A component mounter mounting head holding device for detachably holding a mounting head 12 to a head holding section 11 of a component munter comprising: pin to be engaged 17 provided on connection section 15 for head holding section 11 of mounting head 12; engaging member 13 provided on head holding section 11 which moves between an engagement position for holding mounting head 12 in which engaging member 13 is engaged with pin to be engaged 17 and a release position in which engaging member 13 is separated from the pin to be engaged 17; and air cylinder 18 provided on head holding section 11 which is the power source for moving engaging member 13 between the engagement position and the release position. When attaching/detaching mounting head 12 to/from head holding section 11, head holding section 11 is rotated to a position in which engaging member 13 can pass by the side of pin to be engaged 17.
Description

Technical Field

[0001] The present invention relates to a component mounter mounting head holding device which detachably holds a mounting head for mounting components on a circuit board to a head holding section of a component mounter.

Background Art

[0002] The component mounter given in patent literature 1 (Japanese Patent Publication Number 4546857) comprises a mounting head holding multiple suction nozzles, wherein the mounting head is attached and held to a head holding section of a component mounter using negative air pressure in order to be capable of being automatically exchanged according to circumstances such as the type, shape, and size of components.

Citation List

Patent Literature


Summary of Invention

Problem to be Solved by the Invention

[0004] The speed of recent component mounters continues to increase more and more in order to enhance productivity, and the inertial force acting on mounting heads during operation of component mounters is getting larger. Due to this, as in patent literature 1, with configurations which attach and hold mounting heads to the head holding section of a component mounter with negative air pressure, the holding force of the mounting head is insufficient, so the mounting head may slip on the attachment surface of the head holding section while the component mounter is operating causing the position to deviate so that component pickup defects or mounting defects occur, or the mounting head may fall off.

[0005] Therefore, the object of the present invention is a component mounter mounting head holding device which prevents a mounting head that is detachably held to a head holding section of a component mounter from deviating positionally or falling off.

Means for Solving the Problem

[0006] To solve the above problem, the present invention is a component mounter mounting head holding device for detachably holding a mounting head which mounts components to a circuit board to a head holding section of a component mounter, comprising: a member to be engaged provided on the connecting section for the head holding section of the mounting head; an engaging member provided on the head holding section which moves between an engagement position for holding the mounting head in which the engaging member is engaged with the member to be engaged and a release position in which the engaging member is separated from the member to be engaged; and an air cylinder provided on the head holding section which is the power source for moving the engaging member between the engagement position and the release position. With this configuration, a mounting head can be held mechanically on the head holding section by the engaging member of the head holding section being engaged with the member to be engaged, the holding power of the mounting head can be increased more than conventional negative pressure attachment power, and it is possible to prevent a mounting head which is detachably held to the head holding section from deviating positionally or falling off.

[0007] Here, it is preferable to form the engaging member of the head holding section in an L-shape or J-shape which holds the member to be engaged of the mounting head by hooking it from underneath.

[0008] Also, the engaging member may be provided on the head holding section so that it is capable of being moved up and down with the uppermost position and lowermost position of that movement stroke being the engagement position and release position respectively. With this configuration, when attaching/detaching the mounting head to/from the head holding section, if the respective positions of the head holding section and the mounting head are not shifted, it is not possible for the engaging member of the head holding section to pass by the side of the member to be engaged of the mounting head. Because the head holding section of a component mounter is generally configured to be capable of being rotated around its center axis (Z axis) by a rotating mechanism, if that rotating mechanism is used, the respective positions of the head holding section and the mounting head can be shifted and the mounting head can be attached/detached to/from the head holding section.

[0009] Specifically, when attaching a mounting head to the head holding section, it is acceptable, together with holding the engaging member in the release position using an air cylinder and having the head holding section rotated to a position in which the engaging member can pass by the side of the member to be engaged, to lower the head holding section so that it is face-to-face with the mounting head, and then, by raising the engaging member to the engagement position using the air cylinder after rotating the head holding section so that the lower section of the engaging member is below the member to be engaged, engaging the engaging member with the member to be engaged and attaching the mounting head to the head holding section. Conversely, when detachting a mounting head from the head holding section, it is acceptable to rotate the head holding section to a position...
in which the engaging member can pass by the side of the member to be engaged after lowering the engaging member to the release position using an air cylinder, and then detach the mounting head from the head holding section by raising the head holding section.

Alternatively, the configuration may be such that the engaging member is provided on the head holding section so that it is capable of being rotated around a rotating axis, with one direction position of that rotation stroke and another direction position thereof being the engagement position and release position respectively. With this configuration, when attaching/detaching the mounting head to/from the head holding section, even if the respective positions of the head holding section and the mounting head are not shifted, if the engaging member of the head holding section is held in a state rotated to the release position, it is possible for the engaging member of the head holding section to pass by the side of the member to be engaged of the mounting head, and the mounting head can be attached/detached.

