%). In such embodiments, accordingly, poly alpha-1,3-glucan has less than about 50%, 40%, 30%, 20%, 10%, 5%, 4%, 3%, 2%, 1%, or 0% (or any integer value between 0% and 50%) of glycosidic linkages that are not alpha-1,3.

Poly alpha-1,3-glucan used to produce poly alpha-1,3-glucan ester compounds herein is preferably linear/unbranched. In certain embodiments, poly alpha-1,3-glucan has no branch points or less than about 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1% branch points as a percent of the glycosidic linkages in the polymer. Examples of branch points include alpha-1,6 branch points, such as those present in mutan polymer.

The terms "glycosidic linkage" and "glycosidic bond" are used interchangeably herein and refer to the type of covalent bond that joins a carbohydrate (sugar) molecule to another group such as another carbohydrate. The term "alpha-1,3-glycosidic linkage" as used herein refers to the type of covalent bond that joins alpha-D-glucose molecules to each other through carbons 1 and 3 on adjacent alpha-D-glucose rings. This linkage is illustrated in the poly alpha-1,3-glucan structure provided above. Herein, "alpha-D-glucose" is referred to as "glucose".

The terms "poly alpha-1,3-glucan ester compound", "poly alpha-1,3-glucan ester", and "poly alpha-1,3-glucan ester derivative" are used interchangeably herein. A poly alpha-1,3-glucan ester compound herein can be represented by the structure:
[0025] Regarding the formula of this structure, n can be at least 6, and each R can independently be a hydrogen atom (H) or an acyl group. A poly alpha-1,3-glucan ester compound herein has a degree of substitution of 0.05 to about 3.0.

[0026] Poly alpha-1,3-glucan ester compounds disclosed herein are synthetic, man-made compounds.

[0027] A poly alpha-1,3-glucan ester compound is termed an "ester" herein by virtue of comprising the substructure -C\text{G}-O-C\text{O}-C-, where "C\text{G}" represents carbon 2, 4, or 6 of a glucose monomeric unit of a poly alpha-1,3-glucan ester compound, and where "C\text{O}-C-" is comprised in the acyl group.

[0028] An "acyl group" herein can be an acetyl group (-CO-CH\text{3}), propionyl group (-CO-CH\text{2}-CH\text{3}), butyryl group (-CO-CH\text{2}-CH\text{2}-CH\text{3}), pentanoyl group (-CO-CH\text{2}-CH\text{2}-CH\text{2}-CH\text{3}), hexanoyl group (-CO-CH\text{2}-CH\text{2}-CH\text{2}-CH\text{2}-CH\text{3}), heptanoyl group (-CO-CH\text{2}-CH\text{2}-CH\text{2}-CH\text{2}-CH\text{2}-CH\text{3}), or octanoyl group (-CO-CH\text{2}-CH\text{2}-CH\text{2}-CH\text{2}-CH\text{2}-CH\text{2}-CH\text{3}), for example. The carbonyl group (-CO-) of the acyl group is ester-linked to carbon 2, 4, or 6 of a glucose monomeric unit of a poly alpha-1,3-glucan ester compound.

[0029] Regarding nomenclature, a poly alpha-1,3-glucan ester compound can be described by referring to the organic acid(s) corresponding with the acyl group(s) in the compound. For example, an ester compound comprising acetyl groups can be referred to as a poly alpha-1,3-glucan acetate, an ester compound comprising propionyl groups can be referred to as a poly alpha-1,3-glucan propionate, and an ester compound comprising butyryl groups can be referred to as a poly alpha-1,3-glucan butyrate (mixed esters according to the invention are discussed below). However, this nomenclature is not meant to refer to the poly alpha-1,3-glucan ester compounds herein as acids per se.

[0030] The terms "poly alpha-1,3-glucan mixed ester" and "mixed ester" are used interchangeably herein. A poly alpha-1,3-glucan mixed ester contains two or more types of an acyl group. Examples of such mixed esters are poly alpha-1,3-glucan acetate propionate (comprises acetyl and propionyl groups) and poly alpha-1,3-glucan acetate butyrate (comprises acetyl and butyryl groups).

[0031] The terms "reaction", "reaction composition", and "esterification reaction" are used interchangeably herein and refer to a reaction comprising poly alpha-1,3-glucan, at least one acid catalyst, at least one acid anhydride and at least one organic acid. The reaction is substantially anhydrous. A reaction is placed under suitable conditions (e.g., time, temperature) for esterification of one or more hydroxyl groups of the glucose units of poly alpha-1,3-glucan with an acyl group from at least the acid anhydride, thereby yielding a poly alpha-1,3-glucan ester compound.

[0032] The terms "substantially anhydrous" and "anhydrous" are used interchangeably herein. Substantially anhydrous conditions are conditions in which there is less than about 1.5 wt% or 2.0 wt% water. Such conditions may characterize a reaction or a reaction component, for example.

[0033] Herein, a poly alpha-1,3-glucan that is "acid-exchanged" has been treated with acid to remove water from the poly alpha-1,3-glucan. An acid-exchange process for producing acid-exchanged poly alpha-1,3-glucan can comprise one or more treatments in which the glucan is placed in an acid (e.g., organic acid) and then removed from the acid.

[0034] The term "acid catalyst" as used herein refers to any acid that accelerates progress of an esterification reaction. Examples of acid catalysts are inorganic acids such as sulfuric acid (H\text{2}SO\text{4}) and perchloric acid (HClO\text{4}).

[0035] The term "acid anhydride" as used herein refers to an organic compound that has the formula R-CO\text{2}O, where R is a saturated linear carbon chain (up to seven carbon atoms). Examples of acid anhydrides are acetic anhydride [(CH\text{3}-CO)2O], propionic anhydride [(CH\text{3}-CH\text{2}-CO)2O] and butyric anhydride [(CH\text{3}-CH\text{2}-CH\text{2}-CO)2O].

[0036] The terms "organic acid" and "carboxylic acid" are used interchangeably herein. An organic acid has the formula R-COOH, where R is an organic group and COOH is a carboxylic group. The R group herein is typically a saturated linear carbon chain (up to seven carbon atoms). Examples of organic acids are acetic acid (CH\text{3}-COOH), propionic acid (CH\text{3}-CH\text{2}-COOH) and butyric acid (CH\text{3}-CH\text{2}-CH\text{2}-COOH).

[0037] The term "degree of substitution" (DoS) as used herein refers to the average number of hydroxyl groups substituted in each monomeric unit (glucose) of a poly alpha-1,3-glucan ester compound. Since there are three hydroxyl...
groups in each monomeric unit in poly alpha-1,3-glucan, the DoS in a poly alpha-1,3-glucan ester compound herein can be no higher than 3.

[0038] "Contacting" herein can be performed by any means known in the art, such as dissolving, mixing, shaking, or homogenization, for example. Where three or more reaction components are contacted with each other, such contacting can be done all at once or in stages (e.g., two components mixed before mixing in a third component).

