EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
25.05.2016 Bulletin 2016/21

(21) Application number: 12704251.3

(22) Date of filing: 07.02.2012

(51) Int Cl.:
H04R 25/00 (2006.01)

(86) International application number:
PCT/EP2012/052000

(87) International publication number:
WO 2013/117214 (15.08.2013 Gazette 2013/33)

(54) HEARING AID FITTING SYSTEM AND A METHOD OF FITTING A HEARING AID SYSTEM
ANPASSUNGSSYSTEM FÜR EIN HÖRGERÄT UND METHODE ZUM ANPASSEN EINES HÖRGERÄTESYSTEMS
SYSTÈME POUR ADAPTER UNE PROTHÈSE AUDITIVE AINSI QU'UNE PROCÉDURE POUR L’ADAPTATION D’UN SYSTÈME DE PROTHÈSES AUDITIVES

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(84) Designated Contracting States:

(43) Date of publication of application:

(73) Proprietor: Widex A/S
3540 Lynge (DK)

(72) Inventors:
• ANDERSEN, Svend Vitting
 DK-3540 Lynge (DK)
• WESTERGAARD, Anders
 DK-3540 Lynge (DK)

(56) References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to hearing aid fitting systems. The present invention also relates to a method of fitting a hearing aid system.

BACKGROUND OF THE INVENTION

[0002] In the context of the present disclosure, a hearing aid should be understood as a small, microelectronic device designed to be worn behind or in a human ear of a hearing-impaired user. A hearing aid system may be monaural and comprise only one hearing aid or be binaural and comprise two hearing aids. Prior to use, the hearing aid is adjusted by a hearing aid fitter according to a prescription. The prescription is based on a hearing test, resulting in a so-called audiogram, of the performance of the hearing-impaired user’s unaided hearing. The prescription is developed to reach a setting where the hearing aid will alleviate a hearing loss by amplifying sound at frequencies in those parts of the audible frequency range where the user suffers a hearing deficit. A hearing aid comprises one or more microphones, a microelectronic circuit comprising a signal processor, and an acoustic output transducer. The signal processor is preferably a digital signal processor. The hearing aid is enclosed in a casing suitable for fitting behind or in a human ear.

[0003] In a traditional hearing aid fitting, the hearing aid user travels to an office of a hearing aid fitter and the user’s hearing aids are adjusted using the fitting equipment that the hearing aid fitter has in his office. Typically the fitting equipment comprises a computer capable of executing the relevant hearing aid programming software and a programming device adapted to provide the link between the computer and the hearing aid. This procedure is disadvantageous in cases where it is difficult or expensive for the hearing aid user to visit a hearing aid fitting office.

[0004] Methods for remote fitting of hearing aids have been proposed in the art.

[0005] DE-A1-19600234 discloses a method of fitting a hearing aid, wherein data are transmitted from the fitting equipment and to the hearing aid using a remote data transmission link such that the hearing aid fitting can be carried out practically independent on the distance between the hearing aid user and the hearing aid fitter. In one embodiment the system comprises two computers that are connected using an ISDN link and in another embodiment one of the two computers comprises means for transforming the data, received over the transmission link, into a data format that can be understood by the hearing aid.

[0006] DE-U1-29905172 discloses a programming device that can be coupled directly to a telephone line, a modem or a computer, whereby data can be transmitted to and from the programming device. The programming device is adapted to access and adjust the setting of a hearing aid. In this way the hearing aid fitter can adjust the setting of a distant hearing aid using the programming device and a telephone line for providing the data transmission link between the programming device and the fitting software located within the hearing aid fitter’s office.

[0007] WO-A2-2011/128462 discloses a method for providing distant support to a plurality of personal hearing aid users. Prior to a support session, users are paired with providers by storing a pairing information and when starting a support session, the stored pairing information is used to determine a support provider. According to an embodiment data exchanged between the user computer and the supporter computer is relayed by a relay server, whereby both user and support provider may be located behind a firewall.

[0008] The methods disclosed in WO-A2-2011/128462 are disadvantageous in that they require the hearing aid user to start an application software that may have to be installed on the user’s computer and establish a data connection between the personal hearing system and the user computer. Especially since many hearing aid users are elderly it can not be presumed that the hearing aid user is familiar with computers and/or can figure out how to initiate a request for support.

