Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a laundry dryer comprising an air-cooled condenser.

[0002] In laundry dryers wherein the drying air is circulated within a closed cycle, the drying air activated by a fan dehumidifies the laundry by being passed over the laundry and the water vapor in the air is condensed at the condenser. The drying air dehumidified at the condenser is then heated by being passed over the heater, thus hot and dry air is delivered onto the laundry. As the load on the air-cooled condenser increases, the amount of water kept in the condenser increases and the efficiency of the condenser decreases, the desired condensation cannot be provided, the operation time of the heater is prolonged and the total energy consumption of the laundry dryer increases.

[0003] In the European Patent No. EP2072656, a laundry dryer is explained which comprises an air-cooled condenser and the energy consumption of which is decreased.

[0004] The aim of the present invention is the realization of a laundry dryer which comprises an air-cooled condenser and wherein the efficiency of the condenser is increased.

[0005] In the laundry dryer realized in order to attain the aim of the present invention, explicated in the first claim and the respective claims thereof, the processing air through the opening.

[0006] In an embodiment of the present invention, the laundry dryer comprises an additional condenser which is placed on the cooling duct before or after the main condenser and the by-pass line passes through the additional condenser.

[0007] In another embodiment of the present invention, the laundry dryer comprises a supply line which provides the compensation of the processing air discharged from the drying duct by means of the opening, with one end connected to the cooling duct and the other end to the drying duct. The supply line is connected to the drying duct before the drying fan and to the cooling duct after the main condenser and the additional condenser.

[0012] In the laundry dryer of the present invention, some of the processing air is discharged out of the drying cycle, the dry cooling air is received instead of the discharged humid air and the condensation efficiency is increased by reducing the load on the condenser. The humidity of the discharged processing air does not disturb the user. The operation time of the heater is shortened and energy saving is provided.

[0013] The laundry dryer realized in order to attain the aim of the present invention is illustrated in the attached figure, where:

Figure 1 - is the schematic view of a laundry dryer.

[0014] The elements illustrated in the figure are numbered as follows:

1. Laundry dryer
2. Body
3. Drum
4. Drying duct
5. Heater
6. Condenser
7. Drying fan
8. Cooling fan
9. Cooling duct
10. Opening
11. Guide
12. By-pass line
13. Additional condenser
14. Supply line

[0016] In the laundry dryer (1), the processing air (PA)
activated by means of the drying fan (7) exits the drum (3) and reaches the condenser (6) by means of the drying duct (4), is heated by passing through the heater (5) after being dehumidified in the condenser (6) and the dry and hot processing air (PA) is delivered onto the laundry inside the drum (3). The cooling air (CA) sucked from the outside environment by means of the cooling fan (8) and the cooling duct (9) is delivered to the outside environment again after being passed through the condenser (6), thus the condenser (6) is cooled and the processing air (PA) passing therethrough is provided to be condensed.

[0017] The laundry dryer (1) of the present invention comprises an opening (10) arranged on the drying duct (4), providing the processing air (PA) to be partially discharged from the drying duct (4) inside the body (2).

[0018] In an embodiment of the present invention, the opening (10) is arranged on the part of the drying duct (4) after the condenser (6), thus the processing air (PA), the humidity of which is reduced while passing through the condenser (6), is provided to be discharged from the drying duct (4) by passing through the opening (10).

[0019] In another embodiment of the present invention, the opening (10) is arranged on the part of the drying duct (4) after the drying fan (7), between the drying fan (7) and the drum (3). In this embodiment, the pressure effect of the drying fan (7) is utilized in order to discharge the processing air (PA) through the opening (10).

[0020] In another embodiment of the present invention, the laundry dryer (1) comprises a guide (11) which extends from the side of the opening (10) to the inside of the drying duct (4) and guides the processing air (PA) partially to the opening (10) inside the drying duct (4).