[0039] The "molecular weight" of poly alpha-1,3-glucan and poly alpha-1,3-glucan ester compounds herein can be represented as number-average molecular weight (M_n) or as weight-average molecular weight (M_w). Alternatively, molecular weight can be represented as Daltons, grams/mole, DPw (weight average degree of polymerization), or DPn (number average degree of polymerization). Various means are known in the art for calculating these molecular weight measurements, such as high-pressure liquid chromatography (HPLC), size exclusion chromatography (SEC), or gel permeation chromatography (GPC).

[0040] The terms "percent by volume", "volume percent", "vol%" and "v/v %" are used interchangeably herein. The percent by volume of a solute in a solution can be determined using the formula: \[\frac{(\text{volume of solute})}{(\text{volume of solution})} \times 100\% \].

[0041] The terms "percent by weight", "weight percentage (wt%)" and "weight-weight percentage (% w/w)" are used interchangeably herein. Percent by weight refers to the percentage of a material on a mass basis as it is comprised in a composition, mixture or solution.

[0042] The terms "increased", "enhanced" and "improved" are used interchangeably herein. These terms may refer to, for example, a quantity or activity that is at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 125%, 150%, 175%, or 200% (or any integer between 1% and 200%) more than the quantity or activity for which the increased quantity or activity is being compared.

[0043] Embodiments of the disclosed invention concern a composition comprising a poly alpha-1,3-glucan ester compound represented by the structure:

![Chemical Structure](image)

[0044] Regarding the formula of this structure,

(i) n is at least 6,

(ii) each R is independently an H or acyl group, and

(iii) the compound has a degree of substitution of 0.05 to 3.0;

wherein the compound contains two or more types of said acyl group.

[0045] An acyl group herein can be an acetyl group, propionyl group, butyryl group, pentanoyl group, hexanoyl group, heptanoyl group, or octanoyl group, for example. Thus, an acyl group can comprise a chain of 2 to 8 carbons; this chain preferably has no branches.

[0046] The poly alpha-1,3-glucan ester compounds disclosed herein contain two or more different types of acyl groups. Examples of such compounds contain two different acyl groups, such as (i) acetyl and propionyl groups (poly alpha-1,3-glucan acetate propionate, where R groups are independently H, acetyl, or propionyl), or (ii) acetyl and butyryl groups (poly alpha-1,3-glucan acetate butyrate, where R groups are independently H, acetyl, or butyryl).

[0047] The poly alpha-1,3-glucan ester compound has a degree of substitution (DoS) of 0.05 to 3.0. Alternatively, the DoS of a poly alpha-1,3-glucan ester compound disclosed herein can be 0.2 to 2.0. Alternatively still, the DoS can be at least about 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, or 3.0. It would be understood by those skilled in the art that since a poly alpha-1,3-glucan ester compound disclosed herein has a degree of substitution between 0.05 to 3.0, the R groups of the compound cannot only be hydrogen.
The wt% of one or more acyl groups in a poly alpha-1,3-glucan ester compound herein can be referred to instead of referencing a DoS value. For example, the wt% of an acyl group in a poly alpha-1,3-glucan ester compound can be at least about 0.1%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%.

The percentage of glycosidic linkages between the glucose monomer units of the poly alpha-1,3-glucan ester compound that are alpha-1,3 is at least about 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% (or any integer between 50% and 100%). In such embodiments, accordingly, the compound has less than about 50%, 40%, 30%, 20%, 10%, 5%, 4%, 3%, 2%, 1%, or 0% (or any integer value between 0% and 50%) of glycosidic linkages that are not alpha-1,3.

The backbone of a poly alpha-1,3-glucan ester compound disclosed herein is preferably linear/unbranched. In certain embodiments, the compound has no branch points or less than about 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1% branch points as a percent of the glycosidic linkages in the polymer. Examples of branch points include alpha-1,6 branch points.

The formula of a poly alpha-1,3-glucan ester compound in certain embodiments can have an n value of at least 6. Alternatively, n can have a value of at least 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, or 4000 (or any integer between 10 and 4000).

The molecular weight of a poly alpha-1,3-glucan ester compound disclosed herein can be measured as number-average molecular weight (M_n) or as weight-average molecular weight (M_w). Alternatively, molecular weight can be measured in Daltons or grams/mole. It may also be useful to refer to the DP_w (weight average degree of polymerization) or DP_n (number average degree of polymerization) of the poly alpha-1,3-glucan polymer component of the compound.

The disclosed invention also concerns a method for producing a poly alpha-1,3-glucan ester compound. This method comprises: contacting poly alpha-1,3-glucan in a reaction that is substantially anhydrous with at least one acid catalyst, at least one acid anhydride, and at least one organic acid, wherein an acyl group derived from the acid anhydride is esterified to the poly alpha-1,3-glucan thereby producing a poly alpha-1,3-glucan ester compound represented by the structure:
wherein

(i) n is at least 6,
(ii) each R is independently an H or the acyl group, and
(iii) the compound has a degree of substitution of 0.05 to 3.0, wherein the compound contains two or more types of
acyl group.

[0058] A poly alpha-1,3-glucan ester produced by this method can optionally be isolated.

[0059] A poly alpha-1,3-glucan is contacted with at least one acid catalyst, at least one acid anhydride, and at least
one organic acid in a reaction that is substantially anhydrous. A substantially anhydrous reaction herein contains no
water or less than about 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, or
2.0 wt% water. Substantially anhydrous conditions can be obtained by using reaction components that are substantially
anhydrous. Reaction components that are not substantially anhydrous may be used for preparing a reaction, but only
in amounts such that the final reaction preparation is substantially anhydrous.

[0060] Enzymatically produced preparations of poly alpha-1,3-glucan that can be used in the disclosed esterification
reaction typically contain water. This poly alpha-1,3-glucan can be acid-exchanged to remove water thereby rendering
the glucan to be substantially anhydrous. In certain embodiments, poly alpha-1,3-glucan can be acid-exchanged with
an organic acid (e.g., acetic, propionic, or butyric acid) before contacting step (a) to remove water from the poly alpha-
1,3-glucan. An acid-exchange process herein can comprise boiling poly alpha-1,3-glucan in water, removing most of
the water by any physical means (e.g., filtration, decantation, and/or drying), placing the glucan in an organic acid, and
then removing the organic acid by filtration and/or decantation. Treatment with an organic acid can comprise stirring the
glucan in the acid, and can be performed one, two, or more times. The amount of organic acid used in each treatment
can be at least about 2 to 20 times, or 2 to 10 times, the amount of poly alpha-1,3-glucan being treated, for example.

