A GAME CONTROLLER
SPIELSTEUERUNG
UNITÉ DE COMMANDE DE JEU

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

Date of publication of application:
05.08.2015 Bulletin 2015/32

Proprietor: Razer (Asia-Pacific) Pte. Ltd.
Singapore 469029 (SG)

Inventors:
• UY, Lawrence King
Singapore 469029 (SG)
• CHAN, Weiming, Gabriel
Singapore 469029 (SG)

Representative: Viering, Jentschura & Partner
mbB
Patent- und Rechtsanwälte
Am Brauhaus 8
01099 Dresden (DE)

References cited:
US-A- 5 087 906
US-B1- 6 288 709

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Technical Field

[0001] Various embodiments generally relate to a gaming device, in particular, a game controller.

Background

[0002] A typical gamepad or hand-held gaming device basically includes joysticks, action buttons, directional gamepads, multifunction triggers and/or (bumper) buttons. FIGs. 1A and 1B respectively show a front view and a side view of an exemplary existing gaming device 100. The gaming device 100 is usually held with a user’s thumbs (not shown) positioned on a top panel 102 triggering joysticks 104, action buttons 106 or directional gamepads 108 while the index fingers (not shown) positioned on a front 110 of the gaming device 100 switching multifunction triggers 112 or buttons 114.

[0003] At times, there are users who place their middle fingers at the front 110 together with their index fingers. However, more than often middle fingers which are positioned at the front 110 are overlapping the index fingers; thereby interferring the index fingers’ movements since the index fingers can actually reach all positions in the front 110. In addition, most of the gamepad have pull triggers 112 which are variable switches that are best triggered by most users’ index fingers due to the index finger’s higher dexterity as compared to their middle fingers.

[0004] Thus, more efficient and improved designs of gaming devices are desirable.

[0005] US5087910A (Laurent Guyot-Sionnest) discloses an electronic keyboard for one-hand operation, more particularly for generating alphanumeric and analog characters and/or processing instructions, comprises a plurality of keys and an electronic circuit connected electrically to said keys in order to interpret the state of the keys and deliver a signal indicative thereof, said electronic circuit also being connected to a display and to external connection. It comprises at least two keys associated with the fingers of a hand other than the thumb and a key associated with the thumb, each key associated with a finger of the hand other than the thumb being adapted to assume three different states in response to said finger and the thumb key can assume five different states in response to the thumb.

[0006] US6288709B1 (Michael A. Willner et. al.) discloses a data entry system has an ergonomic base including upper surface controls which generate a first set of electrical signals, and side surface controls which generate a second set of electrical signals when operated independently. A third set of electrical signals are generated when the side surface controls are operated in combination with the upper surface controls. Data entry system further includes mode selection controls for establishing the first, second and third sets of electrical signals as device control signals responsive to a first mode being selected and respective sets of alphanumeric and keyboard control signals responsive to a second mode being selected.

[0007] US20100109915A1 (John E. Scarboro) discloses an ergonomic system for placing primary inputs on the back, bottom, or sides of an electronic device. By way of example, the system places two primary inputs at each finger position and makes use of a ‘dual-subset’ chordal keyboard input design that effectively doubles the number of available inputs. The result is a system in which the operator’s fingers never need to move from their positions on the backside of the device yet the operator can instantly access character/function sets as large as a complete alphabet, allowing for rapid typing speed and extensive device control, even on a small hand-held electronic device.

[0008] US20040129552A1 (Yoshiyuki Nakade) discloses a multidirectional operation switch. A lower case covers the bottom of substantially a cylindrical upper case. A rocking body is held between the upper case and the lower case to be capable of rocking. The rocking body has a plurality of depressing parts radially projecting from the center thereof, and an operating shaft projecting upwardly therefrom. A plurality of switches are depressed by the plurality of corresponding depressing parts according to rocking of the rocking body to establish or break electrical contact. A resilient member and a tactile feedback member are housed in the lower portion of the rocking body. The tactile feedback member is urged by the resilient member and brought into contact with a recess provided in the lower case.

[0009] US20040135767A1 (Bum-Su Park) discloses a displayed viewing area switching device has a switch support, at least three button switches disposed separately in a radial manner on the switch support, each with operating buttons toward the center of the switch support, a manipulation lever having a plurality of manipulation projections corresponding to the operating buttons of the button switches a lever guide supporting the manipulation lever to slide radially, and a spring member having an elastic force resistant to the radial sliding motion of
the manipulation lever. This configuration allows the manipulation projections to press the corresponding operating buttons by the radial sliding motion of the manipulation lever to generate movement signals moving the displayed viewing area in radial directions.

[0011] US20050255915A1 (Andrew Riggs et. al.) discloses a game controller that has a body, a first input location, a second input location and a first input device. The first input device is adapted to be removably coupled to the body at both the first input location and the second input location.

Summary of the Invention

[0012] In an aspect, the present invention relates to a game controller. The game controller may include: a housing; a plurality of game controls disposed on a first side of the housing; a lever disposed on a second side of the housing; a bracket configured to pivotally hold the lever; a securing means configured to detachably secure the bracket to the second side of the housing, wherein the lever comprises an orifice configured such that the securing means is secured via the orifice; a biasing means disposed within the orifice and abutting the bracket so as to provide a biasing force to the lever; a first switch configured to contact a first end region of the lever; and a second switch configured to contact a second end region of the lever, wherein the lever is configured to pivot between a neutral position in which the lever returns when no force is applied thereon, a first position in which the first switch is activated and a second position in which the second switch is activated.

[0013] In an example, a game controller may be provided. The game controller may include: a housing; a plurality of game controls disposed on a first side of the housing; a lever disposed on a second side of the housing; a first switch configured to contact a first end region of the lever; and a second switch configured to contact a second end region of the lever, wherein the lever is configured to pivot between a neutral position in which the lever returns when no force is applied thereon, a first position in which the first switch is activated and a second position in which the second switch is activated.

[0014] In an example, a lever assembly for a game controller may be provided. The lever assembly includes a lever configured to pivot between a neutral position in which the lever returns when no force is applied thereon, a first position in which the lever moves when a force is applied on one end of the lever and a second position in which the lever moves when another force is applied to another end of the lever; a securing means configured to detachably secure the lever to a game controller; and a bracket configured to hold the securing means to the lever.