[0021] Some of the processing air (PA) circulated in the drying duct (4) by means of the drying fan (7) during the drying process applied in the laundry dryer (1) is delivered to the environment inside the body (2) through the opening (10) after passing through the condenser (6). The amount of the processing air (PA) partially discharged from the drying duct (4) is adjusted by changing the dimensions of the opening (10) and the location of the guide (11). Thus, by separating some of the humid processing air (PA) flowing in the drying duct (4) from the drying cycle, the load on the condenser (6) is reduced and the condensation efficiency is increased. Since the opening (10) is arranged after the condenser (6), the humidity of the processing air (PA) is reduced in the condenser (6) in advance, thus the humidity ratio of the processing air (PA) entering the body (2) is decreased. For example, when there is a circulation of processing air (PA) with a flow rate of 50 l/min in the drying duct (4), processing air (PA) with a flow rate of 3 l/min is discharged from the drying duct (4) into the body (2) by means of the opening (10).

[0022] In an embodiment of the present invention, the laundry dryer (1) comprises a by-pass line (12), one end of which is connected to the opening (10) and the other end to the cooling duct (9).

[0023] By means of the by-pass line (12), the processing air (PA) partially discharged through the opening (10) is mixed with the cooling air (CA) discharged to the outer environment from the cooling duct (9), thus sent to the outer environment through the cooling duct (9) outlet with reduced humidity. The humidity rate of the air (PA + CA) sent to the outer environment is reduced significantly, thus doesn’t disturb the user.

[0024] In another embodiment of the present invention, the by-pass line (12) is connected to the cooling duct (9) before the cooling fan (8) in the direction of the cooling air (CA) flow, thus the suction effect of the cooling fan (8) is utilized for discharging the processing air (PA) partially through the opening (10).

[0025] In another embodiment of the present invention, the laundry dryer (1) comprises an additional condenser (13) which is disposed at the cooling duct (9), cooled by the cooling fan (8) together with the condenser (6), through which the by-pass line (12) passes, which exchanges heat with the by-pass line (12) and which reduces the humidity of the processing air (PA) passing through the by-pass line (12). The processing air (PA) discharged from the drying duct (4) is condensed by means of the additional condenser (13), thus sent to the outer environment with a humidity rate that doesn’t disturb the user.

[0026] In another embodiment of the present invention, the additional condenser (13) is disposed on the cooling duct (9), between the cooling fan (8) and the condenser (6) (not shown in the figures). In this embodiment, first the additional condenser (13) is cooled by the cooling fan (8), the condensation efficiency of the additional condenser (13) is increased, and thus the humidity of the processing air (PA) which is partially discharged to the outer environment is efficiently reduced.

[0027] In another embodiment of the present invention, the additional condenser (13) is disposed on the cooling duct (9), after the cooling fan (8) and the condenser (6) (Figure 1). In this embodiment, first the condenser (6) is cooled by the cooling fan (8), the condensation efficiency of the condenser (6) is increased, and thus the humidity of the processing air (PA) which circulates in the drying duct (4) is efficiently reduced.

[0028] In another embodiment of the present invention, the laundry dryer (1) comprises a supply line (14), one end of which is connected to the cooling duct (9) and the other end to the drying duct (4) and which provides the cooling air (CA) passing through the cooling duct (9) to be partially mixed with the processing air (PA) passing through the drying duct (4).

[0029] In another embodiment of the present invention, the supply line (14) is connected to the drying duct (4) before the drying fan (7) in order to benefit from the suction effect of the drying fan (7) and some of the cooling air (CA) passing through the cooling duct (9) is provided to be sucked from the supply line (14) and mixed with the processing air (PA) passing through the drying duct (4).
In another embodiment of the present invention, the supply line (14) is connected to the cooling duct (9) after the condenser (6) and the additional condenser (13) and the cooling air (CA) heated while passing through the condenser (6) and the additional condenser (13) is mixed with the processing air (PA) passing through the drying duct (4), thus increasing the capacity of the processing air (PA) to retain humidity.

