EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 29.03.2017 Bulletin 2017/13

Application number: 13752165.4

Date of filing: 12.02.2013

Int Cl.: A62C 31/02 (2006.01) B05B 1/00 (2006.01)

International application number: PCT/JP2013/053194

International publication number: WO 2013/125383 (29.08.2013 Gazette 2013/35)

SPRAY HEAD FOR GASEOUS FIRE EXTINGUISHING EQUIPMENT HAVING SILENCING FUNCTION

SPRÜHKOPF FÜR EINEN GASFEUERLÖSCHER MIT SCHALLDÄMPFUNGSFUNKTION

TÊTE DE PULVÉRISATION POUR SYSTÈME D’EXTINCTION D’INCENDIE À GAZ AYANT UNE FONCTION D’ATTÉNUATION DU BRUIT

Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

21.03.2012 JP 2012063472

Date of publication of application:

Proprietor: KOATSU CO., LTD. Hyogo 664-0836 (JP)

Inventors:

• YABUSHITA, Masahiro Itami-shi
Hyogo 664-0836 (JP)

• INOUE, Yasufumi
Itami-shi
Hyogo 664-0836 (JP)

Representative: Wilkinson, Stephen John
Stevens, Hewlett & Perkins
1 St. Augustine’s Place
Bristol BS1 4UD (GB)

References cited:

EP-A2- 1 151 800
JP-A- 2011 125 673
US-A- 3 339 668

EP-A2- 1 151 800
US-A- 3 718 208

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a gas-type fire extinguisher using a fire-extinguishing gas such as nitrogen, carbon dioxide, or fluorine compound, and more particularly to an injection head installed on a ceiling or wall for releasing fire-extinguishing gas to a fire-extinguishing area, and specifically to an injection head having a silencing function for gas-type fire extinguisher capable of reducing noise generated at the time of emission of fire-extinguishing gas.

[Prior Art]

[0002] In a gas-type fire extinguisher using a fire-extinguishing gas such as nitrogen, carbon dioxide, or fluorine compound, when the gas-type fire extinguisher is put in operation for extinguishing a fire, the fire-extinguishing gas is released so that the fire-extinguishing gas concentration in the fire-extinguishing area may reach a fire-extinguishing concentration within about a minute (about 10 seconds in the case of fire-extinguishing gas of fluorine compound).

[0003] At this time, the fire-extinguishing gas is released from an injection head installed in a ceiling or wall for releasing fire-extinguishing gas to a fire-extinguishing area, but the injection head for a gas-type fire extinguisher includes, as shown in Fig. 13 (a), an orifice 20 at an outlet of an injection head 10A connected to a piping 40 for supplying a fire-extinguishing gas, for releasing the fire-extinguishing gas to a fire-extinguishing area from the orifice 20, or includes, as shown in Fig. 13 (b), an orifice 20 and a conical deflector (deflecting member) 50 at an outlet of an injection head 10B connected to a piping 40 for supplying a fire-extinguishing gas, for releasing the fire-extinguishing gas released from the orifice to a fire-extinguishing area by deflecting by the deflector (deflecting member) 50, or further includes, as shown in Fig. 13 (c), an orifice (not shown) and a conical tubular horn (dispersion member) 60 at an outlet of an injection head 10C, for releasing the fire-extinguishing gas to the fire-extinguishing area by diffusing by the horn (diffusion member) 60, which have been used conventionally.

[0004] Thus, the conventional gas-type fire extinguisher injection heads 10A, 10B, and 10C are designed to release a same amount of fire-extinguishing gas from individual injection heads usually installed in a plurality in the fire-extinguishing area, and therefore the flow rate of fire-extinguishing gas released from the injection heads is limited by the orifice 20, and hence at the time of emission of fire-extinguishing gas from the injection heads, noise of high level (specifically noise of over about 120 dB) is generated.

[0005] At the time of operation of the gas-type fire extinguisher, it is supposed no one exits in the fire-extinguishing area, conventionally, no problem has been considered about the noise (vibration) generated at the time of emission of fire-extinguishing gas, and no countermeasures have been taken.

[0006] Recently, however, in consideration of the case some one is left over in the fire-extinguishing area at the time of operation of the gas-type fire extinguisher, or adverse effects on the surrounding people of the noise source at the time of emission of fire-extinguishing gas from the injection heads, and the possibility noise (vibration) causing troubles in the precision machines such as information communication devices, it has been proposed to reduce the noise generated at the time of emission of fire-extinguishing gas (see, for example, patent literature 1 to 3).

[Prior Art Literature]

[Patent Literature]

[0007]

[0008] Document EP 1 151 800 A2 discloses all the features of the preambles of claims 1 and 6.

[Summary of the Invention]

[Problems to Be Solved by the Invention]

[0009] Therefore, in order to solve the problems caused by noise (including vibration) (hereinafter simply called noise) generated at the time of emission of fire-extinguishing gas from the injection heads, among the above technologies, the technology disclosed in patent literature 1 is intended to match the starting timing of the fire extinguisher and the avoid remedy timing for preventing malfunction of the ICT device due to starting of the fire extinguisher when starting up the
On the other hand, the technologies disclosed in patent literature 2 and 3 is intended to lower the noise level, but a large size is needed for injection heads, there are problems in the aspects of limitation of place of installation and the cost increase.