Brief Description of the Drawings

[0015] In the drawings, like reference characters generally refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being generally placed upon illustrating the principles of the invention. The dimensions of the various features/elements may be arbitrarily expanded or reduced for clarity. In the following description, various embodiments of the invention are described with reference to the following drawings, in which:

FIG. 1 shows (A) a front view and (B) a side view of an exemplary existing gaming device;
FIG. 2 shows a schematic block diagram of a game controller, in accordance to various embodiments;
FIGs. 3A to 3C show cross-sectional views of an exemplary lever configured to activate switches, in accordance to various embodiments;
FIG. 4 shows a cross-sectional view of an exemplary housing configured to hold a switch assembly including a lever, according to various embodiments;
FIGs. 5A and 5B show perspective view of the game controller as seen from its top and its underneath side respectively, in accordance to various embodiments;
FIG. 5C shows a cross-sectional view of the lever secured to the game controller, in accordance to various embodiments;
FIG. 6 shows (A) a plan view, (B) a side view and (C) an end view of an exemplary game controller, according to various embodiments;
FIG. 7 a schematic block diagram of a lever assembly, in accordance to various embodiments;
FIGs. 8A and 8B respectively show a perspective view and an exploded view of the lever assembly, in accordance to various embodiments;
FIGs. 8C and 8D respectively show a cross-sectional plan view and a cross-sectional side view of the lever assembly, in accordance to various embodiments;
FIG. 8E shows a perspective bottom view of the level assembly, in accordance to various embodiments; and
FIGs. 8F to 8I respectively show a bottom view, a top view, a plan view and a side view of the lever assembly, in accordance to various embodiments.

Detailed Description

[0016] The following detailed description refers to the accompanying drawings that show, by way of illustration, specific details and embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, and logical changes may be made without departing from the scope of the invention. The various embodiments are not necessarily mutually exclusive, as some embodiments can be combined with one or more other embodiments to form new embodiments.

[0017] In order that the invention may be readily un-
understood and put into practical effect, particular embodiments will now be described by way of examples and not limitations, and with reference to the figures.

Various embodiments provide a gaming device having a set of game controls on its top panel and its front including, for example, joysticks, action buttons, directional gamepads, multifunction triggers and/or buttons; and another set of triggers placed on its underside (or bottom), designed specifically for triggering by a user’s middle finger. For example, the top panel and the front may refer to the top panel 102 and the front 110 of FIG. 1A. In some embodiments, the other set of triggers may either share some gaming functions of the buttons triggered by the user’s index finger or simply carry other functions in gaming.

For example, additional multi-function triggering features may be added on an existing gamepad or gaming device for the user’s middle fingers to use so as to provide more advantage in a gaming environment where additional commands with speed is critical in playing and/or winning a game. Utilizing the movement of the fingers such as the middle fingers or the ring fingers or the little fingers (pinkies) therefore adds advantage to the user. Various embodiments provide a middle-finger flick, pull and or push activation switch for a gaming device.

In an aspect, a game controller 200 is provided as shown in FIG. 2. The game controller 200 includes a housing 202; a plurality of game controls 204 disposed on a first side of the housing 202; a lever 206 disposed on a second side of the housing 202; a first switch 208 configured to contact a first end region of the lever 206; and a second switch 210 configured to contact a second end region of the lever 206, wherein the lever 206 is configured to pivot between a neutral position in which the lever 206 returns when no force is applied thereon, a first position in which the first switch 208 is activated and a second position in which the second switch 210 is activated.

In the context of various embodiments, the term “game controller” may interchangably be referred to as gaming controller, gaming device, gamepad, video game controller, game controller unit, controller, controller unit, game console, gaming console, gaming console unit, console unit, gaming input device or gaming input unit. It should be understood and appreciated that a game controller, for example, the game controller 200 may generally refer to any device that is configured to send signals to execute a game program or gaming function. The game program may be but is not limited to a video game program or a computer game program. For example, the game controller 200 may be for use with a PLAYSTATION system (made by Sony Corporation) or a XBOX system (made by Microsoft Corporation).

As used herein, the term “plurality of game controls” refers to input components of the game controller 200 that is assessed and activated by a user to execute a game program or gaming function.

For example, the plurality of game controls 204 may include at least one of a pushbutton, a joystick or a directional pad. For example, the pushbutton, the joystick and the directional pad may be the action button 106, the joystick 104 and the directional gamepad 108 of FIG. 1A, respectively.

For example, the plurality of game controls 204 may be triggered by a user’s thumb(s) and/or index finger(s).

The term “lever” may broadly mean any mechanical device or actuator that can be moved between at least two positions. For example, when the lever 206 is actuated, it usually transmits a force to an additional trigger located at one of the at least two positions. The lever 206 may be in contact with the additional trigger. For example, the additional trigger may be the first switch 208 or the second switch 210.

For example, the lever 206 may be of an elongate structure having end regions that may be configured to contact or make contact with additional triggers located at two positions. In this context, the phrase “configured to contact” generally refers to making direct (physical) contact. For example, when an additional trigger (or switch) is “configured to contact” an end region of a lever, this may mean that a surface of the additional trigger abuts or touches a surface of the end region of the lever. In a different example, the phrase “configured to contact” may refer to making indirect contact, for example, the additional trigger may come into direct contact with an intermediate component such as an adaptor or a gear, which then make direct contact to the end region of the lever. By contacting the additional trigger to the end region of the lever, an exerting force is applied onto the additional trigger; thereby activating it.

The lever 206 may be pivotable about a pivot point to move from one of the two positions to the other. The lever 206 may resume the neutral position which is a position where the lever does not make contact with any of the additional triggers located at the two positions. For example, if the contact surfaces of the additional triggers lie on a plane, the neutral position may be a position where the lever is parallel to this plane. The lever 206 may resume the neutral position when no force is applied on the lever 206. The lever 206 may resume the neutral position due to a bias, for example, a spring. In other embodiments, the lever 206 may return to its neutral position due to the spring bias of the switches 208 and 210.

As used herein, the pivot point may be proximate to the second side of the housing. For example, the pivot point may be arranged to be located inside the housing or sitting on a printed circuit board (PCB) within the housing or an internal part of the housing such that the lever pivoting about the pivot point is disposed on the second side of the housing. In other examples, the pivot point may be arranged at the second side of the housing.

As used herein, the phrase “end region” may refer to the corners, edges, ends or substantially ends of
a lever. The end region may have a surface, for example, a bottom surface, configured to contact or abut the switch (e.g., the first switch 208 or the second switch 210).

In various embodiments, the lever 206 may be configured to pivot from the first position to the second position via the neutral position. The lever 206 may be configured to pivot about a pivot point, as defined above.

In various embodiments, the lever 206 may be configured to pivot from the second position to the first position via the neutral position.

As used herein, the term "switch" usually refers to an electrical or electromechanical device with contacts and by changing the position of the switch alters the states of the contacts. For example, one state may relate to turning a device on while another state may relate to turning the device off. In this context, the switch does not refer to a power on-off switch for the game controller.

The first switch 208 and the second switch 210 may be but are not limited to biased switches (e.g. push-button switches), toggle switches, or a combination of both.

