Tubular beam with single center leg

A reinforcement beam for a vehicle bumper system comprises a single sheet deformed to define first and second tubes sharing a common single center wall. A channel rib is formed on each tube and a crevice rib over the center leg forms a third rib. Edges of the sheet are deformed to a radius so that their surface consistently engages an associated radiused corner formed on ends of the center leg, which facilitates consistent abutting line engagement of material surfaces, and thus facilitates consistent welding. In a preferred beam, front wall sections of each tube are coplanar and form a face of the beam, with each channel rib and crevice rib providing added stiffness to the beam, and yet nothing extends forward of the coplanar front wall sections. Related apparatus and methods are also disclosed.
Description

[0001] This application claims benefit under 35 USC section 119(e) of provisional application serial no. 61/385,680, filed September 23, 2010, entitled TUBULAR BEAM WITH SINGLE CENTER LEG, the entire contents of which are incorporated herein by reference. This application is a divisional application of European patent application no. 11827216.0 (the European Regional Phase of PCT/US2011/051025) filed on 9 September 2011, the entire contents of which are incorporated herein by reference.

BACKGROUND

[0002] The present invention relates to bumper reinforcement beams used in vehicle bumper systems, where the beam is tubular and has a single (mono) center leg. The present invention also relates to roll forming apparatus and methods of forming said beams. However, the present invention is not believed to be limited to only bumper reinforcement beams for vehicles.

[0003] Modern vehicle bumper systems typically include a reinforcement beam designed for strength and impact characteristics in order to meet government and insurance industry standards for particular vehicles, but also designed to minimize overall vehicle weight, to maximize strength-to-weight ratios, to fit within confined vehicle package spaces, and to satisfy vehicle aesthetic and functional requirements at front and rear ends of vehicles. Concurrently, the processes and methods of manufacturing the beams preferably minimize undesired product dimensional and quality variations, while also minimizing manufacturing cost, optimizing manufacturability and minimizing scrap. Roll forming processes and methods have proved to be particularly effective at producing high volume runs of bumper reinforcement beams with competitive cost and high dimensional consistency. However, the industry is very competitive, such that even small improvements can be important.

[0004] Further, many of the desired features above are conflicting, such that it is not clear how to improve a particular bumper reinforcement beam, or how to improve the roll forming process for making the beam. For example, a heavier beam may be stronger, but would cause an unacceptable increase in vehicle weight. High strength materials may be preferred, but they are expensive, difficult to form, and cause high wear on tooling. Accurate control over positioning of sheet edges during the roll forming process is desired to facilitate an accurate beam cross sectional shape, to reduce tolerances along the edges so that excess material along the edges can be reduced in order to minimize beam weight, and to facilitate consistent contact during welding. However, this can require extra roll forming steps and stations as well as additional tooling, hardware and software controls, each of which increase capital investment and make the roll forming process more complex. The above beams include two sheet edges formed against other material of the sheet, with each being welded by a welder to permanently form the tubular shape of the beams. However, welders take up space along the roll form apparatus, especially where the welders are positioned at different stations along a length of a roll form apparatus, thus increasing floor space requirements considerably, as well as capital investment. Nonetheless, it is difficult to weld in two opposing sides of a beam due to flying debris adversely affecting one or both of the welders. Notably, welds must be consistent and reliable in order to provide reliable and consistent impact strength in the bumper reinforcement beams and in the related bumper systems.

SUMMARY OF THE PRESENT INVENTION

[0005] In one aspect of the present invention, a reinforcement beam includes a beam formed from a single sheet and including first and second tubes sharing a common wall and having coplanar aligned front walls and coplanar aligned rear walls, each front wall including a channel rib therein, the sheet including a first edge with a first radiused portion and first tip, a second edge with a second radiused portion and second tip, a third radiused portion connecting one of the aligned front walls with one end of the common wall, and a fourth radiused portion connecting one of the rear walls with another end of the common wall, the first and third radiused portions being welded together at a first weld and forming a front crevice rib having a cavity depth at least two times a thickness of the sheet, and the second and fourth radiused portions being welded together at a second weld and forming a rear crevice having a cavity depth at least two times the thickness of the sheet, the channel ribs and the front crevice rib forming ribs that stiffen a front face of the beam.

[0006] In another aspect of the present invention, an apparatus is provided for forming a sheet into a beam having four exterior walls and a common center leg extending between an opposing two of the walls, the four exterior walls defining a rectangular cross section, and the center leg dividing the cross section into first and second adjacent tubes, the center leg having radiused ends each defining slip planes perpendicular to the center leg, and the sheet having edges that abut the radiused ends. The apparatus includes a roll former including roll form stations with rollers for forming the sheet into the beam with the four exterior walls and the common center leg, the roll former including a welding station with welders and a weld box fixture, the weld box fixture including a fixture frame, external mandrels supported by the fixture frame and supporting the four exterior walls in a desired accurate shape, two of the external mandrels being movable and opposing, and including at least one actuator operably connected to the two opposing external mandrels for moving the opposing external mandrels into engagement with associated opposing ones of the four
exterior walls. The apparatus further includes internal mandrels in each of the first and second adjacent tubes that are supported by upstream anchor lines so that the internal mandrels remain generally adjacent the external mandrels. By this arrangement, the internal and external mandrels, in combination with a bias of the springs and a counter bias of the two opposing external mandrels, control a shape of the beam by flexure and movement of material of the sheet along the slip planes to thus actively maintain an accurate shape when in the weld box fixture during a welding process of the welder.

[0007] In a narrower aspect, the internal mandrels each include opposing halves and a spring biasing the opposing halves apart against the external mandrels and against a force of the actuator.

[0008] In another aspect of the present invention, an apparatus is provided for forming a sheet into a beam having four exterior walls and a common center leg extending between an opposing two of the walls, the four exterior walls defining a rectangular cross section, and the center leg dividing the cross section into first and second adjacent tubes, the center leg having radiused ends each defining slip planes perpendicular to the center leg, and the sheet having edges that abut the radiused ends. The apparatus includes a roll former including roll form stations with rollers for forming the sheet into the beam with the four exterior walls and the common center leg, the roll former including a welding station with welders and a weld box fixture, the weld box fixture including a fixture frame, external mandrels supported by the fixture frame and supporting the four exterior walls in a desired accurate shape, two of the external mandrels being movable and opposing, and including at least one actuator operably connected to the two opposing external mandrels for moving the opposing external mandrels into engagement with associated opposing ones of the four exterior walls, two others of the external mandrels being fixed and opposing such that the two other external mandrels generally fix a distance between the opposing two walls between which the center leg extends. By this arrangement, the external mandrels in combination with a bias of the two opposing external mandrels, control a shape of the beam by flexure and movement of material of the sheet along the slip planes to thus actively maintain an accurate shape when in the weld box fixture during a welding process of the welder.