[0009] The methods disclosed in WO-A2-2011/128462 are also disadvantageous in that a support provider is determined based on stored pairing information that links the hearing aid user to a specific support provider and in that a data connection is established between two computers located respectively at a support provider and at the support requesting user. The disclosed method is therefore inflexible with respect to the choice of support provider and the location of the support provider.

[0010] Furthermore the embodiments disclosed in WO-A2-2011/128462 are inflexible with respect to the possibility for a skilled hearing aid user to carry out relatively simple support operations such as e.g. fine tuning of his hearing aid system using a fitting software server that is located remotely from the hearing aid user.

[0011] Document US 2005/283263 is considered to be the closest prior art and discloses the following:

a hearing aid fitting system, adapted for remote fitting of a hearing aid system, comprising a first client, an external device, a server, a hearing aid system and link means adapted to allow the first client, the external device, the server and the hearing aid system to communicate,

wherein said first client comprises

fitting software adapted to fit a hearing aid based on a selected hearing aid user profile having a unique user identification and fitting connection software means adapted to provide the unique hearing aid user identification to the control server and to request...
to establish a direct communication channel be-
between said first client and said external device,
wherein said external device comprises
a unique device identification, redirecting means
adapted to direct the content of the data transmitted
over said direct communication channel to the hear-
ing aid system,
wherein the server comprises
a look-up database that holds pairs of unique hearing
aid user identification and unique device identifica-
tions,
wherein the hearing aid fitting system is adapted
such that data used to fit the hearing aid system is
transmitted using the first client, the direct commu-
ication channel and the external device.

[0012] It is therefore a feature of the present invention
to provide a hearing aid fitting system that allows distant
support to be provided by basically any qualified support
provider.

[0013] It is another feature of the present invention
to provide a hearing aid fitting system for remote fitting that
does not require the hearing aid user to install or maintain
software.

[0014] It is still another feature of the present invention
to provide a hearing aid fitting system that allows the
hearing aid user to fine tune his hearing aid system using
a remote hearing aid fitting software server.

[0015] It is yet another feature of the present invention
to provide a hearing aid fitting system that can perform
a remote fitting with a programming device that is inde-
pendent on the selected software platform for the fitting
software.

[0016] It is still another feature of the present invention
to provide an improved method for remote fitting of a
hearing aid.

SUMMARY OF THE INVENTION

[0017] The invention, in a first aspect, provides a hear-
ing aid fitting system according to claim 1.

[0018] This provides a hearing aid fitting system that
allows any qualified support provider to carry out the re-
move fitting.

[0019] The invention, in a second aspect, provides a
method of remote fitting of a hearing aid according to
claim 11.

[0020] This provides an improved method of remotely
fitting a hearing aid system.

[0021] Further advantageous features appear from the
dependent claims.

[0022] Still other features of the present invention will
become apparent to those skilled in the art from the fol-
lowing description wherein the invention will be explained
in greater detail.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] By way of example, there is shown and de-
scribed a preferred embodiment of this invention. As will
be realized, the invention is capable of other embodi-
ments, and its several details are capable of modification
in various, obvious aspects all without departing from
the invention. Accordingly, the drawings and descriptions
will be regarded as illustrative in nature and not as restrictive.
In the drawings:

Fig. 1 illustrates highly schematically a hearing aid fit-
ting system according to a first embodiment of the inven-
tion;

Fig. 2 illustrates highly schematically a hearing aid fit-
ting system according to a second embodiment of the inven-
tion;

Fig. 3 illustrates highly schematically a hearing aid fit-
ting system according to a third embodiment of the inven-
tion; and

Fig. 4 illustrates in a more graphical manner a hearing
aid fitting system according to the first embod-
iment of the invention.

DETAILED DESCRIPTION

[0024] Reference is first made to Fig. 1, which illus-
trates highly schematically a hearing aid fitting system
100 according to a first embodiment of the invention. The
hearing aid fitting system 100 comprises a first client 101,
an external device 102, a control server 103, a hearing
aid user database server 104 and a hearing aid system
110.

