Driver communication interface in an at least partly autonomous drive system

A communication interface between a driver of a vehicle (10) and an at least partly autonomous drive system in the vehicle (10). The communication interface is configured to communicate a haptic performance loss signal to the driver when a performance loss is determined in the at least partly autonomous drive system.

Fig. 1
Description

TECHNICAL FIELD

[0001] Disclosed herein is a communication interface between a driver of a vehicle and an at least partly autonomous drive system in said vehicle. A vehicle comprising an at least partly autonomous drive system and the communication interface is also disclosed.

BACKGROUND

[0002] Modern passenger vehicles, such as cars, buses and trucks are to an increasing degree provided with equipment and assist systems for partly or fully automating one or more driving functions of the vehicle, such as steering, lane keeping, parking, speed control, etc.

[0003] A vehicle may be provided with any degree of automation of its driving functions, ranging from a fully developed autonomous drive system or AD system to an assist system where only one or a few functions are automated. A fully developed AD system makes the vehicle capable of being safely steered and manoeuvred through traffic without the need for a human driver using driving equipment such as a steering wheel or pedals while the vehicle is driven in the AD mode. Less developed automated systems may assist a driver in performing one or more actions such as steering the vehicle, parking the vehicle, keeping a safe distance to a preceding vehicle, staying within a lane, etc.

[0004] Switching between a manual driving mode and an automated/assisted driving mode is generally made through an interface arrangement between the driver and the autonomous drive system or driver assist system. The interface arrangement may comprise a manually operated communication device such as a touch screen, a button, a switch, a gear stick, a joy stick, or the steering wheel of the vehicle. The communication device may be arranged to be movable between multiple predetermined positions corresponding to pre-defined commands to be input into the autonomous drive system.

[0005] However, there may be instances when an automated function is currently unavailable due to external circumstances or circumstances inside the vehicle. Such circumstances may, for instance, be poor weather conditions, poor road conditions, technical failure or technical malfunction.

[0006] It is previously known to alert a driver of a vehicle when an assistive/autonomous function in a driver assist system is no longer available.

[0007] US20090299573 A1 is directed to an assistive steering system which operates together with driver input to steer and position a vehicle within a lane and adapting the steering of the vehicle to road curvature. It is disclosed that the driver may be required to adjust lateral offset when the vehicle localization is of insufficient quality to precisely pinpoint the vehicle within a lane, while still being sufficient to estimate the curvature of the road.

[0008] US20090299573 A1 further discloses that the driver may be aided in monitoring the accuracy of lane prediction by being shown the predicted path of the vehicle as a function of the offset on a display screen. In situations where no lane markers can be identified, and/or on roads not contained in the road database, the system may effectively disable automated steering. As a result, the vehicle direction is not affected by automated trimming of the steerable tires, and relinquishes any effect on the steering of the vehicle to the driver. If a level of uncertainty about the curvature of the road is too great for safe road/lane-following, the vehicle may disengage the trimming feature and alert its driver, such as by an audible beep or a vibrating steering wheel.

[0009] US20120166032 A1 is a further document which is concerned with lane offset control and mentions that if a driver requests lane centering, the system determines if lane centering is available or if it is not available due to circumstances such as ECU (electronic control unit) or communication failures, errors relating to the detection sensors and actuators, or if the lane detection sensors are not able to detect lane markings on the road. If the lane centering system is available the system proceeds to carry out the driver’s request.

[0010] It has been found that the existing automated systems and assist systems provide a driver with insufficient information in order to aid the driver in deciding when to use the system and when to rely on manual operation.

SUMMARY

[0011] It is an objective to provide an improved interface arrangement between a driver and an at least partly autonomous drive system. It is a further objective to offer an interface arrangement which may provide a driver of a vehicle with a better basis for choosing between using the at least partly autonomous drive system and manual operation. These and other objectives may be achieved by a communication interface between a driver of a vehicle and an at least partly autonomous drive system in the vehicle, the communication interface being configured to communicate a haptic performance loss signal to the driver when a performance loss is determined in the at least partly autonomous drive system.

[0012] By an "at least partly autonomous drive system" as used herein, is implied any autonomous drive system, semi-autonomous drive system or assisted drive system providing selectable automation of one or more driving functions.

