A sunscreen system is provided comprising a control unit and a sunscreen having a first nonplanar glass layer and a nonplanar display layer having a first side and an opposite second side. The first side is adhered to the glass layer, wherein the display layer comprises a plurality of display subareas covering the overall surface of said display layer. Each separate display subarea may be controlled by the control unit to change the subarea’s transmittance. The invention is based on the insight that a nonplanar design allows integration in a vehicle body and that a plurality of display subareas allows partial area-wise blocking of light. All electronic components can be provided in or adjacent to the sunscreen or be arranged at another location in the vehicle, leading to a flexible design which for example allows a larger area panoramic roof due to reduction of mechanical components in the roof structure.
Description

Field of the Invention

[0001] The present invention relates to sun shading for vehicles and to vehicles with window-integrated sunshades. The invention specifically relates to sunshades with controllable transmittance.

Background

[0002] Current solutions for sun protection on vehicle glass consist mainly of protective covers such as sun visors, side/rear window sunshades, luggage covers, etc. These covers are generally located on a relatively fixed position in the interior of the vehicle and are manually operated, for example by folding or pull-release. Similarly, some current solutions for sun protection on a sunroof system consist of a mechanical roller blind system which is often motorized. These roller blind systems typically have several components, for example an electric motor, a frame system, a drive system and a textile roller curtain and these components require a large packaging volume, i.e. they occupy a significant portion of the interior of the roof. Furthermore they induce weight-, cost- and quality issues. There is consequently an incentive to improve the sun protection in the vehicle and additionally it would be desirable for customers and consequently manufacturers to provide larger panoramic roofs as an option.

[0003] There are in both the vehicle industry and in infrastructure examples of sunshades comprised in the glass in the form of particles that change the transparency of the glass at the application of an electric current. There is also transparent electrochromic coated glass available that change the transparency of the glass by applying a voltage to a conducting layer of the glass to initiate a solid state reaction over the coated layer of the glass. Despite that there are electrical sunshades already available, these solutions are sometimes complex in the construction, offer only basic sunshading function and may be slow to react. Also, they tend to be complicated to operate. It would therefore be desirable to additionally present a more adaptable sunscreen which is intuitive to control.

Summary of the Invention

[0004] It is an object of the present invention to address the shortcomings of the prior art, and to provide an improved sunscreen system for vehicles which allows for a larger area of the vehicle roof for the panoramic roof and may reduce the weight while being more cost effective to manufacture. Another object is to provide a sunscreen system which may be applied to other windows in a vehicle and which is intuitive to operate.

[0005] According to a first aspect of the invention, these and other objects are achieved with a sunscreen system comprising a control unit and a sunscreen having a first nonplanar glass layer and a nonplanar display layer having a first side and an opposite second side. The first side is adhered to the glass layer, wherein the display layer comprises a plurality of display subareas covering the overall surface of said display layer. Each separate display subarea may be controlled by the control unit to change the subarea’s transmittance.

[0006] Thus, the invention is based on the insight that a nonplanar design allows integration in a vehicle body and a plurality of display subareas allows partial area-wise blocking of the sun. The combination of these features has not been previously disclosed, and provides several advantages compared to prior art sunscreen systems.

[0007] All control elements and electronic circuitry can be provided in or adjacent to the sunscreen or be arranged at another location in the vehicle, leading to a flexible design which for example allows a larger area panoramic roof due to removal of motor-, roller-, frame- and drive components in the roof structure. Further, the control elements may be shared between sunscreens replacing additional vehicle windows panes.

[0008] According to this design the display layer is adhered to a first glass layer of the vehicle window which is to be fitted with a sunscreen. The display layer may advantageously be equal to the glass layer in its extension, but a partial cover of the glass layer may also be considered such as for example in an application over the upper edge area of the front window. The display layer is preferably adhered to the side of the first glass layer which is to be arranged to the interior of the vehicle.

[0009] According to at least one exemplary embodiment of the invention the sunscreen further comprises a second nonplanar glass layer, being adhered to the second side of the display layer. By this design the display layer is sandwiched between two layers of glass, the display layer may work as a common interlayer of a laminated safetyglass. Such an interlayer adheres to multiple layers of glass, preventing the glass screen from breaking into small sharp shards.

