European Patent Application

Date of publication: 08.04.2015 Bulletin 2015/15

Application number: 14195317.4

Date of filing: 25.08.2009

Designated Contracting States:
- AT
- BE
- BG
- CH
- CY
- CZ
- DE
- DK
- EE
- ES
- FI
- FR
- GB
- GR
- HR
- HU
- IE
- IS
- IT
- LI
- LT
- LU
- LV
- MC
- MK
- MT
- NL
- NO
- PL
- PT
- RO
- SE
- SI
- SK
- SM
- TR

Priority: 28.08.2008 US 92633 P
30.06.2009 US 221632 P

Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
09791856.9 / 2 318 498

Applicant: The Procter & Gamble Company
Cincinnati, OH 45202 (US)

Inventors:
- Corona, Alessandro, III
 Cincinnati, OH 45202 (US)
- Everingham, Brian W.
 Cincinnati, OH 45202 (US)
- Frankenbach, Gayle Marie
 Cincinnati, OH 45202 (US)
- Panandiker, Rajan Keshav
 Cincinnati, OH 45202 (US)
- Schubert, Beth Ann
 Cincinnati, OH 45202 (US)
- Sivik, Mark Robert
 Cincinnati, OH 45202 (US)
- Vetter, Kerry Andrew
 Cincinnati, OH 45202 (US)
- Waning, Gregory Thomas
 Cincinnati, OH 45202 (US)

Representative: Siddiquee, Sanaul Kabir
N.V. Procter & Gamble Services Company S.A.
Temselaan 100
1853 Strombeek-Bever (BE)

Remarks:
This application was filed on 28-11-2014 as a divisional application to the application mentioned under INID code 62.

Process for preparing a fabric care composition

The instant disclosure relates to a process for preparing a stable color maintenance and/or rejuvenation compositions comprising at least one cationic polymer and anionic surfactant.
Description

FIELD OF THE INVENTION

[0001] Compositions and methods for using and making fabric care compositions capable of providing one or more benefits, for example, a color care benefit, are disclosed.

BACKGROUND OF THE INVENTION

[0002] Depending on the fabric type, colored garments may be prone to fading and color loss. This can result in non-use of the garments and/or consumer dissatisfaction. Dark colors may be particularly susceptible to fading or loss of color. One means of restoring color to faded or worn fabrics is via the use of dyes. While dye compositions may be used to restore colored, faded or worn fabrics, dye compositions generally require complex steps, can be messy to use, and requires color matching of the fabric, which may be difficult in many cases. Accordingly, such methods may be inconvenient to the consumer. Redying also requires color matching of the fabric, which is difficult in many cases.

[0003] Cationic polymers may be used to provide fabric care benefits. However, because such polymers are positively charged, such polymers may be difficult to formulate with anionic agents such as anionic surfactants often used in detergent compositions. This is particularly the case where cationic polymers are used at higher levels. In fact, at high levels, cationic polymers tend to agglomeration with the anionic surfactants used in detergent compositions to create an unpourable, phase-separated mixture, which is incompatible with consumer use.

[0004] Accordingly, there is a need for a product that can provide a color maintenance and/or rejuvenation benefit with or without the use of dyes, which may be sufficiently stable and has a rheology profile acceptable to consumers.

[0005] WO2004/069979A2 relates to laundry cleaning and conditioning compositions that comprise cationic polymer and anionic surfactant. US 3,549,546 relates to a process for preparing a liquid detergent composition comprising cationic polymer and triethanolamine.

SUMMARY OF THE INVENTION

[0006] Processes for making fabric care compositions capable of providing one or more benefits, for example, a color care benefit, are disclosed.

DETAILED DESCRIPTION OF THE INVENTION

[0007] As used herein, the articles "a" and "an" when used in a claim, are understood to mean one or more of what is claimed or described.

[0008] As used herein, the term "comprising" means various components conjointly employed in the preparation of the compositions of the present disclosure. Accordingly, the terms "consisting essentially of" and "consisting of" are embodied in the term "comprising".

[0009] As used herein, the term "additive" means a composition or material that may be used separately from (but including before, after, or simultaneously with) the detergent during a laundering process to impart a benefit to a fabric.

[0010] As used herein, the term "coacervate" means a particle formed from the association of a cationic polymer and an anionic surfactant in an aqueous environment. The term "coacervate" may be used interchangeably with the terms "primary particle," "colloidal particle," and "aggregate particle."

[0011] As used herein, the term "colloidal particle" means an aggregation of primary particles.

[0012] As used herein, "charge density" refers to the charge density of the polymer itself and may be different from the monomer feedstock. Charge density may be calculated by dividing the number of net charges per repeating unit by the molecular weight of the repeating unit. The positive charges may be located on the backbone of the polymers and/or the side chains of polymers. For polymers with amine monomers, the charge density depends on the pH of the carrier. For these polymers, charge density is measured at a pH of 7. ACD refers to anionic charge density, while CCD refers to cationic charge density.

[0013] As used herein, the term "Anionic Charge Density (ACD) per use" means the amount of negative charge present in a volume of a single dose of the composition to be dispensed. By way of example, a detergent dose of 78g containing 22.2% of a surfactant having a molecular weight of 390g/mol has an ACD calculated as follows: 78g x 0.222 = 17.3 g/dose anionic surfactant; 1 negative charge per mol or 1 equivalent charge for anionic surfactant = ACD of 17.3 x 1 / 390 x 1000 = 44.3 meq anionic charge per dose. 1 negative charge per mol or 1 equivalent charge for anionic surfactant = ACD of 17.3 x 1 / 390 x 1000 = 44.3 meq anionic charge per dose.

[0014] As used herein, the term "Cationic Charge Density (CCD) per use" means the amount of positive charge present in a volume of a single dose of the composition to be dispensed. By way of example, a detergent dose of 78g containing
4% of a cationic polymer having a molecular weight of 150,000 and a monomer molecular weight of 161.67g/mol will have a CCD calculated as follows: The polymer charge density is 1/161.67 x 1000 or 6.19 meq/g, and the CCD is 78g x 0.04 x 6.19, or 19.3 meq per dose.

[0015] As used herein, the term "black" as applied to a garment, may be defined as the color measured by Hunter L with an L value range from about 0 to about 18. An example of a black color specification is palette number 19-4005tc used as black for the black T-shirt manufactured and sold by the Gildan textile company, 600 de Maisonneuve West, 33rd Floor, Montreal (Quebec), H3A 3J2 Canada. This color also corresponds in the CMYK Color Model of 100-35-0-100 wherein CMYK is defined as C for cyan, M for magenta, Y for yellow, and K is key for black. The CMYK ISO standard is ISO 12640-1:1997 and can be accessed at www.iso.org.

[0016] As used herein, the term "cationic polymer" means a polymer having a net cationic charge.

[0017] As used herein, the term "dry" as applied to a fabric, means a fabric having about 14% residual moisture.

[0018] As defined herein, "essentially free of" a component means that no amount of that component is deliberately incorporated into the composition.

[0019] As used herein, "conventional detergent" is intended to mean a composition comprising a detergents agent, particularly at least anionic surfactant.

[0020] As used herein, the term "external structurant" refers to a selected compound or mixture of compounds which provides structure to a detergent composition independently from, or extrinsic from, any structuring effect of the detritive surfactants present in the composition.

[0021] As used herein, the terms "fabric," "textile," and "garment" are used interchangeably herein to refer to an artifact that is made using any suitable material including weaving, felting, knitting and combinations thereof, of natural fibers, synthetic fibers and combinations thereof. Nonwovens are also intended to be encompassed by these terms.

[0022] As used herein, "fabric care and/or cleaning compositions" include fabric care compositions for handwash, machine wash and/or other purposes and include fabric care additive compositions and compositions suitable for use in the soaking and/or pretreatment of fabrics. They may take the form of, for example, laundry detergents, fabric conditioners and/or other wash, rinse, dryer added products, and sprays. Fabric care compositions in the liquid form may be in an aqueous carrier. In other aspects, the fabric care compositions may be in the form of a granular detergent or dryer added fabric softener sheet. The term "fabric care and/or cleaning compositions" includes, unless otherwise indicated, granular or powder-form all-purpose or "heavy-duty" washing agents, especially cleaning detergents; liquid, gel or paste-form all-purpose washing agents, especially the so-called heavy-duty liquid types; liquid fine-fabric detergents; cleaning auxiliaries such as bleach additives and "stain-stick" or pre-treat types, substrate-laden products, dry and wetted wipes and pads, nonwoven substrates, and sponges; and sprays and mists. The fabric care and/or cleaning composition may be provided in pouches, including foil or plastic pouches or water soluble pouches, such as a polyvinyl alcohol (PVA) pouch; dosing balls or containers; containers with readily opened closures, such as pull tabs, screw caps, foil or plastic covers, and the like; or other container known in the art. In one aspect, the compositions may be compacted, comprising less than about 15% water, or less than about 10% water, or less than about 7% water.

[0023] As used herein, "high charge density" means a charge density of greater than about 1 meq/g. "Low charge density" means a charge density of less than about 1 meq/g.

[0024] As used herein, the phrase "high molecular weight" means a molecular weight of greater than about 1,000,000 kD. The phrase "low molecular weight" means a molecular weight of from about 1,000 to about 500,000 kD.

[0025] As used herein, "isotropic" means a clear mixture, (having no visible haziness and/or dispersed particles) and having a uniform transparent appearance.

[0026] As used herein, the "L*C*h color space" and "L*a*b* color space" refer to the three dimensional colorimetric models developed by Hunter Associates Laboratory and recommended by the Commission Internationale d'Eclairage ("CIE") to measure the color or change in color of a dyed article. The CIE L*a*b* color space ("CIELAB") has a scale with three-fold axes with the L axis representing the lightness of the color space (L* = 0 for black, L* = 100 for white), the a* axis representing color space from red to green (a* > 0 for red, a* < 0 for green) and the b* axis representing color space from yellow to blue (b* > 0 for yellow, b* < 0 for blue). The L*C*h color space is an approximately uniform scale with three-fold axes with the L axis representing the lightness of the color space (L* = 0 for black, L* = 100 for white), and the C and h values (hue angle) may be calculated from the a* and b* values of the CIELAB scale. All colors are represented by a coordinate in the L*a*b* color space and changes in colors are represented by the vector corresponding to the coordinate difference between an initial color and a final color. Term definitions and equation derivations are available from Hunter Associates Laboratory, Inc. and from www.hunterlab.com.

[0027] As defined herein, "stable" means that no visible phase separation is observed for a period of at least about
two weeks, or at least about four weeks, or greater than about a month or greater than about four months, as measured using the Floc Formation Test, described in USPA 2008/0263780 A1.

[0028] As used herein, the terms "color rejuvenation" or "color restoration" of a fabric means enhancing or making more vivid or vibrant the appearance of colored or dyed fabrics. Rejuvenation or restoration can be determined empirically by calculating the ΔL value using the methods described herein, wherein a treated fabric has a ΔL value of greater than about -0.01. The term includes restoring the color appearance of a faded fabric and improving the color appearance of a new or faded fabric to "better than new."

[0029] As used herein, "structured phase" means that portion of a composition comprising primary and/or colloidal particles when separated by centrifugation.

[0030] As used herein, the term "continuous phase" means that portion of a composition substantially free from particles upon separation by centrifugation.

[0031] As used herein, the term "residence time" means the average amount of time a fluid remains within a mixing chamber, and may be determined by calculating the active volume of the device where the fluid stream receives the highest concentration of power input divided by the flow rate of the stream out of the mixing chamber.

[0032] As used herein, "unit dose" means an amount of fabric care composition suitable to treat one load of laundry, such as from about 0.05 g to about 100 g, or from 10 g to about 60 g, or from about 20 g to about 40 g.

[0033] All measurements are performed at 25°C unless otherwise specified.

[0034] The test methods disclosed in the present application should be used to determine the respective values of the parameters of Applicants’ invention.

[0035] Unless otherwise noted, all component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.

[0036] The present disclosure relates to compositions comprising cationic polymers which provide a fabric care benefit, particularly a color maintenance or rejuvenation benefit, and methods for providing a benefit. The composition may take a variety of forms, for example, fabric softeners, detergents, and laundry additives, and can be in the form of, for example, a liquid, gel, or paste. The disclosure further relates to methods of preparing said compositions.

[0037] The compositions contain one or more anionic surfactant, one or more cationic polymer, and one or more structurant as described herein.

[0038] Without being limited by theory, Applicants believe the cationic polymers of the disclosed compositions coalesce with anionic surfactant to form a coacervate system. The coacervate, in turn, is believed to deliver a benefit to the treated fabric without the necessity of dyes via formation of a thin film on the fiber of the treated fabric. This then reduces the diffraction of light that contributes to the appearance of faded or worn fabric. In a further aspect, Applicants have recognized that the disclosed compositions and methods address the problems of instability described above. Without being bound by theory, Applicants believe the stability of the system may be influenced by selection of specific polymers having particular molecular weight ranges and charge densities. In this aspect, Applicants have found that the use of polymers having too high of a molecular weight and too high of a charge density, in combination with anionic surfactants, can result in flocculation, and that this effect can be mitigated by selection of a high molecular weight-low charge density polymer or a low molecular weight-high charge density polymer. In another aspect, Applicants have recognized that particle size of the agglomerates can be controlled and that such particle size can contribute to the stability of compositions containing relatively high levels of both cationic polymer and anionic surfactant.