With this configuration it is acceptable, when attaching a mounting head to the head holding section, with the engaging member in a state rotated to and held in the release position using an air cylinder, after lowering the head holding section so that it is face-to-face with the mounting head, for the engaging member to be engaged with the member to be engaged and the mounting head to be attached to the head holding section by rotating the engaging member to the engagement position using the air cylinder. Conversely, when detaching a mounting head from the head holding section, it is acceptable to detach the mounting head from the head holding section by raising the head holding section after rotating the engaging member to the release position using an air cylinder.

Also, for the present invention, it is also preferable to provide an elastic member for biasing the engaging member in the engagement position direction on the head holding section. By doing this, the power of the air cylinder used to hold the engaging member and the member to be engaged in an engaged state can be supplemented by the elastic force of the elastic member and the holding capacity of the mounting head can be enhanced.

Further, the mounting head which is detachably held to a head holding section may be a rotary head with multiple suction nozzles for picking up components arranged in a circumferential direction at predetermined intervals, a mounting head with only one large suction nozzle attached, or a mounting head with a chuck for grabbing components attached.

Description of Embodiments

The following describes two modes for carrying out the invention, embodiment 1 and embodiment 2.

Embodiment 1

This describes embodiment 1 of the present invention based on FIG. 1 to FIG. 6. Multiple (for example, four) engaging members 13 for detachably engaging and holding mounting head 12 (refer to FIG. 2) are provided movably in the up/down direction on head holding section 11 of the component mounter. Although not shown in the figures, head holding section 11 is configured such that, as well as being capable of being moved in the XYZ directions by an XYZ moving mechanism, is capable of
Multiple engaging members 13 are formed respectively as L-shapes or J-shapes and are arranged at even intervals in a circumferential direction with the center axis (Z axis) of head holding section 11 as the center, and the direction of claw section 13a of each engaging member 13 is arranged so as to be facing in the same direction as the normal rotational direction (or the reverse rotational direction) of head holding section 11.

As shown in FIG. 2, multiple elongated holes 16 are formed at even intervals in a circumferential direction on connecting section 15 for the head holding section 11 of mounting head 12 in order for each engaging member 13 of head holding section 11 to pass through, and pin to be engaged 17 which is a member to be engaged that is engaged by claw section 13a of engaging member 13 is fixedly penetrating on one side of each elongated hole 16 in the radial direction of mounting head 12. To the side of pin to be engaged 17 of each elongated hole 16, a gap is maintained so that engaging member 13 can pass by in the up/down direction.

As shown in FIG. 3 and FIG. 5, air cylinders 18 for moving each engaging member 13 respectively in the up/down direction are provided close to each engaging member 13 of head holding section 11. Engaging member 13 is connected via arm 20 to piston 19 of each air cylinder 18, piston 19 is moved up/down and engaging member 13 moves in the up/down direction, and the uppermost position and lowermost position of that movement stroke are the engagement position and release position respectively.

As shown in FIG. 3 and FIG. 4, when engaging member 13 is raised to the engagement position, mounting head 12 is in a held state by claw section 13a of engaging member 13 hooking from the underneath pin to be engaged 17. Conversely, as shown in FIG. 5 and FIG. 6, when engaging member 13 is lowered from the engagement position to the release position, claw section 13a of engaging member 13 moves under pin to be engaged 17 and the engagement is released.

Spring 21 (elastic member) such as a compression coil spring for biasing piston 19 in the up direction which is the engagement position direction is provided below piston 19 of each air cylinder 18. Further, it is acceptable to provide the elastic member such as a spring for biasing engaging member 13 in the engagement position direction close to engaging member 13. The space above and the space below piston 19 of each air cylinder 18 are respectively configured such that it is possible to switch between a state connected to a compressed air supply system for supplying compressed air and a state connected to an exhaust system for exhausting air.

If compressed air is supplied to the space below piston 19 of air cylinder 18 with the space above piston 19 in a state connected to an exhaust system, as shown in FIG. 3 and FIG. 4, piston 19 is pushed up by the pressure of the compressed air and the elastic force of spring 21 such that engaging member 13 rises to the engagement position. And, if compressed air is supplied to the space above piston 19 with the space below piston 19 in a state connected to an exhaust system, as shown in FIG. 5 and FIG. 6, piston 19 is pushed down against the elastic force of spring 21 by the pressure of the compressed air such that engaging member 13 lowers to the release position.