[0009] In another aspect of the present invention, an apparatus includes a roll former including roll form stations with rollers for forming the sheet into the continuous beam with the four exterior walls and the common center leg, the roll former including a welding station with a welder and a weld box fixture, the welder generating an upwardly-angled laser beam for welding the continuous beam to permanently fix the cross section and being positioned under the continuous beam at a location upstream or downstream from the weld box fixture so that the laser beam welds within a down-facing crevice formed by one of the radiused edges abutting one of the radiused ends. By this arrangement, the welder welds the continuous beam from a position under the continuous beam yet is positioned away from falling debris.

[0010] In another aspect of the present invention, an apparatus includes a roll former including a roll former including roll form stations with rollers for forming the sheet into the continuous beam with the four exterior walls and the common center leg, the roll former including a single welding station with a top welder and a bottom welder and a weld box fixture, the welders welding the continuous beam to permanently fix the cross section by welding simultaneously in the welding station at upper and lower locations on the beam. By this arrangement, welding is done in the single welding station and not in multiple weld stations.

[0011] In another aspect of the present invention, an apparatus includes a roll former including first roll form stations with first sets of rollers forming the center leg of the sheet and outboard wings of the sheet, with the outboard wings having portions adjacent the center leg that extend perpendicular to the center leg and that are joined to the center leg by the radiused ends, and with the outboard wings also having the radiused edges formed therein. The roll former further includes additional roll form stations with additional sets of rollers forming the outboard wings into first and second tubes with the center leg being a common wall forming part of each of the first and second tubes. The roll former includes top and bottom welders welding the radiused edges to the radiused ends.

[0012] Related methods also form a part of the present invention.

[0013] These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.

BRIEF DESCRIPTION OF DRAWINGS

[0014] Fig. 1 is a top view of a bumper reinforcement beam that is tubular and includes a single center leg.

Fig. 2 is a cross sectional view along line II-II in Fig. 1.

Fig. 3 is a view of the roll forming apparatus for performing the present roll forming process.

Fig. 4 is a series of cross sections labeled S1-S33 showing a shape of the original sheet at each forming step when forming the beam of Fig. 1.

Fig. 5 is a cross section of the beam in Figs. 1-2 including seam tracking discs forming part of a weld station.

Fig. 6 is a modified beam similar to Figs. 1-2 but having a modified cross section.

Fig. 7 is a side view showing a welding station near an end of the roll forming process.

Fig. 8 is a cross section through the welding station of Fig. 7, showing a pressure box fixture for holding
the roll-formed beam’s final shape during a simultaneous double-weld step.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0015] A bumper reinforcement beam 40 (Fig. 1) includes a tubular reinforcement beam 50 for a vehicle bumper system, and mounts 41 attached to the beam 50 to facilitate attachment to a vehicle frame, such as for use in a front bumper system (illustrated in Fig. 1) or rear bumper system of a vehicle. The illustrated beam 50 includes a longitudinal center section 42 curved at a first radius R1 and longitudinal outer ends curved at a tighter second radius R2 in order to match an aerodynamic shape of a particular vehicle. However, it is contemplated that the present inventive concepts can be used on any beam, whether linear or swept, and whether consistently curved/swept with a single radius or having different longitudinally-curves (“sweeps”).

[0016] The present beam 50 is made of sheet steel material having a thickness of 0.8mm to 1.4mm and a tensile strength of about 800 to 2000 MPa (i.e. about 120 to 290 ksi). The illustrated beam is about 80mm high and 40mm deep (in vehicle-mounted position), with two channel ribs being formed in the beam’s front face (one over each tube). Each illustrated channel rib is about 8-10mm deep and 8-10mm wide, and includes a rounded bottom. However, it is contemplated that the present beam can be made of different materials, including AHSS (Advanced High Strength Steels) and that it can be made from a sheet having a thickness of about 0.8mm-3.0mm thick (or such as 0.8mm to 1.4mm thickness), and can be made in different beam cross sectional sizes, such as about 80mm-150mm high, and 30mm-60mm deep, and having a length equal to or slightly greater than a distance between vehicle mounts/bumper frame rail tips.

[0017] The present beam 50 (Fig. 3) is formed from a single sheet of steel metal on a roll forming apparatus via a series of paired rolls in roll forming stations, with each station performing a forming operation, such as shown by the roll-formed flower pattern of steps 1-33 in Fig. 4. During the process, a single sheet is formed to have adjacent tubes formed on opposite sides of a single center wall (sometimes called a "mono" wall or "center leg," herein). The roll former includes a first region of forming rolls in stations S1-S7, including forming a center section (i.e. the center wall) with outer sections of the sheet extending outwardly and generally perpendicular to the center wall. Radiused sheet edges are also formed in steps S1-S7. The roll former further includes a second region of forming rolls in stations S8-S33 forming first and second tubes on each side of the center leg and sharing the center leg as a common wall. The channel ribs are substantially formed in steps S8-S12, and help in controlling a lateral position of the sheet as it traverses along the roll form apparatus. Laser welding occurs at or after station S33. Alternatively, the welding can occur in two separate steps, such as in a roll forming process where the first tube is formed halfway through the process (well before the last forming station).

[0018] Specifically, as illustrated, slightly less than “half” of the sheet is deformed in a first direction (illustrated as clockwise in Fig. 4) into a first tube with a first radiused edge of the sheet abutted against a radiused end of the center wall (and welded), and an opposite “half” of the sheet is deformed in an opposite second direction (such as counter-clockwise) into a second tube with a second radiused edge abutted against the other radiused end of the center wall (and welded). The line of contact for welding on the first radiused edge is at an end of the radius where a terminal tip of the sheet becomes “flat.” Similarly, the line of contact of the radiused end of the center wall is at an end of the center wall where the center wall becomes “flat.” However, it is desirable to have the radius be the primary contact so that the laser beam of the welding process has optimal conditions for making a consistent weld. Notably, the welding process includes a laser beam entering the crevice and heating material at the abutting line contact formed by the radiused end and radiused edge. For this reason, it may be desirable that the terminal tips of the sheet edges be formed so that they do not cause a gap at the bottom of the crevice despite process variations, which gap would (could) adversely affect welding, depending on a size of the gap.

