The invention concerns a process for tanning hide to obtain leather. The general process for obtaining the intermediary wet bleu stage comprises the following steps:

a) a picking step with acid and salt, followed by
b) a tanning step with chromium salt, followed by
c) a basification step.

The invention is characterized in that between step b) and c), a re-acidification step with organic acids is added. In particular the acids are selected from glutaric acid (GA), 2-Methyl glutaric acid (MGA), succinic acid, ethyl succinic acid (ESA), adipic acid (AA), maleic anhydride, fumaric anhydride, tricarboxylic acids, hydroxycarboxylic acids, and mixture thereof.

This invention enables an increase of the up-taking of the re-tanning products and provides leather of improved mechanical properties.
The present invention is related to a process of tanning hide to obtain leather. More specifically, it refers to an improvement introduced in the conventional process of tanning hide with chrome to obtain better quality leather. The advantages of the present invention are obtained with an additional acidification step after the chromium tanning step.

STATE OF THE ART

Hide tanning is a process in which the collagen protein present therein reacts with tanning agents, originating leather—the tanning process is therefore one of the essential steps in leather production process. It is a very old process, whose purpose is to avoid hide degradation and putrefaction, by means of a protein crosslinking phenomenon caused by the action of the employed tanning agent.

For chrome tanning producing "Wet Blue" (an intermediary stage prior to obtaining the final leather), traditionally used tanning agents are chrome III salts, such as chrome sulfate or basic chrome sulfate. Typically, leather has already been tanned when the hide incorporates about 3.5% by weight of chrome oxide, Cr2O3, dry basis, thus obtaining retraction test resistant leathers.

In the traditional processes of tanning hide, only 70% to 80% of chrome oxide available in the tanning bath is used. This means that the use of a large excess of salt is required, imposing additional costs to the process and generating an undesirable residue, potentially causing damaging impact to the environment and requiring storage and/or chemical treatment before disposal.

Despite the fact that chrome III compounds are not damaging to plants and animals, especially under neutral conditions, international rules impose low limits to the presence of chrome III and other heavy metals in water and air.

American patents US 4,715,861 and US 4,978,361 describe better hide absorption of chrome by hide by means of supplementary addition of chemical compounds. American patent US 4,042,321 proposes recycling the tanning bath by a complex and costly process aiming the reduction of effluents treatment, being, however, complicated due to the accumulation of salts and fiber residues. European patents EP 822,263 and Brazilian patents BR 9603419-0 and BR 9702025-7 disclose larger exhaustion of the chrome bath by the use of aldehyde, which is very toxic. As a rule, the state of the art always proposes more steps and/or the use of more raw materials to deal with the problem.

The traditional Chromium process from the animal hide to the final leather comprises the following steps:

1) Liming, unhairing and fleshing the animal hide
2) Deliming and bating the hide obtained after step 1 generally with the use of ammonium salt and deliming agents
3) Pickling step: the hide is subjected to an acidification step in a bath comprising also a salt, usually sodium chloride.
4) Tanning step: chromium salt is added in the bath during a time sufficient to enable the chromium ion to crossed the hide cross-section
5) Basification step: a basifying agent is added in the bath which is then heated
6) After draining and washing a wet blue leather is obtained
7) Re-tanning step
8) finishing steps (neutralization, dyeing, fixation, fatliquoring)
9) Obtaining the crust leather
10) Additional finishing steps
11) Obtaining final leather

The inventor have now found that a re-acidification of the bath after the tanning step, with particular organic acids can improve the up-taking of re-tanning products (at step 7) and improve the mechanical properties of the crust and finished leather.

The object of the present invention is a process of tanning hides comprising:

a) a pickling step consisting of immersing the hides in a bath with acid and salt, followed by
b) a tanning step consisting of immersing the hides in a bath with chromium salt, followed by
c) a basification step consisting of immersing the hides in a bath with a basifying agent;

the process being characterized in that between step b) and c), a re-acidification step with organic acids is added.

Advantageous characteristics of the process can be found in the sub-claims.
DETAILED DESCRIPTION OF THE INVENTION

Examples 1 to 3 : Production of the wet blue intermediary stage

Example 1

[0011] 100 Kg of hide for which liming, unhairing and fleshing process are completed is washed in the tanning drum with the same weight of water for 10 minutes.

