A water softening apparatus having an improved structure to provide a function of an air brake, the water softening apparatus having an air brake assembly (100) and a regeneration tank (200) and configured to soften wash water being supplied from a tub (3), wherein the air brake assembly (100) includes a water supply valve (120) allowing wash water to be introduced therethrough, an ion exchange tank (130) to accommodate an ion exchange resin therein, and a plurality of valves (150, 160, 170) installed on a first path (180) allowing wash water being introduced through the water supply valve (120) to flow toward the ion exchange tank (130), wherein the regeneration tank (200) is connected to the air brake assembly (100) and accommodates regeneration material configured to purify the ion exchange resin.
The present invention relates to a water softening apparatus and to a dishwasher having the same and a control method thereof, and more particularly, to a water softening apparatus having an improved structure capable of enhancing the water softening efficiency, a dishwasher having the same and a control method thereof. A dishwasher represents an apparatus to clean dishware by spraying high pressure wash water toward the dishware, and in general, the dishwasher performs a preliminary washing stage, a main washing stage, a rinsing stage and a drying stage. In the preliminary washing stage, dirt of dishware is removed by spraying wash water without detergent, and in the main washing stage, a washing of the dishware is achieved by allowing detergent to be introduced by a detergent supply apparatus while spraying wash water. The dishwasher includes a body provided at an inner side thereof with a washing tub, a basket reciprocatingly installed at an inside the washing tub and containing dishware, and a spray nozzle provided at an upper side and a lower side of the basket to spray wash water, so that the dishware is washed by the wash water sprayed by the spray nozzle. Meanwhile, the dishwasher may adopt a water softening apparatus using an ion exchange resin to soften hard water. Hard water having a great amount of metal cations, such as calcium and magnesium, interfere with the action of soap or detergent, degrading the washing performance of the dishwasher. The water softening apparatus is an apparatus for softening hard water by removing metal ions contained in the hard water, and includes an ion exchange resin tank to convert wash water into soft water and a regeneration tank to regenerate the ion exchange resin. In addition, an air brake include a water supply port allowing a source water to be introduced therethrough, an ion exchange resin tank connection port connecting such that wash water introduced through the water supply port is introduced into the ion exchange resin tank and a regeneration tank connection port connecting such that wash water is introduced into the regeneration tank. Although each of the water softening apparatus and the air brake may perform a different function, there is an increasing demand of a water softening apparatus having the function of an air brake as well as a dishwasher including such a water softening apparatus in terms of the convenience of consumer and optimization of system configuration. An air brake assembly of a dishwasher is disclosed in Korean Patent Application Publication No. 10-2006-0095838 as a relevant prior art. Therefore, it is an aspect to provide a water softening apparatus having an improved structure to provide an air brake function, a dishwasher including the same and a control method thereof. It is an aspect to provide a water softening apparatus having an improved structure by which an air brake function is provided, the configuration of the water softening apparatus is simplified configuration, and a simple algorithm of use is provided, a dishwasher including the same, and a control method thereof. Additional aspects will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the disclosure. In accordance with an aspect, a water softening apparatus having an air brake assembly and a regeneration tank and configured to soften wash water being supplied from a tub, wherein the air brake assembly includes a water supply valve, an ion exchange tank and a plurality of valves. The water supply valve may allow wash water to be introduced therethrough. The air brake assembly may accommodate an ion exchange resin therein. The plurality of valves may be installed on a first path allowing wash water being introduced through the water supply valve to flow toward the ion exchange tank. The regeneration tank may be connected to the air brake assembly and accommodate regeneration material configured to purify the ion exchange resin. A plurality of through holes may be formed on the first path. The plurality of through holes may be on/off controlled by the plurality of valves. The plurality of valves may be formed on the first path in a number and a position corresponding to a number and a position of the plurality of through holes. The water softening apparatus may further include a supply water storage tank. The supply water storage tank may be provided at an upper side of the ion exchange tank and configured to store wash water being introduced through the water supply valve. The plurality of valves may include a first valve configured to control a flow of the wash water being introduced through the water supply valve toward the supply water storage tank, a second valve configured to control a flow of the wash water being introduced through the water supply valve toward the regeneration tank, and a third valve configured to control a flow of the wash water being introduced through the water supply valve toward the ion exchange tank. When the wash water is supplied to the ion exchange tank, the first valve and the second valve may be switched off, and the third valve may be switched on. When the wash water is supplied to the supply water storage tank, the first valve may be switched on, and the second valve and the third valve may be switched off. When the wash water stored in the supply water storage tank is discharged to the ion exchange tank, the first valve and the third valve may be switched on, and the second valve may be switched off. When the wash water is supplied to the regeneration tank, the first valve and the third valve may be switched

[0001] Description

[0002] A dishwasher represents an apparatus to clean dishware by spraying high pressure wash water toward the dishware, and in general, the dishwasher performs a preliminary washing stage, a main washing stage, a rinsing stage and a drying stage. In the preliminary washing stage, dirt of dishware is removed by spraying wash water without detergent, and in the main washing stage, a washing of the dishware is achieved by allowing detergent to be introduced by a detergent supply apparatus while spraying wash water.