[0039] Coacervate System - Coacervate System - In one aspect, the cationic polymers of the compositions described herein utilize a coacervate system to deliver the benefit to the treated textile. In this aspect, the compositions generally comprise at least one cationic polymer and at least one anionic surfactant, wherein the at least one cationic polymer and at least one anionic surfactant form a coacervate system. Without being limited by theory, coacervation describes the association of at least one cationic polymer and at least one anionic surfactant in the composition which results in the formation of a more concentrated phase, such as a liquid, gel, or liquid crystal, in equilibrium with a more dilute phase. This association occurs as a result of electrostatic and/or hydrophobic interactions between the oppositely charged polymer and surfactant. This association with the cationic polymer may also occur when the surfactant mixture comprises of other surfactants in addition to the anionic surfactant, including nonionic or cationic. As used herein, the term "coacervate" refers to the more concentrated phase. In some cases, the coacervate is visible as distinct particles, i.e. primary particles, which may then also associate to form larger structures (colloidal particles) comprised of the primary particles. Without being limited by theory, applicants believe that the one or more cationic polymer of the compositions described herein interact with the anionic-based surfactant mixture to form a coacervate.

[0040] In one aspect, the compositions form a coacervate during use, such as during a wash or rinse step. In another aspect, the compositions are formulated such that the product itself, prior to use in a wash or rinse system, contains a coacervate system. Without being limited by theory, it is believed that the coacervate system deposits a thin film on the textile, causing fiber coalescence and a decrease in topical fuzz. This, in turn, reduces diffraction of light at the surface of the textile, resulting in the appearance of a deeper, more true (i.e., unfaded or undamaged) color. In another aspect,
there may be cationic polymer present in the compositions which does not form a coacervate. In this aspect, the polymer may still deposit on fabric, providing the benefits articulated above. Alternatively, the polymer may interact with residual surfactant on the fabric to form a coacervate.

[0041] Ratio of Cationic Charge Density to Anionic Surfactant Ratio - The cationic polymer charge density (CCD) and anionic surfactant charge density (ACD) can be determined as described above. In one aspect, the ACD:CCD ratio is from about 100 to about 0.01, or from about 10 to about 0.05 or from about 5 to about 0.10. In one aspect, the ratio of anionic surfactant to cationic polymer is about 500 to 1, or about 200 to 1, or about 10 to 1, or about 2.3 to 1. In another aspect, the composition contains less than about 0.01% cationic polymer. In another aspect, the composition contains less than about 0.01% of surfactant. In a yet further aspect, for example, when the composition is used as detergent, the charge ratio of anionic surfactant to cationic polymer is about 2.3. In a yet further aspect, for example, the composition is an additive and has a charge ratio of about 0.79.

[0042] In one aspect, the compositions disclosed herein have an Anionic Charge Density (ACD) per use of from about 20 to about 200 meq, or from about 30 to about 100 meq, or from about 40 to about 50 meq. In another aspect, the compositions disclosed have a Cationic Charge Density (CCD) per use of from about 5 meq to about 1000 meq, or from about 10 meq to about 50 meq, or from about 15 meq to about 75 meq.

[0043] Compositions - Compositions comprising a) a structured phase, said structured phase comprising primary particles comprising cationic polymer and anionic surfactant; wherein from 50% to 100%, or from 60% to 70%, or from 80% to 90% of said primary particles have a primary particle size of from 0.01 μm to 500 μm, or from 0.1 μm to 250 μm, or from 0.5 μm to 50 μm, and b) optionally, colloidal particles, said colloidal particles comprising primary particles, wherein from 70% to 100%, or from 80% to 90% of the colloidal particles have a particle size of from 0.01 μm to 1000 μm, or from about 0.1 μm to 500 μm, or from 0.5 μm to 100 μm, or from 1.0 μm to 50 μm are disclosed.

[0044] In one aspect, the composition is a detergent having a pH, measured as a 1% solution in distilled water, of from about 7.0 to about 12.5, or from about 7.5 to about 11.8, or from about 8.0 to about 11.5. In another aspect, the composition is a through-the-wash additive wherein the pH is from about 2 to about 12.5, or from about 3 to about 7.

[0045] Cationic Polymer - The compositions comprises from 0.005% to 30%, from 0.1% to 30%, from 0.5% to 20%, from 1.0% to 10%, or from 1.5% to 8%, by weight of the composition of a cationic polymer produced by polymerization of ethylenically unsaturated monomers using a suitable initiator or catalyst. These are disclosed in WO 00/56849 and USPN 6,642,200.

[0046] In one aspect, the cationic polymer may be selected from the group consisting of cationic or amphoteric polysaccharides, polypethyleneimine and its derivatives, a synthetic polymer made by polymerizing one or more cationic monomers selected from the group consisting of N,N-dialkylaminoalkyl acrylate, N,N-dialkylaminoalkyl methacrylate, N,N-dialkylaminoalkyl acrylamide, N,N-dialkylaminoalkylmethacrylamide, quaternized N,N-dialkylaminoalkyl acrylate quaternized N,N-dialkylaminoalkyl methacrylate, quaternized N,N-dialkylaminoalkyl acrylamide, quaternized N,N-dialkylaminoalkylmethacrylamide, quaternized N,N-dialkylaminoalkylacrylamide, quaternized N,N-dialkylaminoalkyl acrylate, quaternized N,N-dialkylaminoalkylmethacrylate, N,N'-heptamethyl-3-(1-oxo-2-methyl-2-propenylamino)-propyl-9-oxo-8-azo-decan-1,4,10-triaminum dichloride, N,N,N',N,N',N,N'-heptamethyl-3-(1-oxo-2-methyl-2-propenylamino)-propyl-9-oxo-8-azo-decan-1,4,10-triaminum trichloride, vinylamine and its derivatives, allylamine and its derivatives, vinyl imidazole, quaternized vinyl imidazole and diallyl dialkyl ammonium and combinations thereof. The cationic polymer may optionally comprise a second monomer selected from the group consisting of acrylamide, N,N-dialkyl acrylamide, methacrylamide, N,N-dialkylmethacrylamide, C1-C12 alkyl acrylate, C1-C12 hydroxyalkyl acrylate, polyalkylene glycol acrylate, C1-C12 alkyl methacrylate, C1-C12 hydroxyalkyl methacrylate, polyalkylene glycol methacrylate, vinyl acetate, vinyl alcohol, vinyl formamide, vinyl acetic acid, vinyl alcohol ether, vinyl pyridine, vinyl pyrrolidone, vinyl imidazole, vinyl caprolactam, and derivatives, acrylic acid, methacrylic acid, maleic acid, vinyl sulfonic acid, acrylamidopropylmethane sulfonic acid (AMPS) and their salts. The polymer may be a terpolymer made from more than two monomers. The polymer may optionally be branched or cross-linked by using branching and crosslinking monomers. Branching and crosslinking monomers include ethylene glycol diacrylate divinylbenzene, and butadiene. In one aspect, the cationic polymer may include those produced by polymerization of ethylenically unsaturated monomers using a suitable initiator or catalyst, such as those disclosed in WO 00/56849 and USPN 6,642,200. In one aspect, the cationic polymer may comprise charge neutralizing anions such that the overall polymer is neutral under ambient conditions. Suitable counter ions include (in addition to anionic species generated during use) include chloride, bromide, sulfate, methylsulfate, sulfonate, methylsulfate, carbonate, bicarbonate, formate, acetate, citrate, nitrate, and mixtures thereof.

[0047] In one aspect, the cationic polymer may be selected from the group consisting of poly(acrylamide-co-diallyldimethylammonium chloride), poly(acrylamide-methacrylamidopropyltrimethyl ammonium chloride), poly(acrylamide-co-N,N-dimethyl aminoethoxy acrylate) and its quaternized derivatives, poly(acrylamide-co-N,N-dimethyl aminoethoxy acrylate) and its quaternized derivative, poly(hydroxyethylacrylate-co-diethylamino ethyl methacrylate), poly(hydroxypropylacrylate-co-dimethyl aminoethoxy methacrylate), poly(hydroxypropylacrylate-co-methacrylamidopropyltrimethyl ammonium chloride), poly(acrylamide-co-diallyldimethylammonium chloride-co-acrylic acid), poly(acrylamide-methacrylamidopropyltrimethyl ammonium chloride-co-acrylic acid), poly(diallyldimethyl ammonium chloride), poly(vinylpyrrolidone-co-dimethylaminoethoxymethacrylate), poly(ethy methacrylate-co-quaternized dimethylaminoethyl methacrylate), po-
ly(ethyl methacrylate-co-oleyl methacrylate-co-diethylaminoethyl methacrylate), poly(diallyldimethylammonium chloride-co-acrylic acid), poly(vinyl pyrrolidone-co-quaternized vinyl imidazole) and poly(acrylamide-co-methacryloamidopropylpentamethyl-1,3-proplylene-2-ol-ammonium dichloride). These cationic polymers include and may be further described by the nomenclature Polyquaternium-1, Polyquaternium-5, Polyquaternium-6, Polyquaternium-7, Polyquaternium-8, Polyquaternium-11, Polyquaternium-14, Polyquaternium-22, Polyquaternium-28, Polyquaternium-30, Polyquaternium-32 and Polyquaternium-33, as named under the International Nomenclature for Cosmetic Ingredients.

In one aspect, the cationic polymer may comprise a cationic acrylic based polymer. In one aspect, the cationic polymer may comprise a cationic polyacrylamide. In one aspect, the cationic polymer may comprise poly(diallyldimethylammonium chloride). These cationic polymers include and may be further described by the nomenclature Polyquaternium-1, Polyquaternium-5, Polyquaternium-6, Polyquaternium-7, Polyquaternium-8, Polyquaternium-11, Polyquaternium-14, Polyquaternium-22, Polyquaternium-28, Polyquaternium-30, Polyquaternium-32 and Polyquaternium-33, as named under the International Nomenclature for Cosmetic Ingredients.

In one aspect, the cationic polymer may comprise a cationic acrylic based polymer. In one aspect, the cationic polymer may comprise poly(diallyldimethylammonium chloride) and its quaternized derivatives. In this aspect, the cationic polymer may be that sold under the tradename Sedipur®, available from BTC Specialty Chemicals, BASF Group, Florham Park, N.J.

In one aspect, the cationic polymer may comprise poly(acrylamide-co-methacrylamidopropyltrimethyl ammonium chloride).

In one aspect, the cationic polymer may comprise a non-acrylamide based polymer, such as that sold under the tradename Rheovis® CDE, available from Ciba Specialty Chemicals, a BASF group, Florham Park, N.J., or as disclosed in USPA 2006/0252668.

In one aspect, the cationic polymer may comprise polyethyleneimine or a polyethyleneimine derivative. In one aspect, the cationic polymer may be a polyethyleneimine such as that sold under the tradename Lupasol® by BASF, AG, Lugwigshaefen, Germany

In one aspect, the cationic polymer may include alkylamine-epichlorohydrin polymers, which are reaction products of amines and oligoamines with epichlorohydrin. These include those polymers listed in USPNs 6,642,200 and 6,551,986. Examples include dimethylamine-epichlorohydrin-ethylenediamine, and available under the trade name Cartafix® CB and Cartafix® TSF from Clariant, Basle, Switzerland.

In one aspect, the cationic polymer may comprise a synthetic cationic polymer comprising polyamidoamine-epichlorohydrin (PAE) resins of polyalkylenepolyamine with polycarboxylic acid. The most common PAE resins are the condensation products of diethyleneetriamine with adipic acid followed by a subsequent reaction with epichlorohydrin. They are available from Hercules Inc. of Wilmington DE under the trade name Kymene™ or from BASF AG, Ludwigshaefen, Germany under the trade name Luresin™. These polymers are described in Wet Strength resins and their applications edited by L. L. Chan, TAPPI Press (1994), at pp. 13-44.

In one aspect, the cationic polymer may be selected from the group consisting of cationic or amphoteric polysaccharides. In one aspect, the cationic polymer may comprise a polymer selected from the group consisting of cationic and amphoteric cellulose ethers, cationic or amphoteric galactomanan, cationic guar gum, cationic or amphoteric starch, and combinations thereof.

The cationic polymer has a charge density of from 0.05 to 25 meq/g as measured at a pH of 7 and a weight average molecular weight of from 500 to 100,000,000 Daltons

In one aspect, the cationic polymer may comprise an amphoteric polymer, provided the polymer possesses a net positive charge. Said polymer may have a cationic charge density of about 0.05 to about 18 milliequivalents/g.

The cationic polymer has a cationic charge density of from 0.005 to 23, from 0.01 to 12, or from 0.1 to 7 milliequivalents/g, at a pH of 7. Charge density is calculated by dividing the number of net charges per repeating unit by the molecular weight of the repeating unit. The positive charges may be located on the backbone of the polymers and/or the side chains of polymers.