[0012] For all examples, all ingredients added thereafter are weight percentage of the initial hide weight.

[0013] After the washing the water is discharged and the hides are submitted to deliming and bating with the use of ammonium sulfate and a commercial deliming agent based on di-carboxylic acids (Ex: Rhodiaeco Descal SD commercialized by Rhodia Poliamida and Especialidades). After all, bating process takes place, adding 0.08% of a standard commercial proteolytic enzyme and the drum run for 1 hour (pH = 8.0). At the end of these operations the cross-section of the hide does not show a pink color with phenolphthalein indicator.

[0014] The hides are washed twice with 100% water, based on hide weight, and the washings discharged.

Pickling step:

[0015] With relation to the hide weight, it is added into the drum, 50% of water, 6% of sodium chloride (Bé (Baumé scale) 6 to 7) and 0.4 % of a commercial bleaching (run 15 minutes). 0.6% of 85% formic acid diluted in water (1 to 10) is added (run 30 minutes) followed by the addition of 0.3% sulfuric acid diluted in water (1 to 15) (run 15 minutes), 0.3% sulfuric acid diluted in water (1 to 15) (run 15 minutes) followed by the addition of 0.4% sulfuric acid diluted in water (1 to 15) and the drum run for an additional 3 hours. After this time the pH of the bath is around 2 to 3.

Tanning step:

[0016] At this point a 3% of commercial chromium sulphate salt (ex: basic chromium sulphate, which presents 33% alkalinity and 25 to 26% chrome III oxide) is added (run 30 minutes). A second addition of 3% chromium sulphate salt is added and the drum run for an additional 30 minutes followed by the addition of 0.75% of MGA. After 17 hours, the chromium has completely crossed the hide cross-section.

Basifying step:

[0017] After this time, 20% water is added and 0.35% of a commercial basifying agent (ex: magnesium oxide) (run 90 minutes). A second portion of 0.23% magnesium oxide is added and the drum run for an additional 90 minutes. The water bath is heated from 35 °C to 50 °C during 5 hours, the drum is drained, the wet blue is washed with 100% water (based on pelt weight), drained and washed again with 80% water.

[0018] The obtained Wet Blue was submitted to the analysis of total chromium content, chromium in layers and evaluation by Scanning Electron Microscope (EDS) (Table 1 and Figure 1).

Example 2

[0019] 500 Kg of hide for which liming, unhairing and fleshing process are completed is washed in the tanning drum with 100% water (based on pelt weight) for 10 minutes. After that, the hides were submitted to deliming and bating according to example 1.

[0020] With relation to the hide weight, it is added into the drum, 50% of water, 6% of sodium chloride (Bé 6 to 7) and 0.4 % of a commercial bleaching (run 15 minutes). 0.6% of 85% formic acid diluted in water (1 to 10) is added (run 30 minutes) followed by the addition of 0.3% sulfuric acid diluted in water (1 to 15) (run 15 minutes), 0.3% sulfuric acid diluted in water (1 to 15) (run 15 minutes) followed by the addition of 0.4% sulfuric acid diluted in water (1 to 15) and the drum run for an additional 3 hours. After this time the pH of the bath is around 2 to 3.

[0021] At this point a 3% of commercial chromium sulphate salt (ex: basic chromium sulphate, which presents 33% alkalinity and 25 to 26% chrome III oxide) is added (run 30 minutes). A second addition of 3% chromium sulphate salt is added and the drum run for additional 30 minutes followed by the addition of 2,5% of an aqueous solution of MGA. After 17 hours, the chromium has completely crossed the hide cross-section.

[0022] After this time, 20% water is added and 0.35% of a commercial basifying agent (ex: magnesium oxide) (run 90 minutes). A second portion of 0.23% magnesium oxide is added and the drum run for an additional 90 minutes. The water bath is heated from 35 °C to 50 °C during 5 hours, the drum is drained, the wet blue is washed with 100% water (based on pelt weight), drained and washed again with 80% water.
Example 3 (comparative example)

[0023] 100 Kg of hide for which liming, unhairing and fleshing process are completed is washed in the tanning drum with 100% water (based on pelt weight) for 10 minutes. After that, the hides were submitted to deliming and batting according to example 1.