[0003] The dishwasher includes a body provided at an inner side thereof with a washing tub, a basket reciprocatingly installed at an inside the washing tub and containing dishware, and a spray nozzle provided at an upper side and a lower side of the basket to spray wash water, so that the dishware is washed by the wash water sprayed by the spray nozzle.

[0004] Meanwhile, the dishwasher may adopt a water softening apparatus using an ion exchange resin to soften hard water. Hard water having a great amount of metal cations, such as calcium and magnesium, interfere with the action of soap or detergent, degrading the washing performance of the dishwasher.

[0005] The water softening apparatus is an apparatus for softening hard water by removing metal ions contained in the hard water, and includes an ion exchange resin tank to convert wash water into soft water and a regeneration tank to regenerate the ion exchange resin.

[0006] In addition, an air brake include a water supply port allowing a source water to be introduced therethrough, an ion exchange resin tank connection port connecting such that wash water introduced through the water supply port is introduced into the ion exchange resin tank and a regeneration tank connection port connecting such that wash water is introduced into the regeneration tank.

[0007] Although each of the water softening apparatus and the air brake may perform a different function, there is an increasing demand of a water softening apparatus having the function of an air brake as well as a dishwasher including such a water softening apparatus in terms of the convenience of consumer and optimization of system configuration.

[0009] Therefore, it is an aspect to provide a water softening apparatus having an improved structure to provide an air brake function, a dishwasher including the same and a control method thereof.

[0010] It is an aspect to provide a water softening apparatus having an improved structure by which an air brake function is provided, the configuration of the water softening apparatus is simplified configuration, and a simple algorithm of use is provided, a dishwasher including the same, and a control method thereof.

[0011] Additional aspects will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the disclosure.

[0012] In accordance with an aspect, a water softening apparatus having an air brake assembly and a regeneration tank and configured to soften wash water being supplied from a tub, wherein the air brake assembly includes a water supply valve, an ion exchange tank and a plurality of valves. The water supply valve may allow wash water to be introduced therethrough. The ion exchange tank may accommodate an ion exchange resin therein. The plurality of valves may be installed on a first path allowing wash water being introduced through the water supply valve to flow toward the ion exchange tank. The regeneration tank may be connected to the air brake assembly and accommodate regeneration material configured to purify the ion exchange resin.

[0013] A plurality of through holes may be formed on the first path. The plurality of through holes may be on/off controlled by the plurality of valves. The plurality of valves may be formed on the first path in a number and a position corresponding to a number and a position of the plurality of through holes.

[0014] The water softening apparatus may further include a supply water storage tank. The supply water storage tank may be provided at an upper side of the ion exchange tank and configured to store wash water being introduced through the water supply valve.

[0015] The plurality of valves may include a first valve configured to control a flow of the wash water being introduced through the water supply valve toward the supply water storage tank, a second valve configured to control a flow of the wash water being introduced through the water supply valve toward the regeneration tank, and a third valve configured to control a flow of the wash water being introduced through the water supply valve toward the ion exchange tank.

[0016] When the wash water is supplied to the ion exchange tank, the first valve and the second valve may be switched off, and the third valve may be switched on.

[0017] When the wash water is supplied to the regeneration tank, the first valve and the third valve may be switched
off, and the second valve may be switched on. When the wash water stored in the regeneration tank is discharged to
the ion exchange tank, the first valve may be switched off, and the second valve and the third valve may be switched on.
[0018] The regeneration tank may include a path tube, at least one first flow path and at least one second flow path.
The path tube may be connected to a protrusion formed on the second valve by a connecting member. The at least one
first flow path may be formed along an edge of the regeneration tank so as to allow wash water being supplied to the
path tube through the protrusion to flow thereathrough. The at least one second flow path may be formed along a bottom
surface of the regeneration tank while diverged from the at least one first flow path so as to allow the wash water to flow
therethrough.

[0019] Regeneration water stored in the regeneration tank may be discharged through the path tube and supplied to
the ion exchange tank through the protrusion.

[0020] The regeneration tank may further include an opening/closing unit to open and close the regeneration tank to
replenish the regeneration material, and an end portion of the at least one first flow path may be formed at a position
equal to or higher than the opening/closing unit.

[0021] The end portion of the at least one first flow path may be bent toward the bottom surface of the regeneration tank.

[0022] One side surface of the second flow path facing the opening/closing unit may be provided with a partition wall
unit and at least one bubble removing unit. The partition wall unit may have a slit shape such that wash water being
introduced through the path tube flows toward the opening/closing unit. The at least one bubble removing unit may be
provided lengthwise along the partition wall unit to remove bubbles contained in the wash water.

[0023] The partition wall unit and the at least one bubble removing unit may be coupled to each other such that the
one side surface of the second flow path is provided in a flat shape.

[0024] The partition wall unit and the at least one bubble removing unit may be coupled to each other such that a step
is formed on the one side surface of the second flow path.

[0025] The at least one bubble removing unit may be coupled to the partition wall unit to form a step having an inclination
of about 22.5 degrees or below.