[0025] The first client 101 further comprises hearing
aid fitting software 105, a fitting connection software 106
and a fitting software driver 107. The external device 102
comprises an external device connection software 108
and an external device software driver 109.

[0026] The control server 103 comprises a look-up da-
tabase that holds pairs of unique hearing aid user iden-
tifications and unique hearing aid system identifications.

[0027] The individual components of the hearing aid
fitting system 100 are further described below in associ-
ation with an explanation of the method steps carried out
in a normal hearing aid fitting session using the fitting
system 100 according to the first embodiment of the inven-
tion.

[0028] In a typical situation the hearing aid fitter will
initially provide said pairing information to the look-up
database on the control server 103 when a hearing aid
user receives his hearing aid system 110 and an external
device 102.
In a variation of the Fig. 1 embodiment the look-up database is located on a separate server, instead of as a part of the control server.

In another variation of the Fig. 1 embodiment the unique hearing aid system identification is replaced by a unique external device identification. In this way the pairing information stored in the control server does not have to be updated if e.g. the hearing aid user replaces his hearing aid system. Furthermore it adds to the complexity of the external device and the hearing aid system if the external device is adapted to read out a unique hearing aid system identification from the hearing aid system 110.

In the following the generic term unique device identification may be used to denote both the unique hearing aid system identification and the unique external device identification.

When the hearing aid user returns to his home after his visit at the hearing aid fitter and starts using his hearing aid system, it may be that the hearing aid user after a while wishes to have his hearing aid system fine-tuned to better suit his personal preferences. To this end the external device 102 is powered up, connected to the internet and positioned within range of the hearing aid system 110, whereafter the external device connection software 108 establishes contact to the hearing aid system 110 and reads the unique hearing aid system identification code. Next the external device connection software 108 establishes contact to the control server 103 and provides the unique hearing aid system identification code and hereby also reporting to the control server 103 that the external device 102 is online. Basically these steps can be carried out at any time prior to the remote fitting.

The remote fitting is carried out in the following manner: using the hearing aid fitting software 105 the hearing aid fitter initially accesses a hearing aid user database server 104 selecting an entry for a hearing aid user, for whom fitting of a hearing aid system 100 is to be carried out. A unique hearing aid user identification code is assigned to each hearing aid user. Based on said selection the fitting connection software 106 establishes contact to the control server 103, provides the unique hearing aid user identification code and requests the control server 103 to establish a direct communication channel, based on said look-up database, with the external device 102 - that has read the unique hearing aid system identification from the hearing aid system 110 - and through the interaction of the external device 102 a remote fitting of the hearing aid system 110 can be carried out.

According to the embodiment of Fig. 1 data exchanged between the external device 102 and the hearing aid system 110 are transmitted using wireless link means.

In the following the generic term redirecting means may be used to denote the external device means that provide that the data received over the direct communication channel is directed to the hearing aid system.

In a variation according to the embodiment of Fig. 1 data from the external device 102 and to the hearing aid system 110 are transmitted using wired link means.

The database server 104 further comprises, for each hearing aid user, data such as hearing loss, and details concerning current and prior fittings. In a variation according to the embodiment of Fig. 1 the database server 104 is integrated as part of the first client 101.

According to the embodiment of Fig. 1 the fitting software driver 107 transforms the data output from the hearing aid fitting software 105 into a format suitable for transmitting the data to the external device using an Ethernet connection. When the data reach the external device 102, the external device software driver 109 transforms the received data into a format suitable for transmitting the data to the hearing aid system 110. This data format is normally based on a proprietary protocol that varies for the individual hearing aid system manufacturers.

According to the embodiment of Fig. 1 the external device 102 is implemented as an embedded device that is adapted to be inserted directly into an Ethernet connection of a standard internet modem and to receive such data.

The hearing aid fitting system according to the embodiment of Fig. 1 is advantageous in that a remote fitting can be carried out in a simple manner through the use of the fitting connection software 106 and the fitting software driver 107 that transforms the output data from the fitting software into a data format that is suitable for transmission over the internet whereby the external device can be implemented as an embedded device that is adapted to be inserted directly into a connection of a standard internet modem. This makes the external device 102 independent on the selected fitting software platform.