[0024] With relation to the hide weight, 60% of water, 6% of sodium chloride (Bé 6 to 7) and 0.4% of a commercial bleaching are added and the drum is run for 15 minutes. 0.6% of 85% formic acid diluted in water (1 to 10) is added (run 30 minutes) followed by the addition of 0.3% sulfuric acid diluted in water (1 to 15) (run 15 minutes), 0.3% sulfuric acid diluted in water (1 to 15) (run 15 minutes), followed by the addition of 0.4% sulfuric acid diluted in water (1 to 15) and the drum run for an additional 3 hours. After this time the pH of the bath is around 2.7 to 3.

[0025] At this point a 3% of commercial chromium sulphate salt (ex: basic chromium sulphate, which presents 33% alkalinity and 25 to 26% chrome III oxide) is added (run 30 minutes). A second addition of 3% chromium sulphate salt is added and the drum run for an additional 17 hours after which time the chromium has completely crossed the hide cross-section.

[0026] After this time, 20% water is added and 0.35% of a commercial basifying agent (ex: magnesium oxide) (run 90 minutes). A second portion of 0.27% magnesium oxide is added and the drum run for an additional 90 minutes. The water bath is heated from 35 °C to 50 °C during 5 hours, the drum is drained, the wet blue is washed with 100% water (based on pelt weight), drained and washed again with 80% water.

[0027] The obtained Wet Blue was submitted to the analysis of total chromium content, chromium in layers and evaluation by Scanning Electron Microscope (EDS) Table 1 and Figure 1).

Example 4 (Production of the retanned hides (crust step) of examples 1 to 3)

[0028] The Wet Blue obtained in the examples 1 and 3 were identified by different marks, combined and submitted to a standard re-tanning process. The Wet Blue hides were placed in the drum, and washed with 200% water at 30 °C (based on Wet Blue weight) for 30 minutes and the washing drained.

[0029] 150% water, 2% of sodium formiate and 0.3% of sodium bicarbonate were added and the drum run for 60 minutes after which the water bath showed a pH = 4.4.

[0030] The water bath is drained and 60% of water at 30 °C, 2% of a commercial polyacrylate (powder) were added and the drum run for 60 minutes and the water bath drained.

[0031] 150% of water at 60 °C, 2% of commercial sulfited synthetic oil, 2% of commercial sulfated emulsified vegetal oil was added, the drum run for 45 minutes and the water bath drained.

[0032] 0.3% of 85% formic acid diluted in water (1 to 5) was added (run 20 minutes), the water bath drained and the re-tanned hides washed.

[0033] The re-tanned hides were left standing for 12 hours, stretched, naturally dried and softening.

[0034] The properties of the re-tanned hides were evaluated and compared concerning tensile strength, breaking strength, tear strength, progressive tensile strength, up taking of re-tanning products based on a square foot weight of crust, light fastness, color appearance and comparative evaluation by Scanning Electron Microscope (EDS)(Tables 2 to 4 and Figure 2).

Examples 5 and 6: Production of the wet blue intermediary stage

Example 5

[0035] 250 Kg of hide for which liming, unhairing and fleshing process are completed is washed in the tanning drum with 100% water (based on pelt weight) for 10 minutes. After that, the hides were submitted to deliming and batting according to example 1.

[0036] With relation to the hide weight, 50% of water, 6% of sodium chloride (Bé 6 to 7) and 0.4% of a commercial bleaching are added and the drum is run for 15 minutes. 0.6% of 85% formic acid diluted in water (1 to 10) is added (run for 30 minutes) followed by the addition of 0.3% sulfuric acid diluted in water (1 to 15) (run 15 minutes), 0.3% sulfuric acid diluted in water (1 to 15) (run 15 minutes), followed by the addition 0.4% sulfuric acid diluted in water (1 to 15) and the drum run for 3 hours. After this time the pH of the bath is around 2 to 3.

[0037] At this point a 3% of commercial chromium sulphate salt (ex: basic chromium sulphate, which presents 33% alkalinity and 25 to 26% chrome III oxide) is added (run 30 minutes). A second addition of 3% chromium sulphate salt is added (run 30 minutes) followed by the addition of 0.70% of Dioro (commercial produc from Rhodia Poliamida and Especialidades based on a mixture of di-carboxylic acids) and the drum run for an additional 12 hours after which time the chromium has completely crossed the hide cross-section.