[0026] One of the at least one bubble removing unit may be coupled to the partition wall to form a step having an inclina-
tion of about 22.5 degrees or below toward one of the at least one first flow path. Another one of the at least one
bubble removing unit may be coupled to the partition wall to form a step having an inclination of about 22.5 degrees or
below toward another one of the at least one first flow path while facing the one of the at least one bubble removing unit.

[0027] The first path may be located along one side of the ion exchange tank to which the plurality of valves are coupled.

[0028] The air brake assembly may further include a second path allowing external air introduced through an inlet
hole formed at one side of the air brake assembly to flow toward the tub after passing through a tub connecting hole.
The tub connecting hole may be formed at one end portion of the second path.

[0029] The inlet hole may be provided at a position equal to or lower than a half of a height of the air brake assembly.

[0030] The second path may be connected to the tub connecting hole to prevent vapor discharged through the tub
connecting hole during a washing operation from making contact with wash water stored in the supply water storage
tank, the second path including at least one line forming a boundary with the supply water storage tank.

[0031] A plurality of guides may be formed on at least one side surface of the second path to prevent vapor discharded
through the tub connecting hole from flowing backward during a washing operation.

[0032] The plurality of guides may include a plurality of first guides. The plurality of first guides may be formed on a
portion of the second path corresponding to an upper surface of the supply water storage tank, and form a curved
surface. The plurality of second guides may be formed on a portion of the second path corresponding to a lateral side
surface of the supply water storage tank, and form a shape inclined toward the tub connecting hole.

[0033] A plurality of ribs may be formed at an inside of the supply water storage tank to guide wash water stored in the
supply water storage tank to be discharged to the ion exchange tank.

[0034] In accordance with an aspect, a dishwasher includes a tub, a door, a sump, an air brake assembly and a
regeneration tank. The tub may be provided at an inside of a body of the dishwasher to wash dishes. The door may be
installed at a front surface of the body so as to be open and close. The sump may be provided at a lower side of the tub
to accommodate wash water. The air brake assembly may include an ion exchange tank accommodating an ion exchange
resin therein and a plurality of valves installed at one side surface thereof, and a supply water storage tank located at
an upper side of the ion exchange tank while integrally formed with the ion exchange tank. The regeneration tank may
be connected to the ion exchange tank to regenerate the ion exchange resin and provided with a floating sensor unit
installed therein to sense a water level of regeneration water accommodated therein and a density of regeneration
material accommodated therein. The plurality of valves may be configured to be switched on/off and installed on a path
allowing wash water being introduced through a water supply valve to flow toward the ion exchange tank therethrough.

[0035] The air brake assembly may be provided at an outer circumference of the tub, and the regeneration tank may
be provided at an inner circumference of the door so as to be connected to the air brake assembly by a connecting member.

[0036] The regeneration tank may include an opening/closing unit to open and close the regeneration tank to replenish
the regeneration material. A vent unit may be formed at an upper side of the opening/closing unit to allow air inside the
A tube installed along an outer circumference of the tub may be connected to the vent unit. One end portion of the tube may be mounted at an inside lower end of the tub.

A blocking film may be installed on the vent unit to prevent foreign substance inside the tub from flowing to the regeneration tank.

The blocking film may protrude toward the tub while coupled to the bent unit.

The plurality of valves may include a first valve configured to control a flow of the wash water being introduced through the water supply valve toward the supply water storage tank, a second valve configured to control a flow of the wash water being introduced through the water supply valve toward the regeneration tank, and a third valve configured to control a flow of the wash water being introduced through the water supply valve toward the ion exchange tank. The plurality of valves may include a solenoid valve.

The dishwasher may further include a control unit configured to control on/off of the first valve, the second valve and the third valve such that the wash water is introduced to an inside of the regeneration tank or discharged to the ion exchange tank based on the water level of the regeneration water and the density of regeneration material that are sensed by the floating sensor unit.

The control unit may operate an alarming device informing a time for replenishing the regeneration material.

The control unit may include a floating sensor and a float whose floating position varies with the water level of the regeneration water and the density of the regeneration material. The floating sensor may generate a sensing signal depending on a distance from the float. The float may include a floating body whose floating position varies with the water level of the regeneration water and the density of the regeneration material, and a magnet coupled to the floating body.

An amount of the regeneration water required to regenerate the ion exchange resin may be about 140ml or more and about 260ml or less.

In accordance with an aspect, a method of controlling a dishwasher having a water softening apparatus, the method including: checking a position of a floating body whose floating position varies with a water level of regeneration water and a density of regeneration material by use of a floating sensor; comparing the checked position of the floating body with a reference position of the floating body; if determined that the position of the floating body reaches to the reference position of the floating body, switching off a first valve and switching on a second valve and a third valve such that the wash water is introduced to an inside of the regeneration tank or discharged to the ion exchange tank based on the water level of the regeneration water and the density of regeneration material that are sensed by the floating sensor unit.

The reference position of the floating body may be a position satisfying the reference value of the density of regeneration material.

The control unit may further include informing the time for replenishing regeneration material by controlling an alarming device if the present point of time corresponds to the time for replenishing regeneration material.

The reference position of the floating body may be a position satisfying the reference value of the density of regeneration material.