[0061] Poly alpha-1,3-glucan is contacted with at least one acid catalyst in the disclosed reaction. An acid catalyst
can be an inorganic acid in certain embodiments. Examples of an inorganic acid catalyst that can be included in a
reaction herein are sulfuric acid and perchloric acid. Other examples of inorganic acid catalysts include hydrochloric,
phosphoric, nitric, boric, hydrofluoric, hydrobromic, sulfonic, any mineral acid, and any combination thereof. An acid
catalyst herein can typically be obtained commercially in a concentrated (e.g., >95%, 96%, 97%, 98%, or 99% pure)
and/or substantially anhydrous form. For example, sulfuric acid for use in a reaction herein can be at least about 95-98%
pure. Alternatively, an acid catalyst can be provided in solution with an organic acid such as acetic acid. An example of
such a solution is perchloric acid (0.1 N) in acetic acid. The amount of acid catalyst in a reaction can be at least about
0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, or 2.0 wt%, for example.

[0062] Poly alpha-1,3-glucan is contacted with at least one acid anhydride in the disclosed reaction. Examples of an
acid anhydride that can be included in a reaction herein include acetic anhydride, propionic anhydride, butyric anhydride,
pentanoic anhydride, hexanoic anhydride, heptanoic anhydride, octanoic anhydride and phthalic anhydride. Any com-
bination of these can be used in a reaction herein (e.g., acetic and propionic anhydrides, acetic and butyric anhydrides,
propionic and butyric anhydrides). An acid anhydride herein can typically be obtained commercially in a concentrated
(e.g., >95%, 96%, 97%, 98%, or 99% pure) and/or substantially anhydrous form. For example, acetic anhydride, propionic
anhydride and/or butyric anhydride for use in a reaction herein can be at least about 97%, 98%, or 99% pure. The amount
of acid anhydride in a reaction can be at least about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, or 70 wt% (or any
integer value between 10 and 70 wt%), for example. In certain embodiments, the amount of acetic anhydride in a reaction
can be at least about 20-45 wt%. The amount of propionic or butyric anhydride in other embodiments can be at least
about 40-50 wt%.

[0063] Poly alpha-1,3-glucan is contacted with at least one organic acid in the disclosed reaction. Examples of an
organics can be included in a reaction herein include acetic acid, propionic acid, butyric acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid and phthalic acid. The amount of organic acid in a reaction can be at least about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 wt% (or any integer value between 5 and 80 wt%), for example.

[0064] Typically, one or more acid anhydrides used in a reaction herein are selected based on the type of esterification desired. As examples, if esterification of polyl-alpha-1,3-glucan with acetyl groups, propionyl groups and/or butyryl groups is desired, then acetyl anhydride, propionyl anhydride and/or butyryl anhydride, respectively, is/are included in the reaction accordingly. The selected anhydride(s) is the main source of acyl groups in the disclosed esterification process. That being said, acyl groups for esterification can also be derived from one or more organic acids included in the reaction. For example, an acetyl group, propionyl group, butyryl group, pentanoyl group, hexanoyl group, heptanoyl group and octanoyl group can be derived from, respectively, acetic acid, propionic acid, butyric acid, pentanoic acid, hexanoic acid, heptanoic acid, and octanoic acid. Reactions containing a particular acid anhydride typically also contain the organic acid corresponding to the acid anhydride.

[0065] In certain embodiments of the disclosed reaction, the acid anhydride is one or more of acetic anhydride, propionic anhydride, or butyric anhydride; and the organic acid is one or more of acetic acid, propionic acid, or butyric acid. Combinations of (i) propionic anhydride, propionic acid, acetic anhydride and optionally acetic acid can be used to prepare poly-alpha-1,3-glucan acetate propionate; (ii) propionic anhydride, propionic acid and acetic acid can be used to prepare poly-alpha-1,3-glucan acetate propionate; (iii) butyric anhydride, butyric acid, acetic acid and optionally acetic acid can be used to prepare poly-alpha-1,3-glucan acetate butyrate; and (iv) butyric anhydride, butyric acid and acetic acid can be used to prepare poly-alpha-1,3-glucan acetate butyrate, for example. In reactions containing acetic acid along with propionic acid or butyric acid, the amount of acetic acid can be about 5-10; 5-20; or 5-30 wt%, for example.

[0066] Reactions for producing mixed esters (e.g., poly-alpha-1,3-glucan acetate propionate, poly-alpha-1,3-glucan acetate butyrate) typically contain more of an acid anhydride having an acyl group for which a higher DoS is desired, and less of an acid anhydride and/or corresponding organic acid for which a lower DoS is desired. For example, to produce a poly-alpha-1,3-glucan acetate propionate with a higher DoS of propionyl groups compared to acetyl groups, more propionic anhydride is included in a reaction compared to the amount of acetic anhydride and/or acetic acid. DoS in mixed esters may also be modulated by the order in which acid anhydrides are added to a reaction already containing an acid catalyst. For example, one may expect a higher DoS with propionyl groups if propionic anhydride is added before acetic anhydride (to a preparation already containing acid catalyst) when preparing a reaction to produce poly-alpha-1,3-glucan acetate propionate.

[0067] An acid anhydride selected for a reaction herein can correspond with the organic acid used to prepare acid-exchanged poly-alpha-1,3-glucan. For example, if an acid will include propionic anhydride, then an acid exchange process can be performed with propionic acid. Alternatively, an acid anhydride selected for a reaction herein can differ from the organic acid used to prepare acid-exchanged poly-alpha-1,3-glucan. For example, if a reaction will include propionic anhydride, then an acid exchange process can be performed with acetic acid.

[0068] A reaction herein can comprise components in addition to poly-alpha-1,3-glucan, acid catalyst, acid anhydride, and organic acid. For example, one or more organic solvents can be included in a reaction, such as methylene chloride. An organic solvent such a methylene chloride can be included at about 30-40 wt% in a reaction (e.g., producing glucon triacetate), for example.

[0069] The components of a reaction herein can be added together in any order. For example, poly-alpha-1,3-glucan, acid catalyst and organic acid can first be mixed together, after which acid anhydride can be added to the mixture. As another example, acid anhydride and organic acid can first be mixed together, after which poly-alpha-1,3-glucan and acid catalyst can be added to the mixture. As yet another example, acid catalyst and organic acid can first be mixed together, after which poly-alpha-1,3-glucan and acid anhydride can be added to the mixture. In certain embodiments, poly-alpha-1,3-glucan and another component (e.g., acid catalyst or acid anhydride) are added in sequential order to a mixture containing the other reaction components.