In one example, the lever 206 and the first and second switches 208, 210 may be integrated into a switch package. For example, the switch package may be a rocker switch.

As used herein, the term "activated" may interchangeably be referred to as triggered, turned on, initiated, or started.

In the context of various embodiments, the term "side" with respect to the housing 202 means a face of the housing 202. For example, the "side" may refer but is not limited to the top panel 102 or the front 110 of the gaming device of FIG. 1B. The underside or bottom as opposed to the top panel 102 may also be referred to as a "side" of housing 202.

In various embodiments, the first side of the housing 202 may be an upper side of the housing 202 and the second side of the housing 202 may be an underside of the housing 202.

Various embodiments provide a game controller with additional triggers or switches which may be activated by actuating a lever which is configured to make contact with the additional triggers. The additional triggers may be located on the underside of a housing of the game controller while the upper side of the housing is the side accomodating a plurality of game controls which are or may be triggered by a user's thumb(s) and/or index finger(s). The lever may be actuated by the movement of a finger, for example, the user's middle finger when the game controls are triggered using the user's thumb(s) and/or index finger(s). The additional triggers are not the same as and do not refer to the game controls. In some examples, the lever may also be actuated by the user's ring finger or little finger (pinky). The lever may be best actuated by the movement of the user's middle finger due to the middle finger's higher dexterity as compared to the ringer finger and little finger. The lever is pivotable about a pivot point and may allow the user's finger to glide along its surface to reach and activate the additional triggers which are usually placed apart from one another.

The lever advantageously provides a guide for the user's fingers so that the user can move from one of the additional triggers to another quickly and accurately. Such fast activation of the additional triggers are usually required in gaming in order to achieve good gaming results or to win a game. The additional trigger may be activated when the lever is actuated by a force exerted into the additional trigger, for example, the force may be exerted directly from above the additional trigger which allows the force to be in the same direction as the movement of the additional trigger. In another example, the additional trigger may be activated and move in a direction when the lever is actuated by a force applied along the lever, the force being in another direction substantially normal to the direction in which the additional trigger moves. In some examples, a force may be applied anywhere along the lever away from the pivot point to activate the additional triggers.

In various embodiments, the first switch 208 may be activated when a force into the direction of the first switch 208 is applied to the lever 206.

In various embodiments, the second switch 210 may be activated when another force into the direction of the second switch 210 is applied to the lever 206.

In further embodiments, the lever 206 may be configured to pivot about a pivot point to the first position or the second position by exerting a pulling force or a flicking force or a pushing force on the lever 206 into the direction of the first switch 208 and the direction of the second switch 210, respectively, wherein the pushing force is a force exerted in an opposite direction to the flicking force.

FIG. 3A shows an exemplary lever 300 configured to activate a first switch 302 and a second switch 304 in accordance to various embodiments. In FIG. 3A, the lever 300 may experience a pulling force or a flicking force or a pushing force, for example, as shown by left-pointing arrows 306, 308 or right-pointing arrows 310, 312 or upward pointing arrows 314, 316, respectively.

In the context of various embodiments, the pulling force and/or the flickering force may be a force exerted along the lever 300 and is in a direction normal to the actuation movement of the first switch 302 or the second switch 304. The pushing force may be a force exerted on the lever 300 and into the first switch 302 or the second switch 304, i.e., in the same direction as the actuation movement of the first switch 302 or the second switch 304.

For example, FIG. 3B shows the activation of the first switch 302 by exerting the pulling force, for example, as shown by the left-pointing arrows 306, 308 or the pushing force, for example, as shown by the upward pointing arrows 314 on the lever 300.

For example, FIG. 3C shows the activation of the second switch 304 by exerting a flicking force, for example, as shown by the right-pointing arrows 310, 302
or a pushing force, for example, as shown by the upward pointing arrows 316 on the lever 300.

[0047] For example, in various contexts, the lever 300, the first switch 302 and the second switch 304 may be the lever 206, the first switch 208 and the second switch 210 of FIG. 2.

[0048] In various embodiments, the lever 206 (for example, the lever 300 of FIGs. 3A to 3C) may be an arc-shaped lever having a concave part 318 located between the first end region 320 and the second end region 322 of the lever 300, wherein the first end region 320 is located opposite to the second end region 322.

[0049] The end region may further include to a leg or an extension or a protrusion. For example, the leg, the extension or the protrusion may be formed or disposed on another surface of the end region, this other surface being different from the surface contacting the switch. In one example, the other surface may be the top surface with reference to the bottom surface of the end region which may be configured to contact or abut the switch. The concave part 318 may be located between the leg, the extension or the protrusion of the first end region 320 and the leg, the extension or the protrusion of the second end region 322 of the lever 300.

[0050] In the context of various embodiments, the phrase "concave part" may be but is not limited to being interchangably referred to as a groove, a sunken area or a sunken part, a caved part, a curved part, a dip, a dish, a crescent part/feature, a moon-shaped part/feature, or a recessed portion relative to the top edge of the leg/extension/protrusion. In some examples, a plurality of projections such as "small bumps" may be formed on the leg, the extension or the protrusion. The plurality of projections or small bumps provide better grip or more friction between the leg, the extension or the protrusion and a user's finger contacting the leg, the extension or the protrusion during gameplay.

[0051] In various embodiments, the lever 206 (for example, the lever 300 of FIGs. 3A to 3C) may be configured to pivot about the pivot point to the first position by exerting the pulling force, for example, as shown by the left-pointing arrow 306 from inside of the concave part 318 towards the first end region 320 of the lever 300.

[0052] In various embodiments, the lever 206 (for example, the lever 300 of FIGs. 3A to 3C) may be configured to pivot about the pivot point to the second position by exerting the flickering force, for example, as shown by the right-pointing arrow 312 from inside of the concave part 318 towards the second end region 322 of the lever 300.

[0053] In various embodiments, the lever 206 (for example, the lever 300 of FIGs. 3A to 3C) may be configured to pivot about the pivot point to the first position or the second position by exerting the pushing force, for example, as shown by the upward pointing arrows 314, 316 onto the first or second end region 320, 322 of the lever 300 respectively.

[0054] In various embodiments, the second switch 210 may be deactivated when the lever 206 is in the first position. The first switch 208 may be deactivated when the lever 206 is in the second position. As used herein, the term "deactivated" has the opposite meaning to the term "activated" as defined hereinabove and may be interchangably referred to as untriggered, turned off, or ended.

[0055] In further embodiments, the lever 206 may be configured to pivot about a pivot point to the first position in which the first switch 208 is activated to send a first signal indicating that a first gaming function is to be executed; and the lever 206 may be configured to pivot about the pivot point to the second position in which the second switch 210 is activated to send a second signal indicating that a second gaming function is to be executed. The pivot point may be as defined above.