Further, the configuration may be such that negative pressure (vacuum pressure) is supplied instead of compressed air to the space above and the space below piston 19 of each air cylinder 18, in which case it is acceptable to supply negative pressure to the space above piston 19 when raising engaging member 13 to the engagement position and to supply negative pressure to the space below piston 19 when lowering engaging member 13 to the release position.

Next, the following describes the usage method of the mounting head holding device of the above configuration. When attaching mounting head 12 to head holding section 11, together with moving head holding section 11 above mounting head 12 loaded in the mounting head exchange station of the component mounter, piston 19 of air cylinder 18 is pushed down against the elastic force of spring 21 such that engaging member 13 is held in a state lowered to the release position, and head holding section 11 is rotated to a position in which it is possible for claw section 13a of engaging member 13 to pass by the side of pin to be engaged 17. In this state, after lowering head holding section 11 to be facing mounting head 12 with claw section 13a of engaging member 13 lowered to be lower than pin to be engaged 17, head holding section 11 is rotated and, as shown in FIG. 5 and FIG. 6, claw section 13a of engaging member 13 is made to be in a position below pin to be engaged 17. After this, as shown in FIG. 3 and FIG. 4, claw section 13a of engaging member 13 is engaged with pin 17 to be engaged by raising piston 19 of air cylinder 18 and raising engaging member 13 to the engagement position. By this, mounting head 12 becomes attached to head holding section 11.

Conversely, when detaching mounting head 12 from head holding section 11, after moving head holding section 11 above mounting head exchange station and loading mounting head 12 held by head holding section 11 into the mounting head exchange station, as shown in FIG. 5 and FIG. 6, piston 19 of air cylinder 18 is pushed down against the elastic force of spring 21 such that engaging member 13 is lowered to the release position and claw section 13a of engaging member 13 is made to be separated from pin to be engaged 17 on the lower side. In this state, head holding section 11 is raised after head holding section 11 is rotated to a position in which engaging member 13 can pass by the side of pin to be
engaged 17. By this, mounting head 12 is detached from head holding section 11 and remains in the mounting head exchange station.

With embodiment 1 described above, because the configuration is such that mounting head 12 is held mechanically on head holding section 11 by engaging member 13 of head holding section 11 being engaged with pin to be engaged 17 of mounting head 12, the holding power of mounting head 12 can be increased more than conventional negative pressure attachment power, and it is possible to prevent mounting head 12 which is detachably held to head holding section 11 from deviating positionally or falling off even when electricity is not being supplied.

Embodiment 2

Next, this describes embodiment 2 of the present invention based on FIG. 7 to FIG. 11. However, for sections which are practically the same as embodiment 1, the same symbols are used and explanations are omitted or abbreviated, with the sections which are largely different being described.

In embodiment 1 above, the configuration was such that multiple engaging members 13 were provided on head holding section 11 capable of being moved up and down, but with embodiment 2 shown in FIG. 7 to FIG. 11, multiple engaging members 31 are provided on head holding section 11 capable of being rotated in a perpendicular direction to pin to be engaged 17 via rotational axis 32, with one direction (the pin to be engaged 17 side) position and another direction position of that rotation stroke being the engagement position and release position respectively. Each engaging member 31 is formed as a whole in a roughly chevron shape, with the bend section thereof penetrated by rotational axis 32, with the lower section of engaging member 31 formed in an L-shape or J-shape, the tip of which is claw section 31a for engaging with pin to be engaged 17, and with the upper section of engaging member 31 extending above air cylinder 18, in the tip of which is formed elongated hole 33, with this elongated hole 33 engaged in a freely sliding manner with fixed pin 34 which is fixed to piston 19 of air cylinder 18. By this, engaging member 31 is rotated between the engagement position and the release position by moving piston 19 of air cylinder 18 up/down. Spring 35 such as a torsion coil spring which is an elastic member for biasing engaging member 31 in the direction of the engagement position is provided on head holding section 11 close to each engaging member 31. Further, it is acceptable to provide the elastic member such as a spring for biasing engaging member 31 in the engagement position direction inside air cylinder 18.

Next, the following describes the usage method of the mounting head holding device of the above configuration. When attaching mounting head 12 to head holding section 11, together with moving head holding section 11 above mounting head 12 loaded in the mounting head exchange station of the component mounter, as shown in FIG. 11, piston 19 of air cylinder 18 is pushed down against the elastic force of spring 35 such that engaging member 31 is held in a state rotated to the release position. In this state, after lowering head holding section 11 to be facing mounting head 12, as shown in FIG. 9, claw section 31a of engaging member 31 is engaged with pin to be engaged 17 by raising piston 19 of air cylinder 18 and rotating engaging member 31 to the engagement position. By this, mounting head 12 becomes attached to head holding section 11.