[0019] Notably, the welding box fixture assists with setting the line contact and with setting a desired abutting pressure for the welding process at the line contact. The mating materials are held abuttingly against each other by the weld fixture shown in Fig. 8, as discussed below, to facilitate a good weld. A radiused shape of the edges allows good contact, yet allows the edges to flex, slide, and bend (caused by forces generated in the weld box fixture), especially along slip plans P1 and P2, allowing the fixture to “set” and maintain a desired cross sectional shape in the weld station. This arrangement facilitates good welding, and potentially decreases the criticality of perfect dimensionality of the edges. Concurrently, the edges of the sheet include a tip section of material inside the beam that extends away from the weld line. As noted above, the free end of the tip section is necessary to assure that there is sufficient material to weld despite material variations along the edge and process variations. However, excess material in the free end of the tip section results in waste and added weight to the bumper beam. By accurately controlling contact and engagement of the edges and abutting material, a length of the “free end” can be minimized, thus reducing an overall weight of the beam to a minimum. It is noted that even ounces of reduced weight can be important to automotive engineers and vehicle designers. The illustrated “free end” is expected to be less than about 4mm, but it is contemplated that it potentially could be reduced such as to 2 mm, depending on particular process parameters and functional requirements of the beam.
As noted, the radiused edges of the sheet advantageously facilitate and allow for consistent and forgiving abutting engagement as they extend into contact with and are welded to mating radiused (bent) corners on the center leg of the beam. The double radius of the edges and of the center leg ends allows the two sections of material to reliably engage in line contact and engage within a desired range of abutment force, thus better accommodating dimensional variations during the manufacturing process. This configuration facilitates good line contact of the abutting material sections and thus facilitates good welding despite dimensional and process variations. At the same time, the radiused edges and "free ends" of the edges are recessed into the front and rear faces of the beam so that vertical planes defined by the front and rear surfaces of the beam are not uninterrupted by any outwardly-protruding edge of the sheet, which can be important to meeting vehicle manufacturer specifications.

The center leg is formed from a center of the sheet (and not from a side edge of the sheet). By forming the center leg first and by making it from a center of the sheet, the roll form process is more balanced and controlled, making it easier to control a lateral position of the sheet. In other words, "wandering" of the sheet in the roll former is reduced due to first forming the center leg, since the center leg then acts as a "center anchor" during later forming of the sheet. This increased accurate positional control of the sheet results in the ability to further reduce tolerances of the "free end" of the edges, since a wide tolerance is not required. It is contemplated that the "free ends" of the edges can be reduced to 4mm or less, and even as low as 2mm or less, depending on process controls and characteristics of the sheet and roll forming process.

The tubular reinforcement beam 50 with center leg is particularly suited for use as a reinforcement beam in a vehicle bumper system due to its high strength-to-weight ratio, due to its resistance to longitudinal bending due to an impact inward of its ends, and due to its torsional resistance to rotational forces such as from a vertically-off-center impact.

As noted above, the beam 50 (Fig. 2) is formed from a single unitary sheet in a continuous roll forming process (Fig. 6). The beam 50 includes first and second edges 51 and 52 and seven wall sections 53-59 extending sequentially therebetween. The first through fourth wall sections 53-56 form a first tube, and the fourth through seventh wall sections 56-59 form an adjacent second tube, with the wall section 56 being a common shared wall. The wall sections 53-55 and 57-59 combine to form a tubular shape with a center leg formed by horizontally-extending wall section 56 (when in a vehicle-mounted position), and with wall sections 55 and 59 forming a vertical coplanar front face and wall sections 53 and 57 forming a vertical coplanar rear face. The first edge 51 is deformed to form a radius CR1 of about 3-4mm, with its tip 51' (i.e. "free end" having a length of about 4mm or potentially as small as 2mm) extending so that an inner surface 61 of the first edge 51 lies parallel the center wall section 56. The radius CR1 and associated radiused corner 62 (formed by the fourth and fifth wall sections 56-57 on the front face of the beam) engage and are welded to permanently set the first tube.

In beam 50, the second edge 52 is also deformed inwardly to form a radius similar to radius CR1 (such as about 3-4mm in the illustrated beam), but with its terminal tip 52' extending parallel the center wall section 56. The radius CR1 engages and is welded to an associated radiused corner 64 formed by the fourth and third wall sections 56 and 55. The illustrated beam 50 has a cross section that is generally rectangular, with a center leg dividing the rectangle into adjacent equal-sized first and second tubes. This cross section has been found to provide excellent bending stiffness, torsional stiffness, and a relatively high strength-to-weight ratio.

The illustrated first wall section 53 includes a channel rib 65 (i.e. an inwardly formed depression, also sometimes called a "power rib") that further stiffens the wall section 53 and accordingly stiffens the front face of the beam and stiffens the first tube section. The illustrated channel rib 65 is generally centered along wall section 53 and has a width diameter about 10%-40% of a width of the wall section 53 (or more preferably about 20%-30% of the width) and has a depth about equal to its width diameter. The fifth wall section 57 also includes a channel rib 66 (similar in size, shape, and location to rib 65) that stiffens the wall section 57, and accordingly stiffens the front face of the beam and the second tube section. The radii CR1 formed by the first edge 51 and tip 51A and by the second edge 52 and tip 52A have center points located inside the respective tubes formed thereby. The bottoms of the illustrated channel ribs are semicircular shape. Nonetheless, it is contemplated that a depth and size of the channel ribs can be made shallow, deeper, wider, narrower, flat-bottomed, or otherwise modified to satisfy specific functional requirements of a beam.

Notably, the radiused shape of the edges 51 and 52 and mating corners cause them to form a crevice rib that also stiffens the beam 50 and thus stabilizes the front and rear walls/faces of the beam 50 in a manner not totally unlike the channel ribs 65 and 66. On the beam's front face, the crevice rib formed by the radiused shape of front edge 51 and associated corner combine with the two channel ribs 65 to effectively form three ribs on a face of the beam 50, each stiffening the bending strength and torsional strength of the beam. Testing has shown that a stiffness of the beam can be increased sufficiently to offset any additional material weight added by virtue of the channel ribs requiring a wider sheet to manufacture the beam. The crevice rib is generally aligned with the center wall, and the cavity it defines is about 3-4 times as deep as a cross sectional thickness of the material of the sheet. Specifically, the cavity of the illustrated crevice rib is about 3-4 mm deep, based on a sheet material thickness of about 0.8mm-1.2mm. The laser weld is located at a bottom of the crevice where the material...
It is contemplated that the welds 70 and 71 will first come into abutting contact. The present welders 72 and 73 are located in a single station S33, which provides significant advantages in terms of space utilization, wiring, and process control. The welds 70 and 71 (Fig. 2) are formed at the outboard abutting material in the crevice, such that the welds are spaced slightly from the terminal ends (i.e., the "free ends") of the first and second edges, such as about 4mm, or potentially down to about 2mm. The illustrated curved abutting inter-engagement of sheet material has been found to be forgiving and allows some dimensional variation and dimensional control within the welding fixture without adversely affecting the line contact and the welding operation. Even though the present welders 72 and 73 are located in a single station S33, it is contemplated that they could be located in separate stations along the roll former apparatus if desired or if a particular application requires that.