[0070] Cooling can be applied during various stages of preparing a reaction herein. The terms "cool" and "chill" are used interchangeably herein and refer to decreasing the temperature of a reaction or mixture to a lower temperature. Cooling can be performed by any means known in the art, such as with an ice bath or industrial cooling system. Step (a) of preparing a reaction can comprise cooling the reaction after its preparation (i.e., containing all of poly-alpha-1,3-glucan, acid catalyst, acid anhydride and organic acid), such as to about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 °C, or about 12-18 °C. Alternatively, step (a) can comprise cooling (e.g., to any of the preceding temperatures) a mixture containing poly-alpha-1,3-glucan, acid catalyst and organic acid, and then adding acid anhydride to the cooled mixture. Alternatively still, step (a) can comprise cooling (e.g., to any of the preceding temperatures) a mixture containing acid anhydride and organic acid, and then adding poly-alpha-1,3-glucan and acid anhydride to the cooled mixture. A reaction can optionally be held at any of the preceding cooler temperature points for about 1-10 minutes after its initial preparation.
A reaction can then be (i) placed under ambient temperature conditions without direct application of heat, and/or (ii) directly heated using any means known in the art (e.g., water bath, industrial or electric heater). Ambient temperature conditions can be held for up to about 30, 60, 120, 240, 360, or 480 minutes (or any integer value between 30 and 480 minutes), for example. Alternatively, ambient temperature conditions can be held for up to about 24, 48, or 72 hours.

The term "ambient temperature" as used herein refers to a temperature between about 15-30 °C or 20-25 °C (or any integer between 15 and 30 °C). Reaction heating can be up to about 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 °C (or any integer value between 30 and 80 °C), about 30-60 °C, or about 30-50 °C, for example. Such heating can be done in stages, if desired. For example, a reaction can first be heated to about 35 °C, and then heated to about 39-50 °C. A maximum reaction temperature (e.g., about 36-43 °C) may be applied to avoid excess degradation of poly alpha-1,3-glucan ester molecular weight in certain embodiments, such as when producing poly alpha-1,3-glucan acetate propionate, or poly alpha-1,3-glucan acetate butyrate. The temperature after heating to any of the preceding temperatures can be maintained for about 20-30, 20-40, 20-60 minutes, or up to about 40, 60, 80, 100, 120, or 140 minutes, for example.

When heating is done in stages, the first temperature point(s) can be held for about 20-40 minutes, for example. In embodiments in which a reaction is placed under ambient temperature conditions without direct application of heat, the reaction can subsequently be heated, if desired, to any of the preceding temperatures and time periods. A reaction typically does not contain any solid material, but may be viscous, after any of the above temperature treatments (ambient temperature and/or heating).

A reaction can optionally be cooled after any of the above temperature treatments (ambient temperature and/or heating) and cooling treatments. Quenching of a reaction can be accomplished by adding acid, base, or certain salts to the reaction. Various acids, bases and salts useful for quenching a reaction include, but are not limited to, acetic acid (e.g., -50-70 wt%), any other mineral or organic acid (e.g., -50-70 wt%), magnesium acetate (e.g., -20-25 wt%), sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium bicarbonate, sodium carbonate and combinations thereof. In certain embodiments of producing poly alpha-1,3-glucan acetate, a reaction is quenched with acetic acid (e.g., -50 or 70 wt%) or magnesium acetate (e.g., -20-25 wt%).

A quenched reaction can optionally be heated to about 40 °C to 150 °C for up to 48 hours. For example, a quenched reaction can be heated to about 100 °C for up to about 20-40 minutes (e.g., 25-30 minutes), such as in a process for producing poly alpha-1,3-glucan acetate. Optionally, water may be added to a reaction (quenched or not quenched), which is then heated to about 40 °C to 150 °C (e.g., -100 °C) for up to about 20-40 minutes (e.g., 25-30 minutes) to reduce DoS of acyl groups by hydrolysis. Such a heating/water-treatment step may be useful for reducing DoS in a process for producing poly alpha-1,3-glucan acetate.

A poly alpha-1,3-glucan ester compound produced by a reaction herein can be precipitated using an agent that is a non-solvent for the poly alpha-1,3-glucan ester compound. For example, deionized water and/or methanol can be added to a reaction solution in an amount sufficient to precipitate a poly alpha-1,3-glucan ester compound. Precipitation is a non-solvent for the poly alpha-1,3-glucan ester compound. For example, deionized water and/or methanol can be added to a reaction solution in an amount sufficient to precipitate a poly alpha-1,3-glucan ester compound. Precipitation can then be washed one, two or more times with water until neutral pH is achieved. Alternatively, precipitated poly alpha-1,3-glucan ester compound can be washed with water and base (e.g., diluted alkaline hydroxide such as sodium hydroxide, calcium hydroxide, or potassium hydroxide) to achieve a neutral pH, optionally followed by washing with water. The term "neutral pH" as used herein refers to a pH that is neither substantially acidic or basic (e.g., a pH of about 6-8, or about 6.0, 6.2, 6.4, 6.6, 6.8, 7.0, 7.2, 7.4, 7.6, 7.8, or 8.0).

A poly alpha-1,3-glucan ester produced in the disclosed reaction can be isolated. The above precipitation process can be a step in an isolation process. Isolation can be performed with precipitated product before or after neutralization and/or washing steps using a funnel, centrifuge, press filter, or any other method or equipment known in the art that allows removal of liquids from solids. An isolated poly alpha-1,3-glucan ester product can be dried using any method known in the art, such as vacuum drying, air drying (e.g., 35 °C), or freeze drying.

Any of the above esterification reactions can be repeated using a poly alpha-1,3-glucan ester product as the starting material for further modification. This approach may be suitable for increasing the DoS of an acyl group, and/or adding one or more different acyl groups to the ester product.

The structure, molecular weight and DoS of a poly alpha-1,3-glucan ester product can be confirmed using
various physiochemical analyses known in the art such as NMR spectroscopy and size exclusion chromatography (SEC).

[0081] The percentage of glycosidic linkages between the glucose monomer units of poly alpha-1,3-glucan used to prepare poly alpha-1,3-glucan ester compounds herein that are alpha-1,3 is at least about 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% (or any integer value between 50% and 100%). In such embodiments, accordingly, poly alpha-1,3-glucan has less than about 50%, 40%, 30%, 20%, 10%, 5%, 4%, 3%, 2%, 1%, or 0% (or any integer value between 0% and 50%) of glycosidic linkages that are not alpha-1,3.

[0082] Poly alpha-1,3-glucan used to prepare poly alpha-1,3-glucan ester compounds herein is preferably linear/un-branched. In certain embodiments, poly alpha-1,3-glucan has no branch points or less than about 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1% branch points as a percent of the glycosidic linkages in the polymer. Examples of branch points include alpha-1,6 branch points.

[0083] The Mn or Mw of poly alpha-1,3-glucan used to prepare poly alpha-1,3-glucan ester compounds herein may be at least about 500 to about 300000. Alternatively still, M_n or M_w can be at least about 10000, 25000, 50000, 75000, 100000, 125000, 150000, 175000, 200000, 225000, 250000, 275000, or 300000 (or any integer between 10000 and 300000), for example.