Hereby the embodiment according to Fig. 1 is advantageous in that all that is required of the hearing aid user in order to enable the remote fitting according to the invention is to insert the external device 102 into an Ethernet connection and position the hearing aid system 110 within range of the wireless link means of the external device 102.

The embodiment according to Fig. 1 is further advantageous in that it enables existing hearing aid fitting software to remotely fit existing hearing aid systems without having to modify the fitting software itself.

Thus the embodiment of Fig. 1 is particularly advantageous for a hearing aid fitter that wishes to remotely fit a hearing aid user, such that the hearing aid user it not required to make several follow-up visits to the office of the hearing aid fitter.

Reference is now made to Fig. 2, which illustrates highly schematically a hearing aid fitting system according to a second embodiment of the invention.

The hearing aid fitting system 200 of Fig. 2 comprises basically the same elements as the hearing aid...
fitting system 100 of Fig. 1, except that the first client 101 is now split into a user client 202 and a hearing aid fitting server 201.

[0046] The user client 202 is a simple device having a web browser (this type of device may also be denoted a thin client). The hearing aid fitting server 201 comprises the fitting connection software 205 and driver 107 already described with reference to Fig. 1 and the hearing aid fitting software 205 implemented as a web service such that no hearing aid fitting software needs to be installed on the user client 202. A web browser is all that is required in order to fit a hearing aid system using the user client 202. Especially the web service of the hearing aid fitting software 205 provides the graphical user interface to the user client 202.

[0047] The embodiment of Fig. 2 is especially advantageous in that the user client is a generic device that is platform-independent and in that the communication between the user client 202 and the hearing aid fitting server 201 is independent of the selected platform for the hearing aid fitting server 201.

[0048] The user client 202 according to the embodiment of Fig. 2 can therefore be any type of web enabled device, such as a smart phone or tablet PC, independent on operating system.

[0049] Reference is now made to Fig. 3, which illustrates highly schematically a hearing aid fitting system 300 according to a third embodiment of the invention.

[0050] The hearing aid fitting system 300 of Fig. 3 comprises basically the same elements as the hearing aid fitting system 200 of Fig. 2, except that the user client 301 in addition to the web browser 304 comprises a wireless access point 303 and that the external device 302 comprises wireless link means that enables the external device 302 to establish the initial contact to the control server 103 and the direct communication channel to the hearing aid fitting server 201 using the wireless access point 303 of the user client 301.

[0051] The embodiment of Fig. 3 is especially advantageous in that a hearing user only requires the user client 301, the external device 302 and internet access in order to fit a hearing aid system. The hearing aid fitting system 300 according to the embodiment of Fig. 3 does not require a modem because the external device 302 connects to the internet through the access point 303 of the user client 301.

[0052] According to a variation of the embodiment of Fig. 3 the user client 301 is a smart phone or a tablet PC.

[0053] In variations of the embodiment of Fig. 3 the external device 302 seeks to establish contact to the control server 103 as soon as the external device is powered up.

[0054] In a variation of the Fig. 2 and Fig. 3 embodiments the hearing aid fitting software 205 of the first client 201 is distributed on a graphical user interface server and a hearing aid fitting server.

[0055] Reference is finally made to Fig. 4 which illustrates in a more graphical manner the hearing aid fitting system 100 according to the first embodiment of the invention.

[0056] The hearing aid fitting system 100 comprises a first client 101, an external device 102, a control server 103, a hearing aid user database server 104 and a hearing aid system 110.

[0057] Additionally a standard modem 401 is illustrated, whereto the external device 102 is connected using an Ethernet connection.

[0058] In variations according to the disclosed embodiments the external device 102, 302 comprises a unique device identification that is provided to a basic communication establishing server that based on said unique device identification enables the external device 102, 302 to provide the unique hearing aid system identification to a specific one among several control servers, whereby an efficient arrangement of the control servers can be achieved.

[0059] In other variations according to the disclosed embodiments, the external device is not implemented as an embedded device. Within the present context an embedded device is defined by being designed only for carrying out specific functions within a larger system. By contrast, a general-purpose computer, such as a personal computer (PC), is designed to be flexible and to meet a wide range of end-user needs.

