EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:
22.06.2016 Bulletin 2016/25

Application number: 12712818.9

Date of filing: 22.03.2012

Int Cl.:
A46B 5/00 (2006.01)

International application number:
PCT/US2012/030114

International publication number:

ORAL CARE IMPLEMENT HAVING FLEXIBLE HANDLE
MUNDPFLEGEVORRICHTUNG MIT FLEXIBLEM GRIFF
ACCESSOIRE DE SOINS BUCCO-DENTAIRES COMPORTANT UN MANCHE FLEXIBLE

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

Date of publication of application:
28.01.2015 Bulletin 2015/05

Proprietor: Colgate-Palmolive Company
New York, NY 10022 (US)

Inventors:
• MOSKOVICH, Robert
 East Brunswick, New Jersey 08816 (US)
• MINTEL, Thomas
 Rahway, New Jersey 07065 (US)
• WECHSLER, Andreas
 A-5700 Zell am See (AT)
• HOHLBEIN, Douglas
 Hopewell, New Jersey 08525 (US)
• MULLER, Jan Felix
 71263 Weil der Stadt (DE)
• SORRENTINO, Alan
 Cranbury, New Jersey 08512 (US)
• SPROSTA, Al
 Maplewood, New Jersey 07040 (US)

Representative: Schicker, Silvia et al
Wuesthoff & Wuesthoff
Patentanwälte PartG mbB
Schweigerstraße 2
81541 München (DE)

References cited:
GB-A- 2 413 268

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
FIELD OF THE INVENTION

The present invention relates generally to oral care implements, and specifically to oral care implements, such as toothbrushes, having flexible handles.

BACKGROUND OF THE INVENTION

Toothbrushes that incorporate flexibility into the handle and/or the head are known in the art. Such flexibility can be used to deter a toothbrush user from exerting too great of a force on the user’s teeth during toothbrushing. Conventional toothbrushes that offer flexibility are often formed from multiple components that are mechanically coupled together. Due to the requirement to form such toothbrushes from multiple components, manufacturing costs are increased. Furthermore, in conventional toothbrushes that offer flexibility, the amount of flexibility is either limited due to the shape of the components or breakage occurs when the toothbrush is flexed beyond a certain point. Thus, a need exists for an improved toothbrush having a flexible handle.

US-A-2011/0016651, on which the pre-characterising portion of claim 1 is based, describes a toothbrush including a hinge with a ball and socket joint.

The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.

DETAILED DESCRIPTION OF THE INVENTION

The description of illustrative embodiments according to principles of the present invention is intended...
to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of the exemplary embodiments of the invention disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as "lower," "upper," "horizontal," "vertical," "above," "below," "up," "down," "left," "right," "top," "bottom," "front" and "rear" as well as derivatives thereof (e.g., "horizontally," "downwardly," "upwardly," etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as "attached," "affixed," "connected," "coupled," "interconnected," "secured" and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are described by reference to the exemplary embodiments illustrated herein. Accordingly, the invention expressly should not be limited to such exemplary embodiments, even if indicated as being preferred. The discussion herein describes and illustrates some possible embodiments, even if indicated as being preferred. The disclosure of description and is not intended in any way to limit the scope of the present invention. Relative terms such as "lower," "upper," "horizontal," "vertical," "above," "below," "up," "down," "left," "right," "top," "bottom," "front" and "rear" as well as derivatives thereof (e.g., "horizontally," "downwardly," "upwardly," etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as "attached," "affixed," "connected," "coupled," "interconnected," "secured" and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are described by reference to the exemplary embodiments illustrated herein. Accordingly, the invention expressly should not be limited to such exemplary embodiments, even if indicated as being preferred. The discussion herein describes and illustrates some possible non-limiting combinations of features that may exist alone or in other combinations of features. The scope of the invention is defined by the claims appended hereto.

[0009] Referring to Figures 1-3 concurrently, an oral care implement 100 is illustrated in accordance with an embodiment of the present invention. In the exemplified embodiment, the oral care implement 100 is in the form of a manual toothbrush. However, in certain other embodiments the oral care implement 100 can take on other forms such as being a powered toothbrush, a flossing device, a tongue scraper, a gum and soft tissue cleaner, a water pick, an interdental device, a tooth polisher, a specially designed anastomate implant having tooth engaging elements or any other type of implement that is commonly used for oral care. Thus, it is to be understood that the inventive concepts discussed herein can be applied to any type of oral care implement unless a specific type of oral care implement is specified in the claims.

[0010] The oral care implement 100 generally comprises a handle 110 and a head 190. The head 190 comprises a front surface 192 and an opposing rear surface 193 and a plurality of tooth cleaning elements 191 extending from the head 190 beyond the front surface 192. In the exemplified embodiment, the tooth cleaning elements 191 are generically illustrated. The exact number, size and configuration of the tooth cleaning elements 191 are not to be limiting of the present invention unless so specified in the claims. The tooth cleaning elements 191 can be particularly suited for brushing teeth, or can be particularly suited to polish teeth instead of or in addition to cleaning teeth. Although not illustrated, a tissue cleanser in the form of nubs or protrusions could be positioned on and protrude beyond the rear surface 193 of the head 190.

[0011] As used herein, the term "tooth cleaning elements" is used in a generic sense to refer to any structure that can be used to clean, polish or wipe the teeth and/or soft oral tissue (e.g. tongue, cheek, gums, etc.) through relative surface contact. Common examples of "tooth cleaning elements" include, without limitation, bristle tufts, filament bristles, fiber bristles, nylon bristles, spiral bristles, rubber bristles, elastomeric protrusions, flexible polymer protrusions, combinations thereof and/or structures containing such materials or combinations. Suitable elastomeric materials include any biocompatible resilient material suitable for uses in an oral hygiene apparatus. To provide optimum comfort as well as cleaning benefits, the elastomeric material of the tooth or soft tissue engaging elements has a hardness property in the range of A8 to A25 Shore hardness. One suitable elastomeric material is styrene-ethylene/butylene-styrene block copolymer (SEBS) manufactured by GLS Corporation. Nevertheless, SEBS material from other manufacturers or other materials within and outside the noted hardness range could be used.

[0012] The tooth cleaning elements 191 of the present invention can be connected to the head 190 in any manner known in the art. For example, staples/anchors, in-mold tufting (IMT) or anchor free tufting (AFT) could be used to mount the cleaning elements/tooth engaging elements. In AFT, a plate or membrane is secured to the brush head such as by ultrasonic welding. The bristles extend through the plate or membrane. The free ends of the bristles on one side of the plate or membrane perform the cleaning function. The ends of the bristles on the other side of the plate or membrane are melted together by heat to be anchored in place. Any suitable form of cleaning elements may be used in the broad practice of this invention. Alternatively, the bristles could be mounted to tuft blocks or sections by extending through suitable openings in the tuft blocks so that the base of the bristles is mounted within or below the tuft block.

[0013] The handle 110 extends along a longitudinal axis A-A and is connected to the head 190. In the exemplary embodiment, the head 190 and the handle 110 are integrally formed as a single unitary structure using a molding, milling, machining or other suitable process. However, in other embodiments the handle 110 and the head 190 may be formed as separate components which are operably connected at a later stage of the manufacturing process by any suitable technique known in the art, including without limitation thermal or ultrasonic welding, a tight-fit assembly, a coupling sleeve, threaded engagement, adhesion, or fasteners. Whether the head 190 and the handle 110 are of a unitary or multi-piece construction (including connection techniques) is not limiting of the present invention, unless specifically claimed. In some embodiments of the invention, the head 190 may
be detachable (and replaceable) from the handle 110 using techniques known in the art.