[0038] After this time, 20% water is added and 0.35% of a commercial basifying agent (ex: magnesium oxide) (run 90
minutes). A second portion of 0.35% magnesium oxide is added and the drum run for an additional 90 minutes. The water bath is heated from 35 °C to 50 °C during 5 hours, the drum is drained, the wet blue is washed with 100% water (based on pelt weight), drained and washed again with 80% water.

[0039] The obtained Wet Blue was submitted to the analysis of total chromium content and chromium in layers (Table 1).

Example 6 (comparative example)

[0040] 250 Kg of hide for which liming, unhairing and fleshing process are completed is washed in the tanning drum with 100% water (based on pelt weight) for 10 minutes. After that, the hides were submitted to deliming and batting according to example 1.

[0041] With relation to the hide weight, 50% of water, 6% of sodium chloride (Bé 6 to 7) and 0.4% of a commercial bleaching are added and the drum is run for 15 minutes. 0.6% of 85% formic acid diluted in water (1 to 10) is added (run 30 minutes) followed by the addition of 0.3% sulfuric acid diluted in water (1 to 15) (run 15 minutes), 0.3% sulfuric acid diluted in water (1 to 15) (run 15 minutes), followed by the addition of 0.4% sulfuric acid diluted in water (1 to 15) and the drum run for an additional 3 hours. After this time the pH of the bath is around 2.7 to 3.

[0042] At this point a 3% of commercial chromium sulphate salt (ex: basic chromium sulphate, which presents 33% alkalinity and 25 to 26% chrome III oxide) is added (run 30 minutes). A second addition of 3% chromium sulphate salt is added and the drum run for an additional 12 hours after which time the chromium has completely crossed the hide cross-section.

[0043] After this time, 20% water is added and 0.35% of a commercial basifying agent (ex: magnesium oxide) (run 90 minutes). A second portion of 0.35% magnesium oxide is added and the drum run for an additional 90 minutes. The water bath is heated from 35 °C to 50 °C during 5 hours, the drum is drained, the wet blue is washed with 100% water (based on pelt weight), drained and washed again with 80% water.

Example 7 (Production of the retanned hides (crust step) od examples 5 and 6)

[0044] The Wet Blue obtained in the examples 5 and 6 were identified, combined and submitted to a standard retanning process according to example 4.

Results

[0045] The properties of the re-tanned hides were evaluated and compared concerning tensile strength, breaking strength, tear strength, progressive tensile strength, up taking of re-tanning products based on a square foot weight of crust, light fastness and color appearance (Tables 2 to 4).

<table>
<thead>
<tr>
<th>Table 1: Analysis of chromium in the final Wet Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Value</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dermis</td>
</tr>
<tr>
<td>Middle</td>
</tr>
<tr>
<td>Epidermis</td>
</tr>
<tr>
<td>Layers Average</td>
</tr>
</tbody>
</table>

[0046] Figures 1 represents Scanning Electron Microscope (EDS) of Wet Blue samples.
[0047] Fig 1:a is a wet blue according to example 1 of the invention
[0048] Fig 1.b. is a wet blue according to comparative example 3

<table>
<thead>
<tr>
<th>Table 2: Comparative weight of crust leather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crust mass variation (up taking of re-tanning products)</td>
</tr>
<tr>
<td>Percentage Variation</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
NOTES:

[0049]

Xenon Lamp (Method EN ISO 105-B02:2002

Total exposure time: 24 hours, Filter Ultraviolet

Irradiance: 445 W/m² in 300 to 800 nm

[0050] After the test the specimens were kept at least 1 hour in the dark in a conditioned environment at 23 +/- 2 °C and air relative humidity of 50 +/- 5%.

[0051] Figures 2 represents Scanning Electron Microscope (EDS) of Crust samples

[0052] Fig 2.a is a crust from wet blue according to example 1 of the invention

[0053] Fig 2.b. is a crust from wet blue according to comparative example 3

Conclusions

[0054] The above results shows the improvement brought with the present invention with regards the up-taking of retanning products as well as the gain in mass of crust. The invention also enables better physical-mechanical properties of crust and final leather.

Claims

1. Process of tanning hide comprising:
 - a pickling step consisting of immersing the hides in a bath with acid and salt, followed by
• a tanning step consisting of immersing the hides in a bath with chromium salt, followed by
• a basification step consisting of immersing the hides in a bath with a basifying agent;
• characterized in that between step b) and c), a re-acidification step with organic acids is added.