[0084] Poly alpha-1,3-glucan esters formed using various methods described above can be used to prepare various types of films. The poly alpha-1,3-glucan esters prepared according to the disclosed methods can be dissolved in one or more solvents to provide a solution of poly alpha-1,3-glucan ester. As used herein, the term "solution of poly alpha-1,3-glucan ester" refers to poly alpha-1,3-glucan ester dissolved in one or more solvents. The solvents useful for this purpose include, but are not limited to, methylene chloride (dichloromethane), methanol, chloroform, tetrachloroethane, formic acid, acetic acid, nitrobenzene, bromoform, pyridine, dioxane, ethanol, acetone, alcohols, aromatic compounds such as monochlorobenzene, benzene and toluene, esters such as ethyl acetate and propyl acetate, ethers such as tetrahydrofuran, methyl cellosolve and ethylene glycol monomethyl ether or combinations thereof. This solution can then be applied to a surface and the solvent is allowed to evaporate to form a film of desired thickness. The surfaces suitable for this application can be, but are not limited to, glass, Teflon®, plastic, or various types of substrates. Methods to make films from the above-mentioned solution, which are well known in the art, include but not limited to solution casting, spin coating, thermal and regular spraying. In an embodiment, the solution of poly alpha-1,3-glucan ester is cast on a glass plate.

[0085] The tear resistance, tensile strength and temperature stability of the poly alpha-1,3-glucan ester films can be determined by methods well known in the art. As used herein, the term "tear resistance" is defined as a measure of how well a film can withstand the effects of tearing. The term "tensile strength", as used herein, refers to the maximum tension a material can withstand without tearing. The suitable tear resistance for a poly alpha-1,3-glucan ester film disclosed herein can be at least 0.1 gf/mil (0.04 N/mm). The tensile strength of the film suitable for the disclosed invention can be at least 10 kg/mm².

[0086] The haze and transmittance of the poly alpha-1,3-glucan ester film can be determined by methods well known in the art. As used herein, the term "haze" refers to the percentage of light that is deflected more than 2.5 degrees from the incoming light direction. Low haze values correspond to better clarity. The term "transmittance" as used herein, refers to the fraction of incident light at a specified wavelength that passes through a film.

[0087] The speed with which the film is produced can be increased by adding a weak solvent, such as methanol and cyclohexane, ethanol and n-butanol or abundant methanol or ethanol in addition to methylene chloride, into the poly alpha-1,3-glucan ester solution to accelerate the solidification speed. One can restrain planar orientation degree and crystallization degree by controlling the surface temperature and shrinkage percentage of a film.

EXAMPLES

[0088] The disclosed invention is further defined in the following Examples. It should be understood that these Examples, while indicating certain preferred aspects of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the scope thereof, can make various changes and modifications of the invention to adapt it to various uses and conditions.

Abbreviations:

[0089] "mL" is milliliter(s); "g" is gram(s); "DI water" is deionized water; "µL" is microliter(s); "°C" is degrees Celsius; "mg" is milligram(s); "TFA" is trifluoroacetic acid; "Hz" is Hertz; "MHz" is mega Hertz; "ppm" is parts per million; "HFIP" is hexafluoro-2-propanol; "TFA-d" is deuterated trifluoroacetic acid.
Materials

[S0090] Sulfuric acid, acetic acid and sodium bicarbonate were from EMD Chemicals (Billerica, MA). Acetic anhydride was from Acros Organics (Pittsburgh, PA). Butyric acid, butyric anhydride, propionic anhydride and 0.1 N perchloric acid in acetic acid were from Sigma Aldrich (St. Louis, MO). Propionic acid was from JT Baker (Center Valley, PA). Magnesium acetate was from Alfa Aesar (Ward Hill, MA). Unless otherwise specified, all acids and anhydrides used herein were water-free or substantially water-free.

Preparation of Poly Alpha-1,3-Glucan

[S0091] Poly alpha-1,3-glucan was prepared using a gtfJ enzyme preparation as described in U.S. Patent Appl. Publ. No. 2013/0244288.

1H NMR Method for Determining Degree of Substitution of Poly Alpha-1,3-Glucan Mixed Ester Derivatives

[S0092] DoS in poly alpha-1,3-glucan mixed ester derivatives was determined using 1H NMR. Approximately 20 mg of derivative sample was weighed into a vial on an analytical balance. The vial was removed from the balance and 0.7 mL of TFA-d was added to the vial. A magnetic stir bar was added to the vial and the mixture was stirred until the solid sample dissolved. Deuterated benzene (C₆D₆), 0.3 mL, was then added to the vial to provide a better NMR lock signal than the TFA-d would provide. A portion, 0.8 mL, of the solution was transferred using a glass pipet into a 5-mm NMR tube. A quantitative 1H NMR spectrum was acquired using an Agilent VNMR 400 MHz NMR spectrometer equipped with a 5-mm Autoswitchable Quad probe. The spectrum was acquired at a spectral frequency of 399.945 MHz using a spectral window of 6410.3 Hz, an acquisition time of 1.278 seconds, and inter-pulse delay of 10 seconds and 32 pulses. The time domain data were transformed using exponential line broadening of 1.0 Hz and the benzene solvent peak was set to 7.15 ppm.

[S0093] For poly alpha-1,3-glucan acetate propionate samples, three regions of the resulting spectrum were integrated: from 3.3 ppm to 6.0 ppm, giving the integral for the seven poly alpha-1,3-glucan protons; from 1.9 ppm to 2.7 ppm giving the integral for the methylene group of the propionyl group plus the methyl group of the acetyl group; and from 0.8 ppm to 1.3 ppm giving the integral for the methyl group of the propionyl group.

[S0094] The DoS by propionyl groups on the glucan was calculated by dividing the integral value for the methyl group of the propionyl group by three. The integral value of the propionyl group’s methylene group was then calculated by multiplying the integral value for the methyl group of the propionyl group by 0.666. This value was then subtracted from the integral for the region of the methylene group of the propionyl group plus the methyl group of the acetyl group to give the integral value for the acetyl group’s methyl group. Finally, the acetyl group integral value was divided by three to obtain the degree of acetylation.

[S0095] For poly alpha-1,3-glucan acetate butyrate samples, three regions of the resulting spectrum were integrated: from 3.3 ppm to 6.0 ppm giving the integral for the seven poly alpha-1,3-glucan protons; from 1.9 ppm to 2.6 ppm giving the integral for the methylene group alpha to the carbonyl of the butyryl group plus the methyl group of the acetyl group; and from 0.6 ppm to 1.0 ppm giving the integral for the methyl group of the butyryl group.

[S0096] The DoS by butyryl groups on the glucan was calculated by dividing the integral value for the methyl group of the butyryl group by three. The integral value of the butyryl group’s methylene group was then calculated by multiplying the integral value for the methyl group of the butyryl group by 0.666. This value was then subtracted from the integral for the region of the methylene group of the butyryl group plus the methyl group of the acetyl group to give the integral value for the acetyl group’s methyl group. Finally, the acetyl group integral value was divided by three to obtain the degree of acetylation.