In the exemplified embodiment, the head 190 has a generally oval shape. However, the invention is not to be limited by the shape or contour of the head 190 unless so specified in the claims. Thus, the head 190 and the tooth cleaning elements 191 are generically illustrated herein, but those generic illustrations are not intended to limit the present invention.

Referring to FIGS. 1-4B concurrently, the oral care implement 100 will be further described. The handle 110 comprises a main body 101 that is integrally formed of a rigid material. The main body 101 comprises a first rigid longitudinal section 120, a second rigid longitudinal section 130 and a hinge 150. In the exemplified embodiment, the first rigid longitudinal section 120 is a rigid gripping section of the main body 101 and the second rigid longitudinal section 130 is a rigid neck section of the main body 101. The hinge 150 is a portion of the handle 110 that is longitudinally positioned between the first rigid longitudinal section 120 (i.e., the rigid gripping section) and the second rigid longitudinal section 130 (i.e., the rigid neck section). The hinge 150 facilitates a pivoting or flexing motion of the handle 110. Specifically, the hinge 150 forms a portion of the handle 110 about which the second rigid longitudinal section 130 pivots relative to the first rigid longitudinal section 120 upon application of a force \(F_1 \) to the head 190. Thus, during brushing or any other activity that imparts the force \(F_1 \) to the head 190, the second rigid longitudinal section 130 will flex and pivot about the hinge 150 in the direction of the force \(F_1 \). This pivoting movement will be described in greater detail below with specific reference to FIGS. 13A-13C.

FIG. 4A illustrates a side view of the oral care implement 100 in its biased position when there is no force acting on the head 190. In the biased position, the second rigid longitudinal section 130 is substantially coaxial with the first rigid longitudinal section 120. FIG. 4B illustrates a side view of the oral care implement 100 while the force \(F_1 \) is being applied to the head 190. When the force \(F_1 \) is applied to the head 190, the second rigid longitudinal section 130 pivots in the direction normal to the longitudinal axis A-A, the second rigid longitudinal section 130 will flex and pivot about the hinge 150 in the direction of the force \(F_1 \). This pivoting movement will be described in greater detail below with specific reference to FIGS. 5-9.

The greater the force \(F_1 \), that is imparted to the head 190, the greater the degree of flex/pivot of the second rigid longitudinal section 130 relative to the first rigid longitudinal section 120. However, in certain embodiments a resilient material 103 (described below) included with the oral care implement 100 has a thickness that is sufficient to prevent over flexure of the second rigid longitudinal section 130 to prevent breakage of the handle 110.

In the exemplified embodiment, the first rigid longitudinal section 120 is a gripping section of the handle 110 and the second rigid longitudinal section 130 is a neck section of the handle 110. Thus, the first rigid longitudinal section 120 of the handle 110 is an elongated structure that provides the mechanism by which the user can hold and manipulate the oral care implement 100 during use. Specifically, during use of the oral care implement 100 the first rigid longitudinal section 120 rests within the palm of the user and the hinge 150 forms a bulbous gripping area for the thumb and forefinger of the user. Furthermore, the second rigid longitudinal section 130 forms the neck section of the handle 110 that is connected to the head 190. It should be appreciated that the handle 110 can take on a wide variety of shapes, contours and configurations, none of which are limiting of the present invention unless specifically claimed. Thus, the handle 110 may comprise additional undulations and regions that are covered in a resilient material to enhance grippability and comfort.

The handle 110 comprises an outer surface 102 that is formed from the rigid material of each of the first and second rigid longitudinal sections 120, 130 and from a resilient material 103 that is located in the region of the hinge 150 of the oral care implement 100. The resilient material 103 provides a comfortable surface for the user to grip during use and enhances the flexibility of the second rigid longitudinal section 130 relative to the first rigid longitudinal section 120 as discussed above. The resilient material 103 forms a portion of the outer surface 102 of the handle 110 around the entire circumference of the handle 110 in the region of the hinge 150.

The handle 110 extends along the longitudinal axis A-A from a proximal end 121 of the first rigid longitudinal section 120 to a distal end 132 of the second rigid longitudinal section 130. Furthermore, the handle 110 has a length \(L_{110} \) measured from the proximal end 121 of the first rigid longitudinal section 120 to the distal end 132 of the second rigid longitudinal section 130. The hinge 150 is located at a distance \(D_{h1} \) from the distal end 132 of the second rigid longitudinal section 130. The distance \(D_{h1} \) is preferably less than 50% of the length \(L_{110} \) of the handle 110, more preferably between 15% to 40% of the length \(L_{110} \) of the handle 110, and still more preferably between 20% to 35% of the length \(L_{110} \) of the handle 110. As described above, the location of the hinge 150 enables the hinge 150 to be located at or near a region of the handle 110 that a user would grip with his or her thumb and forefinger during use of the oral care imple-
Referring to FIGS. 5-7 concurrently, the oral care implement 100 is illustrated with the resilient material 103 removed to depict the components of the hinge 150. In addition to the first and second rigid longitudinal sections 120, 130, the main body 101 of the handle 110 also comprises a longitudinal strut 140. In the exemplified embodiment, the longitudinal strut 140 is a single longitudinal structure that extends substantially coaxially with the longitudinal axis A-A. However, the invention is not to be so limited and in certain other embodiments the longitudinal strut 140 can be formed by a plurality of transversely spaced apart struts, or a single strut centrally positioned within the handle 110 or positioned within the handle 110 near one side of the handle 110.

In certain embodiments, the first rigid longitudinal section 120 extends along the longitudinal axis A-A from the proximal end 121 of the bulbous body 124 to a distal end 122 and the second rigid longitudinal section 130 extends along the longitudinal axis A-A from a proximal end 131 to the distal end 132. The longitudinal strut 140 extends between and connects the distal end 122 of the first rigid longitudinal section 120 to the proximal end 131 of the second rigid longitudinal section 130. As discussed above, the head 190 is connected to the handle 110, and specifically to the distal end 132 of the second rigid longitudinal section 130 of the handle 110.

The first rigid longitudinal section 120 comprises a first transverse shoulder 123 at its distal end 122. Moreover, the first transverse shoulder 123 comprises a bulbous body 124. In the exemplified embodiment, the first rigid longitudinal section 120 terminates in the bulbous body 124. Furthermore, in exemplified embodiment the bulbous body 124 is a semi-spheroid. However, the invention is not to be so limited in all embodiments and the bulbous body 124 can take on other shapes. The second rigid longitudinal section 130 comprises a second transverse shoulder 133 at its proximal end 131. Moreover, the second transverse shoulder 133 comprises a basin 134 having a floor 135. In the exemplified embodiment, the second rigid longitudinal section 130 terminates in the basin 134. The distal end 122 of the first rigid longitudinal section 120 is adjacent the proximal end 131 of the second rigid longitudinal section 130. However, as described below, the first and second transverse shoulders 123, 133, and hence also the bulbous body 124 and the basin 134, are spaced from one another.

Although the invention is illustrated and described herein such that the first rigid longitudinal section 120 (i.e., the gripping section) terminates in the bulbous body 124 and the second rigid longitudinal section 130 (i.e., the neck section) terminates in the basin 134, the invention is not to be so limited. Thus, in certain embodiments the first rigid longitudinal section 120 may comprise and terminate in a basin while the second rigid longitudinal section 130 may comprise and terminate in a bulbous body. Thus, according to the present invention, one of the first rigid longitudinal section 120 (i.e., the gripping section) or the second rigid longitudinal section 130 (i.e., the neck section) comprises a bulbous body and the other one of the first rigid longitudinal section 120 or the second rigid longitudinal section 130 comprises a basin.

