Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Variable pitch propeller systems incorporate various safety devices to ensure safe operation in case of a hydraulic failure. One type of safety device is a propeller blade counterweight. The propeller blades are arranged on the propeller hub, and the counterweight is attached to the base of the blade and produces a twisting moment on the blade when the propeller is rotating such that the net twisting moment on the blade, including the total blade mass and aerodynamic twisting forces, is in the increase-pitch direction. The net twisting moment can reduce over-speed and high drag conditions if the hydraulic operation of pitch change system fails.

Conventional counterweights are typically optimized to reduce weight by placing the counterweight at the largest radius from the blade rotational axis allowed by the hub envelope supporting the blade. Since the blade counterweight is rigidly attached to the blade, the counterweight must rotate from full reverse to the feather position. In order for the blade to transition to the feather position, the counterweight must pass by an adjacent blade. As the number of blades formed on the propeller hub increases, the distance between adjacent hub arms decreases such that the counterweight contacts an adjacent blade when transitioning to a feather position. Consequently, the overall length of the conventional counterweight must be reduced as the number of propeller blades increases, thereby causing the propeller weight to increase.

A propeller system with the features of the preamble to claim 1 is disclosed in FR 805 813. Other propeller systems are disclosed in FR 1 032 358, GB 2 218 747 and US 2012/231696.

The present invention provides a propeller system according to claim 1. The system comprises at least one propeller hub having a plurality of hub arms formed therein. The plurality of hub arms are arranged circumferentially on at least one propeller hub and are spaced apart from one another by a hub arm distance. The propeller system further includes a plurality of propeller blades. Each propeller blade includes a base portion rotatably disposed in a respective hub arm. At least one counterweight is coupled to the base portion of a respective propeller blade. The counterweight includes a hinge configured to pivot a portion of the counterweight.

The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:

FIG. 1 is schematic illustrating a side-view of a propeller system according to an embodiment;

FIG. 2 is a schematic illustrating a side-view of a propeller blade assembly including a counterweight included in a propellers system according to an embodiment;

FIG. 3 is a top view of a propeller including a counterweight operating in a flight position according to an embodiment;

FIG. 4 is a top view of a propeller including a counterweight operating in a reversed position according to an embodiment; and

FIG. 5 is a top view of a propeller including a counterweight operating in a feather position according to an embodiment.

Turning to FIG. 1, a propeller system 10 is illustrated according to an embodiment of the disclosure. The propeller system 10 includes one or more propeller hub arms 14, pitch-adjustable propeller blades 12, a propeller hub arms 14, a pitch actuator 16, and a bearing arrangement 18. The blades 12 are coupled to the propeller hub 11a and extend radially therefrom. According to at least one embodiment, the blades 12 include a base portion 13 that is moveably supported by the propeller hub arms 14. The blades 12 may have various designs including, but not limited to, an airfoil design as required by a particular aircraft application of the propeller system. The pitch of each blade 12 is adjustable with respect to the propeller hub arms 14 via the bearing arrangement 18. The pitch actuator 16 may comprise a cam system or gear arrangement, for example, and is configured to adjust the position of a respective blade 12 via the bearing arrangement 18. For example, the pitch actuator 16 may apply a force to the base portion 13 that twists the blade 12 about a center axis (A) with respect to the bearing arrangement 18, thereby varying the pitch of the blade 12. Each blade 12 may be adjusted among one of various positions. The plurality of position may include, for example, a flight position, a reversed position, and a feather position. The flight position places the blade in a low-pitch angle in order to quickly achieve high propeller speeds. The low-pitch angle may be for example, approximately 25 degrees with respect to the rotational direction of the propeller blades 12. If the angle of the blade 12 becomes too low, however, over-speed may occur which may result in engine failure.

The reverse position reverses the blade pitch angle opposite to that of the flight position. The blade
The feather position increases angle of pitch by adjusting the blade 12 to be parallel to the airflow. For example, the blade pitch angle of the feather position may be for example, approximately 90 degrees with respect to the rotational direction of the propeller blades 12. Accordingly, the feather position minimizes drag from a stopped propeller following an engine failure in flight. Since the feather position reduces drag, the feather position may be used on a multi-engine aircraft to maintain altitude if the hydraulic system that controls the pitch actuator 16 fails.