In this kind of injection heads, moreover, a large injection reaction of the fire-extinguishing gas is applied to the injection heads at the time of release of fire-extinguishing gas, a sufficient supporting force is needed in the structure for accommodating the injection heads and pipes, and in this aspect, too, there are problems in the limitation of place of installation and the cost increase.

The invention is devised in the light of the problems of the conventional gas type fire-extinguisher injection heads, and it is hence a primary object thereof to present a gas-type fire-extinguisher injection head by using small-sized injection heads, capable of enhancing the noise reducing rate, and suppressing the injection pressure of fire-extinguishing gas applied to the injection heads at the time of emission of fire-extinguishing gas.

To achieve the object, a first aspect of the invention relates to an injection head having a silencing function for gas-type fire extinguisher, according to claim 1.

In this case, the bolt penetrates through the inside of the silencing member and is screwed into the injection head main body.

In the injection head main body contacting with a first end face of the silencing member, an orifice plate forming an orifice may be disposed detachably.

The small-end side of the orifice may face the silencing member.

The diameter of pores of the silencing member porous material for composing the silencing member may be formed smaller in a direction of passing of the gas.

Injection reaction F of fire-extinguishing gas applied on the injection head at the time of emission of fire-extinguishing gas and flow rate Q of the fire-extinguishing gas released from the injection head may be adjusted to satisfy the relation of formula 1 and formula 2.

$$F(\text{kgf}) = A(\text{kgf} \cdot \text{min/m}^3) \cdot Q(\text{m}^3/\text{min}) \quad \cdots \quad \text{(formula 1)}$$

$$A(\text{kgf} \cdot \text{min/m}^3) \leq 0.2 \quad \cdots \quad \text{(formula 2)}$$

To achieve the object, a second aspect of the invention relates to an injection head having a silencing function for gas-type fire extinguisher, according to claim 6.

In this case, an orifice plate forming an orifice is detachably disposed in an injection head main body contacting with the other end face of the silencing member, and the bolt is screwed into the orifice plate.

The small-end side of the orifice may face the silencing member.

The diameter of pores of the silencing member porous material for composing the silencing member may be formed smaller in a direction of passing of the gas.

According to the injection head having the silencing function for the gas-type fire extinguisher of the first aspect of the present invention, the silencing unit is composed of silencing members of block shapes made of a porous material capable of passing a gas disposed at an outlet of the orifice, and a first end face of the silencing member is disposed in contact with the injection head main body, and a peripheral portion and an other-end face of the silencing member are released to the atmosphere except for the portion contacting with a ring member fixing the silencing member to the injection head main body by way of a bolt, and therefore the emission area of fire-extinguishing gas released to the atmosphere of the silencing member is increased, and the noise reduction rate is higher, and moreover the injection reaction of fire-extinguishing gas applied to the injection head at the time of emission of fire-extinguishing gas is canceled by the portion of the fire-extinguishing gas emitted from the surrounding of the silencing member in the injection head unit, and can be decreased. As a result, the injection head can be reduced in size, and the required supporting force of the building accommodating the piping system including the injection head can be reduced, and the problems of limitations of place of installation and the cost increase can be eliminated.
The bolt penetrates through the inside of the silencing member and is screwed into the injection head main body, and therefore the emission area of fire-extinguishing gas released to the atmosphere of the silencing member is increased more, and the noise reduction rate can be heightened, and it is also effective to suppress generation of noise caused by interference of the released fire-extinguishing gas with the bolt.

The portion of the silencing member through which the bolt penetrates are formed in a shape swollen to the outer peripheral side than other positions, and therefore the emission area of fire-extinguishing gas released to the atmosphere of the silencing member is increased more, and the noise reduction rate can be heightened.

In the injection head main body contacting with one-side end face of the silencing member, an orifice plate forming an orifice is disposed detachably, and therefore the orifice plate forming plural types of orifices can be selected depending on the condition.

The small-end side of the orifice faces the silencing member, and therefore the fire-extinguishing gas can be distributed uniformly from the central part of the silencing member to the peripheral parts, and the noise generated in the emission zone of fire-extinguishing gas can be made uniform, and together the noise reduction rate can be heightened further.

The small-end side of the orifice faces the silencing member, and therefore the fire-extinguishing gas can be distributed uniformly from the central part of the silencing member to the peripheral parts, and the noise generated in the emission zone of fire-extinguishing gas can be made uniform, and together the noise reduction rate can be heightened further.

The small-end side of the orifice faces the silencing member, and therefore the fire-extinguishing gas can be distributed uniformly from the central part of the silencing member to the peripheral parts, and the noise generated in the emission zone of fire-extinguishing gas can be made uniform, and together the noise reduction rate can be heightened further.

The diameter of pores of the porous material is formed smaller in a direction of passing of the gas, and therefore the fire-extinguishing gas is emitted uniformly from parts of the silencing member, and the noise generated in the emission zone of fire-extinguishing gas can be made uniform, and together the noise reduction rate can be heightened further.