The longitudinal strut 140 extends axially from a first end 141 to a second end 142 and transversely from a front surface 144 to a rear surface 145. Thus, the first end 141 of the longitudinal strut 140 is connected to the bulbous body 124, and more specifically to the first transverse shoulder 123, and the second end 142 of the longitudinal strut 140 is connected to the floor 135 of the basin 134, and more specifically to the second transverse shoulder 133. In certain embodiments, the longitudinal strut 140 extends axially from an apex of the bulbous body 124. Moreover, in certain embodiments the apex of the bulbous body 124 is a convex surface. Due to its axial connection between the floor 135 of the basin 134.
and the bulbous body 124, the longitudinal strut 140 pro-
vides separation between the bulbous body 124 and the
basin 134 such that the bulbous body 124 and the floor
135 of the basin 134 are separated by a separation gap
126. The separation gap 126 is an annular channel that
circumferentially surrounds the longitudinal strut 140.
The separation gap 126 is filled with the resilient material
103 in a manner such that resilient material 103 encases
the longitudinal strut 140 (FIGS. 12 and 12A).

[0029] The separation gap 126 generally comprises a
flexure limiting gap 109 and a flexure facilitating gap 119.
The flexure limiting gap 109 is located adjacent the rear
surface 145 of the longitudinal strut 140 and the flexure
facilitating gap 119 is located adjacent a front surface
144 of the longitudinal strut. More specifically, the flexure
facilitating gap 119 separates the first and second trans-
verse shoulders 123, 133 from one another. Each of the
flexure limiting gap 109 and the flexure facilitating gap
119 are filled with the resilient material 103. The flexure
limiting gap 109 and the flexure facilitating gap 119 work
together to facilitate pivoting of the second rigid longitudi-
inal section 130 relative to the first rigid longitudinal sec-
tion 120 while preventing over flexure, permanent deforma-
tion and/or breakage of the oral care implement 100.

[0030] The hinge 150 generally comprises the longitudi-
nal strut 140 and the resilient material which encas-
cases the longitudinal strut 140. More specifically, the
hinge 150 comprises the bulbous body 124, the basin
134, the longitudinal strut 140 and the resilient material
103 that is in the separation gap 126. Thus, the hinge
150, and more specifically the longitudinal strut 140 and
the resilient material 103 encasing the longitudinal strut
140, enables the second rigid longitudinal section 130 to
pivot relative to the first rigid longitudinal section 120 upon
the force F1 being applied to the head 190 as described
above with reference to FIGS. 4A and 4B. It should be
appreciated that because the hinge 150 comprises the
longitudinal strut 140, the longitudinal strut 140 is located
at the distance DH from the distal end 132 of the second
rigid longitudinal section 130.

[0031] In the exemplified embodiment, the outer sur-
face 102 of the handle 110 of the oral care implement 100
comprises an axial groove 104 that extends axially
from the hinge 150 toward the proximal end 121 of the
first rigid longitudinal section 120 (i.e., the gripping sec-
tion). The axial groove 104 is filled in with the resilient
material 103 (FIGS. 12 and 12A). Thus, the resilient ma-
terial 103 that fills in the axial groove 104 forms a gripping
surface for the user, and specifically for the user’s thumb.

Forming portions of the outer surface 102 of the handle
110 out of the resilient material 103 prevents mishandling
of the oral care implement 100 during use under wet con-
ditions because the resilient material 103 enhances gri-
pability of the handle 110.

[0032] In the exemplified embodiment, the bulbous
body 124 comprises a transverse channel 105 extend-
ing therethrough. As will be discussed below with reference
to FIGS. 13A-13C, the transverse channel 105 acts as a
secondary flexure limiting gap that provides additional
flex/pivot about the hinge 150. The transverse channel
105 is formed into a rear surface 108 of the bulbous body
124 and forms a transverse passageway through the bul-
boas 124. However, the transverse channel 105 can be omitted in other embodiments (FIGS. 13, 14A and
14B, discussed below).

[0033] In the exemplified embodiment, the oral care
implement 100 comprises a first flexure limiting block 107
protruding from the rear surface 108 of the bulbous body
124 and a second flexure limiting block 106 protruding
from the floor 135 of the basin 134. Each of the first and
second flexure limiting blocks 107, 106 are comprised
by and formed integrally with the main body 101 of the
oral care implement 100. More specifically, the first flex-
ure limiting block 107 extends axially from the bulbous
body 124 into the separation gap 126 and the second
flexure limiting block 106 extends axially from the floor
135 of the basin 134 into the separation gap 126. In cer-
tain embodiments, the first transverse shoulder 123 com-
prises a convex surface, and the first flexure limiting block
107 is connected to and protruding from the convex sur-
face of the first transverse shoulder 123. The second
flexure limiting block 106 is connected to the second
transverse shoulder 133 and to the rear surface 145 of
the strut 140.

[0034] The first and second flexure limiting blocks 107,
106 are circumferentially aligned with one another and
with the rear surface 193 of the head 190. Furthermore,
despite each of the first and second flexure limiting blocks
107, 106 extending into the separation gap 126, the first
and second flexure limiting blocks 107, 106 are axially
spaced apart from one another. Thus, the flexure limiting
gap 109 is formed between the first and second flexure
limiting blocks 107, 106. As illustrated in FIG. 12A, the
resilient material 103 is disposed within and fills in the
flexure limiting gap 109. Furthermore, the resilient ma-
terial 103 encases each of the longitudinal strut 140, the
first flexure limiting block 107 and the second flexure lim-
itng block 106.

[0035] In the exemplified embodiment, each of the first
and second flexure limiting blocks 107, 106 comprise a
substantially rectangular shape. Of course, the invention
is not to be so limited in all embodiments and in certain
other embodiments the first and second flexure limiting
blocks 107, 106 can take on other shapes. Furthermore,
in certain embodiments the first and second flexure lim-
itng blocks 107, 106 have the same shape and in certain
other embodiments the first and second flexure limiting
blocks 107, 106 can have different shapes.

[0036] Due to the first and second flexure limiting
blocks 107, 106, the flexure limiting gap 109 and the re-
silient material 103 therein, the second rigid longitudinal
section 130 is able to pivot relative to the first rigid lon-
gitudinal section 120 about the hinge 150. Specifically,
when the force F1 is applied to the head 190 of the oral
care implement 100, the resilient material 103 in the flex-
ure limiting gap 109 becomes compressed and the first
and second flexure limiting blocks 107, 106 come into contact with one another. Thus, the first and second flexure limiting blocks 107, 106 prevent overflexing the handle 110 to the breaking point of the handle 110. However, one or both of the flexure limiting blocks 106, 107 may be omitted in certain other embodiments as will be discussed below with reference to FIG. 13.

[0037] Referring to FIGS. 8-10B concurrently, the oral care implement 100 will be further described. In the exemplified embodiment as has been described herein above, the basin 134 forms the proximal end 131 of the second rigid longitudinal section 130 (i.e., the rigid neck section). Furthermore, the second rigid longitudinal section 130 comprises a first flange 136 and a second flange 137. The first and second flanges 136, 137 extend axially from the floor 135 of the basin 134 to form opposing side-walls of the basin 134. Furthermore, the first and second flanges 136, 137 also flare radially outward from the longitudinal axis A-A. Thus, the first flange 136 forms a first sidewall 146 of the basin 134 and the second flange 137 forms a second sidewall 147 of the basin 134. The first flange 136 is circumferentially spaced apart from the second flange 137 by a first valley 138 that is circumferentially aligned with the rear surface 193 of the head 190 and a second valley 139 that is circumferentially aligned with the front surface 192 of the head 190. Thus, as a result of the flanges 136, 137 and valleys 138, 139, the second rigid longitudinal section 130 terminates in an undulating annular edge.