[0056] In the context of various embodiments, the term "signal" generally refers to an electrical signal and may mean a message or an instruction. The term "indicating" refers to reflecting or representing. The phrase "gaming function" generally means an algorithm to perform an action or an instruction in a video or computer game.

[0057] In various embodiments, irrespective of the lever 206 being configured to pivot about the pivot point to the first or second position, the first signal may be the same as the second signal. It should be appreciated that the term "same" may mean identical, equivalent, exact duplicate, substantially identical, or substantially equivalent.

[0058] In other embodiments, the first signal may be different from the second signal.

[0059] In various embodiments, the plurality of game controls 204 and the lever 206 may be configured to be actuated to send a plurality of signals indicating that a plurality of gaming functions is to be executed.

[0060] In further embodiments, the plurality of game controls 204 may be configured to be actuated to send a plurality of signals indicating that a plurality of gaming functions is to be executed. The lever 206 may be configured to pivot about a pivot point to the first position in which the first switch 208 is activated or the second position in which the second switch 210 is activated to send another signal indicating that at least part of the plurality of gaming functions is to be executed.

[0061] In yet further embodiments, the plurality of game controls 204 may be configured to be actuated to send a plurality of signals indicating that a plurality of gaming functions is to be executed. The lever 206 may be configured to pivot about a pivot point to the first position in which the first switch 208 is activated or the second position in which the second switch 210 is activated to send another signal indicating that another gaming function different from the plurality of gaming functions is to be executed.

[0062] In various embodiments, the lever may also be configured to switch to the neutral position to send a signal indicating that a gaming function is to be executed.

[0063] In various embodiments, the game controller
may further include a pair of handles; and if a user plants each palm to the respective handle, a first finger and a second finger of a hand of the user assess the plurality of game controls 204 on the first side of the housing 202 and the lever 206 disposed on the second side of the housing 202 is a position to be operable by a third finger of the hand. For example, the pair of handles may be the handles 606, 608 of FIG. 6A. The lever 206 may have a concave part, for example, the concave part 318 of FIG. 3A for the third finger of the hand such that the lever 206 can be pivoted about a pivot point to the first position by pressing the first end region of the lever 206 with an upper side of the third finger and to the second position by pressing the second end region of the lever with an underside of the third finger.

[0064] In this context, the underside of the third finger refers to a fingerprinted surface of the hand.

[0065] In various embodiments, the first, second and third fingers of the hand may refer to a thumb, an index finger and a middle finger of the hand, respectively.

[0066] In various embodiments, the lever 206 may be disposed at a substantially centre region of the second side of the housing 202.

[0067] It should be appreciated and understood that the term "substantially" may include "exactly" and "similar" which is to an extent that it may be perceived as being "exact". For illustration purposes only and not as a limiting example, the term "substantially" may be quantified as a variance of +/- 5% from the exact or actual. For example, the phrase "A is (at least) substantially the same as B" may encompass embodiments where A is exactly the same as B, or where A may be within a variance of +/- 5%, for example of a value, of B, or vice versa.

[0068] The lever 206 may be disposed anywhere on the second side of the housing 202 such that the lever 206 may be assessed or reached by at least the middle finger.

[0069] In various embodiments, the housing 202 may be configured to hold a switch assembly comprising the lever 206, the first switch 208 and the second switch 210. FIG. 4 shows an exemplary housing 400 which may refer to the housing 202 of FIG. 2 according to various embodiments. In FIG. 4, the housing 400 holds the switch assembly 402 such that the pivot point 403 of the lever 406 may be configured to sit or reside in a notch or cavity 404 of the housing 400 to provide the pivoting of the lever 406. For example, more specifically in FIG. 4, a frame 410 of the housing 400 may hold the PCB switch assembly 402. In an example, the notch 404 may be formed as part of the frame 410 or as part of the PCB assembly 402.

[0070] The lever 406 may refer to the lever 206 of FIG. 2. For example, the lever 406 may be a moon-shaped rocker for a user to place his finger either inside a crescent/concave feature 412 of the moon-shaped rocker or outside. The rocker may also be pushed underneath when the finger is below pushing features 414. When finger is outside the crescent/concave feature 412, for example, at least near the pushing features 414, a flicking action and a pulling action may still be done.

[0071] Surfaces 416 of the lever 406 which extend from the notch 404 may be tapered and then level with the contact surfaces 418, 420.

[0072] In an embodiment, the switch assembly 402 may be a printed circuit board (PCB) switch assembly. A PCB switch assembly refers to a circuit board including printed tracks for conducting electrical signals upon actuating of the switch(es) connected to the PCB.

[0073] In various embodiments, the game controller may further include a cover, for example, the cover 408 of FIG. 4, configured to hold parts of the game controller within the housing 400. For example, the cover 408 prevents any parts from falling out of the game controller.

[0074] In various embodiments, the game controller may further include another lever disposed on the second side of the housing 202, a third switch configured to contact a first end region of the other lever; and a fourth switch configured to contact a second end region of the other lever.

[0075] In the context of various embodiments, the other lever may be defined as the lever 206 above. The phrases "switch" and "end region" may be defined as above.

[0076] In one embodiment, the other lever may be positioned adjacent to the lever 206.

[0077] As used herein, the term "adjacent" refers to neighbouring, in close proximity, next to, or on the side of.

[0078] In various embodiments, the lever 206 and the other lever may be positioned about 1 cm to about 5 cm apart from each other.

[0079] The lever 206 and the other lever may be but is not limited to be positioned about 1.5 cm, about 2.0 cm, about 2.5 cm, about 3.0 cm, about 3.5 cm, about 4.0 cm or about 4.5 cm apart from each other. It should be appreciated that the separation distance between the lever 206 and the other lever may taken any value as long as the user is able to hold the game controller by its handles and allow at least one of his middle fingers, index fingers or little fingers reach the lever 206 and the other lever.

[0080] In various embodiments, the other lever may be configured to pivot about another pivot point to a position in which the third switch is activated to send a third signal indicating that a third gaming function is to be executed. The other lever may also be configured to pivot about the other pivot point to another position in which the fourth switch is activated to send a fourth signal indicating that a fourth gaming function is to be executed.

[0081] The terms "signal", "indicating", and "gaming function" are as defined above.

[0082] In some embodiments, irrespective of the other lever being configured to pivot about the other pivot point to the position or the other position of the other lever, the third signal may be the same as the fourth signal.

[0083] In other embodiments, the third signal may be different from the fourth signal.

[0084] In an embodiment, the third signal may be the same as the first signal.
In another embodiment, the fourth signal may be the same as the second signal.