The propeller system 10 further includes one or more counterweights 20 coupled to respective blade 12, and rotates along with the blade 12. Each counterweight 20 is configured to prevent the blade 12 from rotating into a low-pitch position, and instead rotates a respective blade 12 into a high-pitch position if a hydraulic failure occurs of approximately 55°. As discussed above, a low-drag position such as, for example, the feather position, may allow for the continued safe operation of the aircraft despite an inability to control the pitch of the blades 12 due to a faulty hydraulic system.

Referring to FIG. 2, a propeller blade assembly 21 including a counterweight 20 is illustrated according to at least one embodiment. The counterweight 20 includes a hinge 22, a fixed arm 24, a pivoting arm 26, and a weighted element 28. The hinge 22 may have a variety of configurations capable of allowing the pivoting arm 26 to pivot with respect to the fixed arm 24. For example, ends of the fixed arm 24 and the pivoting arm 26 may be pivotaly connected to one another by a pin that provides a pivot point such that the pivoting arm 26 may rotate about the pin with respect to the fixed arm 24. Although a hinge is described, other devices capable of allowing the pivoting arm 26 to pivot with respect to the fixed arm 24 may be used.

The hinge 22 may further include a hinge-stop 23. The hinge-stop 23 provides a stop point that prevents the pivoting arm 26 from pivoting therebeyond. For example, the hinge-stop 23 may ensure that the pivoting arm 26 is fully extended (i.e., placed at the largest radius from the blade 12) and does not collapse when the blade 12 is placed in the flight position, while still allowing the pivoting arm 26 to pivot when the blade 12 is placed in the feather position.

The fixed arm 24 may be fabricated as an individual arm separately coupled to the blade 12, or may be integrally formed with the blade as an extruded element. The fixed arm 24 includes a first end 30 and a second end 32. The first end 30 is coupled to the base portion 13 of the blade 12, and the second end 32 is coupled to the hinge 22.

The pivoting arm 26 includes a proximal end 34 and a distal end 36. According to at least one embodiment, the length of the pivoting arm 26 is greater than a length of the fixed arm 24. The proximal end 34 is pivotally coupled to the hinge 22 such that the pivoting arm 26 pivots with respect to the fixed arm 24. The weighted element 28 is coupled to the distal end 36 of the pivoting arm 26. In at least one embodiment, the weighted element 28 may be made from various high-density materials including, but not limited to, tungsten (W). As the counterweight 20 rotates along with the blade 12, the weight of the weighted element 28 is transferred to the base portion 13 to apply a twisting moment on the blade 12. The net twisting moment on the blade 12 is in the increase-pitch direction, which forces the blade 12 into high-pitch low-drag position at an angle of, for example, 55 degrees.

As further illustrated in FIG. 2, the counterweight 20 generates an output torque (τ CW) that is transferred to the blade 12. The output torque (τ CW) induces a twisting force that forces the blade 12 into a low-drag pitch position such as, for example, an angle of 55 degrees.

FIGS. 3-5 illustrate adjacent propeller blades 12/12' including respective counterweights 20 operating in various pitch positions. Turning to FIG. 3, a first blade 12 and a second blade 12' are disposed next to one another in a respective propeller hub arm 14/14' formed in a propeller hub 11a. Each propeller hub arm 14/14' may be separated from one another by a distance (d HUB). The distance (d HUB) may vary based on the number of blades disposed on the propeller hub 11a. A hub envelope 38/38' may surround the opening of each propeller hub arm 14/14'. The propeller hub 11a extends in a forward direction 40 of the aircraft toward the nose portion 11b (see FIG. 1). The first and second blades 12/12' rotate about the propeller hub 11a in a rotational direction 42 perpendicular to the forward direction 40 As further illustrated in FIG. 3, the first and second blades 12/12' are shown in a low-pitch position such as, for example, a flight position. As discussed above, the flight position places the blades 12/12' in a low-pitch angle. The low-pitch angle may include, for example, approximately 25 degrees with respect to the rotational direction 42 of the blades 12/12'.

The first blade 12 includes a first counterweight 20 and the second blade 12' includes a second counterweight 20'. When rotating with the blades 12/12', the first and second counterweights 20/20' are naturally forced to pivot in a counterclockwise direction. Accordingly, a counterclockwise output torque (τ CW) is transferred to the base portion 13 during rotation of the blades 12/12'. The hinge-stop 23, however, prevents the pivoting arm 26 from collapsing. For example, the hinge-stop 23 may prevent the pivoting arm 26 from rotating beyond a predetermined angle with respect to the fixed arm 24. According to one embodiment, for example, the predetermined angle is 180 degrees such that the hinge-stop maintains the counterweight at a maximum extended length. Therefore, the counterweight 20/20' may be fully
extended and realizes the full radius (r_{CW}) (*i.e.*, maximum extended length) of the counterweight 20/20' when the blade 12/12' is placed in the flight position, without being obstructed by the hub envelopes 38/38' and/or an adjacent blade 12/12'.