[0038] FIGS. 10A and 10B are illustrated with the plane angle measurements 0°, 90°, 180° and 270° to exemplify the positioning of the flanges 136, 137 and valleys 146, 147 relative to the front and rear surfaces 192, 193 of the head 190. Thus, FIGS. 10A and 10B illustrate that the first and second valleys 146, 147 are circumferentially aligned with the front and rear surfaces 192, 193 of the head 190, respectively, as discussed above.

[0039] Referring to FIGS. 9 and 11, a schematic representation of a transverse cross-section taken through the longitudinal strut 140 at an axial location 171 is illustrated. In the exemplified embodiment, the longitudinal strut 140 has a thickness TS measured from the front surface 144 of the longitudinal strut 140 to the rear surface 154 of the longitudinal strut 140. Furthermore, the longitudinal strut 140 has a width WS measured from a first side surface 154 of the longitudinal strut 140 to a second side surface 155 of the longitudinal strut 140. The width WS of the longitudinal strut 140 is greater than the thickness TS of the longitudinal strut 140.

[0040] In the exemplified embodiment, the longitudinal strut 140 comprises a substantially rectangular transverse cross-sectional area. Of course, the invention is not to be so limited in all embodiments and in certain other embodiments the longitudinal strut 140 can have other cross-sectional shapes. Furthermore, as noted above, in still other embodiments the longitudinal strut 140 may be formed by a plurality of struts that are transversely spaced from one another.

[0041] The handle 110 comprises a first transverse cross-sectional area taken at the axial location 171 of the longitudinal strut 140 and the longitudinal strut 140 has a second transverse cross-sectional area taken at the axial location 171. The second transverse cross-sectional area of the longitudinal strut 140 at the axial location 171 is in a range between 7% to 35% of the first transverse cross-sectional area of the handle 110 at the axial location 171.

[0042] Referring to 12 and 12A, as discussed above, the separation gap 126 between the bulbous body 124 and the floor 135 of the basin 134 is filled with the resilient material 103. In certain embodiments, the separation gap 126 is filled with the resilient material 103 in a manner such that resilient material 103 encases the longitudinal strut 140. Furthermore, the resilient material 103 also encases the floor 135 of the basin 134 and the bulbous body 124 such that in the fully assembled oral care implement 100 illustrated in FIGS. 1-3, neither the basin 134 nor the bulbous body 124 is exposed because it is entirely covered by the resilient material 103 (see FIGS. 1-3). In certain embodiments, the resilient material 103 is an injection molded thermoplastic elastomer. However, the invention is not to be so limited in all embodiments and other materials that can provide resiliency and flexibility to the handle 110 as has been described herein can be used.

[0043] In the exemplified embodiment illustrated in FIGS. 12 and 12A, the rear surface 193 of the head 190 is facing a counter-clockwise direction DCC such that the force F1 acting on the head 190 of the oral care implement 100 will result in the second rigid longitudinal section 130 pivoting relative to the first rigid longitudinal section 120 in the counter-clockwise direction DCC. As will be discussed below with reference to FIGS. 13A-13C, the first and second flexure limiting blocks 107, 106 limit the pivoting of the second rigid longitudinal section 130 relative to the first rigid longitudinal section 120 in the counter-clockwise direction DCC.

[0044] Referring to FIGS. 13A-13C, the pivoting of the second rigid longitudinal section 130 relative to the first rigid longitudinal section 120 will be further described. As discussed in detail above, the oral care implement 100 of the present invention includes a longitudinal strut 140 that extends between and connects the first rigid longitudinal section 120 to the second rigid longitudinal section 130. Furthermore, in addition to the longitudinal strut 140, the main body 101 further comprises an oblique strut 160 that is formed into the first transverse shoulder 123 and forms a part of the hinge 150. The transverse channel 105 forms the oblique strut 160 into the first transverse shoulder 123. In certain embodiments, the longitudinal strut 140 can be considered a first strut whereas the oblique strut 160 can be considered a second strut.

[0045] In the exemplified embodiment, the longitudinal strut 140 extends along a first axis B-B and the oblique strut 160 extends along a second axis C-C. The first axis
angle θ_1 is between 10°-20°. The first angle θ_1 is such as to prevent permanent deformation or breakage of the longitudinal strut 140. During initial application of the force F_1, there is no pivoting that occurs about the oblique strut 160 and thus a third reference line Z_2 is aligned with the bottom surface of the first flexure limiting block 107. [0049] During initial application of the force F_1, the resilient material 103 in the flexure limiting gap 109 compresses and the second flexure limiting block 106 pivots about the longitudinal strut 140 into the flexure limiting gap 109 towards the first flexure limiting block 107. The first and second flexure limiting blocks 107, 106 prevent over flexure of the oral care implement 100. More specifically, mechanical interference between the first and second flexure limiting blocks 107, 106 limits pivoting of the second rigid longitudinal section 130 relative to the first rigid longitudinal section 120 in the counter-clockwise direction D_{CC} when the rear surface 193 of the head 190 is facing the counter-clockwise direction D_{CC} as discussed above with reference to FIG. 12. In the exemplified embodiment, the first and second flexure limiting blocks 107, 106 remain spaced from one another by the resilient material 103 in the flexure limiting gap 109 even after the pivoting motion illustrated in FIG. 13B. Of course, the invention is not to be so limited and in certain other embodiments the mechanical interference may be achieved via actual contact between the first and second flexure limiting blocks 107, 106.

[0050] Referring to FIGS. 13B and 13C concurrently, the oral care implement 100 will be described after a subsequent pivoting motion of the second rigid longitudinal section 130 relative to the first rigid longitudinal section 120. The mechanical interference between the first and second flexure limiting blocks 107, 106 discussed above causes pivoting of the second rigid longitudinal section 130 relative to the first rigid longitudinal section 120 to transition from the longitudinal strut 140 to the oblique strut 160. Thus, upon further application of the force F_1 after the mechanical interference occurs, the second rigid longitudinal section 160 begins to pivot about the oblique strut 160 rather than about the longitudinal strut 140. Thus, the subsequent pivot causes the resilient material 103 positioned within the transverse channel 105 to compress such that the bottom surface of the first flexure limiting block 107 pivots downwardly into the transverse channel 105 and the second rigid longitudinal section 130 pivots relative to the first rigid longitudinal section 120 about the oblique strut 160 a second angle θ_2.

[0051] The degree of the second angle θ_2 can be determined by comparing the third reference line Z_2 with a fourth reference line Z_3 that is aligned with the bottom surface of the first flexure limiting block 107 after the subsequent pivot. In certain embodiments, the second angle θ_2 is less than the first angle θ_1 and in certain other embodiments the second angle θ_2 is greater than the first angle θ_1. The second angle θ_2 assists in preventing permanent deformation or breakage of the oblique strut 160. During pivoting about the oblique strut 160, the first angle
tion 230 by a gap 226. A flexible strut 240 extends longi-
ditionally from the first rigid longitudinal section 220 and
connects to the second longitudinal section 230. Thus,
the first rigid longitudinal section 220, the second rigid
longitudinal section 230 and the flexible strut 240 are
integally formed of a rigid plastic material, such as, with-
out limitation, polymers and copolymers of ethylene, pro-
pylene, butadiene, vinyl compounds and polyesters such
as polyethylene terephthalate.