Injection reaction F of fire-extinguishing gas applied on the injection head at the time of emission of fire-extinguishing gas and flow rate Q of the fire-extinguishing gas released from the injection head can be adjusted to satisfy the relation of formula 1 and formula 2, and therefore the required supporting force of the building accommodating the piping system including the injection head can be reduced, and the problems of limitations of place of installation and the cost increase can be eliminated.

According to the injection head having a silencing function for gas-type fire extinguisher of the second aspect the present invention, the silencing unit is composed of silencing members of block shapes made of a porous material capable of passing a gas disposed at an outlet of the orifice, and a one-side end face of the silencing member released to the atmosphere is supported on an injection head main body by way of a bolt contacting with a ring member contacting with a peripheral portion of the end face and a bolt contacting with a central part of the end face, and therefore the silencing member can be firmly strained and supported on the injection head main body, and the passing resistance of the fire-extinguishing gas is large, and the silencing member high in silencing performance per unit volume can be used, and the noise reduction rate is enhanced. As a result, the injection head can be reduced in size, and the problems of limitations of place of installation and the cost increase can be eliminated.

An orifice plate forming an orifice is detachably disposed in an injection head main body contacting with an other-side end face of the silencing member, and the bolt is screwed into the orifice plate, and therefore the orifice plate forming plural types of orifices can be selected depending on the condition.

The small-end side of the orifice faces the silencing member, and therefore the fire-extinguishing gas can be distributed uniformly from the central part of the silencing member to the peripheral parts, and the noise generated in the emission zone of fire-extinguishing gas can be made uniform, and together the noise reduction rate can be heightened further.

The diameter of pores of the silencing member porous material for forming the silencing member is formed smaller in a direction of passing of the gas, and therefore the fire-extinguishing gas is emitted uniformly from parts of the silencing member, and the noise generated in the emission zone of fire-extinguishing gas can be made uniform, and together the noise reduction rate can be heightened further.

[Brief Description of the Drawings]

Fig. 1 is a perspective view as seen obliquely from bottom showing an injection head having a silencing function for gas-type fire extinguisher according to the first aspect of the present invention.
Fig. 2 is a front view of the same.
Fig. 3 is a left side view of the same.
Fig. 4 is a plan view of the same.
Fig. 5 is a bottom view of the same.
Fig. 6 is an X-X sectional view of Fig. 4.
Fig. 7 is a graph showing the relation between injection reaction F of fire-extinguishing gas applied to the injection head when fire-extinguishing gas is released, and flow rate of fire-extinguishing gas released from the injection head.
Fig. 8 is a front view of an injection head having a silencing function for gas-type fire extinguisher which is not claimed.
Fig. 9 is a left side view of the same.
Fig. 10 is a plan view of the same.
Fig. 11 is a bottom view of the same.
Fig. 12 is an X-X sectional view of Fig. 10.
Fig. 13 is an explanatory diagram of an injection head for a conventional gas-type fire extinguisher.
Fig. 14 is a perspective view as seen obliquely from bottom showing an injection head having a silencing function for gas-type fire extinguisher according to the second aspect of the present invention.
Fig. 15 is a front view of the same.
Fig. 16 is a back side view of the same.
Fig. 17 is a left side view of the same.
Fig. 18 is a right side view of the same.
Fig. 19 is a plan view of the same.
Fig. 20 is a bottom view of the same.
Fig. 21 is an X-X sectional view of Fig. 19.

[Best Mode for Carrying Out the Invention]

[0035] An embodiment of an injection head having a silencing function for a gas-type fire extinguisher of the present invention is described below by reference to the accompanying drawings.

[0036] Fig. 1 to Fig. 6 show a first embodiment of an injection head having a silencing function for a gas-type fire extinguisher of the present invention.

[0037] The injection head 1 having a silencing function for a gas-type fire extinguisher is an injection head installed for releasing a fire-extinguishing gas to a fire-extinguishing area in the gas-type fire extinguisher using a fire-extinguishing gas, and includes an injection head main body 2 connected to a piping (not shown) for supplying an fire-extinguishing gas, an orifice plate 3 forming a plurality of orifices 31 detachably disposed on steps 21 formed in an internal space of the injection head main body 2, a silencing member 4 of block shapes formed of a porous material capable of passing a gas disposed at outlet of orifices 31, and a ring member 6 for fixing the silencing member 4 to the injection head main body 2 by way of bolts 5.

[0038] In this case, the orifice plate 3 forming the plurality of orifices 3 is disposed on the steps 21 formed in the internal space of the injection head main body 2, for example, by way of threads formed in the periphery of the step 21 and the orifice plate 3, and is hence detachable, and the orifice plate 3 forming plural types of the orifices 31 can be selected according to the condition of the place of installation or the like.

[0039] Instead, by omitting the orifice plate 3, as shown in a second embodiment below, the orifices can be directly formed in the injection head main body 2.

[0040] The orifices 31 are preferably formed oppositely to the silencing member 4 at the small-end side 31a of the orifices 31.