[0013] When the interface arrangement is installed in a vehicle having an at least partly autonomous drive system, the driver may be informed of the operational status of the at least partly autonomous drive system by touching the interface arrangement and sensing a haptic signal being sent from the at least partly autonomous drive system through the interface arrangement.

[0014] In this context, information concerning the "op-
Likewise, when running in an automated mode, use the at least partly autonomous drive system or not. and may use the assessment when deciding whether to an operational level which is below a pre-set optimal level the requested function or functions are available but at partly autonomous drive system also in a situation where conditions for carrying out the requested function or functions are less than optimal. Based on the information obtained through the interface arrangement, the driver can make an assessment of the operational status of the at least partly autonomous drive system also in a situation where the requested function or functions are available but at an operational level which is below a pre-set optimal level and may use the assessment when deciding whether to use the at least partly autonomous drive system or not.

Likewise, when running in an automated mode, the driver may use the interface arrangement to check whether the automated drive conditions remain satisfactory or whether the operational status of the at least partly autonomous drive system has dropped to a level where the driver prefers to take over the control of the function or functions that are currently being carried out automatically.

The communication interface may be configured to communicate the haptic performance loss signal at a detected performance loss in the at least partly autonomous drive system which performance loss is less than a maximum performance loss which is acceptable for safe driving. When communicating a performance loss in an operational region where the operational status of the at least partly autonomous drive system is still within safe limits for autonomous drive, but below an optimal level for one or more driving conditions for an automated mode, the driver may choose to switch off or not to enter an autonomous drive mode and instead assume control or retain control of the function or functions subjected to performance loss. Alternatively, the driver may decide to let the vehicle continue to be driven by the at least partly autonomous drive system or to switch from a manual drive mode to the automated drive mode despite the performance loss. An indication of a performance loss may further serve to alert the driver that the operational status of the at least partly autonomous drive system is deteriorating and that manual take-over may become necessary within a near future.

A predetermined optimal level of the autonomous drive conditions is a level of operation when all sensors, actuators, and other components of the at least partly autonomous drive system are working as expected. An autonomous drive performance loss is determined in a situation in which external conditions, such as unclear road lane markers, poor antenna reception, poor visibility, poor positioning signal, and/or internal conditions, such as dirty or non-calibrated sensors, technical failure or technical malfunction affect the at least partly autonomous drive system such that the safety margin to a minimum acceptable and safe level is diminished. The ultimate consequence of a performance loss may be that all or some features of the at least partly autonomous drive system are no longer available or their operational range, such as speed, is limited. However, before reaching a degree of performance loss resulting in a loss of one or more functions of the at least partly autonomous drive system, the at least partly autonomous drive system may still be fully and safely operational albeit at a performance level below the predetermined optimal performance level.

Accordingly, the communication device may be arranged to communicate a performance loss in one or more automated functions when the conditions for using the at least partly autonomous drive system are below a predetermined optimal level. This implies that the driver of the vehicle is informed about a performance loss in the at least partly autonomous drive system in a situation where the system is still operational and not only when the at least partly autonomous drive system has determined an imminent performance loss of a degree where it is no longer safe to use the system.

The communication device may comprise a communication device, which is arranged to be manually operated between at least two different command positions, at least one of the command positions being a resting position for an automated function of the at least partly autonomous drive system.

The communication device may include or consist of any type of switch or control which can be set in or manipulated into at least two different positions, such as an on/off switch for the autonomous drive system, a turn knob having pre-set positions, a gear-stick, a joystick, a touch-screen, etc.

A command position, as used herein, is any position of the communication device which corresponds to a command or instruction to the at least partly autonomous drive system to carry out a specified driving action. Accordingly, a command position may be a resting position which may be used to input a pre-defined command to make an automated driving manoeuvre such as a turn, a lane change, etc. A command position may also be a position along a line of movement of the communication device where movement along the line continuously shifts the communication device between continuously arranged positions along the line of movement. Command positions which are arranged in a non-stepwise, continuous manner along a line of movement of a communication device may be used to input a command to the at least partly autonomous drive system to carry out a quantifiable automated manoeuvre such as a speed change or a shift in position within a lane. It is to be appreciated that the line of movement may be a straight line or a curved line.