[0056] The first rigid longitudinal section 220 termina-
ates at its proximal end 222 in a bulbous body 224 hav-
ing a convex outer surface 218. Thus, in this embodiment
the flexible strut 240 extends axially from the convex out-
er surface 218 of the bulbous body 224 of the first rigid
longitudinal section. The flexible strut 240 comprises a
first end 241 that is connected to the convex outer surface
218 of the bulbous body 224 at the proximal end 222 of
the first rigid longitudinal section 220 and a second end
242 that is connected to a distal end 231 of the second
rigid longitudinal section 220.

[0057] The gap 226 is filled with a resilient material
203, such as a thermoplastic elastomer. Of course, the
resilient material 203 is not limited to being a thermoplas-
tic elastomer and other resilient materials may be used
as desired. The resilient material 203 encases and cir-
cumferentially surrounds the flexible strut 240. The resili-
ent material 203 also encases the bulbous body 224 and
the distal end 231 of the second rigid longitudinal section
220, which in certain embodiments comprises a basin
(such as described above with regard to the oral care
implement 100).

[0058] The combination of the flexible strut 240 and
the resilient material 203 combine to form the hinge 250
of the oral care implement 200. The hinge 250 forms a
region of the handle 110 upon which the second rigid
longitudinal section 230 pivots relative to the first rigid
longitudinal section 220 upon a brushing force, such as
the force F1 described above with regard to the oral care
implement 100, being applied to the head 290. The main
difference between the oral care implement 200 and the
oral care implement 100 is that the oral care implement
200 omits the flexure limiting blocks 106, 107 and the
transverse channel 105. Furthermore, the surface of the
bulbous body 224 of the oral care implement 200 from
which the flexible strut 240 extends is convex whereas
the surface of the bulbous body 124 of the oral care im-
plement 100 from which the longitudinal strut 140 ex-
tends is relatively flat. Nonetheless, operation and flexi-
bility of the oral care implement 200 is similar to that of
the oral care implement 100 described above.

[0059] Turning to FIGS. 16A and 16B, an oral care im-
plement 300 in accordance with a third embodiment of
the present invention will be described. The oral care
implement 300 is similar to the oral care implement 100
in many aspects, and therefore similar features will be
similarly numbered except that the 300-series of num-
bers will be used. Furthermore, the specific structure of
features of the oral care implement 300 that are similar
to or the same as features of the oral care implement 100

θ1, remains as discussed above, such as less than 25°.

[0052] The longitudinal strut 140 and the oblique strut
160 connect the first rigid longitudinal section 120 and
the second rigid longitudinal section 130 such that a first
torque is required to pivot the second rigid longitudinal
section 130 relative to the first rigid longitudinal section
120 about the longitudinal strut 140 the first angle θ1 and
a second torque is required to subsequently pivot the
second longitudinal section 130 relative to the first rigid
longitudinal section 120 about the oblique strut 160 a
second angle θ2, the second torque being greater than
the first torque. Thus, a greater amount of force or torque
is used during pivoting about the oblique strut 160 than
is used during pivoting about the longitudinal strut 140.

[0053] Referring to FIGS. 11 and 14 concurrently, the
relative transverse cross-sectional areas of the longitudi-
nal strut 140 and the oblique strut 160 will be described.
Figure 11 illustrates a cross-section taken at a point along
the first axis B-B and Figure 14 illustrates a cross-section
taken at a point along the second axis C-C. As discussed
above, the longitudinal strut 140 has a width Ws and a
thickness Ts. The oblique strut 160 also has a first
transverse cross-sectional area that is equal to the width
Ws times the thickness Ts. The oblique strut 160 has a
width Wos and a thickness Tos. The oblique strut 160
also comprises a second transverse cross-sectional area
that is equal to the width Wos times the thickness Tos.
The second transverse cross-sectional area of the ob-
lique strut 160 is greater than the first transverse cross-
sectional area of the longitudinal strut 140. This differ-
ence in the cross-sectional areas of the longitudinal strut
140 and the oblique strut 160 facilitates that a larger
torque is required to pivot the second rigid longitudinal
section 130 relative to the first rigid longitudinal section
120 about the oblique strut 160 than is required to pivot
the second rigid longitudinal section 130 relative to the
first rigid longitudinal section 120 about the longitudinal
strut 140.

[0054] Referring to FIGS. 15 and 15A, an oral care
implement 200 in accordance with a second embodiment
of the present invention will be described. The oral care
implement 200 is similar to the oral care implement 100
in many aspects, and therefore similar features will be
similarly numbered except that the 200-series of num-
bbers will be used. Furthermore, the specific structure of
features of the oral care implement 200 that are similar
to or the same as features of the oral care implement 100
will not be repeated in the interest of brevity.

[0055] The oral care implement 200 comprises a han-
dle 210 that is connected to a head 290. The head 290
comprises a front surface 292 and an opposing rear sur-
face 293 with tooth cleaning elements 291 extending out-
wardly from the front surface 292. Specifically, the handle
210 comprises a main body 201 comprising a first rigid
longitudinal section 220, a second rigid longitudinal sec-
tion 230 and a hinge 250. The first rigid longitudinal sec-
tion 220 is spaced from the second rigid longitudinal sec-
tion 230 by a gap 226. A flexible strut 240 extends lon-
will not be repeated in the interest of brevity. In FIGS. 16A and 16B, only a close-up view of the hinge section 350 of the oral care implement 300 is illustrated. It should be understood that all components and structures of the oral care implement 300 that are not illustrated are the same as or similar to components from either of the oral care implements 100, 200 previously described herein.

[0060] The oral care implement 300 comprises a first rigid longitudinal section 320, a second rigid longitudinal section 330 and a hinge section 350. The hinge 350 is formed by a bulbous body 324 formed at a proximal end 322 of the first rigid longitudinal section 320, a basin 334 formed at a proximal end 331 of the second rigid longitudinal section 330 and a flexible strut 340 that extends between the first and second rigid longitudinal sections 320, 330. The first rigid longitudinal section 320 is spaced from the second rigid longitudinal section 330 by a gap 326. Although not illustrated, the oral care implement 300 comprises a resilient material that fills in the gap 326 to provide a flexible connection between the first rigid longitudinal section 320 and the second rigid longitudinal section 320 about the hinge 350 as has been described herein above with regard to the oral care implement 100, 200.

[0061] The oral care implement 300 also comprises a flexure limiting block 306 to prevent overflexing of the second rigid longitudinal section 330 relative to the first rigid longitudinal section 320 about the hinge 350. However, the oral care implement 300 omits a second flexure limiting block and a transverse channel extending through the bulbous body, both of which were described herein above with regard to the oral care implement 100. Thus, the oral care implement 300 is similar to the oral care implement 100 with the exception that the oral care implement 300 omits the second flexure limiting block and the transverse channel. As a result of the omission of the aforementioned components, the oral care implement 300 is also devoid of an oblique (or second) strut that facilitates a subsequent pivoting motion as has been described herein above.

[0062] As used throughout, ranges are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. In addition, all references cited herein are hereby incorporated by reference in their entireties. In the event of a conflict in a definition in the present disclosure and that of a cited reference, the present disclosure controls.