The polymer has a charge density of from 0.05 meq/g to 25 meq/g, or from 0.1 to 12 meq/g, or from 0.5 to 7 meq/g, or from 0.2 to 3 meq/g at a pH of 7. The charge density refers to the charge density of the polymer itself and is often different from the monomer feedstock. Charge density is calculated by dividing the number of net charges per repeating unit by the molecular weight of the repeating unit. The positive charges may be located on the backbone of the polymers and/or the side chains of polymers. For example, for the copolymer of acrylamide and dialyldimethylammonium chloride with a monomer feed ratio of 70:30, the charge density of the feed monomers is about 3.05 meq/g. However, if only 50% of dialyldimethylammonium is polymerized, the polymer charge density is only about 1.6 meq/g. The polymer charge density is measured by dialyzing the polymer with a dialysis membrane or by NMR. For polymers with amine monomers, the charge density depends on the pH of the carrier. For these polymers, charge density is measured at a pH of 7.

In one aspect, the cationic polymer has a weight-average molecular weight of from 500 to 10,000,000 or 5,000,000, or from about 1,000 to about 2,000,000, or from about 2,500 to about 1,500,000 Daltons as determined by size exclusion chromatography relative to polyethylenoxide standards with RI detection. In one aspect, the molecular weight of the cationic polymer may be from about 500 to about 37,500 kD. The cationic polymers may also range in both molecular weight and charge density. The cationic polymer may have a charge density of from 0.05 meq/g to 25 meq/g or 12 meq/g, or from 1.0 to 6 meq/q, or from 3 to 4 meq/g at a pH of 7. In one aspect, the one or more cationic polymer may have a weight-average molecular weight of 500 Daltons to 37,500 Daltons and a charge density from 0.1 meq/g to 12.

Cationic polymers in general and their method of manufacture are known in the literature. For example, a
detailed description of cationic polymers can be found in the article by M. Fred Hoover published in the Journal of Macromolecular Science-Chemistry, A4(6), pp 1327-1417, October, 1970. Other suitable synthetic cationic polymers are those used as retention aids in the manufacture of paper, which are described in "Pulp and Paper, Chemistry and Chemical Technology Volume III", edited by James Casey (1981). The weight average molecular weight of these polymers may be in the range of from about 1,000 to about 5 million.

[0061] One group of useful synthetic cationic polymers includes those produced by polymerization of ethylenically unsaturated monomers using a suitable initiator or catalyst. These are disclosed in WO 00/56849 and U.S. Patent No. 6,642,200. In some aspects, the cationic synthetic polymers is a polymer made by polymerizing or copolymerizing:

1) one or more cationic monomers selected from a group consisting N,N-dialkylaminoalkyl methacrylate, N,N-dialkylaminoalkyl acrylate, N,N-dialkylaminolalkyl acrylamide, N,N-dialkylaminolalkylmethacrylamide, their quaternized derivatives, vinylamine and its derivatives, allylamine and its derivatives, vinyl imidazole, quaternized vinyl imidazole and quaternized diallyl dialkyl ammonium and its derivatives; and

2) one or more neutral monomers selected from a group consisting of acrylamide (AM), N,N-dialkyl acrylamide, methacrylamide, N,N-dialkylmethacrylamide, C1-C12 alkyl acrylate, C1-C12 hydroxyalkyl acrylate, C1-C12 hydroxyethyalkyl acrylate, C1-C12 alkyl methacrylate, C1-C12 hydroxyalkyl methacrylate, vinyl acetate, vinyl alcohol, vinyl formamide, vinyl acetamide, vinyl alkyl ether, vinyl butyrate and derivatives;

[0062] Non-limiting examples of useful cationic monomers include: N,N-dimethyl aminoethyl acrylate, N,N-dimethyl aminooethyl methacrylate (DAMAM), [2-(methacryloylamino)ethyl]trimethylammonium chloride (QDMAM), N,N-dimethylaminopropyl acrylamide (DMAPA), N,N-dimethylaminopropyl methacrylamide (DMAPMA), acrylamidopropyl trimethyl ammonium chloride, methacrylamidopropyl trimethylammonium chloride (MAPTAC), (3-acrylamidopropyl) trimethylammonium chloride (AAPTAC), methacrylamidopropyl-pentamethyl-1,3-propyleneammonium dichloride, quaternized vinyl imidazole and diallyldimethylamonium chloride and derivatives thereof. Neutral monomers of use include: acrylamide, N,N-dimethyl acrylamide, C1-C4 alkyl acrylate, C1-C4 hydroxyalkylacrylate, vinyl formamide, vinyl acetate, and vinyl alcohol. Suitable nonionic monomers include acrylamide, hydroxyethyl acrylate (HEA), hydroxypropyl acrylate and derivatives thereof.

[0063] The polymer may optionally contain anionic monomers, including: acrylic acid, methacrylic acid, maleic acid, vinyl sulfonic acid, styrene sulfonic acid, acrylamidopropylmethane sulfonic acid (AMPS) and their salts. The polymer may optionally be branched or cross-linked by using branching and crosslinking monomers. Branching and crosslinking monomers include ethylene glycoldiacrylate divinylbenzene, and butadiene.

[0064] In some aspects, the polymers of use include: poly(acylamide-co-diallyldimethylammonium chloride), poly(acrylamide-methacrylamidopropyltrimethyl ammonium chloride), poly(acrylamide-co-N,N-dimethyl aminooethyl methacrylate), poly(acrylamide-co-N,N-dimethyl aminoethyl methacrylate), poly(hydroxyethylacrylate-co-dimethyl aminoethyl methacrylate), poly(hydroxypropylacrylate-co-methacrylamidopropyltrimethyl ammonium chloride) and combinations thereof.

[0065] Another group of useful synthetic cationic polymers are polyethyleneimine and its derivatives. These are commercially available under the trade name Lupasol ex. BASF AG (Ludwigshafen, Germany).

[0066] A third group of useful synthetic cationic polymers are alkylamino-epichlorohydrin polymers which are reaction products of amines and oligoamines with epichlorohydrin, for example, those polymers listed in, for example, US 6642200 and US 6551986. Common polymers include dimethylamine-epichlorohydrin-ethylenediamine, available under the trade name Cartafix CB and Cartafix TSF from Clariant.

[0067] A fourth group of useful synthetic cationic polymers are polyamidoamine-epichlorohydrin (PAE) resins which are condensation products of polyalkylenepolyamine with polycarboxylic acid. The most common PAE resins are the condensation products of diethyleneetriamine with adipic acid followed by a subsequent reaction with epichlorohydrin. They are available from Hercules Inc. of Wilmington DE under the trade name Kymene™ or from BASF AG (Ludwigshafen, Germany) under the trade name Luressin™. These polymers are described in Wet Strength resins and their applications edited by L. L. Chan, TAPPI Press(1994).

[0068] In order for the polymers to be formulated into stable compositions, it is important that the monomers are incorporated in the polymer to form a copolymer. This may especially be true when monomers having widely different reactivity ratios are used.

[0069] The weight-average molecular weight of the polymer will generally be from about 500 to about 5,000,000, or from about 1,000 to about 2,000,000, or from about 2,500 to about 1,500,000, as determined by size exclusion chromatography relative to polyethyleneoxide standards with RI detection. In one aspect, the MW of the cationic polymer is from about 500 to about 37,500.

[0070] The cationic polymers may contain charge neutralizing anions such that the overall polymer is neutral under ambient conditions. Non-limiting examples of suitable counter ions (in addition to anionic species generated during use)
include chloride, bromide, sulfate, methylsulfate, sulfonate, methylsulfonate, carbonate, bicarbonate, formate, acetate, citrate, nitrate, and mixtures thereof.

Molecular Weight-Charge Density Relationship - The cationic polymers range in molecular weight and charge density. For polyamines, the charge density varies with degree of protonation as described in US 4,328,000. If the polymer has too high of a molecular weight and too high of a charge density, it will flocculate and produce large flocs. To mitigate large flocs, a high molecular weight-low charge density polymer or a low molecular weight-high charge density polymer can be used. In one aspect, the one or more cationic polymer has a weight-average molecular weight less than about 37,500 and a charge density of greater than about 5 meq/g.

**As used herein, "high molecular weight" is greater than about 1,000,000. "Low molecular weight is from about 1,000 to about 500,000. "High charge density" is greater than about 1 meq/g, whereas "low charge density" is considered to be less than 1 meq/g.

**For example, polydiallyldimethylammonium chloride with a theoretical charge density of 6.19 and a molecular weight of from about 1,000 to about 500,000 is considered to have a high charge density and low molecular weight. Polymers >1,000,000 molecular weight are considered to be in the range of high molecular weight herein. To mitigate large flock formation at this molecular weight, charge density of <1 meq/g may be used. It should be noted that, where the cationic polymer is a polyamines, the charge density varies with degree of protonation.

Anionic Surfactant - The compositions may be formulated for use as any of a variety of laundry care treatment compositions, the surfactant system being selected based on the desired application.

**In one aspect, the compositions contain from about 2% to about 50%, or from about 5% to about 25%, or from about 12% to about 20% of an anionic surfactant. Non-limiting examples of suitable anionic surfactants useful in the present compositions are described in US 12/075333. In another aspect, the anionic surfactant contains from about 1.0% to about 50%, or from about 7% to about 40% of alkylethoxysulfonate (AES). In a further aspect, the composition contains less than about 5%, or less than about 10%, or less than about 50% of alkylethoxysulfonate (AES). In one aspect, the composition may comprise, by weight of the composition, less than about 5%, or less than about 10%, or less than about 1%, or less than about 5%, or less than about 10%, or less than about 50% nonionic surfactant.

**Hydrophilicity of a surfactant can be described by its HLB value or hydrophilicity-lipophilicity balance. HLB values range from 1 on upward. An HLB of 1 is very hydrophilic and water soluble. The HLB value of the surfactants used in the composition may be from about 4 to about 14, or from about 8 to about 10, or about 9.

**In one aspect, the composition may comprise, by weight of the composition, from about 0.1% to about 50%, or from about 7% to about 40%, or from about 10% to about 20% of an anionic surfactant. Non-limiting examples of suitable anionic surfactants include those described in USPA 12/075333. In one aspect, the anionic surfactant may comprise alkylethoxysulfonate (AES). In one aspect, the composition may comprise, by weight of the composition, less than about 5%, or less than about 10%, or less than about 50% linear alkyl benzene sulfonate (HLAS). In one embodiment, the composition comprises, by weight of the composition, from 0.01% to 5% linear alkyl benzene sulfonate.

**In one aspect, the composition may comprise an anionic surfactant having an HLB value of from about 4 to about 10, or from 7 to 11, or from about 8 to about 10, or about 9.

**In one aspect, the anionic surfactants and cationic polymers of the compositions may be selected based on the ACD:CCD ratio, such that the ACD:CCD ratio of the compositions may be from about 100 to about 0.01, or from about 10 to about 0.05 or from about 5 to about 0.10. In one aspect, the ACD:CCD ratio may be about 500 to 1, or about 200 to 1, or about 10 to 1, or about 2.3 to 1.

**In one aspect, the composition may be a detergent, and may have an ACD:CCD ratio of about 2.3:1. In one aspect, the composition may be an additive, and may have an ACD:CCD ratio of about 0.79:1. In one aspect, the composition may have an ACD per use of from about 20 to about 200, or from about 30 to about 100, or from about 40 to about 50 meq. In one aspect, the composition may have a CCD per use of from about 5 to about 1000, or from about 10 to about 500, or from about 15 to about 75 meq.

**In one aspect, the composition may comprise, by weight of the composition, less than about 1%, or less than about 5%, or less than about 10%, or less than about 50% nonionic surfactant. In one aspect, the composition may be essentially free of a nonionic surfactant.

External Structurant - The composition comprises an external structurant. The composition contains from 0.001% to 1.0%, or from 0.05% to 0.5%, or from 0.1% to 0.3% by weight, of the external structurant herein. The structurant is hydrogenated castor oil, for instance commercially available as Thixin®. In a preferred embodiment, the structured phase comprises from 0.5% to 100% of the composition.

Dispersing Agent - In one aspect, the composition may comprise a dispersing agent. The dispersing agent may be present at levels of from about 0% to about 7%, or from about 0.1% to about 5%, or from about 0.2% to about 3% by weight of the final composition. In one aspect, the dispersing agent may be substantially water soluble.

**In one aspect, the dispersing agent may be a nonionic surfactant. Suitable nonionic surfactants include addition products of ethylene oxide and, optionally, propylene oxide, with fatty alcohols, fatty acids, fatty amines, etc. They may be referred to herein as ethoxylated fatty alcohols, ethoxylated fatty acids, and ethoxylated fatty amines. Any of the
ethoxylated materials of the particular type described hereinafter can be used as the nonionic surfactant. Suitable
compounds include surfactants of the general formula: R₁ - Y - (C₂H₄O)ₗ - C₂H₄OH wherein R₁ may be selected from
the group consisting of primary, secondary and branched chain alkyl and/or acyl and/or acyl hydrocarbyl groups; primary,
secondary and branched chain alkenyl hydrocarbyl groups, and primary, secondary and branched chain alkyl-
and alkenyl substituted phenolic hydrocarbyl groups; said hydrocarbyl groups having a hydrocarbyl chain length of
from about 8 to about 20, or from about 9 to about 18 carbon atoms. In the general formula for the ethoxylated nonionic
surfactants herein Y may be -O-, -C(O)O-, or -O-, and in which R₁, when present, have the meanings given hereinbefore,
and z may be at least about 4, or about 7 to about 25.