The haptic performance loss signal may be perceptible as a changed feeling of the communication de-
vice when the communication device is in the resting position for an automated function.

[0023] The changed feeling of the communication device may comprise one or more of a reduced resistance to movement around the resting position for an automated function, a vibration, a change in texture, a change in shape, and a temperature change.

[0024] By the term “vibration” as used herein is implied any vibrating or pulsating movement having a frequency and an amplitude.

[0025] It may be preferred that the changed feeling comprises a feeling of reduced resistance to movement of the communication device around the resting position for an automated function within an area of play around the resting position for an automated function.

[0026] The haptic performance loss signal as disclosed herein may comprise that the communication device is arranged to be movable within the area of play around the resting position when a performance loss has been determined in the at least partly autonomous drive system and wherein the resistance to movement of the communication device is reduced to a degree where it is less than a resistance to movement of the communication device when the at least partly autonomous drive system is in an optimal operational state but greater than a resistance to movement of the communication device when the at least partly autonomous drive system is in a non-operational state.

[0027] When the at least partly autonomous drive system is in the optimal operational state, no performance loss has been determined in the at least partly autonomous drive system and the resting position for the communication device is perceived as a distinct position, e.g. by the provision of a snap-in function. In other words, movement of the communication device into or out of the resting position requires a user of the communication device to apply a force to the communication device which is greater than a threshold force. The threshold force is set to be great enough to avoid inadvertent movement of the communication device, but to be low enough to allow comfortable manoeuvring of the communication device into and out of the resting position.

[0028] When the at least partly autonomous drive system is in a non-operational state the communication device will not stick after having been moved into the resting position and will preferably automatically return to a manual position.

[0029] The communication device may be arranged to be moveable to an adjacent resting position within the area of play by a moving force and to remain in the adjacent resting position in absence of the moving force. Accordingly, when a performance loss has been detected in the at least partly autonomous drive system, the communication device may come to rest in any of a multitude of positions within the area of play around the resting position. Such an arrangement provides not only a haptic signal of a performance loss communicated as a perception of the resting position being non-distinct or “fuzzy”, but may also provide a visual signal of an anomaly in the position of the communication device.

[0030] The area of play around the resting position may have any suitable geometrical shape, such as oval, square, rectangular, etc. but may preferably be a circular area surrounding the resting position of the communication device. The radius of the area of play may be from 1 to 10 mm, such as from 2 to 7 mm.

[0031] As set out herein, a preferred way of signalling a haptic performance loss may be by a haptic performance loss signal comprising a reduction in perceived distinctness of the resting position for an automated function. A driver of the interface arrangement will feel the reduced distinctness as a play around the resting position.

[0032] The changed feeling of the communication device may be proportional to a degree of performance loss. By way of example, an area of play around a resting position for an automated function may be increasing with an increased performance loss, and/or the resistance to movement within an area of play around a resting position for an automated function may decrease with an increased performance loss, and/or a vibration or pulsation in the communication device may increase in frequency and/or amplitude with an increased performance loss.

[0033] Accordingly, in order to signal a performance loss, the automated drive function resting position may be arranged to be perceived as a distinct position when gripping the communication device in a case when no performance loss is determined in the at least partly autonomous drive system. When a performance loss is determined by the autonomous drive system, the communication device may be arranged to be perceived as having a play around the automated drive function resting position and be freely movable or movable with a reduced force within a limited area of play surrounding the autonomous drive resting position. The interface arrangement may be configured such that the area of play within which the communication device can be freely moved increases in correspondence to an increased performance loss and/or such that the resistance to movement within the area of play decreases with increasing performance loss.

[0034] A play around a resting position will make a driver feel that the position of the communication device is
In addition to haptic signal may be particularly useful in situations when the conditions for using the at least partly autonomous drive system are non-ideal, but still sufficiently good for safe use. A non-distinct resting position in a mechanical control device such as a push-button, a switch, a gear-stick or a joy stick is generally associated with a lower-quality device and is, thus, an intuitive signal of imperfection. Accordingly, the indistinct position will be a warning to the driver of the communication device that the conditions for using the at least partly autonomous drive system may further deteriorate and that manual takeover of the driving of the vehicle may become necessary in a near future.