These and/or other aspects will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings in which:

FIG. 1 is a perspective view illustrating a dishwasher in accordance with an embodiment.

FIG. 2 is a perspective view illustrating a coupling structure of an air brake assembly and a regeneration tank of the dishwasher in accordance with an embodiment.

FIG. 3 is a perspective view illustrating a coupling structure of an air brake assembly and a regeneration tank of the dishwasher in accordance with an embodiment.

FIG. 4 is a drawing illustrating the air brake assembly of the dishwasher in accordance with an embodiment.

FIG. 5 is a schematic view illustrating an operating state of a plurality of valves of the dishwasher in accordance with an embodiment.

FIG. 6 is a drawing illustrating the regeneration tank of the dishwasher in accordance with an embodiment.

FIG. 7 is a drawing illustrating a regeneration tank of a dishwasher in accordance with an embodiment.

FIGS. 8A to 8D are drawing a coupling structure of a partition wall unit and a bubble removing unit that are installed on the regeneration tank of FIG. 7.

FIG. 9 is a drawing illustrating a regeneration tank of a dishwasher in accordance with an embodiment.

FIG. 10 is a block diagram showing a process of a dishwasher being controlled by a floating sensor unit installed on the regeneration tank of FIG. 9.

FIG. 11 is a flow chart showing an operating state of the floating sensor installed on the regeneration tank of FIG. 9.
Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout.

The body 2 is provided at a front surface thereof with an opening 4 formed to be open toward a front side such that dishwasher is inserted or withdrawn into/from the tub 3.

The body 2 is provided at the front surface thereof with a door 12 installed while hinged to a front lower portion of the body 2 to open and close the opening 4 while rotating.

The body 2 is provided at the front surface thereof with a display unit 9 mounted to display an operating status of the dishwasher 1 and with a control unit 10 mounted to manipulate an operation of the dishwasher 1.

One pair of baskets 5 provided with an accommodation unit having an upper surface thereof open to accommodate dishware are reciprocatingly installed at an upper side and a lower side of the tub 3 such that dishware is withdrawn and inserted through the front surface of the body 2 that is open.

In addition, a plurality of spray nozzles 7 are rotatably installed at an upper side and a lower side of each of the two baskets 5 to wash the dishware contained in the baskets 5 while rotating to spray water through spray holes 7a. In this case, the basket 5 is formed by a wire 6 disposed in a lattice pattern such that water sprayed from the spray nozzle 7 reaches to the dishware accommodated inside the basket 5.

The tub 3 is provided at a lower portion thereof with a sump 8 formed to accommodate wash water, and with a water supply device including a water supply path (not shown) to flow wash water and a water supply valve (not shown) and a water drain device including a drain path (not shown) and a drain pump (not shown).

The dishwasher 1 may include an air brake assembly 100 and a regeneration tank 200. The air brake assembly 100 may be installed at an outer circumferential surface of the tub 3, and the regeneration tank 200 may be installed at an inner circumferential surface of the door 12. The air brake assembly 100 is connected to the regeneration tank 200 through a connecting member 300. The connecting member 300 includes a rubber hose. The air brake assembly 100 has a cover 210 facing an inside of the tub 3, and the regeneration tank 200 has a cover 210 facing an inside of the tub 3. The cover 210 of the regeneration tank 200 is provided with an opening/closing unit 220 to open and close the regeneration tank 200.

The air brake assembly 110 includes a water supply valve 120, an ion exchange tank 130, a supply water storage tank 140 and a plurality of valves 150, 160 and 170.

An ion exchange resin is accommodated in the ion exchange tank 130 to remove heavy metal and metal ions contained in water, being introduced through the water supply valve 120 by adsorption. The ion exchange resin serves to change wash water into soft water having a superior washing performance. A representative example of an ion exchange resin may be implemented using R-SO₃Na. Hard water is softened by use of an ion exchange resin through an equation below.

\[
2(R-SO_3Na) + Ca^{2+} \rightarrow (R-SO_3)_{2}Ca + 2Na^+
\]

An ion exchange resin is accommodated in the ion exchange tank 130 to remove heavy metal and metal ions contained in wash water being introduced through the water supply valve 120 by adsorption. The ion exchange resin serves to change wash water into soft water having a superior washing performance. A representative example of an ion exchange resin may be implemented using R-SO₃Na. Hard water is softened by use of an ion exchange resin through an equation below.
The first valve 150 controls wash water introduced through the water supply valve 120 toward the supply water storage tank 140 through the through hole 142, the second valve 160 controls wash water introduced through the water supply valve 120 toward the regeneration tank 200 through the through hole 202, and the third valve 170 controls wash water introduced through the water supply valve 120 toward the ion exchange tank 130 through the through hole 132.

[0064] The plurality of valves 150, 160 and 170 may include a solenoid valve. The plurality of valve 150, 160 and 170 may include a bobbin (referred to as a hollow cylinder around which a coil wire for an electric circuit is wound) and a plunger 152. When an electricity flows through the bobbin 151, the plunger 152 ascends so that paths 180, 181 and 182 communicating with the plurality of through holes 132, 142, and 202 are open, and when an electricity is blocked from the bobbin 151, the plunger 152 descends due to the weight of the plunger 152, so that the paths 180, 181 and 182 communicating with the plurality of through holes 132, 142, and 202 are closed.