In various embodiments, same signals may indicate to execute the same gaming functions, while different signals may indicate to execute different gaming functions.

The lever 206 and/or the other lever may be actuated alone or in combination with each other and/or with the plurality of game controls 204 to send different signals for executing different gaming functions.

In various embodiments, the lever 206 may be detachable from the second side of the housing 202. As used herein, the term "detachable" refers to the lever 206 being able to be connected (secured) to or removed from the second side of housing 202. By detaching the lever 206, the game controller 200 may be stored away compactly and easily. A storage unit or bag for a conventional game controller may be used to contain the game controller 200 with the lever 206 detached. Further, transporting the game controller 200 with the lever 206 detached may also be desirable so that the lever 206 does not protrude from the game controller 200 and would therefore be less susceptible to damage during transportation.

Additionally, the game controller 200 may be configured to perform with enhancements provided by the lever 206 or to perform as a conventional game controller when the lever 206 is detached.

The game controller 200 may further include a securing means configured to detachably secure the lever 206 to the second side of the housing 202. For example, the "securing means" may be but is not limited to a screw.

In an example, levers 500, 502, which are detachable from a game controller 504, are shown in FIG. 5A illustrating a perspective view of the game controller 504 as seen from its top side accommodating a plurality of game controls 506, and in FIG. 5B illustrating another perspective view of the game controller 504 on its underneath (bottom) side having respective recesses 508, 510 to receive the levers 500, 502. The levers 500, 502 are detachably secured by respective screws 512, 514. The recesses 508, 510 may be formed on the housing at the underneath side of the game controller 504.

For example, each of the levers 500, 502 may be the lever 206 of FIG. 2 and the game controller 504 may be the game controller 200 of FIG. 2.

To further illustrate, FIG. 5C shows a cross-sectional view of the lever 500 secured to the game controller 504 by the screw 512 via the respective recess 508 as an example. The lever 500 has contact surfaces 516, 518 configured to contact a first switch 520 and a second switch 522, respectively. The first switch 520 and the second switch 522 are placed on a printed circuit board 524. For example, the first switch 520 may be the first switch 208 of FIG. 2 and the second switch 522 may be the second switch 210 of FIG. 2.

In various embodiments, the lever 206 may further include a biasing means configured to provide a biasing force to the lever 206. For example, the "biasing means" may be made of a resilient material. The biasing means may be but is not limited to a spring. For example, in FIG. 5C, the biasing means or spring 526 may be arranged between the screw 512 (i.e., the securing means) and the lever 500. The spring 526 may have a diameter equal to or smaller than the head of the screw 512 which is in contact with the spring 526. When the lever 500 is secured to the game controller 504, the spring 526 is compressed; thereby providing a cushioning effect between the screw 512 and the lever 500. When the lever 500 is detached from the game controller 504, the spring 526 is extended to provide a pushing force to more easily separate the lever 500 from the game controller 504.

To detachably secure the lever 500 to the game controller 504, the lever 500 may have an orifice 528 which allows a screwdriver to access the head of the screw 512 so that a user may fasten the screw 512 to the recess 508 using the screwdriver. The spring 526 and the head of the screw 512 may be held in place in the orifice 528 by a tapered edge 530 of the orifice 528. In some example, the spring 526 may have a smaller diameter than that of the head of the screw 512. The description above may be similarly applicable to the lever 502 having its respective screw 514 securable to its respective recess 510.

In various embodiments, the game controller 200 may further include a bracket configured to hold the securing means to the lever 206. In this embodiment, the lever 206 may be configured to pivot about the bracket to the first position and the second position.

FIG. 6A shows a plan view of an exemplary game controller 600 according to various embodiments. The game controller 600 may refer to the game controller 200 of FIG. 2. FIGs. 6B and 6C respectively show a side view and an end view of the exemplary game controller 600 of FIG. 6A.

In FIGs. 6A to 6C, the levers 602, 604 located at the underside (or bottom) of the game controller 600 (or gamepad) are capable of being triggered using the middle finger of a user by using either a pulling action, a flicking action or a pushing action. A plurality of game controls 610 (FIG. 6B) are located on the upper side of the game controller 600 and are capable of being triggered using the user's thumb or index finger. For example, the levers 602, 604 may be referred to the lever 206 of FIG. 2, or the lever 300 of FIGs. 3A to 3C, or the lever 406 of FIG. 4, or the levers 500, 502 of FIG. 5A. FIGs. 3A to 3C, 4 and 5C provide respective cross-sectional views of the lever seen from the dotted line 6000 of FIG. 6A. In an example, the plurality of game controls 610 may be referred to the plurality of game controls 204 of FIG. 2.

In another aspect, a lever assembly 700 for a game controller is provided as shown in FIG. 7. In FIG. 7, the lever assembly 700 may include a lever 702 configured to pivot between a neutral position in which the lever 702 returns when no force is applied thereon, a first aspect.
position in which the lever 702 moves when a force is applied on one end of the lever 702 and a second position in which the lever 702 moves when another force is applied to another end of the lever 702; a securing means 704 configured to detachably secure the lever 702 to a game controller; and a bracket 706 configured to hold the securing means 704 to the lever 702.

In various embodiments, the lever assembly 700 may further include a biasing means configured to provide a biasing force to the lever 702.

The terms "lever", "game controller", "side", "activated", "switch", "securing means", and "biasing means" may be as defined above.

For example, the lever 702 may be pivotable about the bracket 708. For example, the lever 802 may be pivotable about the bracket 808. For example, the lever 802 may be adapted to pivot about the bracket.

FIGs. 8A to 8I, various views of an exemplary lever assembly 800 (e.g., may be the lever assembly 700 of FIG. 7) are shown. FIGs. 8A and 8B respectively show a perspective view and an exploded view of the lever assembly 800 including a lever 802, a securing means 804, a biasing means 806 arranged between the lever 802 and the securing means 804, and a bracket 808 configured to hold the securing means 804 to the lever 802. The lever 802 may be pivotable about the bracket 808. In other words, the bracket 808 may act as a fulcrum (or pivot) support means for the lever 802. The bracket 808 may be securable to a game controller (not shown in FIGs. 8A and 8B) by the securing means 804.

As can be seen in FIG. 8B, the securing means 804 includes a head 812 having a diameter that is larger than or similar to the diameter of the biasing means 806, more specifically, the inner diameter of the biasing means 806. This is to allow the head 812 to contact or anchor against an end of the biasing means 806 such that the biasing force may be exerted by the biasing means 806 based on a securing action or a unsecuring (detaching) action of the securing means to a game controller (not shown in FIG. 8B).