Notably, the beam, including its cross sectional profile and the welds 70 and 71, are symmetrical. This greatly helps keep the beam uniform and straight (and helps avoid snapping and non-linear bending due to non-balanced weld heats and material shrinkage/movement) during roll forming and manufacturing operations. Persons skilled in the art of roll forming will recognize how balanced the forming process is in each of the steps S1-S33 (Fig. 4). In particular, persons skilled in the art of roll forming manufacture and design will recognize the value of the perpendicularity of the center wall in step S7, and also the value of the perpendicularity of the outer walls in step S21, and the minimization of roll forming steps thereby facilitated.

The related method of manufacturing a tubular reinforcement beam 50 with center wall section 56 for a bumper reinforcement beam 40 (see the roll former in Fig. 3, and the beam in Figs. 1-2) includes steps of: providing a sheet 49 (see Fig. 3) including first and second edges 51-52 (Fig. 2) and seven wall sections 53-59 extending sequentially therebetween; bending the center wall to a perpendicular orientation to the remaining material (see steps S2-S7), bending the edge tips (step S3-S7) and forming the channel ribs 65, 66 (started in steps S3-S9 and finishing the channel ribs in steps S10-S12), bending the first through fourth wall sections 53-56 to form a first tube and bending the fourth through seventh wall sections 56-59 to form an adjacent second tube (half formed in steps S3-S21 and finishing same in steps S22-S33); welding the first edge 51 to the associated radiused corner 62 and welding the second edge 52 to the associated radiused corner 64 while maintaining an accurate cross sectional shape of the continuous beam in a weld fixture (see Figs. 7-8); deforming the continuous beam to a longitudinally curved ("swept") shape in the sweeping station, and cutting off the beam segments to length in a cutoff station to form individual bumper reinforcement beams.

Notably, the channel rib 65 in the first wall section 53 and channel rib 66 in the fifth wall section combine with the crevice at a center of the beam front (over the center wall) to provide a three channel rib formation on a face of the beam. This provides excellent torsional and bending strength in the beam, as noted above. In particular, testing has shown that channels and ribs providing stability to a face of the beam can improve impact strengths significantly and provide increased consistency of impact strength (and consistency of energy absorbing ability) without increasing beam weight, which is an unexpected and surprising result. The improvement in impact strength is attributed to several factors. For example, the present beam’s weight is not increased over a similar sized beam not having channel ribs, because the present beam uses a thinner sheet material while still providing a similar or improved impact test result. Notably, thinner materials can tend to unpredictably/prematurely kink and catastrophically collapse due to the dynamics that occur during an impact against thin sheet material, potentially increasing variability and inconsistency of impact strengths during testing. However, the channel ribs and crevice rib in the front of the present beam helps stabilize the tubular structure of the beam, thus providing improved test results even when a thinner sheet material is used. This improvement was not expected given the fact that the channel ribs and crevice rib are in the face of the beam. Part of the reason it was not expected is because the face-located channel ribs and crevice ribs cause some sheet material to be located inward closer to a bending moment's centerline (rather than farther away from the centerline). Notably, material located closer to a bending moment’s centerline contributes less to the beam’s bending moment, thus potentially reducing the bending moment of inertia for the beam. However, due to the dynamics of impacts, stability of beam walls can be very important to beam impact performance. Also, some bumper testing causes vertically unbalanced torsional forces (such as when a test impactor device strikes a beam higher than its centerline).

A related apparatus 88 (Fig. 3) for manufacturing a tubular reinforcement beam 50 with center wall section 56 for a bumper reinforcement beam 40 comprises a roll mill 89 with in-line sweep station 90 and cutoff 91. The roll mill 89 includes rolls constructed to form a sheet 49 including first and second edges 51-52 and seven wall sections 53-59 extending sequentially therebetween. The rolls include a first region of roll forming stations 92 with sets of rolls positioned to form the center leg with outer wings of the sheet extending generally perpendicularly from the center leg. The first region of the roll forming stations 92 also forms the radiused edges of the sheet. A second region of roll forming stations 92 include roll sets positioned and configured to bend the first through fourth wall sections 53-56 to form a first tube and to bend the fourth through seventh wall sections 56-59 to form an adjacent second tube, with the single center leg being common to both tubes. First and second welders 72 and 73 are positioned to weld the first edge 51 to
the associated inner surface of radiused corner 62, and to weld the second edge 52 to the associated radiused corner 64. The first welder 72 is positioned above the beam, and the second welder 73 is positioned below the beam with its laser beam oriented at an angle, as described below.

[0031] It is noted that the present apparatus can utilize a roll mill with horizontal axes supporting forming rolls, or alternatively can utilize a roll mill with vertical axes supporting forming rolls. In the vertical axis mill, the laser welders would potentially operate from opposing sides of the beam or partially above the beam. An advantage of a vertical axis roll mill is that gravity can be used to cause debris and dirt to fall away from the welding sites, since the welder is positioned offset to a side and/or above the welding. In the horizontal axis roll mill, the lasers operate from top and bottom positions relative to the beam. The bottom position of one of the welders potentially causes a problem with falling debris, but this problem is solved by the present innovation as discussed below.

[0032] As shown by the illustrated version in Figs. 3 and 4, the apparatus is preferably constructed where both welds are made at a single station with the welding being done simultaneously. One welder 72 is positioned above the welding location and a second welder 73 is positioned below but significantly upstream of (or downstream of) the weld location. The bottom welder is positioned and shielded so that the welder is not detrimentally affected by flying and falling debris. For example, the illustrated bottom welder is located upstream of the actual welding site by 15 degrees from vertical. Also, if necessary (depending on a distance of the laser beam generating device from the weld location), a shield can be used to physically shield the laser generating device from the weld. The illustrated shield is a physical barrier located so that it does not interfere with the laser beam (which defines a line), but so that the laser generating apparatus is protected from falling debris (which tends to define an arc as the debris initially moves laterally and then falls by gravity toward an end of its falling path). It is contemplated that the shield will also include an air shield provided by a directed air stream. Notably, a focal length of a laser welder beam can be up to 36 inches, and the illustrated bottom welder is located slightly downstream of the weld location to heat and weld abutting material of the beam simultaneously. One welder 72 is positioned above the welding location and a second welder 73 is positioned below but significantly upstream of the weld location. The bottom welder is positioned and shielded so that the welder is not detrimentally affected by flying and falling debris. A weld box fixture will not interfere with their respective laser beams striking targeted abutting material of the beam 50. The bottom laser welder 103 is positioned slightly upstream of the weld box fixture 102, and its welding laser 104 is oriented at a downstream angle so that the welding laser beam 104 strikes the beam 101 at a desired location to heat and weld abutting material of the beam 101. The laser has a focal length of up to 36 inches, depending on the type of laser. There is no minimum distance of the laser from the weld location on the beam and is more inherently controlled/controllable. Also, radii are formed into edges of the sheet in steps S1-S7. Thereafter, the adjacent tubes are formed on opposite sides of the common center leg. As a result in the present process of Fig. 4, the number of roll forming steps can be reduced to as few as 33 steps (see Fig. 4) even when forming a sheet having 290 ksi+ tensile strength, which is considered to be a dramatic and surprising and unexpected improvement from known methods. Notably, fewer forming steps can be very beneficial, since the reduced number of steps can reduce tooling costs (i.e. fewer forming rolls necessary), reduce a length of the roll forming apparatus (i.e. fewer roll form stations), and reduce overall processing time (i.e. a shorter cycle time from the initial flat sheet to the double tube beam shape).