[0063] While the foregoing description and drawings represent the exemplary embodiments of the present invention, it will be understood that various additions, modifications and substitutions may be made therein without departing from the scope of the present invention as defined in the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other specific forms, structures, arrangements, proportions, sizes, and with other elements, materials, and components, without departing from the scope of the accompanying claims. One skilled in the art will appreciate that the invention may be used with many modifications of structure, arrangement, proportions, sizes, materials, and components and otherwise, used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being defined by the appended claims, and not limited to the foregoing description or embodiments.

Claims

1. An oral care implement (100) comprising:
 a handle (110) extending along a longitudinal axis and comprising a rigid gripping section (120), a rigid neck section (130), and a hinge (150) flexibly connecting the rigid neck section to the rigid gripping section, wherein one of the rigid neck section or the rigid gripping section comprises a bulbous body (124) and the other one of the rigid neck section or the rigid gripping section comprises a basin (134);
 the hinge (150) comprising:
 the bulbous body (124);
 the basin (134);
 a longitudinal strut (140) of rigid material, the longitudinal strut having a first end connected to the bulbous body (124) and a second end connected to a floor of the basin (134) so that a separation gap (126) exists between the bulbous body and the floor of the basin; and
 a head (190) connected to the rigid neck section of the handle, characterized in that the hinge further comprises a resilient material (103) in the separation gap (126).

2. The oral care implement (100) according to claim 1 wherein the rigid neck section (130) pivots relative to the rigid gripping section (120) about the hinge (130) upon a force being applied to a front surface of the head.

3. The oral care implement (100) according to any one of claims 1 to 2 wherein the bulbous body (124) forms a distal end of the rigid gripping section (120) and the basin (134) forms a proximal end of the rigid neck section (130), preferably wherein the rigid gripping section comprises a first transverse shoulder comprising the bulbous body.
4. The oral care implement (100) according to any one of claims 1 to 3 wherein the longitudinal strut (140) has a thickness measured from a front surface of the longitudinal strut to a rear surface of the longitudinal strut and a width measured from a first side surface of the longitudinal strut to a second side surface of the longitudinal strut, the width being greater than the thickness, preferably wherein the longitudinal strut has a substantially rectangular transverse cross-sectional area.

5. The oral care implement (100) according to any one of claims 1 to 4 wherein the handle (110) has a length (LH) measured from a proximal end of the rigid gripping section (120) to a distal end of the rigid neck section (130), the hinge (150) located a distance (DH) from the distal end of the rigid neck section, and wherein DH is less than 50% of LH, preferably wherein DH is between 20% to 35% of LH.

6. The oral care implement (100) according to any one of claims 1 to 5 wherein the rigid gripping section (120) and the longitudinal strut (140) are integrally formed of the rigid material.

7. The oral care implement (100) according to any one of claims 1 to 6 wherein the bulbous body (124) is a semi-spheroid, preferably wherein the longitudinal strut (140) extends from a convex surface of the bulbous body, preferably wherein the separation gap (126) is an annular channel that circumferentially surrounds the longitudinal strut, the annular channel filled with the resilient material (103) to encase the longitudinal strut.

8. The oral care implement (100) according to any one of claim 1 to 7 further comprising a transverse channel (105) formed in a rear surface of the bulbous body (124).

9. The oral care implement (100) according to any one of claims 1 to 8 further comprising an axial groove (104) in an outer surface of the rigid gripping section (120) extending from the hinge (150) toward a proximal end of the rigid gripping section, the resilient material (103) filling the axial groove.

10. The oral care implement (100) according to any one of claims 1 to 9 wherein the resilient material (103) is an injection molded thermoplastic elastomer and the rigid gripping section (120), the rigid neck section (130), and the longitudinal strut (140) are constructed of a rigid plastic.

11. The oral care implement (100) according to any one of claims 1 to 10 wherein the longitudinal strut (140) is substantially coaxial with the longitudinal axis.

12. The oral care implement (100) according to any one of claims 1 to 11 wherein the bulbous body (124) and the floor of the basin (134) are encased by the resilient material (103).

13. The oral care implement (100) according to any one of claims 1 to 12 wherein the head (190) includes a plurality of tooth cleaning elements extending from the head, wherein the basin (134) forms a proximal end of the rigid neck section (130), the rigid neck section comprising a first and second longitudinal flanges (136, 137) that extend axially from the floor of the basin to form opposing sidewalls of the basin, preferably wherein the first and second longitudinal flanges are circumferentially spaced apart from one another by a first valley (138) circumferentially aligned with the rear surface of the head and a second valley (139) circumferentially aligned with the front surface of the head.

14. The oral care implement (100) according to any one of claims 1 to 13 wherein the handle (110) has a first transverse cross-sectional area taken at an axial location of the longitudinal strut (140) and the longitudinal strut has a second transverse cross-sectional area taken at the axial location wherein the second transverse cross-sectional area is in a range between 7% to 35% of the first transverse cross-sectional area.

15. The oral care implement (100) according to any one of claims 1 to 14 further comprising a first flexure limiting block (107) protruding from a rear surface of the bulbous body (124) and a second flexure limiting block (106) protruding from the floor of the basin (134), the first and second flexure limiting blocks circumferentially aligned with one another and a rear surface of the head, a flexure limiting gap (109) between the first and second flexure limiting blocks, the resilient material (103) in the flexure limiting gap, preferably wherein the hinge (150) further comprises an oblique strut (160) formed into the bulbous body (124), the longitudinal strut (140) and the oblique strut (160) arranged such that upon the force being applied to a front surface of the head (190), the rigid neck section: (1) initially pivots relative to the rigid gripping section about the longitudinal strut a first angle; and (2) subsequently pivots relative to the rigid gripping section about the oblique strut a second angle, preferably wherein mechanical interference between the first and second flexure limiting blocks (107, 106) causes pivoting of the rigid neck section (130) relative to the rigid gripping section (120) to transition from the longitudinal strut (140) to the oblique strut (160), preferably wherein the longitudinal strut (140) extends along a first axis and the oblique strut (160) extends along a second axis, and wherein the longitudinal strut has a first transverse cross-sect-
tional area taken along the first axis and the oblique strut has a second transverse cross-sectional area taken along the second axis, the second transverse cross-sectional area being greater than the first transverse cross-sectional area.

Patentansprüche

1. Mundpflegeeinheit (100), umfassend:

 einen sich entlang einer Längsachse erstreckenden Griff (110), der einen starren Griffabschnitt (120), einen starren Halsabschnitt (130) und ein Gelenk (150) umfasst, das den starren Halsabschnitt flexibel mit dem starren Griffabschnitt verbindet, wobei der starre Halsabschnitt oder der starre Griffabschnitt einen bauchigen Körper (124) umfasst und der andere des starren Halsabschnitts oder des starren Griffabschnitts eine Mulde (134) umfasst; wobei das Gelenk (150) umfasst:

 den bauchigen Körper (124);
 die Mulde (134);
 eine Längsstrebe (140) aus einem starren Material, wobei die Längsstrebe ein mit dem bauchigen Körper (124) verbundenes erstes Ende und ein mit einem Boden der Mulde verbundenes zweites Ende (134) umfasst, so dass ein Trennungsspalt (126) zwischen dem bauchigen Körper und dem Boden der Mulde ausgebildet ist; und
 einen Kopf (190), der mit dem starren Halsabschnitt des Griffs verbunden ist, dadurch gekennzeichnet, dass das Gelenk ferner ein elastisches Material (103) aufweist.