[0017] Turning to FIG. 4, the first blade 12 and the second blade 12' are illustrated in a reverse position. As discussed above, the reverse position reverses the blade pitch angle opposite to that of the flight position shown in FIG. 3. The blade pitch angle of the reverse position may be, for example, approximately -15 degrees with respect to the rotational direction 42 of the blades 12. As further shown in FIG. 3, the counterweights 20 may be fully extended to realize the full radius (r_{CW}), or maybe substantially extended, without being obstructed by the hub envelopes 38/38' and/or an adjacent blade 12/12'.

[0018] Turning now FIG. 5, the first and second blades 12/12' are shown in low-drag position such as, for example, a feather position. As discussed above, the feather position places the blades 12/12' in a high-pitch angle which reduces drag on the propellers 12/12'. The high-pitch angle may include, for example, approximately 55 degrees with respect to the rotational direction 42 of the blades 12/12'. As further illustrated in FIG. 5, the distance (d_{HUB}) between the propeller hub arms 14/14' may cause the second counterweights 20' to contact an adjacent hub envelopes 38 and/or adjacent blade 12 when adjusting the blades 12/12' into a low-drag pitch position (e.g., the feather position).

[0019] Conventional counterweights are required to have a substantially shortened overall radius (r_{CW}) such that the counterweight may pass between the adjacent blades 12/12' and/or propeller hub arms 14/14'. The shorted radius (r_{CW}) results in a reduced torque from the counterweight. However, the counterweight 20 according to at least one embodiment of the disclosure is configured to pivot via the hinge 22 in response to contacting an adjacent blade 12/12' and/or propeller hub arms 14/14'. As shown in FIG. 5, the pivoting arm 26 of the counterweight 20 may be pivoted (θ_{ARM}) in response to contacting the hub envelope 38/38' at a max inflight angle, for example, but does not prevent the blade 12/12' from being adjusted into a blade pitch position having a high-pitch angle such as, for example, a feather position. Therefore, the overall radius (r_{CW}) may be extended to increase the torque (τ_{CW}) applied to the blades 12/12', while the distance (d_{HUB}) between adjacent propeller hub arms 14/14' is reduced. A method for operating a counterweight of a propeller blade assembly is also provided. The propeller blade assembly includes a propeller blade configured to operate at a plurality of pitch angles. The method includes forming a counterweight having a fixed arm and a pivoting arm. The method further includes coupling a first end of the fixed arm to a base portion of the propeller blade. The method further includes interposing a hinge between a second end of the fixed arm and a proximate end of the pivoting arm. The pivoting arm may have a weighted element formed on a distal end thereof. The method further includes pivoting a portion of the counterweight based on a pitch angle of the propeller blade. For example, the method includes pivoting the pivoting arm with respect to the fixed arm in response to contacting a portion of the propeller blade assembly including, but not limited to, an adjacent propeller blade and a hub arm.

[0020] While various embodiments have been described in detail in connection, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that various embodiments of the invention may include only some of the described features. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.

Claims

1. A propeller system (10) comprising:

 - at least one propeller hub (11a) including a plurality of propeller blades (12,12') and spaced apart from one another by a hub arm distance (d_{HUB});
 - a plurality of propeller blades (12,12') each including a base portion (13) rotatably disposed in a respective hub; and
 - at least one counterweight (20) coupled to the base portion (13) of a respective propeller blade (12,12') and including a hinge (22); characterized in that the hinge (22) is configured to pivot a portion of the at least one counterweight (20) in response to contacting at least one of an adjacent propeller blade (12,12') and an adjacent hub.

2. The propeller system of claim 1, wherein the at least one counterweight (20) comprises:

 - a fixed arm (24) including a first end (30) coupled to the base portion (13) of a respective blade (12,12'), and a second end (32) coupled to the hinge (22); and
 - a pivoting arm (26) including a distal end (36) having a weighted element (28) coupled thereto, and a proximate end (34) pivotably coupled to the hinge (22) such that the pivoting arm (26) pivots with respect to the fixed arm (24).
3. The propeller system of claim 2, wherein a length of the pivoting arm (26) is greater than a length of the fixed arm (24) such that the pivot arm (26) pivots in response to contacting at least one of an adjacent propeller blade (12,12') and an envelope (38,38') of an adjacent hub.