[0010] According to at least one further exemplary embodiment of the invention the first glass layer has a first side, which is the side adhered to the first side of the display layer, and an opposite second side. The sunscreen further comprises a second glass layer, being adhered to the second side of said first glass layer. The effect of this is that the display layer may advantageously be adhered to the side of a laminated glass pane which is facing the interior of the vehicle. This may allow for the application on a laminated glass window which in itself may be used in vehicles that are not equipped with the sunscreen system, thereby allowing the use of the same or similar parts in a modular manner.

[0011] Each display subarea may advantageously be controlled simultaneously with other display subareas or controlled individually. This provides the effect that the transmittance of a partial area of the sunscreen may be changed to block the sunlight for only one passenger or
According to at least one exemplary embodiment the nonplanar display layer is a nonplanar and at least semi-transparent LCD (Liquid Crystal Display). This has the effect that the sunscreen may be controlled as an ordinary display, for example having a matrix of display pixels over the surface wherein the transparency of each pixel is controllable by a control unit. If and to an LCD used in for example a television, there is no light providing luminance behind the screen as this comes from the ambient light. Apart from being able to change transmittance of areas as small as a pixel, a display such as an LCD may have the advantage of changing the transmittance quicker, as compared to sunscreens having electrochromic layers, coats or embedded particles.

Furthermore, the sunscreen system advantageously comprises a user control interface, arranged to provide input to the control unit, for controlling the transmittance of the plurality of display subareas. The user control interface may be operated to change the transmittance of the entire display layer or the transmittance of at least one subarea. Advantageously the user control interface is arranged to detect inputs such as a location, a movement or a duration. The user control interface may interpret and correlate inputs to subareas. For example a first position input corresponding to at least one subarea, a direction based on a movement subsequent to the first position input corresponding to further subareas or a duration corresponding to a change intended to occur for said duration. The user control interface is not limited to detecting the aforementioned inputs.

According to at least one exemplary embodiment of the invention the user control interface comprises a touch sensitive transparent layer, being nonplanar and forming an innermost layer of the sunscreen. By this design the sunscreen has a touch sensitive layer on the side which is facing the interior of the vehicle, a side which is advantageously both protected from the environment and closer to the operator of the user control interface. Preferably, the touch sensitive layer comprises surface areas, arranged so that each display subarea has a corresponding touch sensitive surface area, so that the transmittance of each of said subareas may be controlled by the associated corresponding surface area on the touch sensitive layer. This has the advantage that the transmittance of a display subarea may intuitively be operated by touching the sunscreen essentially on the sub-area which is to be controlled, e.g. on the surface area in proximity to the subarea. However, this does not exclude the possibility to control subareas which are not touched. It may be advantageous to additionally allow operation of the transmittance of at least one subarea which is not in close proximity to the surface of the sunscreen which has been touched. For example this presents the possibility to provide a general input to operate the overall sunscreen area or to provide an input to control a subarea which is out of reach for the operator.

According to another embodiment of the invention the user control interface comprises at least one sensor arranged to detect contactless interaction with said sunscreen. Such a sensor may detect eye gaze direction, voice commands or detect the extension of an extremity, such as a limb of the operator. This enables the possibility of operating subareas which are out of reach for the operator. A back seat passenger may for example be able to operate the sunscreen to block sun light which is hitting the passenger via the front part of the sunscreen, additionally this may enable shorter passengers to operate the sunscreen. An added effect is that the sunscreen may be less subjected to smudges as compared to a sunscreen with touch sensitive interface.

Advantageously, the control unit is arranged to detect if a first user input represents an encircling edge, defining a first figure, and further arranged to associate at least one of the display subareas with the first figure, based on a position and an extension of the encircling edge, so that the transmittance of each display subarea associated to the first figure may be controlled simultaneously. This allows an operator to intuitively and efficiently define an area for changing the transmittance. A first user input representing an encircling edge may be the moving of a finger along a path of the touch sensitive layer, wherein the path defines an encircling edge of a figure. The first user input may also be the contactless detection of movement of the operator’s limb defining an encircling edge, for example the operator may draw a figure in the air directed at the sunscreen, wherein the user control interface may be arranged to translate the direction of the limb to the surface of the sunscreen. Preferably, the user control interface is adapted to determine the enclosing edge of a figure even if a starting point and an ending point of the path do not meet or if they overlap, in which case the figure may be extrapolated. For example, there may be a lacking distance in the range of a few centimeters or there may be an overlapping distance of the path defined. The figure may for example be a circle or a polygon. This has the effect that a user may define an arbitrary area wherein the transmittance is either automatically changed to block or to allow the ambient light to pass, or is controlled with subsequent inputs. It may additionally be possible to define multiple inputs for simultaneous control.