In addition to, or instead of, the position of the necessary in a near future.

The force curves indicated in the diagrams included in the figures are schematic illustrations of suitable profiles of a resistive force experienced by a driver of a communication interface as disclosed herein when moving a communication device into and out of a rest position for an automated drive function.

Furthermore, the communication interface as disclosed herein is described with reference to a car. However, it is to be understood that the invention is equally applicable to any vehicle adapted for personal transportation, such as a truck, a bus etc. The invention may be particularly applicable to vehicles which are intended to be driven on public roads.

With reference to Fig. 1, there is shown a communication device 1 which is arranged to be manually operated by a driver of a car 10 or other vehicle. The driver is typically seated in a driver’s seat in the car 10 and the communication device 1 is placed so that it is readily accessible to the driver. The car 10 is provided with an at least partly autonomous drive system, and is equipped and configured for alternative manual control of at least one automated drive function. The communication device 1 is part of a communication interface between the at least partly autonomous drive system and the driver wanting to interact with the at least partly autonomous drive system and is configured to communicate a haptic performance loss signal to the driver when a performance loss is determined in the at least partly autonomous drive system.
Although not shown in the figure, the car 10 may be provided with additional equipment for transferring information from the at least partly autonomous drive system to a driver of the car, such as display devices and loud-speakers.

The communication device 1 is preferably ergonomically shaped such that it can be comfortably gripped and held by the driver when using the device 1. The communication device 1 is shown in Fig. 1 as a gear-stick which is designed to be movable in at least two dimensions, such as in an x-y plane. The communication device 1 may optionally be movable by pulling or pushing in the z-direction perpendicular to the x-y plane or in other directions at an angle to the x-y plane.

The invention should not be considered limited to the gear-stick communication device shown in Fig 1. Accordingly, the communication device may be provided separate from the gear stick or may be integrated in another component of the car, such as in a turn signal lever, a steering wheel, etc. Furthermore, the communication device may be designed as a joystick being moveable in a curved geometry, e.g. around a ball-and-socket joint such that it can be tilted in any direction from the central resting position shown in Fig. 1, such as forward, rearward or to the sides. As set out herein, any communication device which can be set in at least one resting position for an automated drive function and in a manual drive position may be used such as a turn knob, a push button or a switch, e.g. a simple on/off switch.

As set out herein, the communication device 1 is placed in a location that is intuitive and within easy reach of the driver of the car. As shown in Fig. 1 such location may be where a gear stick is conventionally placed in the car 10. As shown in Fig. 1, the communication device 1 may be designed as conventional gear-stick and may be constructed to be used as an automatic or manual gear-stick when one or more automated drive functions of the at least partly autonomous drive system is/are deactivated and the driver controls the function or functions manually.

In the following, it is referred to a communication device 1. The communication device 1 may be the gear-stick shown in Fig. 1 or may be any other communication device as defined in the appended claims.

With reference to Fig. 2, there is illustrated a control position A, which is a "resting position" corresponding to an input command or instruction to the at least partly autonomous drive system in the car 10 to carry out one or more automated functions of the at least partly autonomous drive system.

When moving the communication device 1 into the resting position A, the driver may receive a haptic signal that the at least partly autonomous drive system is available for use and is fully functioning, without any performance loss having been determined. The optimal operational state of the at least partly autonomous drive system may be signalled to the driver by the communication device 1 snapping into the position A and/or by movement of the communication device 1 out of the resting position A requiring application of a force to overcome an initial resistance to movement away from the resting position A. This situation is illustrated by the force diagram in Fig. 2.

Fig. 3 illustrates how the communication device 1 may be used to indicate to a driver a performance loss in an automated function or automated functions of the at least partly autonomous drive system.

When the conditions for using the at least partly autonomous drive system are less than 100%, i.e. less than fully satisfactory or ideal, but still good enough, i.e. satisfactory but non-ideal, for employing one or more automated drive function(s), the driver is informed about this operational status of the at least partly autonomous drive system and is pre-warned that a situation may be up-coming requiring manual takeover of the driving of the car 10. Such an indication to the driver may be performed by changing the feeling of the communication device 1 when it is in the resting position A.