[0060] In variations according to the disclosed embodiments the Ethernet protocol and connections may be substituted with other suitable protocols and connections.

[0061] In still another variation of the disclosed embodiments, the communication channel between the first client 101 and the external device 102 is established using Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) hole punching, mediated by the control server 103.

[0062] In still another variation of the disclosed embodiments, the data provided to the hearing aid system using the fitting system comprises hearing aid system software updates. This provides a very versatile method whereby the hearing aid system software can be updated without the hearing aid user needs to visit a hearing aid fitter and without the hearing aid user needs to install and/or operate any computer software.

Claims

1. A hearing aid fitting system, adapted for remote fitting of a hearing aid system, comprising a first client, an external device, a control server, a hearing aid system and link means adapted to allow the first client, the external device, the control server and the hearing aid system to communicate, wherein said first client comprises fitting software adapted to fit a hearing aid based on a selected hearing aid user profile having a unique user identification and fitting connection software.
means adapted to provide the unique hearing aid user identification to the control server and to request said control server to establish a direct communication channel between said first client and said external device, wherein said external device comprises a unique device identification, external device connection software means adapted to provide said unique device identification to the control server, redirecting means adapted to direct the content of the data transmitted over said direct communication channel to the hearing aid system, and wherein said control server comprises a look-up database that holds pairs of unique hearing aid user identifications and unique device identifications and interface means adapted to provide the direct communication channel between the first client and the external device based on corresponding user and device identifications, wherein the hearing aid fitting system is adapted such that data used to fit the hearing aid system is transmitted using the first client, the direct communication channel and the external device.

2. The hearing aid fitting system according to claim 1, wherein said first client comprises fitting software driver means adapted to code the protocol used for the fitting software output into a protocol suitable for transmission in said direct communication channel.

3. The hearing aid fitting system according to claim 1 or 2, wherein said external device redirecting means comprises external device software driver means adapted to code the protocol used for transmission in said communication channel into a protocol suitable for communication with the hearing aid system.

4. The hearing aid fitting system according to any one of the preceding claims, wherein said unique device identification is a unique hearing aid system identification that has been retrieved by or coded into the external device.

5. The hearing aid fitting system according to any one of the claims 1 - 3, wherein said unique device identification is a unique external device identification.

6. The hearing aid fitting system according to any one of the preceding claims, wherein the Ethernet protocol is used for coding the data transmitted over said communication channel.

7. The hearing aid fitting system according to any one of the preceding claims wherein said first client comprises two sub parts, a first sub client comprising web browsing means and a fitting server part comprising the fitting software, a corresponding graphical user interface and the fitting connection software means.

8. The hearing aid fitting system according to claim 7, wherein said first sub client comprises a wireless Ethernet access point whereby said external device can connect to the internet through said first sub client.

9. The hearing aid fitting system according to claim 7 or 8, wherein said first sub client is a smart phone or a tablet PC.

10. The hearing aid fitting system according to any one of the preceding claims wherein said fitting system is adapted to provide and install data comprising hearing aid system software updates.

11. A method of fitting a hearing aid system comprising the steps of:

- providing a first client, an external device, a control server and a hearing aid system,
- providing a unique hearing aid user identification,
- providing a unique device identification,
- storing a set of paired hearing aid user and device identifications in the control server,
- using the first client to select a hearing aid user and retrieve the corresponding hearing aid user identification,
- using the first client to provide a unique hearing aid user identification to the control server and to request the control server to retrieve the device identification that is paired with the selected hearing aid user identification,
- using the first client to request the control server to establish a communication channel between the first client and the external device corresponding to the retrieved device identification,
- using the control server to establish a communication channel between the first client and the external device,
- using the first client, the communication channel and the external device to remotely fit the hearing aid system.

12. The method according to claim 11, wherein said communication channel is established using Transmission Control Protocol (TCP) or User Datagram protocol hole punching, mediated by the control server.