[0041] Hence, by distributing the fire-extinguishing gas uniformly from the central parts of the silencing member 4 toward peripheral parts, the noise generated in the emission area of the fire-extinguishing gas can be made uniform, and the noise reduction rate can be further increased.

[0042] The silencing member 4 of block shapes formed on a porous material is an integral structure, or may be formed in split structures, as shown in the embodiment, composed of a central member 41, a peripheral member 42, and end members 43 for covering the end faces of the central member 41 and the peripheral member 42.

[0043] The porous material composing the silencing member 4 is preferably a sinter made of an inorganic material (metal, oxide of metal, hydroxide of metal, and others) high in shape retaining performance.

[0044] The pore diameter of pores of the porous material composing the silencing member 4 is made of a generally homogeneous material, or a material changed in the gas passing direction, or more particularly a material reduced in the gas passing direction, and for example, in this embodiment, it is made of a material becoming smaller in the pore diameter of the pores of the peripheral material 42 and the end face material 43, than the pore diameter of pores of the central material.

[0045] Thus, the pore diameter of pores of the porous material composing the silencing member 4 is made smaller in the gas passing direction, and by releasing the fire-extinguishing gas uniformly from the parts of the silencing member 4, so that the noise generated from the emission area of the fire-extinguishing gas can be made uniform, and the noise reduction rate can be further enhanced.

[0046] The silencing member 4, whether in integral structure or in split structure, is disposed so that the one-end side of the silencing member 4 may contact with the injection head main body 2 (possibly including the orifice plate 3 in this embodiment), and the peripheral parts and other-end side face of the silencing member 4 are opened to the atmosphere, except for the portion contacting with the ring members 6 for fixing the silencing member 4 to the injection head main body 2 by way of the bolts 5.

[0047] As a result, it is possible to increase the emission area of the fire-extinguishing gas to be released to the
atmosphere of the silencing member 4, and moreover the injection reaction of fire-extinguishing gas applied to the injection head 1 at the time of emission of fire-extinguishing gas is canceled by the portion of the fire-extinguishing gas emitted from the surrounding of the silencing member 4 in the injection head 1, and can be decreased.

[0048] In this case, the bolt 5 penetrates through the silencing member 4, or in this embodiment, the inside of the peripheral member 42 and the end-face member 43, and is screwed into the injection head main body 2, and therefore the silencing member 4 is facing the orifice plate 43, and is fixed and integrated to the injection head main body 2.

[0049] As a result, it is possible to increase further the emission area of the fire-extinguishing gas to be released to the atmosphere of the silencing member 4, and the noise reduction rate can be enhanced, and generation of noise due to interference of the released fire-extinguishing gas with the bolt 5 can be prevented.

[0050] In the embodiment, the position of the silencing member 4 through which the bolt 5 penetrates, or in the embodiment, positions 42a, 43a of the peripheral member 42 and end-face member 43 are formed in a shape swollen to the outer peripheral side from the other positions.

[0051] As a result, moreover, it is possible to increase the emission area of the fire-extinguishing gas to be released to the atmosphere of the silencing member 4, and the noise reduction rate can be enhanced.

[0052] Still more, when the porous material for composing the silencing member 4 is formed by cutting out from a sinter plate, waste of the material can be saved by forming into a shape of the embodiment (a square-like shape).

[0053] In the injection head 1 of the embodiment, injection reaction F of fire-extinguishing gas applied on the injection head at the time of emission of fire-extinguishing gas and flow rate Q of the fire-extinguishing gas released from the injection head are defined to satisfy the relation of formula 1 and formula 2.

$$F (\text{kgf}) = A (\text{kgf} \cdot \text{min} / \text{m}^3) \cdot Q (\text{m}^3 / \text{min}) \quad \cdots \quad \text{(formula 1)}$$

$$A (\text{kgf} \cdot \text{min} / \text{m}^3) \leq 0.2 \quad \cdots \quad \text{(formula 2)}$$

[0054] Where A is a constant determined by the type of the injection head and the fire-extinguishing gas. The value of A is preferably 0.15 or less, or more preferably 0.1 or less.

[0055] Fig. 7 shows the relation between injection reaction F of fire-extinguishing gas applied on the injection head at the time of emission of fire-extinguishing gas and flow rate Q of the fire-extinguishing gas released from the injection head, when measured by using nitrogen as fire-extinguishing gas, in three types of injection head (injection head 1 of the embodiment and injection heads 10A, 10B shown in Fig. 13 (a) and (b)).

[0056] Apparent from the results of measurements shown in Fig. 7, the injection head 1 of the embodiment is lowered in the magnitude of injection reaction F of fire-extinguishing gas applied to the injection head at the time of emission of fire-extinguishing gas to about 1/5 to 1/10, as compared with the conventional injection head.

[0057] In the meantime, when carbon dioxide or fluorine compound is used as the fire-extinguishing gas, the value of A is in a relation of nitrogen > fluorine compound > carbon dioxide, but the tendency is same as in Fig. 7.