When in the automated mode and under optimal operational conditions, the resting position A is perceived as a distinct position when gripping the communication device 1. As previously mentioned, the distinct resting position A may have the force profile illustrated by Fig. 2. When the driving conditions deteriorate, the feeling of the communication device 1 changes in such a way that a play is created around the resting position A resulting in the resting position being perceived as being indistinct or "fuzzy" with a reduced resistance to movement around the resting position as compared to when the driving conditions are ideal. The communication device 1 can then be freely moved or moved with less resistance within a limited area of play, P, surrounding the resting position A. Alternatively or additionally, the control can begin to rattle, vibrate or pulsate and/or may be subject to a change in temperature.

When a performance loss has been determined in the at least partly autonomous drive system, the driver will be able to move the communication device within the area of play P. The resistance to movement of the communication device 1, e.g. a frictional force, is reduced to a degree where it is less than a resistance to movement of the communication device 1 when the at least partly autonomous drive system is in an optimal operational state but greater than a resistance to movement of the communication device 1 when the at least partly autonomous drive system is in a non-operational state. This means that at a performance loss, the driver perceives the communication device 1 as being easier to move within the area of play P, than when the at least partly autonomous drive system is operational under ideal conditions.

The communication device 1 may be arranged to be moveable to an adjacent resting position A’ at a distance from the main resting position A and within the area of play P. Moving the communication device 1 to the adjacent resting position A’ requires application of a
moving force F which is greater than zero. The communication device 1 will preferably remain in the adjacent resting position A' in absence of the moving force.

The area of play P may be a circular area surrounding the resting position A as shown in Fig. 3 and may have a radius of from 1 to 10 mm, such as from 2 to 7 mm.

Although the communication device shown in Fig. 1 is in the form of a gear stick, it is to be understood that the invention is equally applicable to other types of communication devices as set out herein. In a mechanical communication device in the form of a push-button or an on/off switch, a rattling "loose" feeling may be used as an indication that a performance loss has been determined in the at least partly autonomous drive system.

The performance loss signal that is conveyed to the driver may be proportional to the degree of performance loss that has been determined in the at least partly autonomous drive system. By way of example, a play around a resting position A may increase with increased performance loss and/or a vibration may increase in frequency and/or amplitude.

As set out herein a performance loss signal may be augmented by an acoustic signal and/or by visual signals. Accordingly, the communication device may change colour, begin to flash, etc. when a performance loss is detected and/or a warning sound, such as a buzz may be heard.

In a communication device in the form of a touch-screen, a haptic signal may be sent as a change in surface texture, in surface hardness, in temperature, by vibrations, or by a combination of such haptic signals. As for a mechanically operated communication device, a haptic performance loss signal may be augmented by acoustic and/or visual signals.

The communication interface disclosed herein may be freely varied within the scope of the appended claim.

Claims

1. A communication interface between a driver of a vehicle (10) and an at least partly autonomous drive system in said vehicle (10), characterized in that said communication interface is configured to communicate a haptic performance loss signal to said driver when a performance loss is determined in said at least partly autonomous drive system.

2. A communication interface according to claim 1, wherein said communication interface is configured to communicate said haptic performance loss signal at a detected performance loss in said at least partly autonomous drive system which performance loss is less than a maximum performance loss which is acceptable for safe driving.

3. A communication interface according to claim 1 or 2, wherein said communication interface comprises a communication device (1), said communication device (1) being arranged to be manually operated between at least two different command positions, at least one of said command positions being a resting position (A) for an automated function of said at least partly autonomous drive system.

4. A communication interface according to claim 3, wherein said haptic performance loss signal is perceptible as a changed feeling of said communication device (1) when said communication device (1) is in said resting position (A) for an automated function.

5. A communication interface according to claim 4, wherein said changed feeling comprises one or more of a reduced resistance to movement around said resting position (A) for an automated function, a vibration, a change in texture, a change in shape, and a temperature change.

6. A communication interface according to claim 5, wherein said changed feeling of said communication device (1) is proportional to a degree of performance loss.