Patentansprüche

1. Hörgerätanpassungssystem, geeignet zum ferngesteuerten Anpassen eines Hörgerätsystems, umfassend einen ersten Klienten, ein externes Gerät, e
nen Steuerserver, ein Hörgerätsystem und Verbindungsmittel, ausgebildet, um dem ersten Klienten, dem externen Gerät, dem Steuerserver und dem Hörgerätsystem zu ermöglichen, miteinander zu kommunizieren, wobei der erste Klient umfasst

1. Anpassungssoftware, ausgebildet zum Anpassen eines Hörgerätes basierend auf einem ausgewählten Hörgerätbenutzerprofil mit einer einzigartigen Benutzeridentifikation, und Anpassungsverbindungsmittel, ausgebildet, um die einzigartige Hörgerätbenutzeridentifikation dem Steuerserver bereitzustellen, und um den Steuerserver aufzufordern, einen direkten Kommunikationskanal zwischen dem ersten Klienten und dem externen Gerät herzustellen, wobei das externe Gerät umfasst

eine einzigartige Gerätidentifikation, externe Gerätverbindungsmittel, ausgebildet, um die einzigartige Gerätidentifikation dem Steuerserver bereitzustellen, Rückführungsmitteleinrichtung, ausgebildet, um den Inhalt von Daten, die über den direkten Kommunikationskanal übertragen werden, zu dem Hörgerätsystem zu leiten, und

wobei der Steuerserver umfasst

eine Nachschlag-Datenbank, die Paare einzigartiger Hörgerätbenutzeridentifikationen und einzigartiger Gerätidentifikationen beinhaltet, und Schnittstellenmittel, ausgebildet, um den direkten Kommunikationskanal zwischen dem ersten Klienten und dem externen Gerät basierend auf den entsprechenden Benutzer- und Gerätidentifikationen bereitzustellen, wobei das Hörgerätsystem ausgebildet ist, sodass Daten, die verwendet werden, um das Hörgerätsystem anzupassen, unter Verwendung des ersten Klienten, des direkten Kommunikationskanals und des externen Gerätes übertragen werden.

2. Hörgerätsystem ausgebildet mit dem Hörgerätsystem, ausgebildet sind.

5. Hörgerätsystem nach Anspruch 1, wobei die einzigartige Gerätidentifikation eine einzigartige externe Gerätidentifikation ist.

6. Hörgerätsystem nach einem der vorhergehenden Ansprüche, wobei das Ethernet-Protokoll zum Kodieren der über den Kommunikationskanal übertragenen Daten verwendet wird.

8. Hörgerätsystem nach Anspruch 7, wobei der erste Unterklient einen drahtlosen Ethernet-Zugriffspunkt umfasst, und wobei das externe Gerät über den ersten Unterklienten mit dem Internet verbunden kann.

9. Hörgerätsystem nach Anspruch 7 oder 8, wobei der erste Unterklient ein Smartphone oder ein Tablet-PC ist.

11. Verfahren zum Anpassen eines Hörgerätsystems, umfassend die Schritte:

- Bereitstellung eines ersten Klienten, eines externen Gerätes, eines Steuerservers und eines Hörgerätsystems,
- Bereitstellen einer einzigartigen Hörgerätbenutzeridentifikation, - Bereitstellen einer einzigartigen Gerätidentifikation,
- Speichern eines Satzes gepaarter Hörgerätbenutzeridentifikation und Gerätidentifikation in dem Steuerserver,
- Verwenden des ersten Klienten zum Auswählen eines Hörgerätbenutzers und Abrufen der entsprechenden Hörgerätbenutzeridentifikationen,
Système d'adaptation de prothèse auditive, conçu pour l'adaptation à distance d'un système de prothèse auditive, comprenant un premier client, un dispositif externe, un serveur de commande, un système de prothèse auditive et un moyen de liaison conçu pour permettre au premier client, au dispositif externe, au serveur de commande et au système de prothèse auditive de communiquer, dans lequel ledit premier client comprend un logiciel d'adaptation conçu pour adapter une prothèse auditive en se basant sur un profil d'utilisateur de prothèse auditive sélectionné ayant une identification d'adaptation pour coder le protocole utilisé pour la transmission dans ledit canal de communication direct entre le premier client et le dispositif externe, dans lequel le système d'adaptation de prothèse auditive est conçu de sorte que des données utilisées pour ajuster le système de prothèse auditive sont transmises en utilisant le premier client, le canal de communication direct et le dispositif externe.