[0085] In one aspect, the dispersing agent may include a material having the general formula: R₁O(CH(R₂)CH₂O)x(CH₂CH₂O)yR₃ or R₁O(CH₂CH₂O)x(CH(R₂)CH₂O)yR₃ wherein R₁, R₂ and R₃ may be defined as above; R₂ may be a C₁₋₃ alkyl unit; and R₃ may be hydrogen or C₁₋₃ alkyl. The individual koxyl monomers may be arranged
blockwise or randomly. Non-limiting examples include the Plurafac® surfactants from BASF. Other suitable dispersing
agents include the so-called propyleneoxide/ethyleneoxide block copolymers, having the following general structure:
HO(CH₂CH₂O)x(CH(CH₃)CH₂O)y(CH₂CH₂O)₂H. Such agents include the Pluronics® PE compounds from BASF.

[0086] In one aspect, the composition may a detergent adjunct ingredient selected from the group consisting of fatty
acids, brighteners, chelating agents, dye transfer inhibiting agents, enzymes, enzyme stabilizers, and pearlescent agents.
Such adjuncts may be suitable for use in the instant compositions and may be desirably incorporated in certain aspects.
In addition to the disclosure below, suitable examples of such other adjuncts and levels of use may be found in USPNs

[0087] Organosilicone - The composition may comprise an organosilicone, preferable selected from the group con-
sisting of aminosilicone, silicone polyether, silicone urethane, and combinations thereof. In one aspect, the fabric care
compositions may comprise from about 0.1% to about 30%, from about 0.5% to about 20%, from about 1.0% to about
10%, or from about 1.5% to about 8%, by weight of the fabric care composition of an organosilicone. Suitable organo-
silicones comprise Si-O moieties and may be selected from (a) non-functionalized siloxane polymers, (b) functionalized
siloxane polymers, and combinations thereof. The molecular weight of the organosilicone is usually indicated by the
reference to the viscosity of the material. In one aspect, the organosilicones may comprise a viscosity of from about 10
to about 800,000 centistokes at 25°C. In another aspect, suitable organosilicones may have a viscosity of from about
10 to about 800,000 centistokes at 25°C.

[0088] Suitable organosilicones may be linear, branched or cross-linked. In one aspect, the organosilicones may be
linear.

[0089] In one aspect, the organosilicone may comprise a non-functionalized siloxane polymer that may have Formula
I below, and may comprise polyalkyl and/or phenyl silicone fluids, resins and/or gums.

\[
[R₁R₂R₃SiO₁/₂]ₙ, [R₄R₄SiO₂/₂]ₘ[R₄SiO₃/₂]ₖ \quad (\text{Formula I})
\]

wherein:

i) each R₁, R₂, R₃ and R₄ may be independently selected from the group consisting of H, -OH, C₁₋₂₀ alkyl, C₁₋₂₀ substituted alkyl, C₆₋₂₀ aryl, C₆₋₂₀ substituted aryl, alkylaryl, and/or C₁₋₂₀ alkoxy, moieties;

ii) n may be an integer from about 2 to about 10, or from about 2 to about 6; or 2; such that n = j+2;

iii) m may be an integer from about 5 to about 8,000, from about 7 to about 8,000 or from about 15 to about 4,000;

iv) j may be an integer from about 0 to about 10, or from about 0 to about 4, or 0;

[0090] In one aspect, R₂, R₃ and R₄ may comprise methyl, ethyl, propyl, C₄₋₂₀ alkyl, and/or C₆₋₂₀ aryl moieties. In
one aspect, each of R₂, R₃ and R₄ may be methyl. Each R¹ moiety blocking the ends of the silicone chain may comprise
a moiety selected from the group consisting of hydrogen, methyl, methoxy, ethoxy, hydroxy, propoxy, and/or aryloxy.

[0091] As used herein, the nomenclature SiO"n"/2 represents the ratio of oxygen and silicon atoms. For example,
SiO₁/₂ means that one oxygen is shared between two Si atoms. Likewise SiO₂/₂ means that two oxygen atoms are
shared between two Si atoms and SiO₃/₂ means that three oxygen atoms are shared are shared between two Si atoms.

[0092] In one aspect, the organosilicone may be polydimethylsiloxane, dimethicone, dimethiconol, dimethicone cross-
polymer, phenyl trimethicone, alkyl dimethicone, lauryl dimethicone, stearyl dimethicone and phenyl dimethicone. Ex-
amples include those available under the trade names DC 200 Fluid, DC 1664, DC 349, DC 346G available from offered
by Dow Corning Corporation, Midland, MI, and those available under the trade names SF1202, SF1204, SF96, and
Viscasil® available from Momentive Silicones, Waterford, NY.

[0093] In one aspect, the organosilicone may comprise a cyclic silicone. The cyclic silicone may comprise a cyclom-
ethicone of the formula \([\text{(CH}_3\text{)}_2\text{SiO}]_n\) where \(n\) is an integer that may range from about 3 to about 7, or from about 5 to about 6.

[0094] In one aspect, the organosilicone may comprise a functionalized siloxane polymer. Functionalized siloxane polymers may comprise one or more functional moieties selected from the group consisting of amino, amido, alkoxy, hydroxy, polyether, carboxy, hydride, mercapto, sulfate phosphate, and/or quaternary ammonium moieties. These moieties may be attached directly to the siloxane backbone through a bivalent alkylene radical, (i.e., "pendant") or may be part of the backbone. Suitable functionalized siloxane polymers include materials selected from the group consisting of aminosilicones, amidosilicones, silicone polyethers, silicone-urethane polymers, quaternary ABn silicones, amino ABn silicones, and combinations thereof.

[0095] In one aspect, the functionalized siloxane polymer may comprise a silicone polyether, also referred to as "dimethicone copolyol." In general, silicone polyethers comprise a polydimethylsiloxane backbone with one or more polyoxyalkylene chains. The polyoxyalkylene moieties may be incorporated in the polymer as pendant chains or as terminal blocks. Such silicones are described in USPA 2005/0098759, and USPNs 4,818,421 and 3,299,112. Exemplary commercially available silicone polyethers include DC 190, DC 193, FF400, all available from Dow Corning Corporation, and various Silwet surfactants available from Momentive Silicones.

[0096] In another aspect, the functionalized siloxane polymer may comprise an aminosilicone. Suitable aminosilicones are described in USPNs 7,335,630 B2, 4,911,852, and USPA 2005/0170994A1. In one aspect the aminosilicone may be that described in and cited filed X22 application. In another aspect, the aminosilicone may comprise the structure of Formula II:

\[
[R_1R_2R_3SiO_{1/2}]_n[(R_4Si(X-Z)O_{2/2})_k[R_4SiO_{2/2}]_m[R_4SiO_{3/2}]_j \quad \text{(Formula II)}
\]

wherein

i. \(R_1, R_2, R_3\) and \(R_4\) may each be independently selected from H, OH, C₁-C₂₀ alkyl, C₁₋C₂₀ substituted alkyl, C₆₋C₂₀ aryl, C₆₋C₂₀ substituted aryl, alkylaryl, and/or C₁₋C₂₀ alkoxy;

ii. Each \(X\) may be independently selected from a divalent alkylene radical comprising 2-12 carbon atoms, \(-(\text{CH}_2)_s-\);

iii. Each \(Z\) may be independently selected from \(-N(R_5)_2; -N(R_5)_3A-, \)

\[
\begin{align*}
R_5 & \quad R_5 \\
- N - X - N - R_5 \\
\end{align*}
\]

or

\[
\begin{align*}
R_6 & \quad R_6 \\
- N^+ - X^+ - N^+ - R_6 \\
\end{align*}
\]

wherein each \(R_5\) may be selected independently from H, C₁₋C₂₀ alkyl, C₁₋C₂₀ substituted alkyl, C₆₋C₂₀ aryl, C₆₋C₂₀ and/or substituted aryl, each \(R_6\) may be independently selected from H, OH, C₁₋C₂₀ alkyl, C₁₋C₂₀ substituted alkyl, C₆₋C₂₀ aryl, C₆₋C₂₀ substituted alkyl, alkylaryl, and/or C₁₋C₂₀ alkoxy; and \(A^-\) may be a compatible anion. In one aspect, \(A^-\) may be a halide;

iv. \(k\) may be an integer from about 3 to about 20, preferably from about 5 to about 18 more preferably from about 5 to about 10;

v. \(m\) may be an integer from about 100 to about 2,000, or from about 150 to about 1,000;

vi. \(n\) may be an integer from about 2 to about 10, or about 2 to about 6, or 2, such that \(n = j+2\); and

vii. \(j\) may be an integer from about 0 to about 10, or from about 0 to about 4, or 0;
In one aspect, R¹ may comprise -OH. In this aspect, the organosilicone may be amodomethicone.

Exemplary commercially available aminosilicones include DC 8822, 2-8177, and DC-949, available from Dow Corning Corporation, and KF-873, available from Shin-ETSu Silicones, Akron, OH.

In one aspect, the organosilicone may comprise amine ABn silicones and quat ABn silicones. Such organosilicones are generally produced by reacting a diamine with an epoxide. These are described, for example, in USPNs 6,903,061 B2, 5,981,681, 5,807,956, 6,903,061 and 7,273,837. These are commercially available under the trade names Magnasoft® Prime, Magnasoft® JSS, Silsof® A-858 (all from Momentive Silicones).

In another aspect, the functionalized siloxane polymer may comprise silicone-urethanes, such as those described in USPA 61/170,150. These are commercially available from Wacker Silicones under the trade name SLM-21200.

When a sample of organosilicone is analyzed, it is recognized by the skilled artisan that such sample may have, on average, non-integer indices for Formula I and II above, but that such average indice values will be within the ranges of the indices for Formula I and II above.

Rheology

In one aspect, the composition may have a pouring viscosity of from about 10 centipoises at 20/sec to about 20,000, or from about 10 centipoises to 2000, or from about 100 centipoises to about 2000 centipoises at 20/sec. In another aspect, the composition may have a resting viscosity of from about 10,000 to about 225,000, or from about 10,000 to about 50,000, or about 30,000 Pa / sec at 0.05/s.

In one aspect, the composition may comprise a structured phase wherein the structured phase comprising, by weight of the composition, from about 5% to about 100%, or from about 10% to about 90%, or from about 20% to about 80% of the composition when centrifuged at 10,000 rpm. In another aspect, salts may be added to adjust phase stability.

In one aspect, the composition may comprise, by volume of the composition, from about 0.5% to about 100% or from about 5% to about 90%, or from about 10% to about 70%, or from about 20% to about 50% of the structured phase as determined by centrifugation.

In one aspect, the composition may have a G’ of from about 0.5 Pa to about 50,000 Pa as determined from a strain sweep at 3.142 rad/sec, and a G" of from about 0.5 Pa to about 50,000 Pa, as determined from a strain sweep at 3.142 rad/sec. In another aspect, the composition may have a resting viscosity of from about 10,000 to about 225,000, or from about 10,000 to about 50,000, or about 30,000 Pa / sec at 0.05/s.

In one aspect, the composition may comprise a structured phase wherein the structured phase comprising, by weight of the composition, from about 5% to about 100%, or from about 10% to about 90%, or from about 20% to about 80% of the composition when centrifuged at 10,000 rpm. In another aspect, salts may be added to adjust phase stability.

In one aspect, the composition may comprise, by volume of the composition, from about 0.5% to about 100% or from about 5% to about 90%, or from about 10% to about 70%, or from about 20% to about 50% of the structured phase as determined by centrifugation.

In one aspect, the composition may comprise a G’ of from about 0.5 Pa to about 50,000 Pa as determined from a strain sweep at 3.142 rad/sec, and a G" of from about 0.5 Pa to about 50,000 Pa, as determined from a strain sweep at 3.142 rad/sec. In another aspect, the composition may have a resting viscosity of from about 10,000 to about 225,000, or from about 10,000 to about 50,000, or about 30,000 Pa / sec at 0.05/s.

In one aspect, the composition may comprise a structured phase wherein the structured phase comprising, by weight of the composition, from about 5% to about 100%, or from about 10% to about 90%, or from about 20% to about 80% of the composition when centrifuged at 10,000 rpm. In another aspect, salts may be added to adjust phase stability.

In one aspect, the composition may comprise, by volume of the composition, from about 0.5% to about 100% or from about 5% to about 90%, or from about 10% to about 70%, or from about 20% to about 50% of the structured phase as determined by centrifugation.