4. The propeller system of claim 2 or 3, wherein the hinge (22) includes a hinge-stop (23) configured to prevent the pivoting arm (26) from rotating beyond a predetermined angle with respect to the fixed arm (24).

5. The propeller system of claim 4, wherein the predetermined angle is 180 degrees such that the hinge-stop (23) maintains the counterweight (20) at a maximum extended length.

6. The propeller system of any preceding claim, wherein the plurality of propeller blades (12,12') are configured to operate at a plurality of pitch angles; and the hinge (22) is configured to pivot a portion of the counterweight based on a pitch angle of the propeller blades (12,12').

7. The propeller system of claim 2, wherein the weighted element (28) is coupled to the distal end (36) of the pivoting arm (26) such that the counterweight (20) outputs a torque onto propeller blade (12,12').

Patentansprüche

1. Propellersystem (10), umfassend:
 mindestens eine Propellernabe (11a), einschließlich eine Vielzahl von Nabenarmen (14,14'), die darin geformt ist, wobei die Vielzahl von Nabenarmen (14,14') umlaufend an der mindestens einen Propellernabe (11a) angeordnet und voneinander durch einen Nabenarmabstand (d_{HUB}) beabstandet ist;
 eine Vielzahl von Propellerblättern (12,12'), die jeweils einen Basisabschnitt (13) einschließt, der drehbar in einer entsprechenden Nabe angeordnet ist; und
 mindestens ein Gegengewicht (20), das an den Basisabschnitt (13) eines entsprechenden Propellerblatts (12,12') gekoppelt ist und einschließlich ein Gelenk (22);
 dadurch gekennzeichnet, dass das Gelenk (22) konfiguriert ist, um einen Abschnitt des mindestens einen Gegengewichts (20) als Reaktion auf das Berühren von mindestens einem von einem angrenzenden Propellerblatt (12,12') und einer angrenzenden Nabe zu schwenken.

2. Propellersystem nach Anspruch 1, wobei das mindestens eine Gegengewicht (20) Folgendes umfasst:
 einen fixierten Arm (24), einschließlich ein erstes Ende (30), das an den Basisabschnitt (13) eines entsprechenden Blatts (12,12') gekoppelt ist, und ein zweites Ende (32), das an das Gelenk (22) gekoppelt ist; und
 einen schwenkbaren Arm (26), einschließlich ein distales Ende (36), das ein daran gekoppelttes beschwertes Element (28) aufweist, und ein proximales Ende (34), das schwenkbar an das Gelenk (22) gekoppelt ist, sodass der schwenkbare Arm (26) in Bezug auf den fixierten Arm (24) schwenkt.

3. Propellersystem nach Anspruch 2, wobei eine Länge des schwenkbaren Arms (26) größer ist als eine Länge des fixierten Arms (24), sodass der schwenkbare Arm (26) als Reaktion auf das Berühren von mindestens einem von einem angrenzenden Propellerblatt (12,12') und einer Hülle (38,38') einer angrenzenden Nabe schwenkt.

4. Propellersystem nach Anspruch 2 oder 3, wobei das Gelenk (22) einen Gelenkanschlag (23) einschließt, der konfiguriert ist, um zu verhindern, dass sich der schwenkbare Arm (26) in Bezug auf den fixierten Arm (24) über einen vorher festgelegten Winkel hinaus dreht.

5. Propellersystem nach Anspruch 4, wobei der vorher festgelegte Winkel 180 Grad beträgt, sodass der Gelenkanschlag (23) das Gegengewicht (20) bei einer maximal ausgedehnten Länge hält.

6. Propellersystem nach einem der vorhergehenden Ansprüche, wobei die Vielzahl von Propellerblättern (12,12') konfiguriert ist, um sich so zu drehen, dass eine Neigung eines entsprechenden Propellerblatts (12,12') eingestellt wird.

7. Propellersystem nach einem der vorhergehenden
Ansprüche, wobei das mindestens eine Gegengewicht (20) vollständig ausgedehnt ist, wenn ein entsprechendes Propellerblatt (12,12') einen ersten Neigungswinkel aufweist und das mindestens eine Gegengewicht (20) geschwenkt wird, wenn das entsprechende Propellerblatt (12,12') einen zweiten Neigungswinkel aufweist, der größer ist als der erste Neigungswinkel.