Furthermore the control unit may be arranged
to detect if a first user input represents a moving motion, defining at least a first direction and further arranged to associate at least one of the display subareas with the first direction, based on a position and an extension of the first direction, so that the transmittance of each display subarea associated to said first direction may be controlled simultaneously. The moving motion may for example be understood as a limb of the user starting at a point representing a first position on the surface of the sunscreen and defining a path to a second point representing a second position on the surface of the sunscreen. Additionally a second limb may also be involved, similarly defining a second path with a third point and a fourth point. Based on at least one moving motion the control unit may determine a selection of subareas to be controlled or a characteristic to be controlled for a selection of subareas, wherein a characteristic may be transmittance for example.

[0018] For reference in the context of the invention it may be stated that glass windows for buildings are generally planar, meaning that the main surface of such a window extends in one plane and is not curved. However, glass layers in vehicles are often nonplanar, for aerodynamic or aesthetic reasons. They may for example be single-curved relative to a first axis, meaning that a cross section of the glass layer will define an arc or a curve described with at least one radius. This may for example be the case with side windows, for which a sunscreen system according to the invention may be well suited.

[0019] According to at least one exemplary embodiment of the invention the nonplanar layers are double-curved, meaning that the layers will define an arc or a curve described with at least one radius, in two cross sections along a first and a second nonparallel axes. This design makes the sunscreen suitable for double-curved panoramic roofs, rear windows and windscreens.

[0020] In at least one exemplary embodiment of the sunscreen system the display layer, the control unit and the user control interface are electrically connected. When the hand of the operator approaches and / or touches the sunscreen it is sensed by the user control interface and a signal is generated and sent to the control unit. The control unit decodes the signal from the user control interface are electrically connected. Depending on the state of the display layer, the general state of the environment and / or previous signals the control unit decides whether the display should change its graphical state. This decision may comprise changing the transmittance of at least one subarea. In such a case a signal is sent to the display layer to change the transmittance accordingly. The affected subareas change their transmittance as a result of said signal.

[0021] According to a second aspect of the invention a vehicle is provided, comprising a sunscreen system according to the first aspect, wherein the sunscreen is at least one of windscreens, sunroof, panoramic roof, side window or rear window.

[0022] Furthermore according to at least one exemplary embodiment the user control interface is arranged to determine a seating position of a user, and wherein the control unit is further arranged to associate a predetermined subset of said display subareas based on the seating position, wherein the transmittance of the subset may be controlled by the user. The user control interface may for example be arranged to detect whether the operating user’s limb extends from a particular seat. Other system-external sources of information may also be employed to detect the seating position of the user, such as for example pressure sensors in seats, cameras arranged in the interior of the vehicle, IR-sensors or sonic sensors. This may provide the possibility to, for example, allow the driver control of the entire sunscreen system, while a passenger may be allowed to only control the sunscreen in the passenger’s proximity or a limited subarea through which ambient light is hitting the passenger. The advantage of this may be a higher traffic safety level, as the driver may get distracted or even impaired vision if the sunscreen system by operation of a passenger either blocks the driver’s view, makes a shaded subarea transparent or flickers a lot in the peripheral view of the driver. Preferably, this predetermined subset may be set by the vehicle driver, similar to a child lock, and / or determined by factors such as incident light angles, the passenger’s and driver’s respective fields of view, etc.

[0023] Further effects and features of this second aspect of the present invention are largely analogous to those described above in connection with the first aspect of the invention.