2. Mundpflegeeinheit (100) nach Anspruch 1, wobei sich der starre Halsabschnitt (130) beim Angriff einer Kraft auf eine vordere Oberfläche des Kopfs relativ zu dem starren Griffabschnitt (120) um das Gelenk (150) dreht.

3. Mundpflegeeinheit (100) nach einem der Ansprüche 1 bis 2, wobei der bauchige Körper (124) ein distales Ende des starren Griffabschnitts (120) bildet und die Mulde (134) ein proximales Ende des starren Halsabschnitts (130) bildet, wobei der starre Griffabschnitt vertikal vorgesehen eine den bauchigen Körper umfassende erste querlaufende Schulter umfasst.

4. Mundpflegeeinheit (100) nach einem der Ansprüche 1 bis 3, wobei die Längsstrebe (140) eine dicke, gemessen von einer vorderen Oberfläche der Längsstrebe bis zu einer rückseitigen Oberfläche der Längsstrebe, und eine Breite, gemessen von einer ersten Seitenfläche der Längsstrebe bis zu einer zweiten Seitenfläche der Längsstrebe, aufweist, wobei die Breite größer als die Dicke ist, und wobei die Längsstrebe vorzugsweise eine im Wesentlichen rechteckige querlaufende Querschnittsfläche aufweist.

5. Mundpflegeeinheit (100) nach einem der Ansprüche 1 bis 4, wobei der Griff (110) eine Länge (L_{11}), gemessen von einem proximalen Ende des starren Griffabschnitts (120) bis zu einem distalen Ende des starren Halsabschnitts (130) aufweist, wobei das Gelenk (150) in einem Abstand (D_{15}) von dem distalen Ende des starren Halsabschnitts angeordnet ist, wobei D_{15} kleiner als 50 % von L_{11} ist, und wobei D_{15} vorzugsweise zwischen 20 % und 35 % von L_{11} ist.

6. Mundpflegeeinheit (100) nach einem der Ansprüche 1 bis 5, wobei der starre Halsabschnitt (130) und die Längsstrebe (140) einstückig aus dem starren Material gebildet sind.

7. Mundpflegeeinheit (100) nach einem der Ansprüche 1 bis 6, wobei der bauchige Körper (124) eine Halbkugel ist, wobei die Längsstrebe (140) sich vorzugsweise auf einer konvexen Oberfläche des bauchigen Körpers erstreckt, wobei der Trennungsspalt (126) vorzugsweise ein Ringkanal ist, der die Längsstrebe in Umfangsrichtung umgibt, und wobei der Ringkanal mit dem elastischen Material (103) gefüllt ist, um die Längsstrebe zu umhüllen.

8. Mundpflegeeinheit (100) nach einem der Ansprüche 1 bis 7, die ferner einen querlaufenden Kanal (105) umfasst, der in einer rückseitigen Oberfläche des bauchigen Körpers (124) ausgebildet ist.

9. Mundpflegeeinheit (100) nach einem der Ansprüche 1 bis 8, die ferner eine axiale Nut (104) in einer Außenfläche des starren Griffabschnitts (120) umfasst, die sich von dem Gelenk (150) zu einem proximalen Ende des starren Griffabschnitts erstreckt, wobei das elastische Material (103) die axiale Nut füllt.

10. Mundpflegeeinheit (100) nach einem der Ansprüche 1 bis 9, wobei das elastische Material (103) ein spritzgegossenes thermoplastisches Elastomer ist und der starre Griffabschnitt (120), der starre Halsabschnitt (130) und die Längsstrebe (140) aus starrem Kunststoff bestehen.

11. Mundpflegeeinheit (100) nach einem der Ansprüche 1 bis 10, wobei die Längsstrebe (140) im Wesentlichen koaxial zu der Längsachse ist.

12. Mundpflegeeinheit (100) nach einem der Ansprüche...
1 bis 11, wobei der bauchige Körper (124) und der Boden der Mulde (134) von dem elastischen Material umhüllt sind.

13. Mundpflegeeinheit (100) nach einem der Ansprüche 1 bis 12, wobei der Kopf (190) eine vordere Oberfläche, eine rückseitige Oberfläche und eine Mehrzahl von Zahnreinigungselementen umfasst, die sich von dem Kopf erstrecken, wobei die Mulde (134) ein proximales Ende des starren Halsabschnitts bildet, wobei der starre Halsabschnitt erste und zweite Flansche (136, 137) umfasst, die sich axial von dem Boden der Mulde erstrecken, um gegenüberliegenden Seitenwände der Mulde zu bilden, wobei die ersten und zweiten Längsflansche in Umfangsrichtung vorzugsweise durch eine erste Rille (138), die in Umfangsrichtung mit der rückseitigen Oberfläche des Kopfes fluchtet, und eine zweite Rille (139), die in Umfangsrichtung mit der vorderen Oberfläche des Kopfes fluchtet, voneinander beabstandet sind.

14. Mundpflegeeinheit (100) nach einem der Ansprüche 1 bis 13, wobei der Griff (110) eine erste querverlaufende Querschnittsfläche an einer axialen Position der Längsstrebe (140) hat, und die Längsstrebe eine zweite querverlaufende Querschnittsfläche an der axialen Position hat, wobei die zweite querverlaufende Querschnittsfläche in einem Bereich zwischen 7 % und 35 % der ersten querverlaufenden Querschnittsfläche liegt.

15. Mundpflegeeinheit (100) nach einem der Ansprüche 1 bis 14, ferner umfassend einen erster Biegungsbegrenzungsblock (107), der von einer rückseitigen Oberfläche des bauchigen Körpers (124) vorragt und einen zweiten Biegungsbegrenzungsblock (106), der von dem Boden der Mulde (134) vorspringt, wobei die ersten und zweiten Biegungsbegrenzungsblöcke in Umfangsrichtung miteinander und einer rückseitigen Oberfläche des Kopfes fluchten, einen Biegungsbegrenzungsspalt (109) zwischen den ersten und den zweiten Biegungsbegrenzungsbilden, wobei das elastische Material (103) in dem Biegungsbegrenzungsspaß ist, wobei das Gelenk (150) vorzugsweise ferner eine schräge Strebe (160) umfasst, die in den bauchigen Körper (124) geformt ist, wobei die Längsstrebe (140) und die schräge Strebe (160) so angeordnet sind, dass beim Angreifen der Kraft auf eine vordere Oberfläche des Kopfes (190) der starre Halsabschnitt:

(1) sich zunächst relativ zu dem starren Griffabschnitt um einen ersten Winkel um die Längsstrebe dreht; und
(2) sich anschließend relativ zu dem starren Griffabschnitt um einen zweiten Winkel um die schräge Strebe dreht, wobei ein mechanisches Zusammenwirken zwischen den ersten und den zweiten Biegungsbegrenzungsböckchen (107, 106) vorzugsweise eine Drehung des starren Halsabschnitts (130) relativ zu dem starren Griffabschnitt (120) verursacht, um einen Übergang von der Längsstrebe (140) zu der schrägen Strebe (160) zu bewirken, wobei die Längsstrebe (140) sich vorzugsweise entlang einer ersten Achse erstreckt und die schräge Strebe (160) sich entlang einer zweiten Achse erstreckt, und wobei die Längsstrebe eine erste querverlaufende Querschnittsfläche entlang der ersten Achse hat und die schräge Strebe eine zweite querverlaufende Querschnittsfläche größer ist als die erste querverlaufende Querschnittsfläche.