[0065] The through hole 132 toward the ion exchange tank 130 is formed on the first path 180, and the through hole 142 toward the supply water storage tank 140 and the through hole 202 toward the regeneration tank 200 are formed on the paths 181 and 182 diverging from the first path 180.

[0066] An on-state of the plurality of valves 150, 160 and 170 represents a state in which the plunger 152 ascends, and an off-state of the plurality of valves 150, 160 and 170 represents a state in which the plunger 152 descends.

[0067] When wash water introduced through the water supply valve 120 is supplied to the ion exchange tank 130, the first valve 150 and the second valve 160 are in an off-state, and the third valve 170 is in an on-state. In this case, wash water introduced through the water supply valve 120 moves along the first path 180, and via the through hole 132, is supplied to the ion exchange tank 130. A slit 183 is formed at one end portion of the first path 180, and wash water flowing along the first path 180 is supplied to an ion exchange chamber 131 through the slit 183. The wash water supplied to the inside of the ion exchange tank 130 is supplied to the sump 8 through a sump inlet hole 8a.

[0068] When wash water introduced through the water supply valve 120 is supplied to the supply water storage tank 140, the first valve 150 is in an on state and the second valve 160 and the third valve 170 are in an off-state. In this case, wash water introduced through the water supply valve 120 moves to the supply water storage tank 140 along the path 181 via the through hole 132.

[0069] When wash water stored in the water supply storage tank 140 is discharged to the ion exchange tank 130, the first valve 150 and the third valve 170 are in an on-state, and the second valve 160 is in an off-state. In this case, wash water stored in the supply water storage tank 140 is discharged to the ion exchange tank 130 along the path 181 and the first path 180.

[0070] When wash water introduced through the water supply valve 120 is supplied to the regeneration tank 200, the first valve 150 and the third valve 170 are in an off-state, and the second valve 160 is in an on-state. In this case, the wash water introduced through the water supply valve 120 is supplied to the regeneration tank 200 along the path 182 via the through hole 202.

[0071] When wash water stored in the regeneration tank 200 is discharged to the ion exchange tank 130, the first valve 150 is in an off state, and the second valve 160 and the third valve 170 are in an on-state. In this case, wash water stored in the regeneration tank 200 is discharged to the ion exchange tank 130 along the path 182 and the first path 180.

[0072] The number of the plurality of valves 150, 160 and 170 is not limited to three, and the position of the plurality of valves 150, 160 and 170 is not limited to one side surface of the ion exchange tank 130.

[0073] A flow meter 184 may be formed on the first path 180 to sense a water level of wash water introduced through the supply water valve 120.

[0074] The air brake assembly 100 is provided with a second path 190 allowing external air to flow therethrough. The second path 190 may include an inlet hole 191 and a tub connecting hole 3a. In detail, external air introduced through the inlet hole 191 formed at one side surface of the air brake assembly 100 moves along the second path 190, and through the tub connecting hole 3a formed at one end portion of the second path 190, is supplied to the tub 3. The tub connecting hole 3a communicates with the inside of the tub 3.

[0075] The inlet hole 191 allowing external air to be introduced therethrough is formed at a position equal to or lower than a half of the height of the air brake assembly 100. The nearer to a bottom surface of the air brake assembly 100 the inlet hole 191 is formed, the longer the length of the second path 190 is.

[0076] A plurality of guides 192 and 193 may be formed on the second path 190. The plurality of guides 192 and 193 may be installed on at least one side surface of the second path 190 to prevent vapor discharged through the tub connecting hole 3a from the tub 3 during a washing operation from flowing backward. The plurality of guides 192 and 193 may include a plurality of first guides 192 and a plurality of second guides 193. The plurality of first guides 192 are formed on a portion of the second path 190 corresponding to an upper surface of the supply wash water storage tank 140, and the plurality of second guides 193 are formed on a portion of the second path 190 corresponding to a lateral side surface of the supply wash water storage tank 140. The plurality of first guides 192 may have a curved surface, and the plurality of second guides 193 may have a shape inclined toward the tub connecting hole 3a. The plurality of first guides 192 are formed at one side surface of the second path 190, and the plurality of second guides 193 are formed at both side
The amount of regeneration water required to regenerate the ion exchange resin is about 140 ml or more and prevents vapor discharged through the tub connecting hole 3a from flowing backward.

The second path 190 may include at least one line 194 to prevent vapor discharged through the tub connecting hole 3a from making contact with wash water stored in the supply water storage tank 140. The at least one line 194 is connected to the tub connecting hole 3a so as to form a boundary with respect to the supply water storage tank 140. The at least one line 194 may be located at an upper surface of the supply water storage tank 140, but the position of the at least one line 194 is not limited thereto. The at least one line 194 may form one surface of the second path 190 forming the boundary with respect to the supply water storage tank 140. The more the at least one line 194 is, the more difficult vapor discharged through the tub connecting hole 3a makes contact with the wash water stored in the supply water storage tank 140.

An air gap 185 is formed at one side of the first path 180 to prevent a siphon phenomenon from occurring when water supply is stopped.