Brief Description of Drawings

[0024] These and other aspects of the present invention will now be described in more detail, with reference to the appended drawings showing exemplary embodiments of the invention, wherein:

Fig. 1 shows a perspective view of a vehicle equipped with a sunscreen system of an exemplary embodiment of the invention;

Fig. 2 is a cross section of a sunscreen of an exemplary embodiment of the invention;

Fig. 3a shows a closer cross section of a sunscreen of one exemplary embodiment of the invention;

Fig. 3b shows a closer cross section of a sunscreen of another exemplary embodiment of the invention;

Figs. 4a-b schematically show an exemplary embodiment of the present invention and a close up of the exemplary embodiment; and

Figs. 5a-d schematically show exemplary user inputs to control a selection of functions of exemplary embodiments of the present invention.

Detailed Description of Embodiments of the Invention

[0025] In the following description, the present invention is mainly described with reference to a vehicle
equipped with a sunscreen system, whereby references to interior, exterior, innermost, outermost, forward, rear and the respective sides are made with respect to a car with a passenger compartment as the interior. In the following description the sunscreen and the control unit are located in the roof of a vehicle, however other locations are conceivable.

[0026] Fig. 1 shows a perspective view of a vehicle equipped with a sunscreen system 1 of an exemplary embodiment of the invention. In Fig. 1 a roof 15 of a passenger car can be seen in perspective. The roof 15 is provided with a sunscreen system comprising a sunroof or panoramic roof in the form of a sunscreen 2 and a control unit 3, which is not exposed and therefore illustrated with dotted lines. Fig. 2 is a detailed cross-section along line II - II of the sunscreen in Fig. 1.

[0027] Fig. 2 illustrates how the sunscreen 2 comprises a glass layer 4 as the top layer. The top layer is also the exterior layer as seen from the vehicle, i.e. the layer exposed to the environment. The glass layer 4 may preferably be adapted for vehicle applications and regulations, and there should be no additional need to adapt the glass for the sunscreen 2. In this example embodiment a display layer 5 is adhered directly to the glass layer 4 across the overall innermost side of the surface of the glass layer 4. Interior to the display layer 5 the sunscreen 2 according to this example embodiment is provided with a touch sensitive layer 7 adhered to the surface of the display layer 5. The touch sensitive layer 7 may for example be capacitive or resistive and comprise the relevant sensors and protective layers as in touch sensitive layers in common touch sensitive displays. As is illustrated in the cross section shown in Fig. 2, the sunscreen 2 is curved. Preferably, the sunscreen 2, and consequently all the comprising layers, is curved so that it may match the contour of the vehicle roof. Likewise, if a cross section were taken from the front to the rear there would be a similar curvature of the sunscreen, for integrating the sunscreen with the profile contour of the vehicle roof from the side. There is commonly a blackout edge encircling the exterior surface of vehicle glass, for example for covering interior seals and components from exterior view, in which case the display layer 5 and touch sensitive layer 7 may be reduced in area to cover only the region of the glass layer 4 not covered by the blackout edge. Relative thickness as shown in the figures is only illustrative. Similarly, the curvature shown is also for illustrative purposes.

[0028] Fig. 3a shows a closer cross section of a sunscreen 2" of one exemplary embodiment of the invention. In this example the sunscreen 2" comprises a second glass layer 6 adhered to the outermost surface of the first glass layer 4 with an adhesive film 8 sandwiched between the first- 4 and the second glass layer 6. The design with two laminated glass layers and an adhesive film is common for safety glass in vehicles, as the adhesive film at least mostly prevents the glass from shattering into small sharp shards. Instead the shards of the two glass layers are kept together if the glass breaks. The display layer 5 is adhered to the interior surface of the first glass layer 4. Furthermore, there is a touch sensitive layer 7 adhered to the interior surface of the display layer 5.

[0029] Fig. 3b shows a closer cross section of a sunscreen 2" of another exemplary embodiment of the invention. In this example the display layer 5 is adhered to the interior surface of the first glass layer 4. Furthermore, the sunscreen 2" comprises a second glass layer 6' adhered to the interior surface of the display layer 5, sandwiching the display layer 5 between the first- 4 and the second glass layer 6. In this design the display layer may act as the adhesive layer 8 illustrated in figure 3a in terms of being adhesive to both the first- and second glass layer and thus preventing or at least mitigating the formation of sharp shards that are free and may harm passengers. In at least this one example embodiment a touch sensitive layer 7 is adhered to the interior surface of the second glass layer 6'. Although Figs. 2, 3a-3b show a touch sensitive layer 7 for receiving input from a user, it should be understood that the layer 7 may be omitted if contactless input is provided for, as described in this application.