Determination of the Degree of Polymerization

[S0097] The degree of polymerization (DP) was determined by size exclusion chromatography (SEC). Poly alpha-1,3-glucan ester was dissolved in HFIP (2 mg/mL) with shaking for 4 hours at 45 °C. The chromatographic system used was Alliance™ 2695 separation module from Waters Corporation (Milford, MA) coupled with three on-line detectors: a differential refractometer 2410 from Waters, a multi-angle light-scattering photometer Heleos™ 8+ from Wyatt Technologies (Santa Barbara, CA), and a differential capillary viscometer ViscoStar™ from Wyatt Technologies. The columns used for SEC were two Shodex (Showa Denko America, New York) GPC HFIP-806M™ styrene-divinyl benzene columns and one Shodex GPC HFIP-804M™ styrene-divinyl benzene column. The mobile phase was redistilled HFIP with 0.01 M sodium trifluoroacetate. Chromatographic conditions used were 50 °C at column and detector compartments, 40 °C at sample and injector compartments, a flow rate of 0.5 mL/min, and injection volume of 100 µL. Software packages used for data reduction were Astra version 6 from Wyatt (triple detection method with column calibration).
Preparation of Acid-Exchanged Poly Alpha-1,3-Glucan

[0098] Acid-exchanged poly alpha-1,3-glucan was prepared by placing 10 g of poly alpha-1,3-glucan in a 250-mL glass beaker with 150 mL of DI water. This mixture was boiled for one hour on a hot plate, after which the poly alpha-1,3-glucan was recovered by vacuum filtration. The poly alpha-1,3-glucan was then subjected to two acid exchange steps of stirring it with 100 mL of glacial acetic acid at room temperature followed by vacuum filtration, thereby providing acid-exchanged poly alpha-1,3-glucan.

[0099] Other forms of acid-exchanged poly alpha-1,3-glucan were also prepared by following the above process, but using propionic acid or butyric acid instead of acetic acid.

[0100] Acid-exchanged poly alpha-1,3-glucan prepared by these techniques was used in certain of the following examples to prepare various poly alpha-1,3-glucan ester derivatives. Since the acid exchange process removes water from the poly alpha-1,3-glucan, introduction of acid-exchanged poly alpha-1,3-glucan to an esterification reaction with an acid anhydride does not introduce water which may react with the acid anhydride.

EXAMPLE 1

Preparation of Poly Alpha-1,3-Glucan Acetate Butyrate

[0101] This Example describes producing the glucan mixed ester derivative, poly alpha-1,3-glucan acetate butyrate.

[0102] Acid-exchanged poly alpha-1,3-glucan (10 g), as prepared above with acetic or butyric acid, was added to a mixture containing 21 mL of glacial acetic acid, 20 mL of butyric acid and 0.09 g of sulfuric acid in a 500-mL round bottom flask equipped with a magnetic stir bar, thermocouple and condenser. The mixture was chilled to 18 °C using an ice bath and stirred for 1 minute before butyric anhydride (39 mL) was added to the flask. The reaction was allowed to proceed for 10 minutes with no heating, and then heated in a water bath at 35 °C for 80 minutes, followed by heating to 39°C for 30 minutes where the maximum temperature reached was 39 °C to avoid excess degradation of product molecular weight. The resulting viscous solution, which was devoid of any solids, was cooled to 20 °C using an ice bath for 10 minutes. The reaction was then quenched with 20 mL of 50% aqueous acetic acid and stirred for 40 minutes. Solid poly alpha-1,3-glucan acetate butyrate was precipitated using an air-powered blender and DI water. The solid was washed twice with water for 30 minutes, followed by washing with 5% sodium bicarbonate. The solid thus obtained was then finally washed with DI water until neutral pH was achieved (two water washes). The solid was collected by vacuum filtration, dried under vacuum, and characterized by NMR and SEC. This process yielded poly alpha-1,3-glucan acetate butyrate mixed ester with a butyryl DoS of 1.0, an acetyl DoS of 1.3, and a number-average molecular weight (Mn) of 66340.

[0103] Using different concentrations of reagents allowed for different mixed ester products to be formed. Table 1 below shows different poly alpha-1,3-glucan acetate butyrate esters synthesized using processes similar to the above process, but with certain modifications as indicated in the table. The results in Table 1 indicate that by altering the reaction conditions and the molecular weight of poly alpha-1,3-glucan starting material used in the reaction, the amount of acetyl and butyryl groups in the mixed ester product, as well as the molecular weight of the product, can be altered.
Table 1
Poly Alpha-1,3-Glucan Acetate Butyrate Prepared from Poly Alpha-1,3-Glucan

<table>
<thead>
<tr>
<th>Poly alpha-1,3-glucan starting material</th>
<th>Amount of acetic acid, butyric acid, butyric anhydride, acetic anhydride and sulfuric acid used in each reaction</th>
<th>Reaction time and tempb.</th>
<th>Poly alpha-1,3-glucan acetate butyrate product</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_n</td>
<td>Amount (g)</td>
<td>Acid exchangea</td>
<td>Acetic acid (mL)</td>
</tr>
<tr>
<td>62714</td>
<td>10</td>
<td>acetic</td>
<td>5</td>
</tr>
<tr>
<td>47009</td>
<td>2</td>
<td>butyric</td>
<td>1</td>
</tr>
<tr>
<td>47009</td>
<td>2</td>
<td>butyric</td>
<td>1</td>
</tr>
<tr>
<td>119130</td>
<td>2</td>
<td>acetic</td>
<td>4</td>
</tr>
</tbody>
</table>

a Acid exchange performed using either acetic acid or butyric acid.

b Temperature after heating the reaction.
Thus, various forms of the mixed ester derivative, poly alpha-1,3-glucan acetate butyrate, were prepared and isolated.

EXAMPLE 2

Preparation of Poly Alpha-1,3-Glucan Acetate Propionate

This Example describes producing the glucan mixed ester derivative, poly alpha-1,3-glucan acetate propionate. Acid-exchanged poly alpha-1,3-glucan was prepared as described above using propionic acid. A mixture of 35 mL of propionic acid and 0.09 g sulfuric acid was prepared in a 500-mL round bottom flask and chilled to 18 °C. Acid-exchanged poly alpha-1,3-glucan solid (10 g) was slowly added to the chilled mixture and stirred for 1 minute. Propionic anhydride (50 mL) was then added, after which 5 mL of glacial acetic acid was added. The reaction was allowed to proceed for 10 minutes with no heating, and then heated in a water bath at 30 °C for 1 hour, followed by heating to 34 °C for 10 minutes. The maximum temperature was not allowed to go beyond 36 °C to avoid excess degradation of product molecular weight. The solution thus obtained, which was devoid of any solids, was chilled to 20 °C in an ice bath for 5 minutes. The reaction was then quenched with 20 mL of 50% aqueous acetic acid and stirred for 40 minutes. Poly alpha-1,3-glucan acetate propionate was precipitated from the solution using an air-powered blender and DI water. The solid poly alpha-1,3-glucan acetate propionate product was washed twice with water for 30 minutes followed by a wash with 5% sodium bicarbonate. The solid was then washed with water until neutral pH was achieved (two water washes). The solid was collected by vacuum filtration, dried under vacuum, and characterized by NMR and SEC. The solid created was confirmed as a poly alpha-1,3-glucan acetate propionate containing 17.6 wt% acetyl and 32.9 wt% propionyl groups and having an Mn of 64030.