The air brake assembly 100 may further include a sump drain connecting port 8b connecting to the sump 8 to discharge wash water to the outside after the washing operation is finished, a drain hose connecting port 11 connecting to a drain hose (not shown) and a drain path 199 serving as a path of wash water being drained.

FIG. 6 is a drawing illustrating the regeneration tank of the dishwasher in accordance with an embodiment, and FIG. 7 is a drawing illustrating a regeneration tank of a dishwasher in accordance with an embodiment.

Referring FIGS. 6 and 7, regeneration material is accommodated in the regeneration tank 200 to improve the water softening performance by regenerating the ion exchange resin. The regeneration material in the regeneration tank 200 may be implemented as salt NaCl. The ion exchange resin, after adsorbing metal ions contained in wash water, increases in the volume thereof, and thus the performance to adsorb metal ions is lowered. A process of the ion exchange resin removing metal ions is referred to as a regeneration by an ion exchange resin. The regeneration reaction of the ion exchange resin is achieved by an equation below, so that ions of the ion exchange resin being exhausted as the water softening reaction continues are restored.

\[
(R-\text{SO}_3)_{2}\text{Ca} + 2\text{NaCl} \rightarrow 2(R-\text{SO}_3\text{Na}) + \text{CaCl}_2
\]

The amount of regeneration water required to regenerate the ion exchange resin is about 140 ml or more and about 260 ml or less.

The regeneration tank 200 may include a path tube 230, at least one first flow path 240 and at least one second flow path 250.

The path tube 230 is connected to a protrusion 161 located at a rear surface of the second valve 160 through the connecting member 300. The protrusion 161 may be formed at an end portion of the path 182. Regeneration water stored in the regeneration tank 200 is discharged from the path tube 230, and after sequentially passing through the connecting member 300 and the protrusion 161, is supplied to the ion exchange tank 130 along the first path 180. On the contrary, wash water introduced through the supply water valve 120 is discharge from the protrusion 161, and after sequentially passing through the connecting member 300 and the path tube 230, is supplied to the regeneration tank 200. That is, the path tube 230 corresponds to a water outtake part of regeneration water as well as a water intake part of wash water.

The wash water introduced to the path tube 230 through the protrusion 161 moves along the at least one first flow path 240 formed along an edge of the regeneration tank 200. The at least one first flow path 240 extends toward an upper side of the regeneration tank 200, and an end portion of the at least one first flow path 240 extending toward an upper side of the regeneration tank 200 is bent toward a bottom surface 251 of the regeneration tank 200. In addition, the end portion of the at least one first flow path 240 extending toward an upper side of the regeneration tank 200 may be located at a position equal to or higher than that of the opening/closing unit 220 provided at an upper side of the cover 210.

The second flow path 250 diverges from the at least one first flow path 240 so as to be formed along the bottom surface 251 of the regeneration tank 200 such that wash water introduced through the path tube 230 flows through the second flow path 250. A partition wall unit 252 having a slit shape is formed at one side surface of the second flow path 250 facing the opening/closing unit 220. The other side surface of the second flow path 250 corresponds to the bottom surface 251 of the regeneration tank 200. The partition wall unit 252 having a slit shape allows regeneration material, for example, salt, accommodated in the regeneration tank 200 to have a uniform distribution.

When the at least one first flow path 240 is provided along an edge of one side of the regeneration tank 200, two paths 260a and 260b may be formed for distributing regeneration material solution in the regeneration tank 200. When the at least one first flow path 240 is provided along edges of both sides of the regeneration tank 200, three paths 260a, 260b and 260c may be formed for distributing regeneration material solution in the regeneration tank 200. If the at least one first flow path 240 is provided along edges of both sides of the regeneration tank 200, and three paths 260a,
260b and 260c are formed, the regeneration material solution is dispersed along the three paths 260a, 260b and 260c, which reduces impact exerted on the partition wall 252 having a slit shape by wash water or regeneration material solution being introduced through the path tube 230.

[0087] The opening/closing unit 220 is provided at an upper side thereof with a vent unit 270 to allow air in the tub 3 to flow toward the regeneration tank 200.

[0088] A tube (not shown) installed along the outer circumferential surface of the tub 3 is connected to the vent unit 270, and one end portion of the tube may be mounted at an inside lower end portion of the tub 3. As the tube is connected to the vent unit 270, air in the tub 3 moves toward the regeneration tank 200 along the tube.

[0089] A blocking film (not shown) may be installed on the vent unit 270. Since the blocking film is installed on the vent unit 270, residue of food is prevented from being introduced to the regeneration tank 200.

[0090] FIGS. 8A to 8D are drawing a coupling structure of a partition wall unit and a bubble removing unit that are installed on the regeneration tank of FIG. 7.

[0091] Referring to FIGS. 8A to 8D, the partition wall unit 252 and at least one bubble removing unit 253 may be formed at a portion of one side surface of the second flow path 250 facing the opening/closing unit 220. Bubbles may be included in wash water introduced through the path tube 230. The bubbles may block the partition wall unit 252 having a slit shape and prevent wash water from moving to an upper side of the regeneration tank 200. In order to remove the bubbles, the at least one bubble removing unit 253 may be formed in a longitudinal direction of the partition unit 252.