[0030] Fig. 4a schematically shows an exemplary embodiment of the present invention. Fig. 4a shows a roof 15 of a vehicle (not shown), comprising a sunscreen system 1 according to at least one exemplary embodiment of the invention. For illustrative purposes the sunscreen 2 is provided with a grid system showing one example of a plurality of subsurfaces 9. On a sunscreen system produced for customers according to the exemplary embodiment the grid system is preferably not seen. The control unit 3 is advantageously arranged to control the transparency of each subarea 9 simultaneously with other display subareas or to control one display subarea 9 individually. The transmittance of a subarea 9 is preferably gradually controllable to a steeples level from essentially transparent to completely blocking incident ambient light. However, the transmittance may also be digital, in terms of having only one state which transmits ambient light and one state which blocks ambient light.

[0031] In Fig. 4b a detailed close up on a subarea 9 is shown to illustrate that a subarea may comprise a plurality of display pixels 10. The display pixels 10 may for example work to provide the level of transmittance, wherein the more pixels are blocking ambient light the lower the level of transmittance of ambient light is for the subarea. According to at least one example embodiment each display pixel may work as a filter for either a transmitting energy level and/or a wavelength of light, wherein the sunscreen system is preferably arranged with a plurality of pixels for each level of transmittance and/or wavelength, so that different transmittance levels may be achieved by activating a set of pixels correlating to the desired transmittance energy level and/or wavelength of transmitted ambient light. Alternatively, the pixels 10 in Fig. 4b may illustrate that the size of a subarea may be as small as a pixel.

[0032] It should be noted that the number, density and
form of the subareas 9 in Fig. 4a is only illustrative to give one example of the resolution. Similarly, the number, density and form of the pixels 10 in Fig. 4b is also only illustrative.

[0033] Moving on to a user interface of a sunscreen system according to at least one example embodiment of the invention, Figs. 5a-d schematically show exemplary user inputs to control various features of the present invention. The user may preferably operate the sunscreen system 1 by providing an input directly on the surface of the sunscreen 2 or alternatively in a contactless manner in the air, in which case a user control interface (not shown) is arranged to determine points on the surface which correspond to the user input performed in the air. For example, this may be achieved by detecting the position and movement of at least one of the user’s limbs and subsequently translating the position and the movement to the plane of the surface of the sunscreen.

[0034] Fig. 5a illustrates an example wherein the user provides an input in the form of a circular path across the surface of the sunscreen 2. The circular path defines the encircling edge of a circle, or at least a form similar to a circle. The control unit (not shown) identifies this circular movement as an encircling edge along the surface of the sunscreen 2 and associates the subareas 11 which are encircled by the edge to the figure which is defined by the user input. Subsequently the transmittance of the associated subareas is controlled by the control unit to block ambient light. During this operation there is a plurality of subareas 12, 13, which are left unaffected by the control unit. The majority of the subareas 13 are left transparent for incident ambient light, while an association of subareas previously defined 12, is left unaffected blocking light. A figure 11, 12 defined by a user may have been defined as suited for a travelling direction of the vehicle (not shown) and position of for example the sun, therefore it may be desirable for the control unit to adjust the position of the figures 11, 12 in relation to the relative position of the sun and/or the travelling direction of the vehicle. Alternatively, a user may manually operate a previously defined figure to virtually move the figure. The form of the figure may be defined essentially arbitrarily by the user, restricted by for example the resolution of the display subareas.