[0058] As a result, the required supporting force of the building accommodating the piping system including the injection head 1 can be decreased, and the problems of limitations of place of installation and cost elevation can be solved.

[0059] In the embodiment, the position of the silencing member 4 through which the bolt 5 penetrates is formed in a shape swollen to the outer peripheral side from the other positions, but as shown in Fig. 8 to Fig. 12, a uniform peripheral shape (cylindrical shape) may be formed as in the second embodiment of the injection head having the silencing function for gas-type fire extinguisher.

[0060] Other structure and action of the injection head 1 of the second embodiment are same as in the injection head of the first embodiment.

[0061] Fig. 14 to Fig. 21 show a second embodiment of the injection head having the silencing function for gas-type fire extinguisher of the present invention.

[0062] The injection head 101 having a silencing function for this gas-type fire extinguisher is an injection head installed for releasing a fire-extinguishing gas to a fire-extinguishing area in a gas-type fire extinguisher using a fire-extinguishing gas, and includes an injection head main body 102 connected to a piping (not shown) for supplying a fire-extinguishing gas, an orifice plate 103 forming a plurality of orifices 131 disposed detachably at step 121 formed in an internal space of this injection head main body 102, a silencing member 104 of block shapes made of a porous material capable of passing a gas disposed at outlets of the orifices 131, a ring member 105 abutting against the peripheral edge of one-side face released to the atmosphere of the silencing member 104 for supporting the silencing member 104 to the injection head main body 102, and a bolt 106 abutting against the central part of one-side end face released to the atmosphere of the silencing member 104 for supporting the silencing member 104 to the injection head main body 102.
In this case, the orifice plate 103 forming a plurality of orifices 131 is detachably disposed in steps 121 formed in the internal space of the injection head main body 102, for example, by way of screws formed in the peripheral surface of the steps 121 and the orifice plate 103.

As a result, the orifice plate 103 forming plural types of orifices 131 can be selected according to the conditions of the place of installation and others.

In the meantime, by omitting the orifice plate 103, similar orifices can be directly formed in the injection head main body 102 (not shown).

Preferably, the orifices 131 are formed to face the silencing member 104 at the small-end side 131a of the orifices 131.

As a result, the fire-extinguishing gas can be distributed uniformly from the central parts of the silencing member 104 toward the peripheral parts, and the noise generated near the emission position of the fire-extinguishing gas can be made uniform, and the noise reduction rate is higher.

The silencing member 105 of block shapes made of a porous material is formed in an integral structure, or, as in the case of this embodiment, formed in a split structure consisting of an upstream side member 141 and a downstream side member 142.

The porous material composing the silencing member 104 is preferably a sinter material of inorganic material high in shape retaining performance (metal, oxide of meal, hydroxide of metal, etc.).

The pore diameter of gaps in the porous material composing the silencing member 104 is composed of a homogenous material on the whole, or a material changed in the gas passing direction, or more specifically a material reduced in the gas passing direction, for example, in the embodiment, it is made of a material smaller in the pore diameter of gaps in the downstream side member 142 than the pore diameter of gaps in the upstream side member 141.

Thus, by setting the pore diameter of gaps in the porous material composing the silencing member 104 to be smaller in the gas passing direction, the fire-extinguishing gas can be released uniformly from the parts of the silencing member 104, and the noise generated near the emission position of the fire-extinguishing gas can be made uniform, and the noise reduction rate is higher.

The silencing member 104, whether in integral structure or split structure, is disposed with the end face of other side of the silencing member 104 (the opposite side of the side released to the atmosphere) in contact with the injection head main body 102 (in this embodiment, including the orifice plate 103), and the end face of one side of the silencing member 104 (the side released to the atmosphere) being supported on the injection head main body 102 by way of the ring member 105 contacting with the peripheral edge of this end face, and the bolts 106 contacting with the central parts of the end face.

In this case, the ring member 105 disposed detachably on the injection head main body 102 by way of screws formed in the peripheral surface of the injection head main body 102 and the ring member 105.

The downstream side member 142 composing the silencing member 104 formed in a larger diameter than the upstream side member 141, and the outer peripheral edge of this downstream side member 142 fixed as being held between the end face of the injection head main body 102 and the peripheral edge of the ring member 105, and therefore the emission area of the fire-extinguishing gas released to the atmosphere of the silencing member (downstream side member 142) is further increased, and the noise reduction rate can be heightened at the same time.

The bolts 106 are screwed into the orifice plate 103.

As a result, the silencing member 104 can be firmly restrained and supported by the injection head main body 102, and it is possible to use the silencing member 104 large in the passing resistance of fire-extinguishing gas, and high in silencing performance per unit volume, and the noise reduction rate is higher, hence the injection head 101 can be reduced in size, and the problems of limitations of place of installation or cost increase can be solved.

The injection head having the silencing function for gas-type fire extinguisher of the present invention has an injection head of a small size, and is capable of enhancing the noise reduction rate, and is moreover capable of reducing the injection reaction of the fire-extinguishing gas applied to the injection head at the time of emission of the fire-extinguishing gas, and hence it can be used in wide applications of the gas-type fire extinguishers using fire-extinguishing gases such as nitrogen, carbon dioxide, fluorine compound and others, and it can be applied not only in new installations of gas-type fire extinguishers, but also in existing facilities of gas-type fire extinguishers only by exchanging the injection head.