In this embodiment, in the laundry dryer (1), instead of the processing air (PA) partially discharged from the drying duct (4) by means of the opening (10), the bypass line (12) and the cooling duct (9), the dry cooling air (CA) is supplied to the drying duct (4) by means of the supply line (14), and the processing air (PA) lost by being sent to the outside environment is compensated with the cooling air (CA). For example, taking into consideration that the total flow rate of the processing air (PA) is 50 l/min, processing air (PA) with a flow rate of 3 l/min is discharged and cooling air (CA) again with a flow rate of 3 l/min is added to the drying cycle by means of the supply line (14) instead of the discharged processing air (PA), thus maintaining the total flow rate. Thus, pressure drops in the drying duct (4) are prevented, the humidity of the processing air (PA) is decreased, and the drying performance is improved.

In the laundry dryer (1) of the present invention, the condensation efficiency is increased by reducing the load on the condenser (6). The humidity in the processing air (PA) that is partially discharged in order to reduce the load on the condenser (6) is reduced and prevented from disturbing the user. The operation time of the heater (5) is shortened and energy saving is provided.

It is to be understood that the present invention is not limited by the embodiments disclosed above and a person skilled in the art can easily introduce different embodiments. These should be considered within the scope of the protection disclosed by the claims of the present invention.

Claims

1. A laundry dryer (1) comprising a body (2), a drum (3) wherein the laundry is placed, a drying duct (4) wherein the processing air (PA) is circulated in order to dry the laundry, a heater (5) which heats the processing air (PA), a condenser (6) which condenses the processing air (PA), a drying fan (7) which circulates the processing air (PA) in the drying duct (4) and the drum (3), a cooling fan (8) which cools the condenser (6), a cooling duct (9) which directs the cooling air (CA) sucked from the outside environment by the cooling fan (8) onto the condenser (6), an opening (10) arranged on the drying duct (4), providing the processing air (PA) to be partially discharged from the drying duct (4) inside the body (2), characterized in that the laundry dryer (1) further comprises a by-pass line (12), one end of which is connected to the opening (10), the other end to the cooling duct (9).

2. A laundry dryer (1) as in Claim 1, characterized in that the opening (10) is arranged on the part of the drying duct (4) after the condenser (6).

3. A laundry dryer (1) as in Claim 1 or 2, characterized in that the opening (10) is arranged on the part of the drying duct (4) after the drying fan (7).

4. A laundry dryer (1) as in any one of the above claims, characterized in that the laundry dryer (1) further comprises a guide (11) which extends from the side of the opening (10) to the inside of the drying duct (4) and guides the processing air (PA) partially to the opening (10) inside the drying duct (4).

5. A laundry dryer (1) as in any one of the above claims, characterized in that the by-pass line (12) is connected to the cooling duct (9) before the cooling fan (8).

6. A laundry dryer (1) as in any one of the above claims, characterized in that an additional condenser (13) is disposed at the cooling duct (9), cooled by the cooling fan (8) together with the condenser (6) and through which the by-pass line (12) passes.

7. A laundry dryer (1) as in Claim 6, characterized in that the additional condenser (13) is disposed on the cooling duct (9), between the cooling fan (8) and the condenser (6).

8. A laundry dryer (1) as in Claim 6, characterized in that the additional condenser (13) is disposed on the cooling duct (9), after the cooling fan (8) and the condenser (6).

9. A laundry dryer (1) as in any one of the above claims, characterized in that the laundry dryer (1) further comprises a supply line (14), one end of which is connected to the cooling duct (9) and the other end to the drying duct (4) and which provides the cooling air (CA) passing through the cooling duct (9) to be partially mixed with the processing air (PA) passing through the drying duct (4).

10. A laundry dryer (1) as in Claim 9, characterized in that the supply line (14) is connected to the drying duct (4) before the drying fan (7).