[0035] Fig. 5b illustrates an example wherein the user provides an input in the form of an essentially straight path in the forward (or rearward, or lateral) direction of the vehicle across the surface of the sunscreen 2. The control unit (not shown) identifies this path movement as a direction across the sunscreen 2, and preferably additionally determines the duration of the input, and associates the rearward subareas 14 (or forward, or opposite lateral) to the direction. Subsequently the transmittance of the associated subareas 14 is controlled by the control unit to block ambient light. Preferably this is performed in a manner similar to closing a mechanical rolling blind, wherein further subareas in the direction of the arrows 16 illustrated in figure 5b are continuously associated with the direction until the entire sunscreen 2 is blocking ambient light, or until the operator halts the change of transmittance. Similarly, the opposite may be performed with a sunscreen 2 which is already at least partly blocking ambient light, so that the sunscreen 2 may become transparent in a manner similar to opening a mechanical rolling blind.

[0036] Fig. 5c illustrates an example wherein the user provides an input in the form of a separating movement of for example the index finger and the thumb at the surface of the sunscreen 2 comprising an associated figure 17, similar to a figure 11, 12 as described in the example for Fig. 5a. The control unit (not shown) identifies these path movements as separating directions across the sunscreen 2, and preferably additionally determines the duration of the input, and associates the subareas comprised in the figure 17 with these directions, as well as associating the subareas in external proximity to the encircling edge of the figure 17. Consequently the extension of the figure 17 is expanded in the directions of the arrows 18 illustrated in Fig. 5c. Similarly there may be a user operation where two paths move together, indicating the desire to decrease the extension of a figure.

[0037] Fig. 5d illustrates an example wherein the user provides an input in the form of a single position at the surface of the sunscreen containing a figure 19, which at the beginning of the operation has a high level of transmittance as illustrated in the top left part of the illustrated figure. The control unit (not shown) identifies the position input as a position on the sunscreen, and preferably additionally determines the duration of the input. Based on the position of the input the control unit associates a figure 19 with the position, or the entire sunscreen 2 if no figure is present at the position. In this example the control unit gradually changes the transmittance of the figure 19, or the entire sunscreen 2, preferably during the duration of the input, so that the user may cease the input when a desired transmittance is achieved. The gradual change may be from a transparent state to an opaque state or the gradual change may be continuously oscillating between the two states, until the input ceases. This is illustrated with a gradual change in grayscale towards the lower right of the illustrated figure, which is to be interpreted as the transmittance changing over time rather than over surface of the figure 19, or sunscreen 2.

[0038] Additionally, variations to and combinations of the disclosed embodiments can be understood and effected by the skilled person in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. For example, there may be user inputs that essentially instantly change the transmittance of the entire surface to the maximum level, making the sunscreen completely transparent, or similarly to the minimum transmittance level. Such an input may be that the user issues a voice command, moves an open palm of the hand across the surface of the sunscreen, operates a button in the vehicle or operates a predetermined point on the touch sensitive/contactless user interface. Alter-
natively, the control unit may automatically control the entire surface based on input from a vehicle bus. Such input may be climate information from the on board climate system, key-ignition state, central locking system state, etc.

Furthermore the present invention is equally applicable to a side window, rear window or windscreen as well as on other vehicles than passenger cars. The system may be implemented even if the user control interface is located in for example the instrument panel or on a nomadic device such as a computer tablet connected to the vehicle. Each glass layer may be exchanged by for example a polymer screen without adversely affecting the sunscreen system according to the invention. Similarly the different layers of the sunscreen may be adhered together with additional adhesive layers, or in the cases where this is possible, be deposited or printed on another layer of the sunscreen. For example, there are displays and/or touch sensitive layers which may be printed, deposited or etched onto glass layers.

Furthermore, there is a large variety to touch sensitive layers, such as in capacitive, resistive or IR-based touch sensitive screens, which may all be suitable as user interfaces. The touch sensitive layer may additionally comprise layers that are for example protective, scratch resistant or anti-reflective, as may be common also with off the shelf touch sensitive layers. Similarly a contactless user interface may comprise cameras, microphones and/or IR-sensors. Examples of such user interfaces, designed for other applications are eye tracking devices for computer control, motion detectors for game consoles and IR-sensors which detect hand and finger movements for computer control. Such user control interfaces may be arranged so that the field of view for the input covers the driver, or preferably also includes the passengers as users.

In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.