2. Système d'adaptation de prothèse auditive selon la revendication 1, dans lequel ledit premier client comprend un moyen formant gestionnaire de logiciel d'adaptation pour coder le protocole utilisé pour la transmutation dans ledit canal de communication en un protocole approprié pour communication avec le système de prothèse auditive.

3. Système d'adaptation de prothèse auditive selon la revendication 1 ou 2, dans lequel ledit moyen de redirection de dispositif externe comprend un moyen formant gestionnaire de logiciel de dispositif externe conçu pour coder le protocole utilisé pour la transmission dans ledit canal de communication en un protocole approprié pour communication avec le système de prothèse auditive.

4. Système d'adaptation de prothèse auditive selon l'une quelconque des revendications précédentes, dans lequel ladite identification de dispositif unique est une identification de système de prothèse auditive unique qui a été retrouvée par ou codée dans le dispositif externe.

5. Système d'adaptation de prothèse auditive selon l'une quelconque des revendications 1 à 3, dans lequel ladite identification de dispositif unique est une identification de dispositif externe unique.

6. Système d'adaptation de prothèse auditive selon l'une quelconque des revendications précédentes, dans lequel le protocole Ethernet est utilisé pour coder les données transmises sur ledit canal de communication.

7. Système d'adaptation de prothèse auditive selon l'une quelconque des revendications précédentes, dans lequel ledit premier client comprend deux parties secondaires, un premier client secondaire comprenant un moyen de connexion d'adaptation, une interface utilisateur graphique correspondante et le moyen formant logiciel de connexion d'adaptation.

8. Système d'adaptation de prothèse auditive selon la
revendication 7, dans lequel ledit premier client secondaire comprend un point d’accès Ethernet sans fil de sorte que ledit dispositif externe peut se connecter à Internet par l’intermédiaire dudit premier client secondaire.

9. Système d’adaptation de prothèse auditive selon la revendication 7 ou 8, dans lequel ledit premier client secondaire est un téléphone intelligent ou une tablette PC.

10. Système d’adaptation de prothèse auditive selon l’une quelconque des revendications précédentes, dans lequel ledit système d’adaptation est conçu pour fournir et installer des données comprenant des mises à jour de logiciel de système de prothèse auditive.

11. Procédé d’adaptation d’un système de prothèse auditive comprenant les étapes de :

- fourniture d’un premier client, d’un dispositif externe, d’un serveur de commande et d’un système de prothèse auditive,
- fourniture d’une identification d’utilisateur de prothèse auditive unique,
- stockage d’un ensemble d’identifications appariées d’utilisateur de prothèse auditive et de dispositif dans le serveur de commande,
- utilisation du premier client pour sélectionner un utilisateur de prothèse auditive et récupérer l’identification d’utilisateur de prothèse auditive correspondante,
- utilisation du premier client pour fournir une identification d’utilisateur de prothèse auditive unique au serveur de commande et demander au serveur de commande de récupérer l’identification de dispositif qui est appariée avec l’identification d’utilisateur de prothèse auditive sélectionnée,
- utilisation du premier client pour demander au serveur de commande d’établir un canal de communication entre le premier client et le dispositif externe correspondant à l’identification de dispositif retrouvée,
- utilisation du serveur de commande pour établir un canal de communication entre le premier client et le dispositif externe,
- utilisation du premier client, du canal de communication et du dispositif externe pour adapter à distance le système de prothèse auditive.

12. Procédé selon la revendication 11, dans lequel ledit canal de communication est établi en utilisant in ma triçage d’emplacement (hole punching) TCP (Protocole de Commande de Transmission) ou UDP (Protocole de Datagramme Utilisateur), induit par le serveur de commande.
Fig. 1
Fig. 2
Hearing aid User database server

Hearing aid fitting software

Fitting connection software

Fitting software driver

Hearing aid system

Control server

Web browser

Access point

External device connection software

External device software driver

Fig. 3
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- DE 19600234 A1 [0005]
- DE 29905172 U1 [0006]
- WO 2011128462 A2 [0007] [0008] [0009] [0010]