Using different concentrations of reagents allowed for different mixed ester products to be formed. Table 2 below shows different poly alpha-1,3-glucan acetate propionate esters synthesized using processes similar to the above process, but with certain modifications as indicated in the table. The results in Table 2 indicate that by altering the reaction conditions and the molecular weight of poly alpha-1,3-glucan starting material used in the reaction, the amount of acetyl and propionyl groups in the mixed ester product, as well as the molecular weight of the product, can be altered.
<table>
<thead>
<tr>
<th>Mₐ</th>
<th>Amount (g)</th>
<th>Acid exchangeᵃ</th>
<th>Acetic acid (mL)</th>
<th>Propionic Acid (mL)</th>
<th>Propionic Anhydride (mL)</th>
<th>Sulfuric Acid (g)</th>
<th>min</th>
<th>°C</th>
<th>Mₐ</th>
<th>wt% acetyl</th>
<th>wt% propionyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>62714</td>
<td>10</td>
<td>propionic</td>
<td>3</td>
<td>29</td>
<td>55</td>
<td>0.08</td>
<td>135</td>
<td>38</td>
<td>54460</td>
<td>7.4</td>
<td>35.9</td>
</tr>
<tr>
<td>62714</td>
<td>10</td>
<td>propionic</td>
<td>5</td>
<td>35</td>
<td>50</td>
<td>0.09</td>
<td>135</td>
<td>38</td>
<td>53450</td>
<td>4.9</td>
<td>41.1</td>
</tr>
<tr>
<td>71127</td>
<td>10</td>
<td>propionic</td>
<td>3</td>
<td>35</td>
<td>50</td>
<td>0.15</td>
<td>75</td>
<td>53</td>
<td>66190</td>
<td>1.7</td>
<td>47.1</td>
</tr>
<tr>
<td>47009</td>
<td>2</td>
<td>propionic</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>0.03</td>
<td>60</td>
<td>40</td>
<td>61640</td>
<td>6.5</td>
<td>41.6</td>
</tr>
<tr>
<td>25587</td>
<td>1</td>
<td>propionic</td>
<td>0.3</td>
<td>3.5</td>
<td>5</td>
<td>0.009</td>
<td>56</td>
<td>43</td>
<td>21380</td>
<td>1.4</td>
<td>49.0</td>
</tr>
<tr>
<td>119130</td>
<td>2</td>
<td>propionic</td>
<td>0.6</td>
<td>8</td>
<td>10</td>
<td>0.03</td>
<td>55</td>
<td>45</td>
<td>59150</td>
<td>0</td>
<td>44.1</td>
</tr>
</tbody>
</table>

ᵃ Acid exchange performed using propionic acid instead of acetic acid.
ᵇ Temperature after heating the reaction.
Thus, various forms of the mixed ester derivative, poly alpha-1,3-glucan acetate propionate, were prepared and isolated.

Claims

1. A composition comprising a poly alpha-1,3-glucan ester compound represented by the structure:

 ![Chemical Structure](image1)

 wherein

 (i) \(n \) is at least 6,
 (ii) each \(R \) is independently an H or acyl group, and
 (iii) the compound has a degree of substitution of 0.05 to 3.0;

 wherein the compound contains two or more types of said acyl group.

2. The composition of claim 1, wherein the two or more types of said acyl group are selected from the group consisting of acetyl, propionyl, butyryl, pentanoyl, hexanoyl, heptanoyl, and octanoyl.

3. The composition of claim 2, wherein the two or more types of said acyl group are:

 (i) acetyl and propionyl, or
 (ii) acetyl and butyryl.

4. A method of producing a poly alpha-1,3-glucan ester compound, the method comprising:

 (a) contacting poly alpha-1,3-glucan in a reaction that is substantially anhydrous with at least one acid catalyst, at least one acid anhydride, and at least one organic acid, wherein two or more types of acyl group are esterified to the poly alpha-1,3-glucan thereby producing a poly alpha-1,3-glucan ester compound represented by the structure:

 ![Chemical Structure](image2)
wherein

(i) n is at least 6,
(ii) each R is independently an H or acyl group, and
(iii) the compound has a degree of substitution of 0.05 to 3.0, wherein the compound contains two or more types of acyl group; and

(b) optionally, isolating the poly alpha-1,3-glucan ester compound produced in step (a).

5. The method of claim 4, wherein the poly alpha-1,3-glucan is acid-exchanged with an organic acid before contacting step (a) to remove water from the poly alpha-1,3-glucan.

6. The method of claim 4, wherein the acid catalyst is an inorganic acid.

7. The method of claim 6, wherein the inorganic acid is sulfuric acid or perchloric acid.

8. The method of claim 4, wherein:

the acid anhydride is one or more of acetic anhydride, propionie anhydride, or butyric anhydride; and
the organic acid is one or more of acetic acid, propionic acid, or butyric acid.

9. The method of claim 8, wherein:

(i) the acid anhydrides are propionic anhydride and acetic anhydride, and the organic acids are propionic acid and optionally acetic acid, wherein the poly alpha-1,3-glucan ester compound produced in the reaction is a poly alpha-1,3-glucan acetate propionate;
(ii) the acid anhydride is propionic anhydride, and the organic acids are propionic acid and acetic acid, wherein the poly alpha-1,3-glucan ester compound produced in the reaction is a poly alpha-1,3-glucan acetate propionate;
(iii) the acid anhydrides are butyric anhydride and acetic anhydride, and the organic acids are butyric acid and optionally acetic acid, wherein the poly alpha-1,3-glucan ester compound produced in the reaction is a poly alpha-1,3-glucan acetate butyrate; or
(iv) the acid anhydride is butyric anhydride, and the organic acids are butyric acid and acetic acid, wherein the poly alpha-1,3-glucan ester compound produced in the reaction is a poly alpha-1,3-glucan acetate butyrate.

10. The method of claim 4, wherein the reaction further comprises an organic solvent.

Patentansprüche

1. Zusammensetzung umfassend eine Poly-alpha-1,3-glucanesterverbindung, die durch die Struktur

\[
\text{OR} \\
\text{OR} \\
\text{OR} \\
\text{OR} \\
\text{n}
\]

dargestellt ist,

wobei

(i) n mindestens 6 beträgt,
(ii) jedes R unabhängig ein H oder eine Acylgruppe ist und
(iii) die Verbindung einen Substitutionsgrad von 0,05 bis 3,0 aufweist;

wobei die Verbindung zwei oder mehr Typen der Acylgruppe enthält.
2. Zusammensetzung nach Anspruch 1, wobei die zwei oder mehr Typen der Acylgruppe aus der Gruppe ausgewählt sind, bestehend aus Acetyl, Propionyl, Butyryl, Pentanoyl, Hexanoyl, Heptanoyl und Octanoyl.