2. Process according to claim 1, characterized in that the organic acids used in the re-acidification step are selected from glutaric acid (GA), 2-Methyl glutaric acid (MGA), succinic acid, 2-ethyl succinic acid (ESA), adipic acid (AA), maleic anhydride, fumaric anhydride, tricarboxylic acids, hydroxycarboxylic acids, and mixture thereof.

3. Process according to anyone of the preceding claims, characterized in that the organic acids used in the re-acidification step comprises a mixture of MGA and ESA.

4. Process according to anyone of the preceding claims, characterized in that the organic acids used in the re-acidification step comprises:
 • between 70 and 100 weight % of MGA;
 • between 0 and 30 weight % of ESA;
 • between 0 and 15 weight % of AA.

5. Process according to anyone of claim 1 and 2, characterized in that the organic acid used in the re-acidification step comprises a mixture of adipic, glutaric and succinic acids.

6. Process according to the preceding claim, characterized in that the organic acids used in the re-acidification step comprises:
 • Between 10 and 85 % of adipic acid,
 • between 10 and 70 % of glutaric acid, and
 • between 3 and 30 % of succinic acid.

7. Process according to anyone of the preceding claims, characterized in that the amount of organic acids used in the re-acidification step is comprised between 0.25% and 10% of the weight of the hide to be treated.

8. Process according to the preceding claim, characterized in that the amount of organic acid used in the re-acidification step is comprised between 0.5% and 5% of the weight of the hide to be treated.

9. Process according to the preceding claim, characterized in that the amount of organic acid used in the re-acidification step is comprised between 0.7% and 3% of the weight of the hide to be treated.

10. Process according to anyone of the preceding claims, characterized in that the bath of the pickling step comprises, with regards the weight of the hides to be treated:
 • between 25 and 75 % of water
 • between 3 and 12 % NaCl;
 • between 0.1 and 3% H₂SO₄
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4 938 779 A (FRIESE HANS-HERBERT [DE] ET AL) 3 July 1990 (1990-07-03)</td>
<td>1,7-10</td>
<td>INV. C14C1/08</td>
</tr>
<tr>
<td></td>
<td>* column 1, lines 6-12 *</td>
<td></td>
<td>C14C3/06</td>
</tr>
<tr>
<td>A</td>
<td>* column 1, line 55 - column 3, line 16 *</td>
<td>2-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 4, lines 5-48; example 3 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* claims 1-3 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* pages 3-4 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* example 3 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 2, line 3 - column 3, line 22 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* example 1 *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TECHNICAL FIELDS SEARCHED (IPC)

- C14C

The present search report has been drawn up for all claims.

Place of search: Munich
Date of completion of the search: 7 March 2014
Examiner: Neugebauer, Ute
ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 13 18 6724

07-03-2014

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 07-03-2014. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AT 111963 T</td>
<td>15-10-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 8903305 A</td>
<td>13-02-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3822823 A1</td>
<td>11-01-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0349892 A2</td>
<td>10-01-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2058406 T3</td>
<td>01-11-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 893276 A</td>
<td>07-01-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H0279080 A</td>
<td>09-03-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 170321 B</td>
<td>16-08-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR 26613 A</td>
<td>05-04-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4938779 A</td>
<td>03-07-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0203260 A</td>
<td>18-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1678760 A</td>
<td>05-10-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005268671 A1</td>
<td>08-12-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004015148 A1</td>
<td>19-02-2004</td>
</tr>
<tr>
<td>US 4978361 A</td>
<td>18-12-1990</td>
<td>AR 240482 A1</td>
<td>30-04-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 240483 A1</td>
<td>30-04-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 614055 B2</td>
<td>15-08-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3335089 A</td>
<td>02-11-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 8901956 A</td>
<td>05-12-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3814220 A1</td>
<td>09-11-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0339437 A1</td>
<td>02-11-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H0131550 A</td>
<td>20-12-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 90355 A</td>
<td>10-11-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4978361 A</td>
<td>16-12-1990</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4715861 A [0006]
- US 4978361 A [0006]
- US 4042321 A [0006]
- EP 822263 A [0006]
- BR 96034190 [0006]
- BR 97020257 [0006]