7. A communication interface according to any one of claims 3-6, wherein said communication device (1) comprises a joy-stick, a gear-stick or a switch.

8. A communication interface according to claim 7, wherein said changed feeling comprises a reduced resistance to movement of said communication device (1) around said resting position (A) for an automated function within an area of play (P) around said resting position (A) for an automated function.

9. A communication interface according to claim 8, wherein said haptic performance loss signal comprises said communication device (1) being arranged to be movable within said area of play (P) when a performance loss has been determined in said at least partly autonomous drive system and wherein said resistance to movement of said communication device (1) is reduced to a degree where it is less than a resistance to movement of said communication device (1) when said at least partly autonomous drive system is in an optimal operational state but greater than a resistance to movement of said communication device (1) when said at least partly autonomous drive system is in a non-operational state.

10. A communication interface according to claim 9, wherein said communication device (1) is arranged to be moveable to an adjacent resting position (A') within said area of play (P) by a moving force (F) and
to remain in said adjacent resting position (A') in absence of said moving force.

11. A communication interface according to any one of claims 8-10, wherein said area of play (P) is a circular area surrounding said resting position (A) of said communication device (1) and wherein a radius of said area of play (P) is from 1 to 10 mm, such as from 2 to 7 mm.

12. A vehicle (10) comprising an at least partly autonomous drive system and a communication interface according to any one of the preceding claims, said communication interface being configured to be a communication interface between said at least partly autonomous drive system and a driver of said vehicle (10).
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE 198 10 479 A1 (BAYERISCHE MOTOREN WERKE AG [DE]) 16 September 1999 (1999-09-16)</td>
<td>1-7,12</td>
<td>INV. G06F3/01</td>
</tr>
<tr>
<td>Y</td>
<td>abstract; claims 1-7; figure 1 *</td>
<td>8</td>
<td>B60W50/16</td>
</tr>
<tr>
<td>A</td>
<td>column 1, lines 27-64 *</td>
<td>9-11</td>
<td>G05D1/02</td>
</tr>
<tr>
<td></td>
<td>column 2, line 61 - column 3, line 55 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>DE 10 2012 002318 A1 (AUDI NSU AUTO UNION AG [DE]) 8 August 2013 (2013-08-08)</td>
<td>1-7,12</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>paragraphs [0013], [0016], [0033] -</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>[0047]; figures 1-3 *</td>
<td>9-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>DE 10 2012 002304 A1 (AUDI NSU AUTO UNION AG [DE]) 8 August 2013 (2013-08-08)</td>
<td>1-7,12</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>paragraphs [0009], [0025], [0032];</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>claim 5; figures 1-3 *</td>
<td>9-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 29, lines 1-15 *</td>
<td></td>
<td>G06F</td>
</tr>
<tr>
<td></td>
<td>* column 39, line 50 - column 48, line 16</td>
<td></td>
<td>B60W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B05D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B60K</td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

Place of search: Munich
Date of completion of the search: 28 July 2014
Examiner: De Syllas, Dimitri

CATEGORY OF CITED DOCUMENTS:
X: particularly relevant if taken alone
Y: particularly relevant if combined with another document of the same category
A: technological background
O: non-written disclosure
P: intermediate document
T: theory or principle underlying the invention
E: earlier patent document, but published on, or after the filing date
D: document cited in the application
L: document cited for other reasons
*: member of the same patent family, corresponding document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDF file on 28-07-2014.
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 1062439 A1</td>
<td>27-12-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6559764 B1</td>
<td>06-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9946520 A1</td>
<td>16-09-1999</td>
</tr>
<tr>
<td>DE 102012002318 A1</td>
<td>08-08-2013</td>
<td>DE 102012002318 A1</td>
<td>08-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013117323 A1</td>
<td>15-08-2013</td>
</tr>
<tr>
<td>DE 102012002304 A1</td>
<td>08-08-2013</td>
<td>DE 102012002304 A1</td>
<td>08-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013117307 A1</td>
<td>15-08-2013</td>
</tr>
<tr>
<td>US 5548516 A</td>
<td>20-08-1996</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 20090299573 A1 [0007] [0008]
- US 20120166032 A1 [0009]