Claims

1. Sunscreen system (1) for automotive use, comprising:

 a control unit (3);
 a sunscreen (2) having:

 a first nonplanar glass layer (4); and
 a nonplanar display layer (5) having a first side and an opposite second side, the first side being adhered to said glass layer (4), wherein said display layer (5) comprises a plurality of display subareas (9) covering the overall surface of said display layer (5), wherein each separate display subarea (9) is controllable by said control unit (3) for changing the transmittance of said subarea (9).

2. Sunscreen system (1) according to claim 1, wherein said sunscreen (2) further comprises:

 a second nonplanar glass layer (6'), being adhered to the second side of said display layer (5).

3. Sunscreen system according to claim 1, wherein said first glass layer (4) has a first side, being adhered to the first side of said display layer (5), and an opposite second side and said sunscreen (2) further comprises:

 a second glass layer (6), being adhered to the second side of said first glass layer (4).

4. Sunscreen system (1) according to any of the preceding claims, wherein each one of said display subareas (9) is controllable simultaneously with one or more of the other display subareas, or is controllable individually.

5. Sunscreen system (1) according to any of the preceding claims, wherein said display subareas (9) comprise at least one display pixel (10).

6. Sunscreen system (1) according to any of the preceding claims, wherein said nonplanar display layer (5) is a nonplanar at least semi-transparent LCD.

7. Sunscreen system (1) according to any of the preceding claims, further comprising a user control interface, arranged to provide input to said control unit (3), for controlling the transmittance of said plurality of display subareas (9).

8. Sunscreen system (1) according to claim 7, wherein said user control interface comprises a touch sensitive transparent layer (7), being nonplanar and forming an innermost layer of said sunscreen.

9. Sunscreen system (1) according to claim 8, wherein said touch sensitive layer (7) comprises surface areas, arranged so that each display subarea (9) has a corresponding touch sensitive surface area, so that the transmittance of each of said subareas may be controlled by the associated corresponding surface area on said touch sensitive layer (7).

10. Sunscreen system (1) according to claim 7, wherein said user control interface comprises at least one sensor arranged to detect contactless interaction with said sunscreen.
11. Sunscreen system (1) according to any one of claims 7 to 10, wherein said control unit (3) is arranged to detect if a first user input represents an encircling edge, defining a first figure (11), and further arranged to associate at least one of said display subareas with said first figure, based on a position and an extension of said encircling edge, so that the transmittance of each display subarea associated to said first figure may be controlled simultaneously.

12. Sunscreen system (1) according to any one of claims 7 to 11, wherein said control unit is arranged to detect if a first user input represents a moving motion defining at least a first direction and further arranged to associate at least one of said display subareas with said first direction, based on a position and an extension of said first direction, so that the transmittance of each display subarea associated to said first direction may be controlled simultaneously.

13. Sunscreen system (1) according to any of the preceding claims, wherein the nonplanar layers are double-curved.

14. Vehicle comprising a sunscreen system (1) according to any one of claims 1-13, wherein said sunscreen (2, 2', 2'') is at least one of windscreen, sunroof, panoramic roof, side window or rear window.

15. Vehicle according to claim 14, wherein said user control interface is further arranged to determine a seating position of a user, and wherein said control unit (3) is further arranged to associate a predetermined subset of said display subareas (9) based on said seating position, wherein the transmittance of said subset may be controlled by said user.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* paragraph [0017] *</td>
<td>13-15</td>
<td>B60R16/037</td>
</tr>
<tr>
<td></td>
<td>* paragraph [0075] *</td>
<td>8,9</td>
<td>ADD.</td>
</tr>
<tr>
<td></td>
<td>* paragraph [0098] *</td>
<td></td>
<td>G02F1/133</td>
</tr>
<tr>
<td>Y</td>
<td>WO 92/04522 A1 (GOOD THINKING LTD [GB]) 19 March 1992 (1992-03-19) * page 5, line 06 - page 6, line 04 *</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G02F</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>1-7,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

Place of search: The Hague
Date of completion of the search: 25 June 2014
Examiner: Diot, Patrick
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>FR 2 970 679 A1 (PEUGEOT CITROEN AUTOMOBILES SA [FR]) 27 July 2012 (2012-07-27) page 6, line 08 - line 17; figure 3 * -----</td>
<td>11,12</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE 100 57 795 A1 (DAIMLER CHRYSLER AG [DE]) 23 May 2002 (2002-05-23) the whole document * -----</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