11. A laundry dryer (1) as in Claim 9 or 10, with claim 9 being dependent on any one of the claims 6 to 8, characterized in that the supply line (14) is connected to the cooling duct (9) after the condenser (6) and the additional condenser (13).
Patentansprüche

1. Wäschetrockner (1), umfassend einen Gehäusekörper (2), eine Trommel (3), in die die Wäsche gegeben wird, einen Trocknungskanal (4), in dem die Prozessluft (PA) zirkulieren gelassen wird, um die Wäsche zu trocknen, eine Heizeinrichtung (5), die die Prozessluft (PA) erwärmt, einen Kondensator (6), der die Prozessluft (PA) kondensiert, ein Trocknungsgebläse (7), das die Prozessluft (PA) in dem Trocknungskanal (4) und der Trommel (3) zirkulieren lässt, ein Kühlgewebe (8), das den Kondensator (6) kühl, einen Kühlungskanal (9), der die Kühlfluft (CA), die von dem Kühlgebläse (8) von außen angesaugt wird, auf den Kondensator (6) lenkt, eine Öffnung (10), die an dem Trocknungskanal (4) angeordnet ist und dafür sorgt, dass die Prozessluft (PA) teilweise mit der Prozessluft (PA) vermischt wird, durch den Kühlungskanal (9) strömt.

2. Wäschetrockner (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Wäschetrockner (1) ferner eine Umgehungsleitung (12) umfasst, deren Ende mit der Öffnung (10) und deren anderes Ende mit dem Kühlungskanal (9) verbunden ist.

3. Wäschetrockner (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Öffnung (10) an dem Teil des Trocknungskanals (4) nach dem Kondensator (6) angeordnet ist.

4. Wäschetrockner (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Wäschetrockner (1) ferner eine Führung (11) umfasst, die sich von der Seite der Öffnung (10) zum Inneren des Trocknungskanals (4) erstreckt und die Prozessluft (PA) teilweise zur Öffnung (10) im Trocknungskanal (4) führt.

5. Wäschetrockner (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Umgehungsleitung (12) vor dem Kühlgebläse (8) mit dem Kühlungskanal (9) verbunden ist.

6. Wäschetrockner (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein weiterer Kondensator (13) an dem Kühlungskanal (9) angeordnet ist, der zusammen mit dem Kondensator (6) von dem Kühlgebläse (8) gekühlt wird und durch den die Umgehungsleitung (12) verläuft.

7. Wäschetrockner (1) nach Anspruch 6, dadurch gekennzeichnet, dass der weitere Kondensator (13) zwischen dem Kühlgebläse (8) und dem Kondensator (6) an dem Kühlungskanal (9) angeordnet ist.

8. Wäschetrockner (1) nach Anspruch 6, dadurch gekennzeichnet, dass der weitere Kondensator (13) zwischen dem Kühlgebläse (8) und dem Kondensator (6) an dem Kühlungskanal (9) angeordnet ist.

9. Wäschetrockner (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Wäschetrockner (1) ferner eine Zuführleitung (14) umfasst, deren Ende mit dem Kühlungskanal (9) und deren anderes Ende mit dem Trocknungskanal (4) verbunden ist und die dafür sorgt, dass die Kühlfluft (CA), die durch den Kühlungskanal (9) strömt, teilweise mit der Prozessluft (PA) vermischt wird, die durch den Trocknungskanal (4) strömt.

10. Wäschetrockner (1) nach Anspruch 9, dadurch gekennzeichnet, dass die Zuführleitung (14) vor dem Trocknungsgebläse (7) mit dem Trocknungskanal (4) verbunden ist.

11. Wäschetrockner (1) nach Anspruch 9 oder 10, wenn Anspruch 9 von einem der Ansprüche 6 bis 8 abhängig ist, dadurch gekennzeichnet, dass die Zuführleitung (14) nach dem Kondensator (6) dem weiteren Kondensator (13) mit dem Kühlungskanal (9) verbunden ist.