[0034] Fig. 5 illustrates a seam tracking disc 90’ used to track and control the crevice 80. (In Fig. 5, the disc 90’ is exploded away, but it is contemplated that the disc will physically engage the beam 50 and track along the crevice.) The disc 90’ tracks a valley of the crevice 80 to facilitate the welding process. Specifically, the disc 90’ is a rotating disc, resembling a pizza cutter, that rides inside the area for the continuous weld seam. The laser welder locates off of this disc in the weld valley. As illustrated, a disc 90’ can be used to track crevices at both the top and bottom of the beam 50.

[0035] Fig. 6 is a cross section of the modified beam 50A similar to Fig. 2 but with the tubes having different widths. Specifically, one tube of beam 50A is about twice a width of the other tube. However, they share a common center wall. Further, they both have a channel rib of similar size and shape, and also there is a crevice rib formed over the center leg. In the beam 50A, similar and identical features, characteristics, and components are identified by using identical numbers but with a letter (such as “A”). This is done to reduce redundant discussion. It will be understood by persons skilled in the art of bumper reinforcement beams and related manufacturing processes that the beam 50A can and does incorporate many features of beam 50, such that an individual discussion of numbers in beam 50A is not believed to be necessary.

[0036] Figs. 3, 7-8 show a welding station 100 at an end of and as exiting a roll former. Fig. 7, the sheet is shown as already having been formed in a roll former, and is traveling in a direction of travel D1. A weld box fixture 102 is positioned in line with the partially-formed beam 50. Top and bottom laser welders 103 are positioned at the welding station in a location where the weld box fixture will not interfere with their respective laser beams striking targeted abutting material of the beam 50. The bottom laser welder 103 is positioned slightly upstream of the weld box fixture 102, and its welding laser 104 is oriented at a downstream angle so that the welding laser beam 104 strikes the beam 101 at a desired location to heat and weld abutting material of the beam 101. The laser has a focal length of up to 36 inches, depending on the type of laser. There is no minimum distance of the laser from the weld location on the beam and is more inherently controlled/controllable. Also, radii are formed into edges of the sheet in steps S1-S7. Thereafter, the adjacent tubes are formed on opposite sides of the common center leg. As a result in the present process of Fig. 4, the number of roll forming steps can be reduced to as few as 33 steps (see Fig. 4) even when forming a sheet having 290 ksi+ tensile strength, which is considered to be a dramatic and surprising and unexpected improvement from known methods. Notably, fewer forming steps can be very beneficial, since the reduced number of steps can reduce tooling costs (i.e. fewer forming rolls necessary), reduce a length of the roll forming apparatus (i.e. fewer roll form stations), and reduce overall processing time (i.e. a shorter cycle time from the initial flat sheet to the double tube beam shape).

[0034] Fig. 5 illustrates a seam tracking disc 90’ used to track and control the crevice 80. (In Fig. 5, the disc 90’ is exploded away, but it is contemplated that the disc will physically engage the beam 50 and track along the crevice.) The disc 90’ tracks a valley of the crevice 80 to facilitate the welding process. Specifically, the disc 90’ is a rotating disc, resembling a pizza cutter, that rides inside the area for the continuous weld seam. The laser welder locates off of this disc in the weld valley. As illustrated, a disc 90’ can be used to track crevices at both the top and bottom of the beam 50.

[0035] Fig. 6 is a cross section of the modified beam 50A similar to Fig. 2 but with the tubes having different widths. Specifically, one tube of beam 50A is about twice a width of the other tube. However, they share a common center wall. Further, they both have a channel rib of similar size and shape, and also there is a crevice rib formed over the center leg. In the beam 50A, similar and identical features, characteristics, and components are identified by using identical numbers but with a letter (such as “A”). This is done to reduce redundant discussion. It will be understood by persons skilled in the art of bumper reinforcement beams and related manufacturing processes that the beam 50A can and does incorporate many features of beam 50, such that an individual discussion of numbers in beam 50A is not believed to be necessary.

[0036] Figs. 3, 7-8 show a welding station 100 at an end of and as exiting a roll former. Fig. 7, the sheet is shown as already having been formed in a roll former, and is traveling in a direction of travel D1. A weld box fixture 102 is positioned in line with the partially-formed beam 50. Top and bottom laser welders 103 are positioned at the welding station in a location where the weld box fixture will not interfere with their respective laser beams striking targeted abutting material of the beam 50. The bottom laser welder 103 is positioned slightly upstream of the weld box fixture 102, and its welding laser 104 is oriented at a downstream angle so that the welding laser beam 104 strikes the beam 101 at a desired location to heat and weld abutting material of the beam 101. The laser has a focal length of up to 36 inches, depending on the type of laser. There is no minimum distance of the laser from the weld location on the beam and is more inherently controlled/controllable. Also, radii are formed into edges of the sheet in steps S1-S7. Thereafter, the adjacent tubes are formed on opposite sides of the common center leg. As a result in the present process of Fig. 4, the number of roll forming steps can be reduced to as few as 33 steps (see Fig. 4) even when forming a sheet having 290 ksi+ tensile strength, which is considered to be a dramatic and surprising and unexpected improvement from known methods. Notably, fewer forming steps can be very beneficial, since the reduced number of steps can reduce tooling costs (i.e. fewer forming rolls necessary), reduce a length of the roll forming apparatus (i.e. fewer roll form stations), and reduce overall processing time (i.e. a shorter cycle time from the initial flat sheet to the double tube beam shape).
101. For example, it is contemplated that the laser type could be gas (such as CO2), or could be solid state, fiber, or disc laser types. A maximum angle α_1 of the laser 104 to the reinforcement beam 101 is about 15 degrees from vertical (i.e., from perpendicular to a side of the beam 50).

A physical shield 105 is used, if necessary or desirable, to shield the laser source 106 from debris from the welding process. The physical shield 105 can be downstream air knives or air jets, or can include a physical panel.