The biasing means 806 and the securing means 804 are disposed within an orifice 810 formed in the lever 802. For example, the orifice 810 may be the orifice 528 of FIG. 5C. The biasing means 806 and the head 812 of the securing means 804 may be held in place in the orifice 810 by a tapered edge of the orifice 810. In one non-limiting example, the biasing means 806 may have a smaller diameter than that of the head 812 of the securing means 804. As a result, the larger head 812 may function as a blocking mechanism to prevent the securing means 804 from being displaced through the orifice 810 by having the tapered edge of the orifice 810 functioning as the block mechanism.

In cross-sectional plan and side views of the lever assembly 800 of FIGs. 8C and 8D as seen from dotted lines A-A' and B-B' of FIG. 8A, respectively, one end of the biasing means 806 is abutting the bracket 808 while another end of the biasing means 806 is abutting the lever 802 toward the narrowed or tapered edge of the orifice 810. This narrowed or tapered edge may appear as or may be represented by protrusions 814 of the lever 802 as seen in FIGs. 8C and 8D. Similarly to the levers 500, 502 of FIG. 5A, to detachably secure the lever 802 to the game controller, a screwdriver may be allowed to access the head 812 of the securing means 804 via the orifice 810 of the lever 802 such that a user may fasten the securing means 804 to a recess of the housing of the game controller (not shown in FIG. 8) using the screwdriver. Upon securing the lever assembly 800 to the game controller, contact surfaces 820 of the lever 802 may be configured to contact the first switch and the second switch of the game controller respectively. For example, the first switch may be the first switch 822 of FIG. 5A and the second switch may be the second switch 820 of FIG. 5A.

The bracket 808 may act as a clamp to secure the securing means 804 to the lever 802. The bracket 808 includes fasteners 816 to hold in a clamped configuration as shown in a perspective bottom view of the lever assembly 800 in FIG. 8E. The fasteners 816 may be but are not limited to rivets (also seen in FIG. 8B). The lever 802 may be pivotable about the bracket 808. For example, the bracket 808 may provide a fulcrum (or pivot) support means for the lever 802.

Such an arrangement of the lever assembly 800 allows the biasing means 806 and the securing means 804 to be arranged to the lever 802.

The lever 802 may be configured to pivot about the bracket 808 to the first position and the second position. For example, in FIG. 8B, extensions 818 from the bracket 808 may be received by respective cavities 822 of the lever 802. The lever 802 may rotate about these extensions 818 to a neutral position, the first position and the second position. In a different example, the extensions may be provided on the lever while the cavities receiving these extensions may be located on the bracket. It should be understood and appreciated that the extensions and the receiving cavities may be formed on the lever and the bracket in any configuration as long as the lever may be adapted to pivot about the bracket.

FIGs. 8F to 8I respectively show a bottom view, a top view, a plan view and a side view of the lever assembly 800 as seen from directions denoted by respective arrows 8000, 8002, 8004, 8006 in FIG. 8E.

For example, the lever 802 may be the lever 206 of FIG. 2, or the lever 300 of FIGs. 3A to 3C, or the lever 406 of FIG. 4, or the levers 500, 502 of FIG. 5A, or...
the levers 602, 604 of FIG. 6 or the lever 702 of FIG. 7. The securing means 804 may be the securing means 704 of FIG. 7, or the respective screws 512, 514 of FIG. 5A; and the biasing means 806 may be the spring 526 of FIG. 5C.

[0113] In the context of various embodiments, the term "about" as applied to a numeric value encompasses the exact value and a variance of +/- 5% of the value.

[0114] While the invention has been particularly shown and described with reference to specific embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the scope of the invention as defined by the appended claims. The scope of the invention is thus indicated by the appended claims and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced.

Claims

1. A game controller (200) comprising:
 a housing (202);
 a plurality of game controls (204) disposed on a first side of the housing (202);
 a lever (206, 300, 500, 802) disposed on a second side of the housing (202);
 a bracket (808) configured to pivotally hold the lever (206, 300, 500, 802);
 a securing means (512, 804) configured to detachably secure the bracket (808) to the second side of the housing (202), characterised by the lever (206, 300, 500, 802) comprising an orifice (528, 810) configured such that the securing means is secured via the orifice (528, 810); a biasing means (526, 806) disposed within the orifice (528, 810) and abutting the bracket (808) so as to provide a biasing force to the lever (206, 300, 500, 802);
 a first switch (208, 302) configured to contact a first end region of the lever (206, 300, 500, 802); and
 a second switch (210, 304) configured to contact a second end region of the lever (206, 300), wherein the lever (206, 300) is configured to pivot between a neutral position in which the lever (206, 300, 500, 802) returns when no force is applied thereon, a first position in which the first switch (208, 302) is activated and a second position in which the second switch (210, 304) is activated.

2. The game controller (200) of claim 1, wherein the first side of the housing (202) is an upper side of the housing (202) and the second side of the housing (202) is an underside of the housing (202).

3. The game controller (200) of claim 1, wherein the lever (206, 300, 500, 802) is configured to pivot from the first position to the second position via the neutral position.

4. The game controller (200) of claim 1, wherein the first switch (208, 302) is activated when a force into the direction of the first switch (208, 302) is applied to the lever (206, 300, 500, 802).

5. The game controller (200) of claim 1, wherein the lever (206, 300, 500, 802) is configured to pivot between the first position and the second position, about a pivot point, by exerting: a pulling force along the lever (206, 300, 500, 802) and in a direction normal to the actuation movement of the first switch (208, 302) or the second switch (210, 304), or a flicking force along the lever (206, 300, 500, 802) and in a direction normal to the actuation movement of the first switch (208, 302) or the second switch (210, 304), or a pushing force on the lever (206, 300, 500, 802) into the direction of the first switch (208, 302) and the direction of the second switch (210, 304), wherein the pulling force is a force exerted in an opposite direction to the flicking force.

6. The game controller (200) of claim 1, wherein the second switch (210, 304) is deactivated when the lever (206, 300, 500, 802) is in the first position.

7. The game controller (200) of claim 1, wherein the first switch (208, 302) is deactivated when the lever (206, 300, 500, 802) is in the second position.

8. The game controller (200) of claim 1, wherein the lever (206, 300, 500, 802) is configured to pivot about a pivot point to the first position in which the first switch (208, 302) is activated to send a first signal indicating that a first gaming function is to be executed; and wherein the lever (206, 300, 500, 802) is configured to pivot about the pivot point to the second position in which the second switch (210, 304) is activated to send a second signal indicating that a second gaming function is to be executed.

9. The game controller (200) of claim 8, wherein irrespective of the lever (206, 300, 500, 802) being configured to pivot about the pivot point to the first or second position, the first signal is the same as the second signal.

10. The game controller (200) of claim 1, wherein the plurality of game controls (204) and the lever (206,
300, 500, 802) are configured to be actuated to send a plurality of signals indicating that a plurality of gaming functions is to be executed.