[Industrial Applicability]
1. An injection head (1) having a silencing function for use in a gas-type fire extinguisher, comprising:

an injection head main body (2) having an orifice plate (3) forming a plurality of orifices (31); a ring member (6);

a silencing unit for releasing a fire-extinguishing gas in a fire-extinguishing area, said silencing unit including a silencing member (4) at an outlet end of said orifices (31), said silencing member (4) having a block shape and being made of a porous material to allow the fire-extinguishing gas to pass therethrough, said silencing member (4) being arranged such that a first end face of said silencing member (4) contacts said injection head main body (2), and such that a peripheral face and a second end face of said silencing member (4) are opened to atmosphere except for a peripheral end portion of said second end face of said silencing member (4) contacting said ring member (6);

bolts (5) for fixing said ring member (6) and said silencing member (4) to said injection head main body (2), characterized in that said bolts (5) penetrate through peripheral portions (42a, 43a) of said silencing member (4); and the peripheral portions (42a, 43a) of said silencing member (4) receiving said bolts (5) protrude radially outward relative to main portions of said silencing member (4).

2. The injection head (1) having a silencing function for gas-type fire extinguisher according to claim 1, wherein in the injection head main body (2) contacting with said first end face of the silencing member (4), the orifice plate (3) is disposed detachably.

3. The injection head (1) having a silencing function for gas-type fire extinguisher according to either claim 1 or claim 2, wherein a small-end side (31a) of the orifice faces the silencing member (4).

4. The injection head (1) having a silencing function for gas-type fire extinguisher according to any one of claims 1 to 3, wherein the diameter of pores of the silencing member porous material for composing the silencing member (4) is formed smaller in a direction of passing of the gas.

5. The injection head (1) having a silencing function for gas-type fire extinguisher according to any one of claims 1 to 4, wherein injection reaction F of fire-extinguishing gas applied on the injection head at the time of emission of fire-extinguishing gas and flow rate Q of the fire-extinguishing gas released from the injection head satisfy the relation of formula 1 and formula 2.
6. An injection head (101) having a silencing function for use in a gas-type fire extinguisher, comprising:

an injector head main body (102) having an orifice plate (103) forming a plurality of orifices (131);
a silencing unit for releasing a fire-extinguishing gas in a fire-extinguishing area, said silencing unit including a silencing member (104) at an outlet of the orifices (131), said silencing member (104) having a block shape and being made of a porous material to allow the fire-extinguishing gas to pass therethrough, said silencing member (104) being arranged such that an end face of said silencing member open to atmosphere is supported on said injector head main body (102) by a ring member (105) contacting a peripheral portion of said end face of said silencing member (104) characterized in that said end face of said silencing member (104) open to atmosphere is further supported on said injector head main body (102) by a bolt (106) direct contacting a central portion of said end face of said silencing member (104).

7. The injection head (101) having a silencing function for gas-type fire extinguisher according to claim 6, wherein the orifice plate (103) is detachably disposed in an injection head main body (102) contacting with the other end face of the silencing member (104), and the bolt (106) is screwed into the orifice plate (103).

8. The injection head (101) having a silencing function for gas-type fire extinguisher according to claim 7, wherein a small-end side (131a) of orifice (131) faces the silencing member (104).

9. The injection head (101) having a silencing function for gas-type fire extinguisher according to either claim 7 or claim 8, wherein the diameter of pores of the silencing member porous material for composing the silencing member (104) is formed smaller in a direction of passing of the gas.

Patentansprüche

1. Einspritzkopf (1) mit einer Schalldämpfung für die Verwendung in einem Gasfeuerlöschgerät, umfassend:

 einen Einspritzkopf-Hauptteil (2) mit einer Lochplatte (3), die eine Vielzahl von Öffnungen bildet (31);
eine Schalldämpfungseinheit für die Freigabe von Löschgas in einem Löschmodul, wobei die genannte Schalldämpfungseinheit ein Schalldämpfungselement (4) an einem Austrittsende der genannten Öffnungen (31) umfasst, wobei die genannte Schalldämpfungseinheit (4) eine Blockform hat und aus porösem Material gefertigt ist, damit das Löschgas hindurchströmen kann, wobei das genannte Schalldämpfungselement (4) so angeordnet ist, dass die genannte Schalldämpfungseinheit (4) einerseits der genannten Schalldämpfungselemente (4) an das Einspritzkopf-Hauptteil (2) angrenzt, und so, dass eine Umfangsfläche und eine zweite Stirnfläche des genannten Schalldämpfungselementes (4) an dem genannten Einspritzkopf-Hauptteil (2) Schrauben (5) zur Befestigung des genannten Ringelements (6) und des genannten Schalldämpfungselementes (4) am genannten Einspritzkopf-Hauptteil (2), dadurch gekennzeichnet, dass die genannten Schrauben (5) die Umfangsabschnitte (42a, 43a) des genannten Schalldämpfungselementes (4) durchdringen; und die Umfangsabschnitte (42a, 43a) des genannten Schalldämpfungselementes (4) aufnehmen, gegenüber den Hauptabschnitten des genannten Schalldämpfungselementes (4) radial abstehen.