[0037] The adjustable weld box fixture 102 (Fig. 8) is located at the welding station and is designed for setting and holding a final shape of the roll-formed beam during the welding step. The illustrated adjustable fixture 102 includes an external steel box frame 110, top and bottom external mandrels 111, 112, and adjustable side external mandrels 113, 114 that are inwardly-pressured by actuators 115, 116. It is contemplated that the actuators can be dynamic or active (such as hydraulic cylinders), or they can be adjustable and passive, such as threaded bolts that can be adjusted to provide a desired amount of inward pressure to maintain a desired shape of the external mandrels within the weld box fixture 102. Two rods are shown extending from the actuator 115 through the frame 110 to a location where they are attached to the external mandrel 111. However, it is contemplated that alternative connected and motivating arrangements can be constructed.

[0038] Internal mandrels 117, 118 are located in each of the tubes 121, 122 of the double tube beam 120, and are anchored by cables 123, 124 that extend to an upstream anchor stanchion 125 located on the roll former where the sheet is laterally open sufficiently to position the anchoring stanchion 125 (Fig. 3) for holding the cables 123, 124 (Fig. 8). Beam 50 is illustrated, but it is contemplated that the beam could be like beam 50A or another modified beam. The illustrated internal mandrels 117, 118 each are split mandrels with opposing mandrel halves 126, 127 biased apart by a spring 128 (e.g. hydraulic, mechanical, or other spring). Internal mandrel 118 also includes opposing mandrel halves 130, 131 biased apart by hydraulic spring 132. However, it is contemplated that in some circumstances, a one-piece solid internal mandrel can be used on each side. A laser access opening is provided in the fixture box frame 110 and external mandrels 111, 112, with the illustrated laser access opening 129 providing access for the laser beam through a bottom and top of the box frame 110 and through the top and bottom external mandrels 111, 112.

[0039] The internal springs 128 and 132 and split internal mandrels 117, 118 in combination with the inward-biasing actuators 115, 116 and external mandrels 113, 114 cause the fixture to maintain a desired outer shape of the beam 101 as it passes through the weld station 100 and is welded. Notably, there is a slip plane P1 defined between the top external mandrel 111 and a top of the side external mandrels 113, 114. Also, there is a slip plane P2 defined between the bottom external mandrel 112 and a bottom of the side external mandrels 113, 114. The slip plane P1 aligns with the front face of the beam 101 and is defined in part by the outboard surface of the tip of the front radiused end of the center leg, and the slip plane P2 aligns with a rear face of the beam 101 and is defined in part by the outboard surface of the tip of the rear radiused end of the center leg. In the welding station, pressure from the internal and external mandrels of the welding fixture cause sheet material to move and deform to an accurate known position along the slip planes P1 and P2. This improves dimensional consistency and accuracy of a cross sectional shape of the beam prior to (and during) the welding process. Also, by this arrangement, the pressure on the abutting surfaces where the welds will occur can be more accurately and consistently controlled for an optimal weld condition.

[0040] It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.

[0041] The application further discloses:

i) A reinforcement beam comprising:

a beam formed from a single sheet and including first and second tubes sharing a common wall and having coplanar aligned front walls and coplanar aligned rear walls, each front wall including a channel rib therein, the sheet including a first edge with a first radiused portion and first tip, a second edge with a second radiused portion and second tip, a third radiused portion connecting one of the aligned front walls with one end of the common wall, and a fourth radiused portion connecting one of the rear walls with another end of the common wall, the first and third radiused portions being welded together at a first weld and forming a front crevice rib having a cavity depth at least two times a thickness of the sheet, and the second and fourth radiused portions being welded together at a second weld and forming a rear crevice having a cavity depth at least two times the thickness of the sheet, the channel ribs and the front crevice rib forming ribs that stiffen a front face of the beam.

ii) The reinforcement beam defined in paragraph i) wherein, optionally, the front crevice is generally centered over the aligned wall, and forms with said channel ribs a three rib reinforced front face on the beam.

iii) The reinforcement beam defined in paragraph i) wherein, optionally, the front weld is formed at a bottom of the first crevice immediately adjacent a location where the first and third radiused portions first come into abutting contact, the first tip extending inside the beam and away from the weld less than
about 4 mm.

iv) The reinforcement beam defined in paragraph i) wherein, optionally, the front weld is a continuous strip of bonded material formed by laser welding.

v) The reinforcement beam defined in paragraph i) wherein, optionally, the sheet has a material thickness of is less than about 1.2 mm.

vi) The reinforcement beam defined in paragraph i) wherein, optionally, the channel ribs have a same shape and have a depth equal to their width.

There is also disclosed:

vii) An apparatus for forming a sheet into a beam having four exterior walls and a common center leg extending between an opposing two of the walls, the four exterior walls defining a rectangular cross section, and the center leg dividing the cross section into first and second adjacent tubes, the center leg having radiused ends each defining slip planes perpendicular to the center leg, and the sheet having edges that abut the radiused ends, comprising:

a roll former including roll form stations with rollers for forming the sheet into the beam with the four exterior walls and the common center leg, the roll former including a welding station with welders and a weld box fixture, the weld box fixture including a fixture frame, external mandrels supported by the fixture frame and supporting the four exterior walls in a desired accurate shape, two of the external mandrels being movable and opposing, and including at least one actuator operably connected to the two opposing external mandrels for moving the opposing external mandrels into engagement with associated opposing ones of the four exterior walls; and internal mandrels in each of the first and second adjacent tubes that are supported by upstream anchor lines so that the internal mandrels remain generally adjacent the external mandrels; whereby, the internal and external mandrels, in combination with a bias of the springs and a counter bias of the two opposing external mandrels, control a shape of the beam by flexure and movement of material of the sheet along the slip planes to thus actively maintain an accurate shape when in the weld box fixture during a welding process of the welder.

ix) The reinforcement beam defined in paragraph viii) wherein, optionally, the at least one actuator includes an adjustable threaded member.

x) The reinforcement beam defined in paragraph viii) wherein, optionally, the internal mandrels each have opposing halves and a spring biasing the opposing halves apart against the external mandrels and against a force of the actuator.

There is also disclosed:

xi) An apparatus for forming a sheet into a beam having four exterior walls and a common center leg extending between an opposing two of the walls, the four exterior walls defining a rectangular cross section, and the center leg dividing the cross section into first and second adjacent tubes, the center leg having radiused ends each defining slip planes perpendicular to the center leg, and the sheet having edges that abut the radiused ends, comprising:

a roll former including roll form stations with rollers for forming the sheet into the beam with the four exterior walls and the common center leg, the roll former including a welding station with welders and a weld box fixture, the weld box fixture including a fixture frame, external mandrels supported by the fixture frame and supporting the four exterior walls in a desired accurate shape, two of the external mandrels being movable and opposing, and including at least one actuator operably connected to the two opposing external mandrels for moving the opposing external mandrels into engagement with associated opposing ones of the four exterior walls, two others of the external mandrels being fixed and opposing such that the two other external mandrels generally fix a distance between the opposing two walls between which the center leg extends; whereby, the external mandrels in combination with a bias of the two opposing external mandrels, control a shape of the beam by flexure and movement of material of the sheet along the slip planes to thus actively maintain an accurate shape when in the weld box fixture during a welding process of the welder.