The partition wall 252 and the at least one bubble removing unit 253 may correspond to the one side surface of the second flow path 250 facing the opening/closing unit 220. The at least one bubble removing unit 253 may be coupled to a side surface of the partition wall unit 252 in a longitudinal direction of the partition wall unit 252 such that the one side surface of the second flow path 250 facing the opening/closing unit 220 is provided in a flat shape.

[0092] In addition, the at least one bubble removing unit 253 may be coupled to a side surface of the partition wall unit 252 in a longitudinal direction of the partition wall unit 252 such that a step is formed on the one side surface of the second flow path 250 facing the opening/closing unit 220.

[0093] The step formed when the at least one bubble removing unit 253 is coupled to the partition wall unit 252 may have an inclination of about 22.5 degrees or below.

[0094] When the at least one bubble removing unit 253 is provided in two units thereof, one bubble removing unit 253a of the at least one bubble removing units 253 is coupled to the side surface of the partition wall unit 252 to form a step having an inclination of about 22.5 degrees or below toward one of the at least one first flow path 240, and another one bubble removing unit 253b of the at least one bubble removing unit 253 is coupled to the side surface of the partition wall 252 to form a step having an inclination of about 22.5 degrees or below toward another one of the at least one first flow path 240.

[0095] Bubbles included in the wash water may move to the upper side of the regeneration tank 200 through the at least one first flow path 240 formed at the edge of the regeneration tank 200 along an inner circumferential surface of the bubble removing unit 253.

[0096] FIG. 9 is a drawing illustrating a regeneration tank of a dishwasher in accordance with an embodiment, and FIG. 10 is a block diagram showing a process of a dishwasher being controlled by a floating sensor unit installed on the regeneration tank of FIG. 9. Referring to FIGS. 9 and 10, a water level sensor unit 290 may be installed on the regeneration tank 200b to sense a water level of regeneration water and a density of regeneration material.

[0097] The water level sensor unit 290 may include a floating sensor (not shown) and a float (not shown). The floating sensor generates a sensing signal depending on a distance from the float whose floating position varies with the water level of the regeneration water and the density of the regeneration material.

[0098] The float may include a floating body (not shown) whose floating position varies with the water level of regeneration water and the density of regeneration material, and a magnet coupled to the floating body.

[0099] The dishwasher 1 may further include a control unit 400 and an alarming device 500. The control unit 400 may switch on/off the first valve 150, the second valve 160 and the third valve 170 such that wash water is introduced into the regeneration tank 200 or regeneration water is discharged to the ion exchange tank 130 based on the water level of regeneration water and the density of regeneration material that are sensed by the floating sensor.

[0100] In addition, the control unit 400 may operate the alarming device 500 to inform the time for replenishing regeneration water and the density of regeneration material.
third valve are switched off and the second valve is switched on such that a reference value of a water level of the regeneration water is satisfied by generating the regeneration water from wash water introduced into the regeneration tank, and the position of the floating body is checked after a predetermined period of time. In this case, if determined that the checked position of the floating body reaches to the reference position of the floating body, the first valve is switched off and the second valve and the third valve are switched on such that regeneration water in the regeneration tank is discharged to the ion exchange tank, and if determined that the checked position of the floating body does not reach to the reference position of the floating body after a predetermined period of time to check whether the density of the regeneration material satisfies a reference value, the checked position of the floating body is compared with the reference position of the floating body to determine whether the current time corresponds to the time for replenishing regeneration material, and if determined that the floating body does not reach to the reference position of the floating body after the determination of the time for replenishing regeneration material, the first valve is switched off and the second valve and the third valve are switched on such that regeneration water in the regeneration tank is discharged to the ion exchange tank, and then the time for replenishing regeneration material is reported by controlling the alarming device.

[0103] The reference position of the floating body corresponds to a position satisfying the reference value of the water level of the regeneration water and the reference value of the density of the regeneration material.

As is apparent from the above description, the plurality of valves can control on/off of a plurality of through holes formed on a path along which wash water flows, so that the path is simplified and the material cost is reduced.

[0104] In addition, the water level sensor capable of controlling the water level of the regeneration water and the amount of regeneration material is mounted on the regeneration tank, so as to prevent increase of the material cost incurring from installing a plurality of sensors and minimize the waste of regeneration material, so that the water softening efficiency is enhanced.

[0105] Although a few embodiments have been shown and described, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles of the invention, the scope of which is defined in the claims.

Claims

1. A water softening apparatus having an air brake assembly and a regeneration tank and configured to soften wash water being supplied from a tub, wherein the air brake assembly comprises:

 a water supply valve allowing wash water to be introduced therethrough;
 an ion exchange tank accommodating an ion exchange resin therein; and
 a plurality of valves installed on a first path allowing wash water being introduced through the water supply valve to flow toward the ion exchange tank,
 wherein the regeneration tank is connected to the air brake assembly and accommodates regeneration material configured to purify the ion exchange resin.