2. Einspritzkopf (1) mit einer Schalldämpfung für ein Gasfeuerlöschgerät nach Anspruch 1, wobei im Einspritzkopf-Hauptteil (2), der an die angrenzende Stirnfläche des genannten Schalldämpfungselementes (4) angrenzt, die Lochplatte (3) abnehmbar angeordnet ist.

3. Einspritzkopf (1) mit einer Schalldämpfung für ein Gasfeuerlöschgerät nach Anspruch 1 oder Anspruch 2, wobei sich eine kleine Stirnfläche (31a) der Lochplatte gegenüber dem Schalldämpfungselement (4) befindet.

5. Einspritzkopf (1) mit einer Schalldämpfung für ein Gasfeuerlöschgerät nach einem der Ansprüche 1 bis 4, wobei die auf dem Einspritzkopf angewandte Einspritzreaktion F des Löschgases zur Zeit der Freigabe des Löschgases und die Durchflussgeschwindigkeit Q des vom Einspritzkopf freigegebenen Löschgases die Beziehung der Formel 1 und Formel 2 erfüllt.

\[F(\text{kgf}) = A \ (\text{kgf} \cdot \text{min/m}^3) \cdots \text{(Formel 1)} \]

\[A(\text{kgf} \cdot \text{min/m}^3) \leq 0,2 \cdots \text{(Formel 2)} \]

6. Einspritzkopf (101) mit einer Schalldämpfung für ein Gasfeuerlöschgerät, umfassend:

- einen Einspritzkopf-Hauptteil (102) mit einer Lochplatte (3), die eine Vielzahl von Öffnungen bildet (131);
- eine Schalldämpfungseinheit für die Freigabe von Löschgas in einem Löschbereich, wobei die genannte Schalldämpfungseinheit ein Schalldämpfungselement (104) an einem Austrittsende der Öffnungen (131) umfasst, wobei die genannte Schalldämpfungseinheit (104) eine Blockform hat und aus porösem Material gefertigt ist, damit das Löschgas hindurchströmen kann, wobei das genannte Schalldämpfungselement (104) so angeordnet ist, dass eine Stirnfläche des genannten Schalldämpfungselementes (104), die zur Atmosphäre geöffnet ist, mittels eines Ringelements (105), das an den Umgebungsabschnitt der genannten Stirnfläche des genannten Schalldämpfungselementes (104) angrenzt, vom Einspritzkopf-Hauptteil (102) unterstützt wird, dadurch gekennzeichnet, dass die genannte Stirnfläche des genannten Schalldämpfungselementes (104), die zur Atmosphäre geöffnet ist, ferner unterstützt wird durch eine Schraube (106), die unmittelbar an einen zentralen Abschnitt der genannten Stirnfläche des genannten Schalldämpfungselementes (104) angrenzt.

7. Einspritzkopf (101) mit einer Schalldämpfung für ein Gasfeuerlöschgerät nach Anspruch 6, wobei die Lochplatte (103) in einem Einspritzkopf-Hauptteil (102) abnehmbar angeordnet ist, die an die andere Stirnfläche des Schalldämpfungselementes (104) angrenzt, und die Schraube (106) in der Lochplatte (103) eingeschraubt ist.

8. Einspritzkopf (101) mit einer Schalldämpfung für ein Gasfeuerlöschgerät nach Anspruch 7, wobei sich eine kleine Stirnfläche (131a) der Lochplatte (131) gegenüber dem Schalldämpfungselement (104) befindet.

Revidications

1. Tête d’injection (1) ayant une fonction d’atténuation du bruit, à utiliser dans un extincteur d’incendie à gaz, comprenant:

- un corps principal de tête d’injecteur (2) ayant une plaque à orifice (3) formant une pluralité d’orifices (31) ;
- un élément annulaire (6) ;
- une unité d’atténuation du bruit permettant de libérer un gaz d’extinction d’incendie dans une zone d’extinction d’incendie, ladite unité d’atténuation du bruit comprenant un élément d’atténuation du bruit (4) au niveau d’une extrémité de sortie desdits orifices (31), ledit élément d’atténuation du bruit (4) ayant une forme de bloc et étant fait en un matériau poreux pour permettre le passage du gaz d’extinction d’incendie, ledit élément d’atténuation du bruit (4) étant disposé de telle sorte qu’une première face d’extrémité dudit élément d’atténuation du bruit (4) entre en contact avec ledit corps principal de tête d’injecteur (2), et de telle sorte qu’une face périphérique et une deuxième face d’extrémité dudit élément d’atténuation du bruit (4) sont ouvertes à l’atmosphère, sauf pour une partie d’extrémité périphérique de ladite deuxième face d’extrémité dudit élément d’atténuation du
EP 2 818 207 B1

bruit (4) en contact avec ledit élément annulaire (6) ;
des boulons (5) permettant de fixer ledit élément annulaire (6) et ledit élément d’atténuation du bruit (4) audit
corps principal de tête d’injecteur (2),
caractérisée en ce que lesdits boulons (5) traversent des parties périphériques (42a, 43a) dudit élément d’atténuation du bruit (4) ; et
les parties périphériques (42a, 43a) dudit élément d’atténuation du bruit (4) logeant lesdits boulons (5) font
saillie radialement vers l’extérieur, par rapport à des parties principales dudit élément d’atténuation du bruit (4).