11. The game controller (200) of claim 1, wherein the plurality of game controls (204) are configured to be actuated to send a plurality of signals indicating that a plurality of gaming functions is to be executed; and wherein the lever (206, 300, 500, 802) is configured to pivot about a pivot point to the first position in which the first switch (208, 302) is activated or the second position in which the second switch (210, 304) is activated to send another signal indicating that at least part of the plurality of gaming functions is to be executed.

12. The game controller (200) of claim 1, wherein the lever (206, 300, 500, 802) is disposed at a centre region of the second side of the housing (202).

13. The game controller (200) of claim 1, further comprising a cover (408) configured to hold parts of the game controller (200) within the housing (202).

Patentansprüche

1. Eine Spielsteuereinrichtung (200), aufweisend:
 ein Gehäuse (202),
 eine Mehrzahl von Spielsteuerungen (204), die an einer ersten Seite des Gehäuses (202) angeordnet sind,
 einen Hebel (206, 300, 500, 802), der an einer zweiten Seite des Gehäuses (202) angeordnet ist,
 eine Halterung (808), die konfiguriert ist, um den Hebel (206, 300, 500, 802) schwenkbar zu halten,
 ein Sicherungsmittel (512, 804), das konfiguriert ist, um die Halterung (808) lösbar an der zweiten Seite des Gehäuses (202) zu sichern,
 dadurch gekennzeichnet, dass der Hebel (206, 300, 500, 802) eine Öffnung (528, 810) aufweist, die derart konfiguriert ist, dass das Sicherungsmittel über die Öffnung (528, 810) gesichert ist,
 ein Vorspannmittel (526, 806), das innerhalb der Öffnung (528, 810) angeordnet ist und an die Halterung (808) anstößt, um eine Vorspannkraft für den Hebel (206, 300, 500, 802) bereitzustellen,
 einen ersten Schalter (208, 302), der konfiguriert ist, um einen ersten Endbereich des Hebels (206, 300, 802) zu kontaktieren, und einen zweiten Schalter (210, 304), der konfiguriert ist, um einen zweiten Endbereich des Hebels (206, 300) zu kontaktieren, wobei der Hebel (206, 300) konfiguriert ist, um zwischen einer Neutralstellung, in der der Hebel (206, 300, 500, 802) zurückspringt, wenn keine Kraft darauf aufgebracht wird, einer ersten Stellung, in der der erste Schalter (208, 302) aktiviert ist, und einer zweiten Stellung, in der der zweite Schalter (210, 304) aktiviert ist, geschwenkt zu werden.

2. Die Spielsteuereinrichtung (200) gemäß Anspruch 1, wobei die erste Seite des Gehäuses (202) eine Oberseite des Gehäuses (202) ist und die zweite Seite des Gehäuses (202) eine Unterseite des Gehäuses (202) ist.

3. Die Spielsteuereinrichtung (200) gemäß Anspruch 1, wobei der Hebel (206, 300, 500, 802) konfiguriert ist, um aus der ersten Stellung über die Neutralstellung in die zweite Stellung geschwenkt zu werden.

4. Die Spielsteuereinrichtung (200) gemäß Anspruch 1, wobei der erste Schalter (208, 302) aktiviert wird, wenn eine Kraft in die Richtung des ersten Schalters (208, 302) auf den Hebel (206, 300, 500, 802) aufgebracht wird.

5. Die Spielsteuereinrichtung (200) gemäß Anspruch 1, wobei der Hebel (206, 300, 500, 802) konfiguriert ist, um zwischen der ersten Stellung und der zweiten Stellung um einen Drehpunkt geschwenkt zu werden, indem ausgeübt wird:
 eine Zugkraft entlang dem Hebel (206, 300, 500, 802) und in einer Richtung, die senkrecht zu der Betätigungsrichtung des ersten Schalters (208, 302) oder des zweiten Schalters (210, 304) ist, oder
 eine Umschaltkraft entlang dem Hebel (206, 300, 500, 802) und in einer Richtung, die senkrecht zu der Betätigungsrichtung des ersten Schalters (208, 302) oder des zweiten Schalters (210, 304) ist, oder
 eine Druckkraft auf den Hebel (206, 300, 500, 802) in die Richtung des ersten Schalters (208, 302) und die Richtung des zweiten Schalters (210, 304), wobei die Zugkraft eine Kraft ist, die in einer entgegengesetzten Richtung zu der Umschaltkraft ausgeübt wird.

6. Die Spielsteuereinrichtung (200) gemäß Anspruch 1, wobei der zweite Schalter (210, 304) deaktiviert ist, wenn der Hebel (206, 300, 500, 802) in der ersten Stellung ist.

7. Die Spielsteuereinrichtung (200) gemäß Anspruch 1, wobei der erste Schalter (208, 302) deaktiviert ist,
wenn der Hebel (206, 300, 500, 802) in der zweiten Stellung ist.

8. Die Spielsteuereinrichtung (200) gemäß Anspruch 1,

wobei der Hebel (206, 300, 500, 802) konfiguriert ist, um einen Drehpunkt in die erste Stellung, in der der erste Schalter (208, 302) aktiviert ist, geschwenkt zu werden, um ein erstes Signal auszusenden, das anzeigt, dass eine erste Spielfunktion auszuführen ist, und wobei der Hebel (206, 300, 500, 802) konfiguriert ist, um den Drehpunkt in die zweite Stellung, in der der zweite Schalter (210, 304) aktiviert ist, geschwenkt zu werden, um ein zweites Signal auszusenden, das anzeigt, dass eine zweite Spielfunktion auszuführen ist.

9. Die Spielsteuereinrichtung (200) gemäß Anspruch 8, wobei unabhängig davon, dass der Hebel (206, 300, 500, 802) konfiguriert ist, um den Drehpunkt in die erste oder die zweite Stellung geschwenkt zu werden, das erste Signal gleich wie das zweite Signal ist.

10. Die Spielsteuereinrichtung (200) gemäß Anspruch 1, wobei die Mehrzahl von Spielsteuerungen (204) und der Hebel (206, 300, 500, 802) konfiguriert sind, um betätigt zu werden, um eine Mehrzahl von Signalen auszusenden, die anzeigen, dass eine Mehrzahl von Spielfunktionen auszuführen ist.