2. The water softening apparatus of claim 1, wherein:

 a plurality of through holes that are on/off controlled by the plurality of valves are formed on the first path;
 the air brake assembly further comprises a second path allowing external air introduced through an inlet hole formed at one side of the air brake assembly to flow toward the tub after passing through a tub connecting hole;
 and
 the tub connecting hole is formed at one end portion of the second path.

3. The water softening apparatus of claim 2, wherein:

 the plurality of valves are formed on the first path in a number and a position corresponding to a number and a position of the plurality of through holes.

4. The water softening apparatus of claim 1, 2 or 3, wherein the air brake assembly further comprises a supply water storage tank provided at an upper side of the ion exchange tank and configured to store wash water being introduced through the water supply valve,

 wherein the plurality of valves comprises:

 a first valve configured to control a flow of the wash water being introduced through the water supply valve
toward the supply water storage tank;
a second valve configured to control a flow of the wash water being introduced through the water supply valve
toward the regeneration tank; and
a third valve configured to control a flow of the wash water being introduced through the water supply valve
toward the ion exchange tank.

5. The water softening apparatus of claim 4, wherein when the wash water is supplied to the ion exchange tank, the
first valve and the second valve are switched off, and the third valve is switched on.

6. The water softening apparatus of claim 4 or 5, wherein:
when the wash water is supplied to the supply water storage tank, the first valve is switched on, and the second
valve and the third valve are switched off; and
when the wash water stored in the supply water storage tank is discharged to the ion exchange tank, the first
valve and the third valve are switched on, and the second valve is switched off.

7. The water softening apparatus of claim 4, 5 or 6, wherein:
when the wash water is supplied to the regeneration tank, the first valve and the third valve are switched off,
and the second valve is switched on; and
when the wash water stored in the regeneration tank is discharged to the ion exchange tank, the first valve is
switched off, and the second valve and the third valve are switched on.

8. The water softening apparatus of any one of claims 4 to 7, wherein the regeneration tank comprises:
a path tube connected to a protrusion formed on the second valve by a connecting member;
at least one first flow path formed along an edge of the regeneration tank so as to allow wash water being
supplied to the path tube through the protrusion to flow therethrough; and
at least one second flow path formed along a bottom surface of the regeneration tank while diverged from the
at least one first flow path so as to allow the wash water to flow therethrough.

9. The water softening apparatus of claim 8, wherein regeneration water stored in the regeneration tank is discharged
through the path tube and supplied to the ion exchange tank through the protrusion.

10. The water softening apparatus of claim 8 or 9, wherein:
the regeneration tank further comprises an opening/closing unit to open and close the regeneration tank to
replenish the regeneration material; and
an end portion of the at least one first flow path is formed at a position equal to or higher than the opening/closing
unit.

11. The water softening apparatus of claim 10, wherein the end portion of the at least one first flow path is bent toward
the bottom surface of the regeneration tank.

12. The water softening apparatus of claim 10 or 11, wherein one side surface of the second flow path facing the
opening/closing unit is provided with:
a partition wall unit having a slit shape such that wash water being introduced through the path tube flows toward
the opening/closing unit; and
at least one bubble removing unit provided lengthwise along the partition wall unit to remove bubbles contained
in the wash water.

13. The water softening apparatus of claim 12, wherein the partition wall unit and the at least one bubble removing unit
are coupled to each other such that the one side surface of the second flow path is provided in a flat shape.

14. The water softening apparatus of claim 12, wherein the partition wall unit and the at least one bubble removing unit
are coupled to each other such that a step is formed on the one side surface of the second flow path.
15. The water softening apparatus of claim 14, wherein:

one of the at least one bubble removing unit is coupled to the partition wall to form a step having an inclination of about 22.5 degrees or below towards one of the at least one first flow path; and

another one of the at least one bubble removing unit is coupled to the partition wall to form a step having an inclination of about 22.5 degrees or below towards another one of the at least one first flow path while facing the one of the at least one bubble removing unit.
FIG. 8D
FIG. 9
FIG. 10

FLOATING SENSOR → CONTROL UNIT → FIRST VALVE

SECOND VALVE
THIRD VALVE
ALARMING DEVICE

400

150
160
170
500
DOUGHTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 28 51 118 A1 (SCHROTT HUGO) 4 June 1980 (1980-06-04) * page 6, line 17 - line 23; figures *</td>
<td>1,2</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

Place of search: Munich
Date of completion of the search: 23 January 2015
Examiner: Beckman, Anja
ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

23-01-2015

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 1023868 A2</td>
<td>02-08-2000</td>
<td>DE 19903635 A1</td>
<td>10-08-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1023868 A2</td>
<td>02-08-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10204548 A1</td>
<td>14-08-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1334688 A2</td>
<td>13-08-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2269833 T3</td>
<td>01-04-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10311126 A1</td>
<td>23-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1457153 A2</td>
<td>15-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2302988 T3</td>
<td>01-08-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004177654 A1</td>
<td>16-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2851118 A1</td>
<td>04-06-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 254071 U</td>
<td>16-03-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2442038 A1</td>
<td>20-06-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2057860 A</td>
<td>08-04-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1121449 B</td>
<td>02-04-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 443912 B</td>
<td>17-03-1986</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• KR 1020060095838 [0008]