There is also disclosed:

dii) An apparatus for forming a sheet into a beam having four exterior walls and a common center leg extending between an opposing two of the walls, the four exterior walls defining a rectangular cross section, and the center leg dividing the cross section into first and second adjacent tubes, the center leg having radiused ends each defining slip planes perpendicular to the center leg, and the sheet having radiused edges that abut the radiused ends, com-
prising:

a roll former including roll form stations with rollers for forming the sheet into the continuous beam with the four exterior walls and the common center leg, the roll former including a welding station with a welder and a weld box fixture, the welder generating an upwardly-angled laser beam for welding the continuous beam to permanently fix the cross section and being positioned under the continuous beam at a location upstream or downstream from the weld box fixture so that the laser beam welds within a down-facing crevice formed by one of the radiused edges abutting one of the radiused ends;

whereby, the welder welds the continuous beam from a position under the continuous beam yet is positioned away from falling debris.

There is also disclosed:

xiii) An apparatus for forming a sheet into a beam having four exterior walls and a common center leg extending between an opposing two of the walls, the four exterior walls defining a rectangular cross section, and the center leg dividing the cross section into first and second adjacent tubes, the center leg having radiused ends each defining slip planes perpendicular to the center leg, and the sheet having radiused edges that abut the radiused ends, comprising:

a roll former including first roll form stations with first sets of rollers forming the center leg of the sheet and outboard wings of the sheet, with the outboard wings having portions adjacent the center leg that extend perpendicular to the center leg and that are joined to the center leg by the radiused ends, and with the outboard wings also having the radiused edges formed thereon; the roll former further including additional roll form stations with additional sets of rollers forming the outboard wings into first and second tubes with the center leg being a common wall forming part of each of the first and second tubes; and top and bottom welders welding the radiused edges to the radiused ends.

There is also disclosed:

xv) A tubular reinforcement beam with center leg for a vehicle bumper system, comprising:

a sheet including first and second edges and seven wall sections extending sequentially theretbetween, the first thru fourth wall sections forming a first tube and the fourth thru seventh wall sections forming an adjacent second tube, the first edge being deformed inwardly but with its tip extending outward at an angle so that an inner surface of the first edge engages and is welded to an associated radiused corner formed by the fourth and fifth wall sections, the second edge being deformed inwardly but with its tip extending outward at an angle so that an inner surface of the second edge engages and is welded to an associated radiused corner formed by the fourth and third wall sections.

xvi) The beam defined in paragraph xv), wherein, optionally, the first wall section includes a channel rib.

xvii) The beam defined in paragraph xvi), wherein, optionally, the fifth wall section includes a channel rib.

xviii) The beam defined in paragraph xv), wherein, optionally, the first edge and associated tip defines a radius with a centerpoint at or outboard of a front face of the beam.

xix) The beam defined in paragraph xv), wherein, optionally, the beam includes welds located on first and second edges and that are spaced from terminal ends of the first and second edges.

There is also disclosed:

xx) A method of manufacturing a tubular reinforce-
ment beam with center leg for a vehicle bumper system, comprising steps of:

- providing a sheet including first and second edges and seven wall sections extending sequentially therebetween;
- bending the first thru fourth wall sections to form a first tube, and bending the fourth thru seventh wall sections to form an adjacent second tube;
- deforming the first edge inwardly but with its tip extending outward at an angle so that an inner surface of the first edge engages an associated radiused corner formed by the fourth and fifth wall sections, deforming the second edge inwardly but with its tip extending outward at an angle so that an inner surface of the second edge engages an associated radiused corner formed by the fourth and third wall sections;
- welding the first edge to the associated radiused corner; and
- welding the second edge to the associated radiused corner.

xxi) The beam defined in paragraph xx), wherein, optionally, the step of bending includes forming in the first wall section a channel rib.

xxii) The beam defined in paragraph xxii), wherein, optionally, the step of bending includes forming in the fifth wall section a channel rib.

xxiii) The beam defined in paragraph xx), wherein, optionally, the step of deforming the first edge includes forming a radius with centerpoint at or outboard of a front face of the beam.

xxiv) The beam defined in paragraph xx), wherein, optionally, the step of welding the first and second edges includes welding them at locations spaced from respective terminal ends of the first and second edges.

There is also disclosed:

xxv) An apparatus for manufacturing a tubular reinforcement beam with center leg for a vehicle bumper system, comprising:

- a roll mill with rolls constructed to form a sheet including first and second edges and seven wall sections extending sequentially therebetween;
- the rolls including first rolls positioned and configured to bend the first thru fourth wall sections to form a first tube, and second rolls positioned and configured to bend the fourth thru seventh wall sections to form an adjacent second tube;
- the rolls further including third rolls positioned and configured to deform the first edge inwardly but with its tip extending outward at an angle so that an inner surface of the first edge engages an associated radiused corner formed by the fourth and fifth wall sections, and including fourth rolls positioned and configured to deform the second edge inwardly but with its tip extending outward at an angle so that an inner surface of the second edge engages an associated radiused corner formed by the fourth and third wall sections;
- a first welder positioned to weld the first edge to the associated radiused corner; and
- a second welder positioned to weld the second edge to the associated radiused corner.

Claims

1. A method of roll forming a tubular reinforcement beam for a vehicle, comprising:

- providing a sheet that includes a generally planar body extending laterally between a first edge and a second edge of the sheet;
- providing a roll former that includes at least a first set of rollers and a second set of rollers that are configured to sequentially receive the sheet;
- bending the sheet with the first set of rollers to form a center wall section in generally perpendicular orientation relative to first and second portions of the sheet that extend in opposing directions from respective first and second ends of the center wall section;
- bending the first and second edges of the respective first and second portions of the sheet to form a radius on each of the first and second edges;
- bending the first and second portions of the sheet to engage the first edge with the second end of the center wall and the second edge with the first end of the center wall to define a first tube and an adjacent second tube, wherein the radii of the first and second edges each contact the center wall section to define a valley for receiving a weld; and
- welding in the valley to attach the first and second edges respectively with the second and first ends of the center wall.

2. The method of claim 1, wherein the first and second portions are each bent to form a front wall section, an outer wall section, and a rear wall section that together with the center wall section define the adjacent first and second tubes.

3. The method of claim 2, wherein the front wall sections and the rear wall sections are each substantially coplanar upon engagement of the first and second edges with the center wall, such that the first
and second tubes together have a generally rectangular cross section.