11. Die Spielsteuereinrichtung (200) gemäß Anspruch 1,

wobei die Mehrzahl von Spielsteuerungen (204) konfiguriert ist, um betätigt zu werden, um eine Mehrzahl von Signalen auszusenden, die anzeigen, dass eine Mehrzahl von Spielfunktionen auszuführen ist, und wobei der Hebel (206, 300, 500, 802) konfiguriert ist, um einen Drehpunkt in die erste Stellung, in der der erste Schalter (208, 302) aktiviert ist, oder die zweite Stellung, in der der zweite Schalter (210, 304) aktiviert ist, geschwenkt zu werden, um ein anderes Signal auszusenden, das anzeigt, dass mindestens ein Teil der Mehrzahl von Spielfunktionen auszuführen ist.

12. Die Spielsteuereinrichtung (200) gemäß Anspruch 1, wobei der Hebel (206, 300, 500, 802) in einem zentralen Bereich der zweiten Seite des Gehäuses (202) angeordnet ist.

13. Die Spielsteuereinrichtung (200) gemäß Anspruch 1, ferner aufweisend eine Abdeckung (408), die konfiguriert ist, um Teile der Spielsteuereinrichtung (200) innerhalb des Gehäuses (202) zu halten.

Revendications

1. Contrôleur de jeu (200) comprenant :

un logement (202) ;
une pluralité de commandes de jeu (204), disposées sur un premier côté du logement (202) ; un levier (206, 300, 500, 802), disposé sur un second côté du logement (202) ;
un support (808), configuré de façon à tenir de manière pivotante le levier (206, 300, 500, 802) ; des moyens de fixation (512, 804), configurés de façon à fixer de manière amovible le support (808) sur le second côté du logement (202) ;
caractérisé par le fait que le levier (206, 300, 500, 802) comprend :

un orifice (528, 810), configuré de telle sorte que les moyens de fixation soient fixés par l’intermédiaire de l’orifice (528, 810) ; des moyens de sollicitation (526, 806), disposés à l’intérieur de l’orifice (528, 810), et qui viennent en butée contre le support (808) de façon à fournir une force de sollicitation au levier (206, 300, 500, 802) ; un premier commutateur (208, 302), configuré de façon à entrer en contact avec une première région d’extrémité du levier (206, 300, 500, 802) ; et un second commutateur (210, 304), configuré de façon à entrer en contact avec une seconde région d’extrémité du levier (206, 300) ;
dans lequel le levier (206, 300) est configuré de façon à pivoter entre une position neutre dans laquelle le levier (206, 300, 500, 802) revient quand aucune force n’y est appliquée, une première position dans laquelle le premier commutateur (208, 302) est actionné, et une seconde position dans laquelle le second commutateur (210, 304) est actionné.

2. Contrôleur de jeu (200) selon la revendication 1, dans lequel le premier côté du logement (202) est le côté supérieur du logement (202), et le second côté du logement (202) est le côté inférieur du logement (202).

3. Contrôleur de jeu (200) selon la revendication 1, dans lequel le levier (206, 300, 500, 802) est configuré de façon à pivoter à partir de la première position vers la seconde position par l’intermédiaire de la position neutre.
4. Contrôleur de jeu (200) selon la revendication 1, dans lequel le premier commutateur (208, 302) est actionné quand une force dans la direction du premier commutateur (208, 302), est appliquée au levier (206, 300, 500, 802).

5. Contrôleur de jeu (200) selon la revendication 1, dans lequel le levier (206, 300, 500, 802) est configuré de façon à pivoter entre la première position et la seconde position, autour d’un point de pivotement, en exerçant :

 une force de traction le long du levier (206, 300, 500, 802), et dans une direction perpendiculaire au déplacement d’actionnement du premier commutateur (208, 302) ou du second commutateur (210, 304) ; ou
 une force en à-coups le long du levier (206, 300, 500, 802), et dans une direction perpendiculaire au déplacement d’actionnement du premier commutateur (208, 302) ou du second commutateur (210, 304) ; ou
 une force de poussée sur le levier (206, 300, 500, 802), dans la direction du premier commutateur (208, 302) et dans la direction du second commutateur (210, 304) ; dan
 s lequel la force de traction est une force exercée dans la direction opposée à la force en à-coups.

6. Contrôleur de jeu (200) selon la revendication 1, dans lequel le second commutateur (210, 304) est désactivé lorsque le levier (206, 300, 500, 802) se trouve dans la première position.

7. Contrôleur de jeu (200) selon la revendication 1, dans lequel le premier commutateur (208, 302) est désactivé lorsque le levier (206, 300, 500, 802) se trouve dans la seconde position.

8. Contrôleur de jeu (200) selon la revendication 1, dans lequel le levier (206, 300, 500, 802) est configuré de façon à pivoter autour d’un point de pivotement vers la première position dans laquelle le premier commutateur (208, 302) est activé, ou vers la seconde position dans laquelle le second commutateur (210, 304) est activé, de manière à envoyer un autre signal qui indique qu’une partie au moins de la pluralité de fonctions de jeu doit être exécutée.

9. Contrôleur de jeu (200) selon la revendication 8, dans lequel, indépendamment du levier (206, 300, 500, 802) qui est configuré de façon à pivoter autour du point de pivotement vers la première position ou vers la seconde position, le premier signal est identique au second signal.

10. Contrôleur de jeu (200) selon la revendication 1, dans lequel la pluralité de commandes de jeu (204) et le levier (206, 300, 500, 802), sont configurés de façon à être actionnés de manière à envoyer une pluralité de signaux qui indiquent qu’une pluralité de fonctions de jeu doivent être exécutées.

11. Contrôleur de jeu (200) selon la revendication 1, dans lequel la pluralité de commandes de jeu (204) sont configurées de façon à être actionnées de manière à envoyer une pluralité de signaux qui indiquent qu’une pluralité de fonctions de jeu doivent être exécutées ; et dans lequel le levier (206, 300, 500, 802) est configuré de façon à pivoter autour d’un point de pivotement vers la première position dans laquelle le premier commutateur (208, 302) est actionné, ou vers la seconde position dans laquelle le second commutateur (210, 304) est actionné, de manière à envoyer un autre signal qui indique qu’une partie au moins de la pluralité de fonctions de jeu doit être exécutée.

12. Contrôleur de jeu (200) selon la revendication 1, dans lequel le levier (206, 300, 500, 802) est disposé au niveau de la région centrale du second côté du logement (202).

13. Contrôleur de jeu (200) selon la revendication 1, comprenant en outre une couverture (408) configurée de façon à tenir des parties du contrôleur de jeu (200) à l’intérieur du logement (202).
FIG. 4
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5874906 A, Michael A. Willner [0005]
- US 6288709 B1, Michael A. Willner [0006]
- US 20100109915 A1, John E. Scarboro [0007]
- US 5087910 A, Laurent Guyot-Sionnest [0008]
- US 20040129552 A1, Yoshiyuki Nakade [0009]
- US 20040135767 A1, Bum-Su Park [0010]
- US 20050255915 A1, Andrew Riggs [0011]