3. Zusammensetzung nach Anspruch 2, wobei die zwei oder mehr Typen der Acylgruppe Folgendes sind:
 (i) Acetyl und Propionyl oder
 (ii) Acetyl und Butyryl.

4. Verfahren für die Herstellung einer Poly-alpha-1,3-glucanesterverbindung, wobei das Verfahren Folgendes umfasst:
 (a) Kontaktieren von Poly-alpha-1,3-glucan in einer Reaktion, die im Wesentlichen wasserfrei ist, mit mindestens einem sauren Katalysator, mindestens einem Säureanhydrid und mindestens einer organischen Säure, wobei zwei oder mehr Acylgruppetyphen zu dem Poly-alpha-1,3-glucan verestert werden, wodurch eine Poly-alpha-1,3-glucanesterverbindung hergestellt wird, die durch die Struktur:

\[
\begin{align*}
\text{OR} & \quad \text{OR} \\
O & \\
\text{OR} & \quad \text{OR}
\end{align*}
\]

dargestellt ist, wobei
 (i) \(n \) mindestens 6 beträgt,
 (ii) jedes \(R \) unabhängig ein \(H \) oder eine Acetylgruppe ist und
 (iii) die Verbindung einen Substitutionsgrad von 0,05 bis 3,0 aufweist, wobei die Verbindung zwei oder mehr Acylgruppetyphen enthält; und
 (b) wahlweise Isolieren der in Schritt (a) hergestellten Poly-alpha-1,3-glucanesterverbindung.

5. Verfahren nach Anspruch 4, wobei das Poly-alpha-1,3-glucan vor dem Kontaktschritt (a) mit einer organischen Säure säureausgetauscht wird, um Wasser von dem Poly-alpha-1,3-glucan zu entfernen.

6. Verfahren nach Anspruch 4, wobei der saure Katalysator eine anorganische Säure ist.

7. Verfahren nach Anspruch 6, wobei die anorganische Säure Schwefelsäure oder Perchlorsäure ist.

8. Verfahren nach Anspruch 4, wobei:
 das Säureanhydrid ein oder mehr von Essigsäureanhydrid, Propionsäureanhydrid oder Buttersäureanhydrid ist, und
 die organische Säure ein oder mehr von Essigsäure, Propionsäure oder Buttersäure ist.

9. Verfahren nach Anspruch nach Anspruch 8, wobei:
 (i) die Säureanhydride Propionsäureanhydrid und Essigsäureanhydrid sind und die organischen Säuren Propionsäure und wahlweise Essigsäure sind, wobei die Poly-alpha-1,3-glucanesterverbindung, die in der Reaktion hergestellt wird, ein Poly-alpha-1,3-glucanacetatpropionat ist;
 (ii) das Säureanhydride Propionsäureanhydrid ist und die organischen Säuren Propionsäure und Essigsäure sind, wobei die Poly-alpha-1,3-glucanesterverbindung, die in der Reaktion hergestellt wird, ein Poly-alpha-1,3-glucanacetatpropionat ist;
 (iii) die Säureanhydride Buttersäureanhydrid und Essigsäureanhydrid sind und die organischen Säuren Buttersäure und wahlweise Essigsäure sind, wobei die Poly-alpha-1,3-glucanesterverbindung, die in der Reaktion hergestellt wird, ein Poly-alpha-1,3-glucanacetatpropionat ist;
hergestellt wird, ein Poly-alpha-1,3-glucanacetatbutyrat ist; oder
(iv) das Säureanhydrid Buttersäureanhydrid ist und die organischen Säuren Buttersäure und Essigsäure sind,
 wobei die Poly-alpha-1,3-glucanesterbindung, die in der Reaktion hergestellt wird, ein Poly-alpha-1,3-glucanacetatbutyrat ist.

10. Verfahren nach Anspruch 4, wobei die Reaktion ferner ein organisches Lösungsmittel umfasst.

Revendications

1. Composition comprenant un composé ester de poly alpha-1,3-glucane représenté par la structure:

 ![Diagramme](image)

 où

 (i) n est au moins 6,
 (ii) chaque R est indépendamment un atome H ou un groupe acyle, et
 (iii) le composé présente un degré de substitution de 0,05 à 3,0;

 le composé contenant deux ou plusieurs types dudit groupe acyle.

2. Composition selon la revendication 1, les deux ou plusieurs types dudit groupe acyle étant sélectionnés dans le groupe constitué du groupe acétique, propionyle, butyryle, pentanoyle, hexanoyle, heptanoyle, et octanoyle.

3. Composition selon la revendication 2, les deux ou plusieurs types dudit groupe acyle étant:

 (i) acétique et propionyle, ou
 (ii) acétique et butyryle.

4. Procédé de production d’un composé ester de poly alpha-1,3-glucane, le procédé comprenant:

 (a) la mise en contact de poly alpha-1,3-glucane dans une réaction qui est sensiblement anhydre avec au moins un catalyseur acide, au moins un anhydride d’acide, et au moins un acide organique, deux ou plusieurs types de groupe acyle étant estérifiés en poly alpha-1,3-glucane produisant ainsi un composé ester de poly alpha-1,3-glucane représenté par la structure:

 ![Diagramme](image)

 où
Procédé selon la revendication 4:

- l’anhydride d’acide étant un ou plusieurs parmi l’anhydride acétique, l’anhydride propionique, ou l’anhydride butyrique; et
- l’acide organique étant un ou plusieurs parmi l’acide acétique, l’acide propionique, ou l’acide butyrique.

9. Procédé selon la revendication 8:

- (i) les anhydrides d’acide étant l’anhydride propionique et l’anhydride acétique, et les acides organiques étant l’acide propionique et éventuellement l’acide acétique, le composé ester de poly alpha-1,3-glucane produit dans la réaction étant l’acétate-propionate de poly alpha-1,3-glucane;
- (ii) l’anhydride d’acide étant l’anhydride propionique, et les acides organiques étant l’acide propionique et l’acide acétique, le composé ester de poly alpha-1,3-glucane produit dans la réaction étant un acétate-propionate de poly alpha-1,3-glucane;
- (iii) les anhydrides d’acide sont l’anhydride butyrique et l’anhydride acétique, et les acides organiques sont l’acide butyrique et éventuellement l’acide acétique, le composé ester de poly alpha-1,3-glucane produit dans la réaction est un acétate-butyrate de poly alpha-1,3-glucane; ou
- (iv) l’anhydride d’acide est l’anhydride butyrique, et les acides organiques sont l’acide butyrique et l’acide acétique, le composé ester de poly alpha-1,3-glucane produit dans la réaction est un acétate-butyrate de poly alpha-1,3-glucane.

10. Procédé selon la revendication 4, la réaction comprenant en outre un solvant organique.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 7000000 B [0003] [0019]
- US 20130244288 A [0019] [0091]
- US 20130244287 A [0019]

Non-patent literature cited in the description