In one aspect, the composition may have a G’ of from about 0.5 Pa to about 50,000 Pa as determined from a strain sweep at 3.142 rad/sec, and a G" of from about 0.5 Pa to about 50,000 Pa, as determined from a strain sweep at 3.142 rad/sec. In another aspect, the composition may have a resting viscosity of from about 10,000 to about 225,000, or from about 10,000 to about 50,000, or about 30,000 Pa / sec at 0.05/s.

In one aspect, the composition may comprise a structured phase wherein the structured phase comprising, by weight of the composition, from about 5% to about 100%, or from about 10% to about 90%, or from about 20% to about 80% of the composition when centrifuged at 10,000 rpm. In another aspect, salts may be added to adjust phase stability.

In one aspect, the composition may comprise, by volume of the composition, from about 0.5% to about 100% or from about 5% to about 90%, or from about 10% to about 70%, or from about 20% to about 50% of the structured phase as determined by centrifugation.
particles have a particle size of from about 0.01 μm to about 100 μm, or from about 0.5 μm to about 75 μm, or from about 0.2 μm to about 50 μm.

[0114] In a further aspect, the primary particles aggregate to form colloidal particles. In this aspect, the composition contains colloidal particles having an average particle size of from about 0.01 μm to about 1,000 μm, or from about 0.1 μm to about 500 μm, or from about 0.5 to about 100 μm as measured by the methods described herein. In another aspect, the particle size is from about 100 μm to about 500 μm. In one aspect, at least 70% or at least 80% or at least 90% of the colloidal particles in the composition have a size falling within the described colloidal particle size ranges. In this aspect, the compositions may have a colloidal particle size distribution such that at least 70%, or at least 80% or at least 90% of the particles have a particle size of from about 0.01 μm to about 1,000 μm, or from about 0.1 μm to about 500 μm, or from about 0.5 to about 100 μm.

[0115] The density of the primary and colloidal particle in the composition can be controlled to affect product stability through principles of Stokes' law. For example, density can be affected by introduction of organic (e.g. perfume) or inorganic matter (salt), or gasses. Density can also be influenced by the chemical makeup of the polymer and/or surfactant added.

[0116] In one aspect, the primary and/or colloidal structures are formed on dilution. For example, upon dilution of 1 part of the composition into 10 part of wash liquor, colloidal structures form which are less than 1000 μm on the long axis, or less than 500 μm on the long axis, or are less than 200 μm on the long axis. The particles may be greater than 5 μm on the short axis, or greater than 10 μm on the short axis, or greater than 25 μm on the short axis. The primary or colloidal particle size (e.g., diluted at a ratio of about 1:3800, for example, in a wash solution such as water) may be from about 0.005 μm to about 1000 μm, or from about 0.01 μm to about 100 μm.

[0117] Particle Refractive Index - In another aspect, the compositions can be defined by the refractive index of the primary particle using the methods described below. In this aspect, the compositions provide a refractive index of the fiber of from about 1.33 to about 1.6, or from about 1.45 to about 1.50 as measured by the Refractive Index Determination as defined below.

[0118] Stability - The compositions disclosed herein have unexpected rheological properties, in that anionic surfactant and cationic polymer may be combined to form stable compositions. Stability can be characterized by a variety of different methods, for example, by particle size analysis, for example, via microscopy, light scattering, Horiba, or other methods readily understood by one of skill in the art. As defined herein, "stable" means that no visible phase separation is observed for a period of at least about two weeks, or at least about four weeks, or greater than about a month or greater than about four months. Stability may be determined using, for example, the Shelf Storage Test as described in WO 2008/021892 A1 and/or the Floc Formation Test as described in WO 2008/021892 A1.

[0119] In one aspect, the compositions indicate a dispersion of aggregates of primary particles and areas of isotropic continuous phase which can be determined via microscopy. The isotropic phase, in one aspect, can be controlled to contribute to the overall stability of the composition. For example, salts can be added to adjust phase stability.

[0120] In one aspect, the stable composition is achieved via the methods disclosed below, and can be described in terms of shear rate at 0.1 s⁻¹. Table I illustrates the stability of compositions which contain the desired particle size as compared to compositions that do not contain the desired particle size. The shear rate at 0.1 s⁻¹ (measure of rheology for the composition at rest) is commonly thought to be an indicator of long term stability. In one aspect, the compositions have a shear rate at 0.1 s⁻¹ of greater than about 6,000 cps.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Formula I</th>
<th>Formula I</th>
<th>Formula I</th>
<th>Formula I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>Simple Mixing</td>
<td>High Energy Dispersion Step</td>
<td>High Energy Dispersion Step</td>
<td>High Energy Dispersion Step</td>
</tr>
<tr>
<td>Primary Particle Size</td>
<td>10-500 micron</td>
<td>2 to 10 micron</td>
<td>2 to 10 micron</td>
<td>2 to 10 micron</td>
</tr>
<tr>
<td>Aggregate</td>
<td>Many structures > 100 micron</td>
<td>10 to 100 micron</td>
<td>10 to 100 micron</td>
<td>10 to 100 micron</td>
</tr>
<tr>
<td>Structurant</td>
<td>No</td>
<td>No</td>
<td>Yes 0.1% Trihydroxystearin</td>
<td>Yes 0.3% Trihydroxystearin</td>
</tr>
<tr>
<td>Visual Appearance</td>
<td>Contains chunks of solid-like material</td>
<td>Smooth, fluid, opaque-translucent</td>
<td>Smooth fluid, opaque-translucent</td>
<td>Higher viscosity, opaque</td>
</tr>
</tbody>
</table>
Phase - The compositions described herein can further be characterized by phase volume. The phase volume of the compositions generally have a structured phase and an unstructured phase, wherein the structured phase contains the primary and/or colloidal particles. In one aspect, the structured phase contains at least about 10% of the phase volume, or at least about 20% of the phase volume. In one aspect, the composition contains at least about 2% or at least about 10% of the separated dispersed phase as determined by centrifugation. In one aspect, the structured phase contains less than about 70%, less than about 50% or less than about 25%. In one aspect, the structured phase has a transition temperature of less than about 50°C, or less than about 30°C.

Particle Density - In one aspect, the density difference between the phase containing particles and the continuous phase, as separated by centrifugation, is from about 0.2 to about 0.8, or from about 0.4 to about 0.6. In one aspect, the density difference is less than about 0.2. Without being limited by theory, applicants believe that a lower density difference can contribute to the overall stability of the compositions.

Pressure sensitive adhesive range - As the coacervate is believed to form a film on fabric causing the fibers to coalesce, the adhesive properties of the coacervate at relevant usage concentrations (i.e. wash concentrations) is of interest. The coacervate in the wet state isolated from wash conditions has an elastic and viscous modulus of from about 1,000 to about 1,000,000 Pa, or from about 10,000 to about 200,000 Pa in the frequency range 0.1 to 100 rad/s, as measured using the Rheology/Adhesive Mapping method described herein.

Resting/Pouring Viscosity - In one aspect, the composition has a pouring viscosity of from about 10 centipoises at 20/sec to about 20,000 centipoises at 20/sec, or from about 10 centipoises to 2000 centipoises at 20/sec, or from about 100 centipoises to about 2000 centipoises at 20/sec. In another aspect, the composition has a resting (low shear) viscosity of greater than about 10,000 cps @ 0.05/s. In another aspect, the low shear viscosity is from about 10,000 cps @ 0.05/s to about 225,000 cps @ 0.05/s. In a yet further aspect, the composition has a resting viscosity of from about 10,000 cps @ 0.05/s to about 50,000 cps @ 0.05/s, or about 30,000 cps @ 0.05/s.

B. Benefit

Color/Appearance Benefit (Objective Measure) - The color and appearance benefit imparted to textiles can described, for example, in terms of the refractive index of the fiber before and after treatment (via washing or as applied to a rinse cycle) as defined as a delta L value measured via spectrophotometry (for example, via a Hunter spectrophotometer as described herein). By way of explanation, a decrease in L value, represented by a negative delta L value, indicates an improvement (or darkening) in color; which further represents a rejuvenation effect. In this aspect, the L* value is determined before and after treatment. The difference, or delta L, indicates the degree of "rejuvenation" or improvement of appearance in the treated textile.

[0128] In this aspect, the delta L value of the composition can be determined using the Fabric Damaging Protocol (as described below) to yield damaged fabrics, followed by the Treatment Protocol. L* values are determined on the damaged and treated fabric. A typical $L_{(treated)}$ value for a black Gildan T-Shirt described is from about 12 to about 14. A typical $L_{(treated)}$ value is from about 10 to about 13. The $L_{(treated)}$ value is subtracted from the $L_{(damaged)}$ to yield a delta L. In one aspect, the compositions described herein provide a color benefit to a textile, wherein the benefit is measured as a delta L of from about -0.1 to about -15, or from about -5 to about 15, or from about -1.0 to about -15, or from about -2 to about -15.
In another aspect, the color benefit can be defined as a measure of the absorption (K) and scattering of light (S) by means of the Kubelka-Monk equation at each wavelength, as described below in the test methods. In one aspect, the compositions and method described impart a color benefit of a K/S of greater than about 0.05, or greater than about 0.5, or greater than about 1.0 using the protocol as described below. In one aspect, the K/S value for the treated garment is greater than about 2, or greater than about 3.

Color/Appearance (Subjective Opinion) - In one aspect, the improvement in the garment color is measured by the subjective opinion of the user. For example, the user may be asked their opinion on the effectiveness of the rejuvenation process by rating the color rejuvenation on a scale of 1 to 4, where 1 is no observable change; 2 shows observable change but color is unacceptable; 3 shows observable change and the color is acceptable; and 4 shows observable change in color and the garment is rejuvenated to a color at or near the original color. According to consumer opinion, garments treated with the textile rejuvenation compositions by the methods of the present disclosure displayed an average consumer rejuvenation score of greater than 2, or greater than about 3, or greater than about 3.5.

Other benefits - In some aspects, the benefit may be cleaning, abrasion resistance, wrinkle removal, pill prevention, anti-shrinkage, anti-static, anti-crease, fabric softness, fabric shape retention, suds suppression, decreased residue in the wash or rinse, and/or improved hand feel or texture.

Residue control - In yet another aspect, the compositions can be characterized by residue control as measured by the JBFT, described in the test method section below.

D. Process of Making

The direct combination, for example via simple mixing, of anionic surfactant and cationic polymers yields an unstable solution, wherein the surfactant and polymers aggregate to form an unstable composition with a rheology unsuitable for consumer use. Applicants have found that it is important that the polymer solution and surfactant solution is kept separate prior to the high energy milling step, as the solutions self-aggregate quickly, forming a non-homogenous mixture having large particles within a liquid. As such, simply combining of the materials cannot form a stable solution. Applicants have found that, by controlling the point of entry and the timing at which the polymer and anionic surfactant solutions are combined in the presence of a high energy dispersion step, the formation of surfactant-polymer particles to create particles of a certain size, a stable, homogeneous solution can be achieved.

The dispersion step can be characterized as having a certain Energy Density, wherein Energy Density is generated by exerting a power density on the feed within the mixing chamber for a residence time. Energy Density can be represented by the equation: \[E = W \cdot \Delta T \], wherein \(E \) represents energy density, \(W \) represents power density, and \(\Delta T \) represents residence time. As defined herein, residence time means the average amount of time a fluid remains within the mixing chamber. Residence time is determined by calculating the active volume of the device where the fluid stream receives the highest concentration of power input divided by the flow rate of the stream out of the mixing chamber.

Alternatively, the dispersion step can be characterized by power density and residence time. The compositions require relatively high power density to achieve the desired colloid attributes. For mechanical high shear mixers, mixing power densities are in the range of 1 W/ml to 1000 W/ml. For high pressure drop mixing equipment (including sonolator, valve homogenizers) power density ranges from about 1000 W/ml to about 100,000 W/ml (See "A Physical Interpretation of Drop Sizes in Homogenizers and Agitated Tanks, Including the Dispersion of Viscous Oils," J.T. Davies, Chemical Engineering Science, Vol 42, No 7, pp 1671 - 1678, 1987.

In one aspect, the process comprises the steps of

1. providing a first mixture ("polymer mixture") comprising a cationic polymer;
2. providing a second mixture ("surfactant mixture") comprising an anionic surfactant;
3. combining the first mixture and second mixture via a high energy dispersion step to form a third mixture ("premix");
4. introducing a structurant into the third mixture via a low energy dispersion step to form a fourth mixture;
5. wherein the fourth mixture has a resting viscosity of at least 10,000 cps at 0.05/s.

In one aspect, step (c) forms primary particles having a primary particle size distribution such that at least 70% of the primary particles by weight of the composition have a particle size of less than about 50 \(\mu \text{m} \). In a yet further aspect, step (d) forms colloidal particles colloidal particles wherein the colloidal particles have a colloidal particle size distribution such that at least 70% of the primary particles by weight of the composition have a particle size of less than about 500 \(\mu \text{m} \) wherein the colloidal particles comprise aggregates of primary particles.