2. Tête d’injection (1) ayant une fonction d’atténuation du bruit pour extincteur d’incendie à gaz, selon la revendication
1, dans laquelle, dans le corps principal de tête d’injection (2) en contact avec ladite première face d’extrémité de
e l’élément d’atténuation du bruit (4), la plaque à orifice (3) est disposée de manière détachable.

3. Tête d’injection (1) ayant une fonction d’atténuation du bruit pour extincteur d’incendie à gaz, selon la revendication
1 ou 2, dans laquelle un petit côté d’extrémité (31 a) de l’orifice fait face à l’élément d’atténuation du bruit (4).

4. Tête d’injection (1) ayant une fonction d’atténuation du bruit pour extincteur d’incendie à gaz, selon l’une quelconque
des revendications 1 à 3, dans laquelle le diamètre des pores du matériau poreux de l’élément d’atténuation du
bruit composant l’élément d’atténuation du bruit (4) est plus petit dans une direction de passage du gaz.

5. Tête d’injection (1) ayant une fonction d’atténuation du bruit pour extincteur d’incendie à gaz, selon l’une quelconque
des revendications 1 à 4, dans laquelle la réaction d’injection F du gaz d’extinction d’incendie appliqué à la tête
de l’injection au moment de l’émission du gaz d’extinction d’incendie, et le débit Q du gaz d’extinction d’incendie libéré
par la tête d’injection, satisfont la relation de la formule 1 et de la formule 2.

\[F(\text{kgf}) = A(\text{kgf} \cdot \text{min} / \text{m}^3) \ldots \text{(formule 1)} \]

\[A(\text{kgf} \cdot \text{min} / \text{m}^3) \leq 0,2 \ldots \text{(formule 2)} \]

6. Tête d’injection (101) ayant une fonction d’atténuation du bruit, à utiliser dans un extincteur d’incendie à gaz,
comprenant :

un corps principal de tête d’injecteur (102) ayant une plaque à orifice (103) formant une pluralité d’orifices (131) :
une unité d’atténuation du bruit permettant de libérer un gaz d’extinction d’incendie dans une zone d’extinction
d’incendie, ladite unité d’atténuation du bruit comprenant un élément d’atténuation du bruit (104) au niveau
de’une sortie desdits orifices (131), ledit élément d’atténuation du bruit (104) ayant une forme de bloc et étant
fait en un matériau poreux pour permettre le passage du gaz d’extinction d’incendie, ledit élément d’atténuation
du bruit (104) étant disposé de telle sorte qu’une face d’extrémité dudit élément d’atténuation du bruit ouverte
à l’atmosphère est soutenue sur ledit corps principal de tête d’injecteur (102) par un élément annulaire (105)
en contact avec une partie périphérique de ladite face d’extrémité dudit élément d’atténuation du bruit (104),
caractérisée en ce que ladite face d’extrémité dudit élément d’atténuation du bruit (104) ouverte à l’atmosphère
est également soutenue sur ledit corps principal de tête d’injecteur (102) par un boulon (106) en contact direct
avec une partie centrale de ladite face d’extrémité dudit élément d’atténuation du bruit (104).

7. Tête d’injection (101) ayant une fonction d’atténuation du bruit pour extincteur d’incendie à gaz, selon la revendication
6, dans laquelle la plaque à orifice (103) est disposée de manière détachable dans un corps principal de tête
de l’injection (102) en contact avec l’autre face d’extrémité dudit élément d’atténuation du bruit (104), et le boulon
(106) est vissé dans la plaque à orifice (103).

8. Tête d’injection (101) ayant une fonction d’atténuation du bruit pour extincteur d’incendie à gaz, selon la revendication
7, dans laquelle un petit côté d’extrémité (131a) de l’orifice (131) fait face à l’élément d’atténuation du bruit (104).

9. Tête d’injection (101) ayant une fonction d’atténuation du bruit pour extincteur d’incendie à gaz, selon la revendication
7 ou 8, dans laquelle le diamètre des pores du matériau poreux de l’élément d’atténuation du bruit composant
l’élément d’atténuation du bruit (104) est plus petit dans une direction de passage du gaz.
FIG. 7

- **Injection head 10A in Fig. 13 (a)**
 (inclination: 1.30)

- **Injection head 10B in Fig. 13 (b)**
 (inclination: 0.43)

- **Injection head 1 in first embodiment**
 (inclination: 0.095)

Flow rate Q of fire-extinguishing gas (m³/min)

Injection reaction F (kgf)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 1151800 A2 [0008]