8. Propellersystem nach einem der vorhergehenden Ansprüche, wobei:

die Propellerblätter (12,12') konfiguriert sind, um mit einer Vielzahl von Neigungswinkeln betrieben zu werden; und

das Gelenk (22) konfiguriert ist, um einen Abschnitt des Gegengewichts auf Grundlage eines Neigungswinkels der Propellerblätter (12,12') zu schwenken.

9. Propellersystem nach Anspruch 2, wobei das beschwerte Element (28) an das distale Ende (36) des schwenkbaren Arms (26) gekoppelt ist, sodass das Gegengewicht (20) ein Drehmoment an das Propellerblatt (12,12') ausgibt.

Revendications

1. Système d'hélice (10) comprenant :

au moins un moyeu d'hélice (11a) comprenant une pluralité de bras de moyeu (14, 14') formée à l'intérieur de celui-ci, la pluralité de bras de moyeu (14, 14') disposée de manière circonférentielle sur l'au moins un moyeu d'hélice (11a) et espacés les uns par rapport aux autres selon une distance de bras de moyeu (d_{HUB}) ;

eine pluralité de pales d'hélice (12, 12') comprenant chacune une partie de base (13) disposée de manière rotative dans un moyeu correspondant ; et

au moins un contrepoids (20) coupé à la partie de base (13) d'une pale d'hélice respective (12, 12') et comprenant une charnière (22) ;

caractérisé en ce que la charnière (22) est conçue pour faire pivoter une partie de l'au moins un contrepoids (20) en réponse à un contact avec au moins un d'une pale d'hélice adjacente (12, 12') et d'un moyeu adjacent.

2. Système d'hélice selon la revendication 1, dans lequel l'au moins un contrepoids (20) comprend :

un bras fixe (24) comprenant une première extrémité (30) coupée à la partie de base (13) d'une pale respective (12, 12'), et une seconde extrémité (32) coupée à la charnière (22) ; et

un bras pivotant (26) comprenant une extrémité distale (36) ayant un élément de poids (28) couplé à celui-ci, et une extrémité proximale (34) coupée de manière pivotante à la charnière (22) de sorte que le bras pivotant (26) pivote par rapport au bras fixe (24).

3. Système d'hélice selon la revendication 2, dans lequel une longueur du bras pivotant (26) est supérieure à une longueur du bras fixe (24) de sorte que le bras pivotant (26) pivote en réponse à un contact avec au moins l'un d'une pale d'hélice adjacente (12, 12') et d'une enveloppe (38, 38') d'un moyeu adjacent.

4. Système d'hélice selon la revendication 2 ou 3, dans lequel la charnière (22) comprend une butée de charnière (23) conçue pour empêcher le bras pivotant (26) de tourner au-delà d'un angle prédéterminé par rapport au bras fixe (24).

5. Système d'hélice selon la revendication 4, dans lequel l'angle prédéterminé est à 180 degrés de sorte que la butée de charnière (23) maintient le contrepoids (20) à une longueur étendue maximale.

6. Système d'hélice selon une quelconque revendication précédente, dans lequel la pluralité de pales d'hélice (12, 12') est conçue pour tourner de sorte qu'un pas d'une pale d'hélice correspondante (12, 12') est ajusté.

7. Système d'hélice selon une quelconque revendication précédente, dans lequel l'au moins un contrepoids (20) est entièrement étendu lorsqu'une pale d'hélice respective (12, 12') possède un premier angle de pas, et l'au moins un contrepoids (20) est tourné lorsque la pale d'hélice respective (12, 12') possède un second angle de pas qui est supérieur au premier angle de pas.

8. Système d'hélice selon une quelconque revendication précédente, dans lequel :

les pales d'hélice (12, 12') sont conçues pour fonctionner à une pluralité d'angles de pas ; et

la charnière (22) est conçue pour faire pivoter une partie du contrepoids d'après un angle de pas des pales d'hélice (12, 12').

9. Système d'hélice selon la revendication 2, dans lequel l'élément de poids (28) est coupé à l'extrémité distale (36) du bras pivotant (26) de sorte que le contrepoids (20) produit un couple sur la pale d'hélice (12, 12').
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- FR 805813 [0003]
- FR 1032358 [0003]
- GB 2218747 A [0003]