In one aspect, the polymer mixture has a viscosity of from about 1 cps to about 1,000 cps at 20/s, or from about 400 cps. This can be empirically determined; one of skill in the art can vary the amount of solvent, which can include water, such that the desired rheology/viscosity is obtained. Polymer mixtures having high viscosity are difficult to mill with the high energy milling step to obtain the primary polymer mixture. In one aspect, the polymer mixture may optionally include surfactants. In this aspect, the polymer mixture is isotropic. Similarly the surfactant mixture has a viscosity of
The polymer and surfactant mixtures are prepared by means familiar to those in the art. The first and/or second mixture can optionally include one or more adjunct ingredients as described herein. In one aspect, the solvent is water.

In one aspect, the surfactant mixture may contain an anionic surfactant having high pH. In such case, the pH may be adjusted to a pH of about 7.0, using any suitable pH adjusting agent. The surfactant mixture comprising an anionic surfactant (or "surfactant mixture") may contain any suitable anionic surfactant as described above, in addition to nonionic, cationic, and zwitterionic surfactants. In one aspect, the surfactant mixture is isotropic. As used herein, isotropic means that the mixture is clear (having no visible haziness and/or dispersed particles) and has a uniform transparent appearance. As set forth above, the surfactant may be AES. In one aspect, the AES is provided in a mixture comprising at from about 10% to about 70% solvent, wherein the solvent contains a low molecular weight water-miscible molecule.

The surfactant and polymer mixtures are then individually metered from their respective storage vessels using, for example, a flow controlling pump (for example, a positive displacement pump; gear, progressive cavity) and flow meters using high energy dispersion. The energy level of the high energy dispersion step may be empirically determined by one of skill in the art, by analysis of the particle size and distribution of the second mixture and subsequent adjustment of the mixing energy applied when generating the mixture. The energy level must be sufficient to achieve the primary particle size and distribution as described. In one aspect, the high energy dispersion step has an Energy Density of from about 0.1 J/ml to about 100 J/ml, alternatively from about 0.5 J/ml to about 50 J/ml, alternatively from about 1 J/ml to about 10 J/ml. In another aspect, the energy density may be generated from a power density of from about 0.01 W/ml to about 1,000,000 W/ml, or from about 0.1 W/ml to about 100,000 W/ml. The residence time may be from about 1 millisecond (ms) to about 10 seconds, or from about 1 ms to about 1 sec, or from about 2 ms to about 100 ms. Where the residence time is less than 10 seconds, the power density is greater than about 0.01 W/ml. Where the residence time is less than 1 second, the power density is greater than about 0.1 W/ml. Where the residence time is less than 100 ms, the power density is greater than about 1 W/ml. Fine mixing of the polymer mixture with the surfactant mixture results in the formation of primary particles having a primary particle size distribution as described above dispersed in the third mixture, or "premix." Any larger than desired particles formed during blending can also be reduced in size by additional high shear milling steps. In one aspect, the metered streams are combined continuously in a pipe where the fluids are intimately contacted with each other in one or more shear mechanical or static mixers. Mechanical mixers include rotor stator mills (e.g. manufactured by IKA, Silverson, Quadro-Ytron), colloid mills (IKA, Premier), Stirred Bead Mills (Romaco)). Static mixers may consist of an array of similar, stationary mixing elements, placed one behind the other in a pipe or channel (e.g. manufactured for instance by Sulzer Ltd., Koch-Glitsch Inc., and Chemineer Inc). Static mixers suitable for this process also include orifice, microchannel or valve-type mixers. For instance, venturi mixers, microfluidizers (Microfluidics), Sonolator (Sonic Corp.), pressure homogenizers (BEEI, GEA Niro-Soavi, Arde Barinco, Niro). The mixing device energy must be sufficient to create colloid particles of desired composition, unit particle size, and particle birefringent optical characteristics. Any larger than desired particles formed during blending may be reduced in size by additional high shear milling steps. The premix can then be used for subsequent formulation as either a detergent, additive or rinse added solution.

In another aspect, the polymer mixture is contacted with the surfactant mixture in an agitated batch making tank to form the premix. To insure sufficient mixing, the polymer mixture may be injected into the high shear region of a high shear blender (e.g. IKA T-series batch high shear mixers).

The premix is then combined with a structurant to form a fourth mixture. The structurant is incorporated into the third solution/premix with a low energy dispersion step. This step requires mixing of sufficient power density to achieve adequate incorporation of structuring agents to aid in suspension of the colloid particles in the composition. For structuring agents that are shear sensitive, i.e. lose structuring capability when subjected to high energy density processing, care must be taken to limit the amount of energy applied during incorporation. Incorporation mixing processes can be in the form of continuous static mixers or batch tank agitation where power densities range from about 0.0001 W/ml to about 10 W/ml. In some cases, mechanical high shear mixers and constricted flow type (e.g. orifices) mixers with power densities of from about 1 W/ml to about 1000 W/ml can be used. In one aspect, the low energy dispersion step has an energy density from about 0.001 J/ml to about 1 J/ml, or from about 0.1 J/ml to about 10 J/ml, or from about 0.005 J/ml to about 0.5 J/ml. In another aspect, the energy density is generated from a power density of from about 0.0001 W/ml to about 10 W/ml, alternatively from about 1 W/ml to about 1000 W/ml. In yet another aspect, the energy level of the low energy dispersion step may also be empirically determined by one of skill in the art, such that energy level is sufficient to achieve the colloidal particle size and distribution as described. Mixing devices suitable for incorporation of the structurant include those listed above. In one aspect, the energy input from the mixing device is lowered so as to prevent damage to the structurant if the structurant is shear sensitive. Entrainment of air is limited throughout the process.

The fourth mixture may have a resting (low shear) viscosity of greater than about 10,000 cps @ 0.05/s. In another aspect, the low shear viscosity is from about 10,000 cps @ 0.05/s to about 225,000 cps @ 0.05/s. In a yet further
aspect, the fourth mixture has a resting viscosity of about 30,000 cps @ 0.05/s, or from about 10,000 cps @ 0.05/s to about 50,000 cps @ 0.05/s. In one aspect, the structurant may be added to the cationic polymer solution, or the surfactant mixture. In yet another aspect, the structurant may be added to both. The fourth mixture may be optionally combined with adjunct ingredients as desired, provided the final composition has the desired colloidal particle size distribution and low shear rheology characteristics described above. Alternatively, adjunct ingredients may be added to the premix, prior to incorporation of the structurant.

In one aspect, the final mixture contains from about 0.1 to about 20% by weight of an anionic surfactant; from about 0.1% to about 30% by weight of the composition of a cationic polymer; and from about 0.01 to about 1% by weight of a structurant.

E. Method of Using

In one aspect, a method of providing a benefit to a textile, particularly a color maintenance or rejuvenation benefit, comprising contacting a textile with the compositions described herein is disclosed.

The amount of the fabric care composition that is used to provide a benefit to a textile may vary according to several considerations, for example, fabric load size and washing machine type. In one aspect, the treatment process is repeated more than one time, until the desired rejuvenation benefit is achieved.

In one aspect, the method relates to providing a color rejuvenation benefit comprising the steps of applying to a textile a composition comprising from about 0.1 to about 20% of an anionic surfactant; from about 0.01 to about 10% of a cationic polymer; from about 0.01 to 1% of a structurant to a textile, wherein the composition is applied in an aqueous wash system; and wherein the composition contains the primary and colloidal particle structures as described herein.

In another aspect, the method relates to delivering a color rejuvenation benefit to a textile comprising a multi-compartment system, wherein the first compartment contains a cationic polymer; and the second compartment contains an anionic surfactant; wherein the compositions of the first and second compartment are dispensed into an aqueous wash system.

In a yet further aspect, the method relates to treatment of knits, pique knits, waffle knits, twills, and other wovens, such as those made from cotton, polyester, polyamide, silk, wool, nylon, and other fibers.

Dosage Forms - Various dosage formats may be used. For example, suitable dosage devices and containers include pouches, including foil or plastic pouches or water soluble pouches, such as a polyvinyl alcohol (PVA) pouch; dosing balls or containers; containers with readily opened closures, such as pull tabs, screw caps, foil or plastic covers, and the like; or other container known in the art. In other aspect, the compositions of the present disclosure may be formulated into tablet having a premeasured amount of the composition. In one aspect, the unit dose system is enclosed in a water miscible pouch wherein all compositions contained in the pouch contain less than about 15% water, or less than about 10% water, or less than about 7% water.

METHOD OF USING

In one aspect, a method of providing a benefit selected from the group consisting of abrasion resistance, wrinkle removal and/or prevention, pill prevention, anti-shrinkage, anti-static, anti-crease, fabric softness and/or feel, fabric shape retention, suds suppression, decreased residue in the wash or rinse, and/or improved hand feel or texture, and combinations thereof, is disclosed. In one aspect, the benefit may be a color benefit.

In one aspect, the method may comprise the step of contacting a fabric with a composition described herein, wherein the composition provides a ΔL value as measured on a textile of about -0.01 to about -15, or from about -0.1 to about -10, or from about -1 to about -5.

TEST METHODS

Fabric Damaging Protocol - New black Gildan t-shirts ("garment") (6.1 oz 100% pre-shrunk cotton, double needle stitching, seamless collar, taped neck and shoulders, quarter turned body), available from TSC Apparel, Cincinnati, Ohio, or a suitable equivalent, are used. (Mill Number : 2000; Mill: Gildan; Style number: 0281 GL; Color: Black; Size: Large or extra large.) 49.6 ± 0.01 grams of commercially available 2X Ultra Tide® detergent is used per cycle. Each garment is washed a total of 10 times, with complete drying (approximately 14% residual moisture) in-between each cycle. The wash conditions are as follows: Water: City water having 8.1 gpg average hardness and 1 ppm average chlorine. Washing machine used is Kenmore 80 Series, Heavy Duty, Super Capacity Plus, Quiet Pak, 3 speed motor with 4 speed combination, Ultra Rinse System, model number 110.64832400. Clothing is washed using the "Heavy Duty Fast/Fast" cycle using 17 gallons (64.35 Liters) water having a temperature of about 60°F for 12 minutes. One two minute rinse is performed using water having a temperature of about 60°F. The total garment weight in the washer is 5.5 pounds (or 11 whole Gildan t-shirts). The garments are then dried using a Kenmore electric 80 Series, Heavy Duty, Super
Capacity Plus, Quiet Pak, model number 110.64832400. The garments are dried for about 60 minutes at a temperature of 186°F (the "Cotton High" cycle). After the drying step, the garments generally have no noticeable moisture, or about 14% residual water content. The wash and dry cycles are repeated for a total of 10 times unless otherwise indicated.

[0155] Treatment Protocol - The test composition is diluted in a top loading machine containing 17 gallons of city water (about 8 gpg) at 60°F, for 12 minutes. The garment is then rinsed using 17 gallons 60 deg F city water (about 8 gpg), for 2 minutes. The garment is then dried to the touch (i.e., until garment has approximately 14% residual moisture).

[0156] Color/Appearance Benefit - The color and appearance benefit imparted to fabrics can be described, for example, in terms of the reflectance index of the fiber before and after treatment of the fabric as defined as a ΔL value measured via spectrophotometry (for example, via a Hunter spectrophotometer as described herein). A decrease in L value, represented by a negative delta L value, indicates an improvement (or darkening) in color, which represents a rejuvenation benefit. In this aspect, the L* value is determined before and after the fabric is treated using the method. The difference, or ΔL, indicates the degree of "rejuvenation" or improvement of appearance in the treated fabric. The ΔL value of the fabric can be determined using the Fabric Damaging Protocol to yield damaged fabrics, followed by the Treatment Protocol. L* values are determined on the damaged and treated fabric. A typical L(damaged) value for a black Gildan T-Shirt described is from about 12 to about 14. The ΔL value is equal to the L(damaged) - the L(treated) value.

[0157] Delta K/S Determination - The reflectance measurements as described by HunterLab of a given sample (fabric) can also be used to determine the absorption (K) and scattering of light (S) by means of the Kubelka-Monk equation at each wavelength. This relationship is as follows:

\[
\frac{K}{S} = \frac{(1-0.01*R)^2}{2(0.01*R)}
\]

[0158] For example, if the spectral reflectance at a given wavelength is 55%, the K/S at that wavelength is

\[
\frac{K}{S} = \frac{(1-0.01*55)^2}{2(0.01*55)} = \frac{0.45^2}{1.1} = 0.184
\]

[0159] The absorption of light (K) depends on properties of the colorant or dye while scattering of light (S) depends on the substrate. In determining the K/S values described herein, a black Gildan T-shirt is measured using a Hunter Colorimeter at its maximum absorbance. The reflectance, hue and chroma and K/S is obtained from the instrument. The K/S for the undamaged garment is 2.726. The fabric is then washed ten times following the Fabric Damaging Protocol. The K/S value after washing is about 1.000. The garment is then washed 10 additional times using the Treatment Protocol. The delta K/S is determined by subtracting the K/S of the damaged fabric from the treated fabric.