Revendications

1. Accessoire de soins buccaux (100) comprenant :
une poignée (110) s’étendant le long d’un axe longitudinal et comprenant une section rigide de préhension (120), une section rigide de col (130) et une charnière (150) connectant de façon flexible la section rigide de col à la section rigide de préhension, dans lequel une de la section rigide de col ou de la section rigide de préhension comprend un corps bulbeux (124) et l’autre de la section rigide de col ou de la section rigide de préhension comprend une cuvette (134) ;
la charnière (150) comprenant :
le corps bulbeux (124) ;
la cuvette (134) :
une entretoise longitudinale (140) d’un matériau rigide, l’entretoise longitudinale ayant une première extrémité connectée au corps bulbeux (124) et une deuxième extrémité connectée à un fond de la cuvette (134) de telle sorte qu’un espace de séparation (126) existe entre le corps bulbeux et le fond de la cuvette ; et
une tête (190) connectée à la section rigide de col de la poignée, caractérisé en ce que la charnière comprend en outre un matériau résilient (103) dans l’espace de séparation (126).

2. Accessoire de soins buccaux (100) selon la revendication 1, dans lequel la section rigide de col (130) pivote par rapport à la section rigide de préhension (120) autour de la charnière (150) lorsqu’une force est appliquée à une surface avant de la tête.
3. Accessoire de soins buccaux (100) selon l’une quelconque des revendications 1 à 2, dans lequel le corps bulbeux (124) forme une extrémité distale de la section rigide de préhension (120) et la cuvette (134) forme une extrémité proximale de la section rigide de col (130), préférentiellement dans lequel la section rigide de préhension comprend un premier épalement transversal comprenant le corps bulbeux.

4. Accessoire de soins buccaux (100) selon l’une quelconque des revendications 1 à 3, dans lequel l’entretoise longitudinale (140) a une épaisseur mesurée depuis une surface avant de l’entretoise longitudinale jusqu’à une surface arrière de l’entretoise longitudinale et une largeur mesurée depuis une surface de premier côté de l’entretoise longitudinale jusqu’à une surface de deuxième côté de l’entretoise longitudinale, la largeur étant supérieure à l’épaisseur, préférentiellement dans lequel l’entretoise longitudinale a une section transversale sensiblement rectangulaire.

5. Accessoire de soins buccaux (100) selon l’une quelconque des revendications 1 à 4, dans lequel la poinçonne (110) a une longueur (L_H) mesurée depuis une extrémité proximale de la section rigide de préhension (120) jusqu’à une extrémité distale de la section rigide de col (130), la charnière (150) située à une certaine distance (D_H) depuis l’extrémité distale de la section rigide de col, et dans lequel D_H est inférieur à 20 % de L_H, préférentiellement dans lequel D_H est entre 20 % à 35 % de L_H.

6. Accessoire de soins buccaux (100) selon l’une quelconque des revendications 1 à 5, dans lequel la section rigide de col (130), la section rigide de préhension (120) et l’entretoise longitudinale (140) sont formées intégralement du matériau rigide.

7. Accessoire de soins buccaux (100) selon l’une quelconque des revendications 1 à 6, dans lequel le corps bulbeux (124) est un semi-sphéroïde, préférentiellement dans lequel l’objet convexe du corps bulbeux, préférentiellement dans lequel l’espace de séparation (126) est un canal annulaire qui entoure circonférentiellement l’entretoise longitudinale, le canal annulaire rempli avec le matériau rigide (103) pour renforcer l’entretoise longitudinale.

8. Accessoire de soins buccaux (100) selon l’une quelconque des revendications 1 à 7, comprenant en outre un canal transversal (105) formé dans une surface arrière du corps bulbeux (124).

9. Accessoire de soins buccaux (100) selon l’une quelconque des revendications 1 à 8, comprenant en outre une rainure axiale (104) dans une surface externe de la section rigide de préhension (120) s’étendant depuis la charnière (150) vers une extrémité proximale de la section rigide de préhension, le matériau résilient (103) remplissant la rainure axiale.

10. Accessoire de soins buccaux (100) selon l’une quelconque des revendications 1 à 9, dans lequel le matériau résilient (103) est un élastomère thermoplastique moulé par injection et la section rigide de préhension (120), la section rigide de col (130), et l’entretoise longitudinale (140) sont constituées d’un plastique rigide.

11. Accessoire de soins buccaux (100) selon l’une quelconque des revendications 1 à 10, dans lequel l’entretoise longitudinale (140) est sensiblement coaxiale avec l’axe longitudinal.

12. Accessoire de soins buccaux (100) selon l’une quelconque des revendications 1 à 11, dans lequel le corps bulbeux (124) et le fond de la cuvette (134) sont renforcés par le matériau rigide (103).

13. Accessoire de soins buccaux (100) selon l’une quelconque des revendications 1 à 12, dans lequel la tête (190) comprend une surface avant, une surface arrière et une pluralité d’éléments de nettoyage des dents s’étendant depuis la tête, et dans lequel la cuvette (134) forme une extrémité proximale de la section rigide de col (130), la section rigide de col comprenant des premier et deuxième rebords (136, 137) qui s’étendent axialement depuis le fond de la cuvette pour former des parois latérales opposées de la cuvette, préférentiellement dans lequel les premier et deuxième rebords longitudinaux sont circonférentiellement espacés l’un de l’autre par un premier creux (138) circonférentiellement aligné avec la surface arrière de la tête et un deuxième creux (139) circonférentiellement aligné avec la surface avant de la tête.

14. Accessoire de soins buccaux (100) selon l’une quelconque des revendications 1 à 13, dans lequel la pointe (110) a une première section transversale prise à un emplacement axial de l’entretoise longitudinale (140) et l’entretoise longitudinale a une deuxième section transversale prise à l’emplacement axial, dans lequel la deuxième section transversale est dans une plage entre 7 % à 35 % de la première section transversale.

15. Accessoire de soins buccaux (100) selon l’une quelconque des revendications 1 à 14, comprenant en outre un premier bloc de limitation de flexion (107) saillant depuis une surface arrière du corps bulbeux (124) et un deuxième bloc de limitation de flexion (106) saillant depuis le fond de la cuvette (134), les
premier et deuxième blocs de limitation de flexion alignés circonférentiellement l’un avec l’autre et une surface arrière de la tête, un espace de limitation de flexion (109) entre les premier et deuxième blocs de limitation de flexion, le matériau résilient (103) dans l’espace de limitation de flexion, préférentiellement dans lequel la charnière (150) comprend en outre une entretoise oblique (160) formée dans le corps bulbeux (124), l’entretoise longitudinale (140) et l’entretoise oblique (160) agencées de telle manière que, lorsqu’une force est appliquée à une surface avant de la tête (190), la section rigide de col : (1) pivote initialement par rapport à la section rigide de prélèvement autour de l’entretoise longitudinale d’un premier angle ; et (2) ensuite pivote par rapport à la section rigide de prélèvement autour de l’entretoise oblique d’un deuxième angle, préférentiellement dans lequel une interférence mécanique entre les premier et deuxième blocs de limitation de flexion (107, 106) cause un pivotement de la section rigide de col (130) par rapport à la section rigide de prélèvement (120) pour passer de l’entretoise longitudinale (140) à l’entretoise oblique (160), préférentiellement dans lequel l’entretoise longitudinale (140) s’étend le long d’un premier axe et l’entretoise oblique (160) s’étend le long d’un deuxième axe, et dans lequel l’entretoise longitudinale a une première section transversale prise le long du premier axe et l’entretoise oblique a une deuxième section transversale prise le long du deuxième axe, la deuxième section transversale étant plus grande que la première section transver-
FIG. 13C
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description