TECHNICAL FIELDS SEARCHED (IPC)

<table>
<thead>
<tr>
<th>The Hague</th>
<th>25 June 2014</th>
<th>Diot, Patrick</th>
</tr>
</thead>
</table>

The present search report has been drawn up for all claims

CATEGORY OF CITED DOCUMENTS

- T: theory or principle underlying the invention
- E: earlier patent document, but published on, or after the filing date
- D: document cited in the application
- L: document cited for other reasons
- X: particularly relevant if taken alone
- Y: particularly relevant if combined with another document of the same category
- A: technological background
- O: non-written disclosure
- P: intermediate document
- &: member of the same patent family, corresponding document

15
CLAIMS INCURRING FEES
The present European patent application comprised at the time of filing claims for which payment was due.

☐ Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for those claims for which no payment was due and for those claims for which claims fees have been paid, namely claim(s):

☐ No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for those claims for which no payment was due.

LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

see sheet B

☐ All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.

☐ As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.

☐ Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:

☐ None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:

☐ The present supplementary European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims (Rule 164 (1) EPC).
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. claims: 1-10, 13-15

Sunscreen system (1) for automotive use, comprising: a control unit (3); a sunscreen (2) having: a first nonplanar glass layer (4); and a nonplanar display layer (5) having a first side and an opposite second side, the first side being adhered to said glass layer (4), wherein said display layer (5) comprises a plurality of display subareas (9) covering the overall surface of said display layer (5), wherein each separate display subarea (9) is controllable by said control unit (3) for changing the transmittance of said subarea (9) further comprising a user control interface, arranged to provide input to said control unit (3), for controlling the transmittance of said plurality of display subareas (9) wherein said user control interface comprises a touch sensitive transparent layer (7), being nonplanar and forming an innermost layer of said sunscreen.

2. claims: 1, 11, 12

Sunscreen system (1) for automotive use, comprising: a control unit (3); a sunscreen (2) having: a first nonplanar glass layer (4); and a nonplanar display layer (5) having a first side and an opposite second side, the first side being adhered to said glass layer (4), wherein said display layer (5) comprises a plurality of display subareas (9) covering the overall surface of said display layer (5), wherein each separate display subarea (9) is controllable by said control unit (3) for changing the transmittance of said subarea (9) further comprising a user control interface, arranged to provide input to said control unit (3), for controlling the transmittance of said plurality of display subareas (9) wherein said control unit (3) is arranged to detect if a first user input represents an encircling edge, defining a first figure (11), and further arranged to associate at least one of said display subareas with said first figure, based on a position and an extension of said encircling edge, so that the transmittance of each display subarea associated to said first figure may be controlled simultaneously OR wherein said control unit is arranged to detect if a first user input represents a moving motion defining at least a first direction and further arranged to associate at least one of said display subareas with said first direction, based on a position and an extension of said first direction, so that the transmittance of each display subarea associated to said first direction may be controlled simultaneously.
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are contained in the European Patent Office EDF file on 25-06-2014.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2003227663 A1</td>
<td>11-12-2003</td>
<td>AT 415644 T</td>
<td>15-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5945101 A</td>
<td>12-11-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1297380 A1</td>
<td>02-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003227663 A1</td>
<td>11-12-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0184230 A1</td>
<td>08-11-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9204522</td>
<td>19-03-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8532391 A</td>
<td>30-03-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9204522</td>
<td>19-03-1992</td>
</tr>
<tr>
<td>DE 102004050987 A1</td>
<td>01-12-2005</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE 19630813 A1</td>
<td>27-03-1997</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE 20320919 U1</td>
<td>09-06-2005</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2010065721 A1</td>
<td>18-03-2010</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2009109036 A1</td>
<td>30-04-2009</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2013204457 A1</td>
<td>08-08-2013</td>
<td>CN 103294190 A</td>
<td>11-09-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102013201746 A1</td>
<td>08-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2501575 A</td>
<td>30-10-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013204457 A1</td>
<td>08-08-2013</td>
</tr>
<tr>
<td>FR 2970679 A1</td>
<td>27-07-2012</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE 10057795 A1</td>
<td>23-05-2002</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.