[0160] JBFT (Jumbo Black Fabric Test) - Using a Terg-o-tometer (Model 7243, United States Testing Co., Hoboken, NJ), the full-scale fabric care/laundry process is simulated. The recommended dosage/Liters from normal wash volume (641 for TL and 18L for FL) is scaled down to 1 L for use in the Terg-o-tometer. 7 grain water at 70 °F is measured. The composition to be tested is transferred to the Terg-o-tometer pot and the 1 liter water sample is added. The Terg-o-tometer, set to 50 t (stroke per minute) agitates the composition for 12 minutes. While the composition is dispersing, one of the round black fabric (C70) swatches (3 5/8" in diameter C70 Black Circles - Available from EMC Emperical Manufacturing Co.), smooth side up, is placed on the perforated base of the 90mm buchner funnel available from VWR Scientific. This is best accomplished by holding the swatch on opposite sides by the thumb and forefinger of each hand. While holding the swatch directly over the mouth of the funnel, release both hands simultaneously, dropping it down the inside of the funnel to the perforated base. The funnel is placed on a 4000ml suction flask available from Cole-Parmer and connected to sink with 1/2" OD tygon tubing from VWR. 200 - 300 ml. of 70°F water is poured through the funnel, using suction, to wet the swatch and insure direct contact with the base, making sure to avoid wrinkles in the swatch. After the composition has agitated for 12 minutes, vacuum is applied to the suction flask. The agitation is stopped, and the Terg-o-tometer pot removed. The contents of the pot are poured into the Buchner funnel. To achieve even particle distribution of insoluble's on the black fabric swatch, the suction (tap water) is turned on full force, and the solute and rinse water poured into the Buchner funnel as quickly as possible, without overflowing the funnel. The rinse water, 500 ml. of 7 grain, at the required temperature, is first used to rinse down the sides of the Terg-o-tometer pot before it is poured into the Buchner funnel through the swatch, while applying suction continuously. When all the water has been suctioned through the swatch, the suction is turned off. The swatch is then carefully removed from the funnel by grasping the edge of the swatch with forceps or tweezers. The swatches are then dried overnight on a drying screen. Alternatively, the swatches may be quick-dried them in an oven at 120°F - 140°F (49°C - 60°C) for 3-4 hours.

[0161] The swatches are graded according to a standard scale (such as against standard photographs), to the nearest 0.5 grade. The photographs are also correlated to the L Value as the swatches used to produce the photographic scale.
were measured for the Hunter L Value (Hunter colorimeter measurement, using method disclosed herein above) Insoluble material can appear on the swatch as a Grid pattern (Scale A) 0A to 5A (worst to best) based on particles or a Film pattern (Scale B), 0B to 05B (worst to best) based on covering complete fabric.

[0162] Tables that related to the visual scale (appendix) and give the correlation to the L (Hunter colorimeter measurement) is below

<table>
<thead>
<tr>
<th>Grid Scale</th>
<th>0A</th>
<th>1A</th>
<th>2A</th>
<th>3A</th>
<th>4A</th>
<th>5A</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Value</td>
<td>29.8</td>
<td>24.6</td>
<td>22.6</td>
<td>21.0</td>
<td>18.3</td>
<td>17.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Film Scale</th>
<th>0B</th>
<th>1B</th>
<th>2B</th>
<th>3B</th>
<th>4B</th>
<th>5B</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Value</td>
<td>32.4</td>
<td>31.0</td>
<td>27.2</td>
<td>23.5</td>
<td>21.8</td>
<td>17.8</td>
</tr>
</tbody>
</table>

[0163] Refractive Index Determination - The refractive index of a material may be given as the ratio of the speed of light in a vacuum relative to the speed of light in the material. For uncommon materials, n is typically not known and must be measured. Using the Becke line method, particles are dispersed in liquids of known refractive index and examined on a microscope slide under monochromatic light. Upon moving from best focus to focusing above the particle, a halo which forms around the particle (the Becke line) will be observed to move into the particle or into the surrounding liquid.

The direction of movement of the Becke line is towards the higher refractive index. The refractive index of the liquid is changed accordingly until the particles virtually disappear, indicating that the refractive indices of the particle and liquid match. It is assumed that the particle does not dissolve or swell in the liquid during the measurement of the particle. To determine the refractive index, isolated coacervate is placed on a glass microscope slide. The particle is immersed in a liquid of known refractive index and covered with a coverslip. Liquids used are selected from the set of Cargille Certified Refractive Index Liquids, available from SPI Supplies. The coacervate is immersed in the liquid is brought into best focus on a light microscope set in axial illumination with a 589nm interference filter placed over the light source. The relative value of refractive index of the particle (which is unknown) compared to the liquid (which is known) is determined by observing the direction of movement of the Becke line, the halo which forms around the particle. The Becke line moves in the direction of higher refractive index when focusing above the coacervate, or conversely towards lower refractive index when focusing below the particle. The process of immersing the particle in a known refractive index liquid and observing the movement of the Becke lines is repeated systematically until either the refractive index of the coacervate is matched or it is bound between two values.

[0164] Particle sizing - Particle size and structure in neat product (i.e., undiluted composition as described herein) is determined via light microscopy. A drop of neat product is placed on a glass microscope slide and covered with a glass coverslip. The coacervate particles are identified by their birefringent nature indicating a liquid crystalline character. These coacervate particles can be identified from other possible particulates in the formulation both by this birefringent nature, and either by inspection of the formulation in the absence of cationic polymer, and hence, in the absence of coacervate formation, or by systematic evaluation of other components in the mixture. Quantification of primary and colloidal particle size is completed by image analysis of the microscopy pictures. Often enhanced contrast techniques are used to improve contrast between the coacervate particles and the surrounding liquid, including differential interference contrast, phase contrast, polarized light, and/or the use of fluorescent dyes. Additional droplets are imaged to ensure that the resulting images and particle sizes are representative of the entire mixture.

[0165] Particle size under dilution may be determined using microscopy (light microscopy as described above, or electron microscopy if the particles are too small to be visible by light microscopy) and/or laser scattering techniques such as laser diffraction with Mie theory, dynamic light scattering, or focused beam reflectance mode. Often these techniques are used together, in that microscopy is used to identify the coacervate particles from other possible particulates in solution and scattering techniques offer a more rapid quantification of particle size. The choice of scattering method depends on the particle size of interest and the concentration level of particles in solution. In dynamic light scattering (DLS), the fluctuations in scattered light due to Brownian motion of the particles are measured. These fluctuations are correlated to obtain a diffusion coefficient and therefore a hydrodynamic radius of particles. This technique is used when the particles are less than a few microns and the solution conditions are dilute. In laser diffraction, the light scattered by the particles is measured by a series of detectors placed at different angles. The use of back scattering detectors and Mie theory enables detection of particle sizes less than 1 micron. This technique can be utilized to measure particles over a broader size range compared to DLS, and resolution of two populations of particle sizes (such as primary
and colloidal particles) can be determined provided the difference in sizes is significant enough. In a focused beam reflectance measurement (FBRM), a chord length distribution, which is a "fingerprint" of the particle size distribution, is obtained. In FBRM, a focused laser beam scans across particles in a circular path, and as the beam scans across particles the backscattered light is detected as pulses of light. The duration of the pulse is converted to a chord length, and by measuring thousands of chord lengths each second, the chord length distribution is generated. As in the case of laser diffraction, detection of two size populations can be obtained provided the differences in size is great enough. This technique is used when the particles are greater than approximately 1 micron and is primarily useful when the turbidity and/or particle concentration in solution is high.

Dilution under Wash Conditions - Preparation of samples under wash conditions for characterization of particle size and/or rheology as follows: 50.5 grams of Tide 2X, available from The Procter and Gamble Company (containing 20.06% AES, 2.67% HLAS and 0.80% Nonionic Surfactant) and 80 grams of sample composition is added to a Kenmore 80 Series, Heavy Duty, Super Capacity Plus, Quiet Pak, 3 speed motor with 4 speed combination, Ultra Rinse System, model number 110.25842400 top-loading washing machine. The mixture is allowed to agitate in the machine using the "Heavy Duty Fast/Fast" cycle (having 17 gallons (64.35 Liters) water at a temperature of about 60°F), and stopped after 12 minutes. Water quality is 6 gpg. Samples of the solution are extracted immediately after the cycle is stopped for characterization of particle size or rheology as described herein.

Preparation of samples to characterize particle size under dilution is accomplished using either a bench-top dilution method (described below), or by sampling the liquid directly from the washing machine. For the bench-top dilution method, water is placed in a vessel and stirred using a stand mixer set at 100-500rpm. Water quality (e.g. hardness and/or chlorine) and/or temperature are adjusted to the desired condition. Neat product is added into the water by a syringe, the amount of which is governed by the desired dilution ratio to mimic the wash concentration. For example, 5 g of product is added to 1000g of water to achieve a wash concentration of 5000 ppm. Samples of the solution are removed for characterization at the desired time points. When evaluating the particle size upon dilution via microscopy, a drop of solution is placed on a glass slide with coverslip and particle size is determined with image analysis as described in the neat sample characterization. When measuring the particle size via scattering, the diluted sample is either placed in a cell for measurement in the instrument (DLS or laser diffraction) or the probe is placed directly into the vessel (FBRM).

Rheology/Adhesive Mapping - The frequency dependence of the material is obtained from a frequency sweep carried out under linear viscoelastic conditions. The structured phase (comprising particles) is separated from wash solutions by centrifugation at a speed and time sufficient to isolate the particles as indicated by a substantially clear supernatant. As a result of centrifugation, a viscous gel-like layer comprising coalesced particles forms and separates as the bottom phase. A low viscosity supernatant is present. The supernatant is decanted to isolate the gel-like layer for further testing. The linear viscoelastic regime is defined as the stress range over which G' and G" are constant, i.e. independent of stress. A dynamic frequency sweep, where G' (elastic modulus) and G" (viscous modulus) are measured as a function of stress, is run at a fixed frequency 1 rad/s. The linear viscoelastic regime is then formed by plotting G' on the y-axis and G" on the x-axis, with the upper right corner of the window corresponding to the high frequency point i.e. G"(100 rad/s), G'(100 rad/s) and the lower left corner corresponding to the low frequency point i.e. G"(0.1 rad/s), G'(0.1 rad/s).

The Particle Size, Refractive Index and Rheology/Adhesive Mapping test methods may be employed to evaluate consumer product compositions and components. A representative, non-limiting list of product categories includes antiperspirants, baby care, colognes, commercial products (including wholesale, industrial, and commercial market analogs to consumer-oriented consumer products), cosmetics, deodorants, dish care, feminine protection, hair care, hair color, health care, household cleaners, incontinence care, laundry, oral care, paper products, personal cleansing, disposable absorbent articles, pet health and nutrition, prescription drugs, prestige fragrances, skin care, snacks and beverages, special fabric care, shaving and other hair growth management products. Exemplary product forms and brands are described on The Procter & Gamble Company’s website www.pg.com, and the linked sites found thereon. It is to be understood that one or more of said test methods may be useful for use in evaluating or measuring consumer products that are part of product categories other than those listed above.

EXAMPLES

[0170]
<table>
<thead>
<tr>
<th>Formula</th>
<th>Component Material</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkyl Ethoxylate sulfate</td>
<td>0 - 20</td>
<td>20.1</td>
<td>20.5</td>
<td>15</td>
<td>20.1</td>
<td>20.1</td>
<td>20.1</td>
<td>20.1</td>
<td>20.1</td>
<td>20.1</td>
<td>20.1</td>
</tr>
<tr>
<td>HLAS (1)</td>
<td>0 - 10.0</td>
<td>---</td>
</tr>
<tr>
<td>MLAS (2)</td>
<td>0 - 5.0</td>
<td>---</td>
</tr>
<tr>
<td>Alkyl Ethoxylate</td>
<td>0 - 5.0</td>
<td>0.3</td>
<td>2.0</td>
<td>1.5</td>
<td>4.0</td>
<td>0.5</td>
<td>0.7</td>
<td>2.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Lauryl trimethyl ammonium chloride (3)</td>
<td>0 - 4.0</td>
<td>2.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Citric Acid</td>
<td>0 - 5.0</td>
<td>3.4</td>
</tr>
<tr>
<td>C1218TPK FA (4)</td>
<td>0 - 5.0</td>
<td>2.1</td>
<td>0</td>
<td>5.0</td>
<td>10</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Enzyme 54.5 mg/g active (5)</td>
<td>0 - 1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Natalase-200L</td>
<td>0.0-1</td>
<td>---</td>
<td>0.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Carezyme-0.5L</td>
<td>0.0-0.5</td>
<td>---</td>
<td>0.1</td>
<td>0.05</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Borax</td>
<td>0-3</td>
<td>0.8</td>
</tr>
<tr>
<td>Ca Formate</td>
<td>0.0-0.1</td>
<td>---</td>
</tr>
<tr>
<td>ethoxylated tetraethylene pentamine</td>
<td>0 - 2.0</td>
<td>0.7</td>
<td>---</td>
<td>---</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.5</td>
<td>---</td>
<td>0.7</td>
</tr>
<tr>
<td>PE20 (6)</td>
<td>0 - 3.0</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>1.5</td>
<td>2.0</td>
<td>0.7</td>
<td>---</td>
</tr>
<tr>
<td>DTPA (7)</td>
<td>0 - 1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>FWA-15 (8)</td>
<td>0 - 0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Merquat 100 (9)</td>
<td>1.0 - 4.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>---</td>
<td>1.5</td>
<td>---</td>
</tr>
<tr>
<td>Merquat 106 (10)</td>
<td>1.0 - 4.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>4.0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cartafix TSF (12)</td>
<td>0 - 3.0</td>
<td>2.0</td>
<td>2.0</td>
<td>---</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>1.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Merquat 5 (13)</td>
<td>---</td>
<td>2.0</td>
<td>---</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>3.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Polyvinyl Pyrrolidone</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.5</td>
<td>---</td>
<td>0.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PP5495(14)</td>
<td>0 - 4.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>0.5</td>
<td>---</td>
<td>---</td>
<td>0.5</td>
<td>1.0</td>
<td>---</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0 - 4.0</td>
<td>2.8</td>
</tr>
<tr>
<td>PEG4000</td>
<td>1.5</td>
</tr>
<tr>
<td>1,2-propanediol</td>
<td>0 - 6.0</td>
<td>3.8</td>
</tr>
<tr>
<td>MEA (monoethanol amine)</td>
<td>0 - 4.0</td>
<td>2.5</td>
</tr>
<tr>
<td>NaOH</td>
<td>As Needed to pH 6-9</td>
<td>---</td>
</tr>
<tr>
<td>Na Cumene sulfonate</td>
<td>0 - 3.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Na formate</td>
<td>0 - 0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Trihydroxystearin</td>
<td>0 - 0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Suds Suppressor</td>
<td>0 - 1.0</td>
<td>---</td>
</tr>
<tr>
<td>Acusol OP 301 opacifier</td>
<td>0 - 0.5</td>
<td>---</td>
</tr>
<tr>
<td>N4 amine</td>
<td>0 - 0.02</td>
<td>0.2</td>
<td>0.2</td>
<td>---</td>
<td>0.2</td>
<td>---</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Perfume</td>
<td>0.3 - 2.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Water</td>
<td>Balance to 100%</td>
<td>---</td>
</tr>
</tbody>
</table>
TABLE II: Exemplary Detergent Formulations