Revendications

1. Un sèche-linge (1) comprenant un corps (2), un tambour (3) où le linge est placé, un conduit de séchage (4) où l’air de processus (PA) est circulé afin de sécher le linge, un dispositif de chauffage (5) qui chauffe l’air de processus (PA), un condenseur (6) qui condense l’air de processus (PA), un ventilateur de séchage (7) qui circule l’air de processus (PA) dans le conduit de séchage (4) et le tambour (3), un ventilateur de refroidissement (8) qui refroidit le condenseur (6), un conduit de refroidissement (9) qui dirige l’air de refroidissement (CA) aspiré à partir de l’environnement extérieur par le ventilateur de refroidissement (8) sur le condenseur (6), une ouverture (10) qui est arrangée sur le conduit de séchage (4) et qui permet à l’air de processus (PA) d’être déchargé partiellement du conduit de séchage (4) dans le corps (2), caractérisé en ce que le sèche-linge (1) comprend en outre une ligne de by-pass (12) dont une extrémité est reliée à l’ouverture (10) et l’autre extrémité est reliée au conduit de refroidissement (9).

2. Un sèche-linge (1) selon la Revendication 1, caractérisé en ce que l’ouverture (10) est arrangée sur la partie du conduit de séchage (4) après le condenseur (6).

3. Un sèche-linge (1) selon la Revendication 1 ou 2, caractérisé en ce que l’ouverture (10) est arrangée
sur la partie du conduit de séchage (4) après le venti-tilateur de séchage (7).

4. Un sèche-linge (1) selon l’une quelconque des revendications précédentes, **caractérisé en ce que** le sèche-linge (1) comprend en outre un guide (11) qui s’étend à partir du côté de l’ouverture (10) à l’in- térieur du conduit de séchage (4) et guide l’air de processus (PA) partiellement à l’ouverture (10) dans le conduit de séchage (4).

5. Un sèche-linge (1) selon l’une quelconque des revendications précédentes, **caractérisé en ce que** la ligne de by-pass (12) est reliée au conduit de refroidissement (9) avant le ventilateur de refroidisse-ment (8).

6. Un sèche-linge (1) selon l’une quelconque des revendications précédentes, **caractérisé en ce que** un condenseur supplémentaire (13) est disposé au conduit de refroidissement (9), refroidi par le venti-lateur de refroidissement (8) avec le condenseur (6) et à travers lequel la ligne de by-pass (12) passe.

7. Un sèche-linge (1) selon la Revendication 6, **carac-térisé en ce que** le condenseur supplémentaire (13) est disposé sur le conduit de refroidissement (9) entre le ventilateur de refroidissement (8) et le condenseur (6).

8. Un sèche-linge (1) selon la Revendication 6, **carac-térisé en ce que** le condenseur supplémentaire (13) est disposé sur le conduit de refroidissement (9) après le ventilateur de refroidissement (8) et le condenseur (6).

9. Un sèche-linge (1) selon l’une quelconque des revendications précédentes, **caractérisé en ce que** le sèche-linge (1) comprend en outre une ligne d’ali-mentation (14) dont une extrémité est reliée au con-duit de refroidissement (9) et l’autre extrémité est reliée au conduit de séchage (4) et qui permet à l’air de refroidissement (CA) passant à travers le conduit de refroidissement (9) d’être mélangé partiellement avec l’air de processus (PA) passant à travers le conduit de séchage (4).

10. Un sèche-linge (1) selon la Revendication 9, **carac-térisé en ce que** la ligne d’alimentation (14) est reliée au conduit de séchage (4) avant le ventilateur de séchage (7).

11. Un sèche-linge (1) selon la Revendication 9 ou 10, avec la Revendication 9 étant dépendante de l’une des revendications de 6 à 8, **caractérisé en ce que** la ligne d’alimentation (14) est reliée au conduit de refroidissement (9) après le condenseur (6) et le condenseur supplémentaire (13).
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description