4. The method of claim 3, further comprising:
 bending the first and second portions of the sheet to form a channel rib in each of the front wall sections, before the first and second edges engage the center wall.

5. The method of claim 4, wherein the center wall is configured to maintain a balanced roll forming operation during later forming of the sheet, such that after formation of the channel ribs, the first and second portions of the sheet are bent to form the front, outer, and rear wall sections, such that the first and second tubes have the same size.

6. The method of claim 1, wherein the first and second portions are bent to form a first radiused corner proximate the first end of the center wall section and a second radiused corner proximate the second end of the center wall section, such that the first and second radiused corners have a consistent engagement with the radii of the first and second edges.

7. The method of claim 6, further comprising:
 welding the first edge to the second radiused corner and welding the second edge to the first radiused corner at a weld station, while maintaining an accurate cross sectional shape.

8. The method of claim 7, further comprising:
 deforming the first and second tubes to a longitudinally curved swept shape in a sweeping station, and cutting off the first and second tubes to length in a cutoff station to form the individual tubular reinforcement beams.

9. A method of forming a tubular bumper beam comprising:
 providing a single sheet of steel metal; providing a roll former; roll forming the single sheet using the roll former to have adjacent tubes formed on opposite sides of a single common center wall, wherein the roll forming steps comprise:
 forming the center wall to be generally perpendicular to portions of the sheet extending in opposite directions from opposing bent ends of the center wall; forming a channel rib on each of the portions while using the center wall to maintain a position of the sheet; and bending the portions so that outer edges of the portions abuttingly contact the associated radiused ends of the center wall to thus form the adjacent tubes while using the radiused ends to assist in maintaining symmetrical deformation of the portions, wherein the portions are formed to have coplanar front walls that include the channel rib; and welding the outer edges of the portions to the associated bent ends.

10. The method of claim 9, wherein the portions are each formed to include the front wall, an outer wall, and a rear wall that together with the center wall define the adjacent tubes.

11. The method of claim 10, wherein the rear walls are substantially coplanar and the opposing walls are parallel upon engagement of the outer edges with the center wall, such that the adjacent tubes together have a generally rectangular cross section.

12. The method of claim 9, wherein the first and second portions of the sheet each include 10-40% of a width of the sheet defined between the first and second edges.

13. The method of claim 9, wherein roll forming the sheet further comprises:
 forming a radii at the outer edges of the portions before forming the channel ribs, wherein the radii engage the radiused ends of the center wall to define a valley for receiving a weld.

14. The method of claim 13, wherein a portion of the outer edges that extends beyond the valley is minimized to have a length that is less than 4 mm.

15. The method of claim 9, further comprising:
 welding the outer edges to the radiused ends of the center wall by using a single weld station to place a weld continuously along a valley defined between the bent ends and the outer edges, while maintaining an accurate cross sectional shape.

16. The method of claim 9, wherein the roll former includes a first set of rollers that receives the sheet for forming the center wall and a second set of rollers receives the sheet for first forming the channel ribs and then forming the portions to include the front walls in coplanar alignment, outer walls in parallel alignment, and rear walls in coplanar alignment that together with the center wall define the adjacent tubes having a rectangular cross section.
17. The method of claim 9, further comprising:

deforming the adjacent tubes to a longitudinally curved swept shape in a sweeping station, and cutting off the first and second tubes to length in a cutoff station to form individual tubular bumper beams, wherein the sweeping station is configured to provide the curved swept shape to includes a first radius proximate a longitudinal center section of the beam and a tighter second radius proximate longitudinal end sections of the beam.

18. The method of any one of claims 1 to 17, wherein the step of bending of the portions of the sheet is done simultaneously and in the same rotational direction.

19. A roll former for forming a sheet into a continuous tubular reinforcement beam having four exterior walls that define a rectangular cross-section and a common center wall that extends between opposing outer walls of the exterior walls and divides the rectangular cross-section into adjacent tubes, the roll former comprising:

a first set of rollers configured to bend the sheet to form the common center wall in generally perpendicular orientation relative to first and second portions of the sheet that extend in opposing directions from respective first and second radiused ends of the common center wall, and to form radiused edges on the first and second portions;
rollers configured to bend the first and second portions to form a channel rib longitudinally along each of the first and second portions;
rollers configured to bend the first and second portions to abut the first and second radiused edges with the respective first and second radiused ends of the common center wall to define the adjacent tubes of the beam; and
a welder for welding the first and second radiused edges with the respective first and second radiused ends of the common center wall.

20. The roll former of claim 19, wherein the first and second radiused edges engage the first and second radiused ends of the common center wall to define a valley for receiving a weld continuously therealong from the welder, and wherein the channel ribs are located on coplanar front walls of the adjacent tubes.

21. The roll former of claim 19, further comprising:

a sweeping station configured to receive the adjacent tubes and deform the adjacent tubes to a longitudinally curved swept shape that in-
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>FR 2 881 394 A1 (FAURECIA INTERIEUR IND SNC [FR]) 4 August 2006 (2006-08-04)</td>
<td>19-21</td>
<td>INV. B21D5/08</td>
</tr>
<tr>
<td>Y</td>
<td>page 13, lines 13-18; figures 6,7A-7F, 9D</td>
<td>1-18</td>
<td>B21D5/88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B60R19/18</td>
</tr>
<tr>
<td>X</td>
<td>DE 100 07 496 C1 (DREISTERN WERK MASCHB GMBH & C [DE]) 26 April 2001 (2001-04-26)</td>
<td>19-21</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>column 6, lines 24-29; claim 1; figure 7</td>
<td>1-18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

Place of search: Munich
Date of completion of the search: 19 January 2015
Examiner: Knecht, Frank
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

19-01-2015

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR 2881394 A1</td>
<td>04-08-2006</td>
<td>AT 510752 T</td>
<td>15-06-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2881394 A1</td>
<td>04-08-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008309113 A1</td>
<td>18-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006082290 A1</td>
<td>10-08-2006</td>
</tr>
<tr>
<td>DE 10007496 C1</td>
<td>26-04-2001</td>
<td>AT 238855 T</td>
<td>15-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 301012 T</td>
<td>15-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2337412 A1</td>
<td>18-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10007496 C1</td>
<td>26-04-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1125652 T3</td>
<td>11-08-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1125652 A1</td>
<td>22-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1125653 A1</td>
<td>22-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2194880 T3</td>
<td>01-12-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2245289 T3</td>
<td>01-01-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2001020609 A1</td>
<td>13-09-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60301916 D1</td>
<td>24-11-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60301916 T2</td>
<td>27-07-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1378402 A1</td>
<td>07-01-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2251670 T3</td>
<td>01-05-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2841850 A1</td>
<td>09-01-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004130166 A1</td>
<td>08-07-2004</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 61385680 B [0001]
- EP 11827216 A [0001]
- US 2011051025 W [0001]