<table>
<thead>
<tr>
<th>Component Material</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkyl Ethoxylate sulfate</td>
<td>5.0-20.0</td>
<td>12.7</td>
<td>15.0</td>
<td>14.0</td>
<td>12.0</td>
<td>6.0</td>
<td>6.0</td>
<td>10.0</td>
<td>---</td>
</tr>
<tr>
<td>HLAS (1)</td>
<td>0-10.0</td>
<td>6.0</td>
<td>5.0</td>
<td>4.0</td>
<td>6.0</td>
<td>2.0</td>
<td>12.0</td>
<td>14.0</td>
<td>5.0</td>
</tr>
<tr>
<td>MLAS (2)</td>
<td>0-5.0</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkyl Ethoxylate</td>
<td>0-5.0</td>
<td>6.7</td>
<td>3.0</td>
<td>5.0</td>
<td>---</td>
<td>---</td>
<td>3.0</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Lauryl trimethyl ammonium chloride (3)</td>
<td>0-4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citric Acid</td>
<td>0-5.0</td>
<td>3.0</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>C1218 TPK FA (4)</td>
<td>0-5.0</td>
<td>3.3</td>
<td>0</td>
<td>5.0</td>
<td>10.0</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>54.5 mg/g active (5)</td>
<td>0-1.0</td>
<td>0.52</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Natalase - 200L</td>
<td>0-0.1</td>
<td>0.03</td>
<td>0.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Carezyme - 0.5L</td>
<td>0-0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>2.0</td>
</tr>
<tr>
<td>Borax</td>
<td>0-3.0</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Ca Formate</td>
<td>0-0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethoxylated tetraethylene pentaime</td>
<td>0-2.0</td>
<td>0.7</td>
<td>---</td>
<td>---</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>polyethyleneimine MW600 EO20 (6)</td>
<td>0-3.0</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>DTPA (7)</td>
<td>0-1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>FWA-15 (8)</td>
<td>0-0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Merquat® 100 (9)</td>
<td>0.5-1.0-4.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>---</td>
</tr>
<tr>
<td>Merquat® 106 (10)</td>
<td>1.0-4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cartafix® TSF (12)</td>
<td>0-3.0</td>
<td>2.0</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Merquat® 5 (13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyvinyl Pyrrolidone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP5495 (14)</td>
<td>0-4.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>0.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0-4.0</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>PEG400</td>
<td>0-6.0</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1,2-propanediol</td>
<td>0-4.0</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>MEA (monoethanol amine)</td>
<td>0-4.0</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>NaOH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na Cumene sulfonate</td>
<td>0-3.0</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Na formate</td>
<td>0-0.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Trihydroxystearin</td>
<td>0-0.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Suds Suppressor</td>
<td>0-1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acusol OP 301 opacifier</td>
<td>0-0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N4 amine (16)</td>
<td>0-0.02</td>
<td>0.02</td>
<td>0.2</td>
<td>---</td>
<td>0.2</td>
<td>---</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Perfume</td>
<td>0.3-2.5</td>
<td>0.61</td>
<td>1-2</td>
<td>1-2</td>
<td>1-2</td>
<td>1-2</td>
<td>1-2</td>
<td>1-2</td>
<td>1-2</td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As Needed to pH 6-9

NaOH

Water
TABLE III: Exemplary Detergent Formulations

<table>
<thead>
<tr>
<th>Component Material</th>
<th>Formula 1</th>
<th>Formula 2</th>
<th>Formula 3</th>
<th>Formula 4</th>
<th>Formula 5</th>
<th>Formula 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkyl Ethoxylate sulfate</td>
<td>20.9</td>
<td>18.0</td>
<td>17.7</td>
<td>---</td>
<td>20.9</td>
<td>18.0</td>
</tr>
<tr>
<td>HLAS (1)</td>
<td>---</td>
<td>---</td>
<td>15.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MLAS (2)</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Alkyl Ethoxylate</td>
<td>0.27</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Lauryl trimethyl ammonium chloride (3)</td>
<td>1.958</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citric Acid</td>
<td>2.956</td>
<td>3.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>C1218 TPK FA (4)</td>
<td>1.84</td>
<td>2.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>S4.5 mg/g active (5)</td>
<td>0.42</td>
<td>0.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Natalase - 200L</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Carezyme - 0.5L</td>
<td>0.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Borax</td>
<td>0.739</td>
<td>0.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ca Formate</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ethoxylated tetraethylene pentamine</td>
<td>---</td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Polyethyleneimine MW600 EO20 (6)</td>
<td>---</td>
<td></td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>DTPA (7)</td>
<td>0.443</td>
<td>0.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FWA-15 (8)</td>
<td>0.067</td>
<td>0.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Merquat® 100 (9)</td>
<td>6.0</td>
<td>1.5</td>
<td>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Merquat® 106 (10)</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Merquat® 280 (11)</td>
<td>9.0</td>
<td>11.79</td>
<td>9.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cartafix® TSF (12)</td>
<td>1.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Merquat® 5 (13)</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Polyvinyl Pyrrolidone</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PPS495 (14)</td>
<td>2.0</td>
<td>0.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ethanol</td>
<td>2.48</td>
<td>2.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PEG 400</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PG 105 (15)</td>
<td>0.517</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1,2-propanediol</td>
<td>3.39</td>
<td>3.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MEA (monoethanol amine)</td>
<td>2.217</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>NaOH</td>
<td>2.513</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Na Cumene sulfonate</td>
<td>1.552</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Na Formate</td>
<td>0.04</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Trihydroxystearin</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Suds Suppressor</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Acuso™ OP 301 opacifier</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>N4 amine (16)</td>
<td>0.05</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Example: Method of Making

[0171] The base composition is made by adding the component materials of Table 4 into a dish bottom tank. The component materials are mixed by hand to minimize the amount of air entrapped in the mixture. Upon complete blending, the resulting base composition is clear and isotropic, having a viscosity of from about 200 to about 800 cPS at 20s⁻¹. 71 liters of base composition is then combined with 25 liters of the isotropic polymer solution. To form the polymer solution, the neat polymer (Nalco, Merquat 100, ∼40% active) is diluted with water to form a 11.9% active polymer solution. The base composition is delivered at a rate of 3500g/min using a Waukesha Pump Model (00602) and the polymer solution is delivered at a rate of 1265 g/min using a Pump (Moyno, E4ASSF3-SKA). The polymer solution and base composition are delivered simultaneously to the head of mill (IKA DR2000/5, two fine grindsets, 50% energy setting). The polymer solution is delivered via a dip tube inserted into the tubing such that the polymer solution is delivered as close as possible to the top of the grind sets without touching, thereby eliminating any air gap between the polymer introduction and dispersion with the base composition. Upon mixing of the base composition and the polymer solution as described above, a mixture containing colloidal particles is formed. Successful attainment of the colloidal particles can be confirmed at this step wherein a dispersed phase of colloid particles suspended in the product is visible via microscopy, the colloidal particles having a diameter of from about 10 to 20 um. Successful attainment of the colloidal particles can also be verified via observation of visible regions of birefringence in the dispersed phase using cross Polarized microscopy.

[0172] After the polymer solution stream and the base composition stream are combined as described above to obtain a mixture containing colloidal particles, 3.75 liters of Thixcin®, an organic derivative of castor oil, available from Elementis) is introduced at a flow rate of 190 g/min using a Waukesha Pump similar to the base composition one (Waukesha, 00618?). The Thixcin® is incorporated at the output of the mill to ensure rapid dispersion of the structurant into the colloid product via-a static mixer (12 element SMX static mixer (1” size) (Sulzer Chemtech). The mixing is complete when the product is passed through the 12 element 1” diameter static mixer at a flow rate of 5kg/s /min. The product is then transferred to a storage container. The final product has a rheology profile of about 20,000 - 50,000 at low shear (0.5 s⁻¹) and about 200-600 cPS at higher shear (20s⁻1). All processing steps are carried out at 20°C.

Table 4: Component Materials

<table>
<thead>
<tr>
<th>Component Material</th>
<th>Wt%</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfume</td>
<td>0.3</td>
<td>0.3</td>
<td>0.61</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethylene Glycol (DEG)</td>
<td>1.303</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>Balance to 100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Linear alkylbenzene sulfonate
2. Mid-chain branched linear alkylbenzene sulfonate
3. lauryl trimethyl ammonium chloride
4. Topped palm kernel fatty acid
5. Protease, genetically engineered variant of the detergent protease from Bacillus Amyloliquifaciens
6. polyethyleneimine MW600 EO20
7. diethylene triamine penta acetate
8. disodium 4,4’-bis([4-anilino-6-morpholino-s-triazin-2-yl]-amino)-2,2’-stilbenedisulfonate
9. Homopolymer of diallyldimethyl ammonium chloride, polymer molecular weight of from about 100,000 to about 150,000.
10. Homopolymer of diallyldimethyl ammonium chloride, polymer molecular weight from about 5,000 to about 15,000 Daltons
11. Co-polymer of dimethyldiallyl ammonium chloride and acrylic acid, molecular weight of about 450,000 to 550,000 Daltons
12. Terpolymer of dimethylamine-epichlorohydrin-ethylenediamine
13. Poly(acrylamide-co-methacryloyloxethyltrimethyl ammonium methylsulfate)
14. Dimethyl, methyl (polyethylene oxide acetate capped) siloxane
15. Ethoxylated tetraethylene pentamine
16. N,N'-Bis(3-aminopropyl)ethylenediamine
It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.

The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value.

The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.

While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims

1. A process for preparing a composition said process comprising the steps of
 a) Providing a first mixture comprising a cationic polymer;
 b) Providing a second mixture comprising an anionic surfactant;
 c) Combining the first mixture and second mixture via a high energy dispersion step having an energy density of from 0.1 J/ml to 100 J/ml, to form a third mixture
 d) Introducing a structurant in the third mixture via a low energy dispersion step having an energy density of from 0.001 J/ml to 1 J/ml, to form a fourth mixture
 e) Wherein the fourth mixture has a resting viscosity of at least 10,000 cps at 0.05/s measured at 25°C.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2004069979 A2 [0005]
- US 3549546 A [0005]
- US PA20080263780 A1 [0027]
- WO 0056849 A [0045] [0046] [0061]
- US PN6642200 A [0045] [0046]
- US PA20060252668 A [0050]
- US 6642200 B [0052] [0061] [0066]
- US 6551986 B [0052] [0066]
- US 4328000 A [0071]
- US 12075333 B [0075]
- US PA20050098759 A [0095]
- US PNS4818421 A [0095]
- US 3299112 A [0095]
- US PNS7335630 B2 [0096]
- US 4911852 B2 [0096]
- US PA20050170994 A1 [0096]
- WO 2008021892 A1 [0118]

Non-patent literature cited in the description

- Wet Strength resins and their applications. TAPPI Press, 1994, 13-44 [0053]
- III. Pulp and Paper, Chemistry and Chemical Technology. 1981 [0060]
- Wet Strength resins and their applications. TAPPI Press, 1994 [0067]