Conversely, when detaching mounting head 12 from head holding section 11, after moving head holding section 11 above the mounting head exchange station and loading mounting head 12 held by head holding section 11 into the mounting head exchange station, as shown in FIG. 11, after piston 19 of air cylinder 18 is pushed down such that engaging member 31 is held in a state rotated to the release position against the elastic force of spring 35, head holding section 11 is raised. By this, mounting head 12 is detached from head holding section 11 and remains in the mounting head exchange station.

With embodiment 2 described above, when attaching/detaching mounting head 12 to/from head holding section 11, even if head holding section 11 is not rotated with respect to mounting head 12, if engaging member 31 of head holding section 11 is held in a state rotated to the release position, it is possible for engaging member 31 of head holding section 11 to pass by the side of pin to be engaged 17 of mounting head 12, and the attachability/detachability of mounting head 12 can be improved.

Further, mounting head 12 which is detachably held to head holding section 11 is not limited to being a rotary head, and may be a mounting head with only one large suction nozzle attached, or a mounting head with a chuck for grabbing components attached.

In addition, the present invention may be embodied with various changes that do not extend beyond the scope of the invention, such as changing the quantity of engaging members and members to be engaged, or changing the form of the engaging members and members to be engaged.

Symbol descriptions:

11: Head holding section; 12: Mounting head; 13: Engaging member; 13a: Claw section; 15: Connecting section; 16: Elongated hole; 17: Pin to be engaged (member to be engaged); 18: Air cylinder; 19: Piston; 21: Spring (elastic means); 31: Engaging member; 31a: Claw section; 32: Rotating axis; 33: Elongated hole; 34: Fixed pin; 35: Spring (elastic means)
Claims

1. A component mounter mounting head holding device for detachably holding a mounting head which mounts components to a circuit board to a head holding section of a component mounter, comprising: a member to be engaged provided on a connecting section for the head holding section of the mounting head; an engaging member provided on the head holding section which moves between an engagement position for holding the mounting head in which the engaging member is engaged with the member to be engaged and a release position in which the engaging member is separated from the member to be engaged; and an air cylinder provided on the head holding section which is the power source for moving the engaging member between the engagement position and the release position.

2. The component mounter mounting head holding device from Claim 1 characterized in that the engaging member is formed in an L-shape or J-shape which hooks from underneath and holds the member to be engaged.

3. The component mounter mounting head holding device from Claim 1 or Claim 2 characterized in that the engaging member is provided so that it is capable of being moved up and down with the configuration such that the uppermost position and lowermost position of that movement stroke are the engagement position and release position respectively; and when attaching the mounting head to the head holding section, together with holding the engaging member in the release position using the air cylinder and having the head holding section rotated to a position in which the engaging member can pass by the side of the member to be engaged, the head holding section is lowered so that it is face-to-face with the mounting head, and then, by raising the engaging member to the engagement position using the air cylinder after rotating the head holding section so that the lower section of the engaging member is below the member to be engaged, the engaging member is engaged with the member to be engaged thereby attaching the mounting head to the head holding section; and when detaching the mounting head from the head holding section, the head holding section is rotated to a position in which the engaging member can pass by the side of the member to be engaged after lowering the engaging member to the release position using the air cylinder, and then the mounting head is detached from the head holding section by raising the head holding section.

4. The component mounter mounting head holding device from Claim 1 or Claim 2 characterized in that the engaging member is provided so that it is capable of being rotated around a rotating axis with the configuration such that one direction position of that rotation stroke and another direction position thereof are the engagement position and release position respectively; and when attaching the mounting head to the head holding section, with the engaging member held in the release position using the air cylinder, the head holding section is lowered so that it is face-to-face with the mounting head, and then, the engaging member is engaged with the member to be engaged by rotating the engaging member to the engagement position using the air cylinder, thereby attaching the mounting head to the head holding section; and when detaching the mounting head from the head holding section, after having rotated the engaging member to the release position using the air cylinder, the mounting head is detached from the head holding section by raising the head holding section.

5. The component mounter mounting head holding device according to any of claims 1 to 4 characterized in that an elastic member for biasing the engaging member in the engagement position direction is provided on the head holding section.

6. The component mounter mounting head holding device according to any of claims 1 to 5 characterized in that the mounting head is a rotary head with multiple suction nozzles for picking up components arranged in a circumferential direction at predetermined intervals.
Engaging member in a state engaged with pin to be engaged
Engaging member in a state lowered to release position
Engaging member in a state engaged with pin to be engaged
Cross section C-C
Engaging member in a state rotated to pin to be engaged
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
H05K13/04 (2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H05K13/00-13/04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jitsuyo Shinan Koho 1922-1996</td>
<td>2-4</td>
</tr>
<tr>
<td>Kokai Jitsuyo Shinan Koho 1971-2012 Toroku Jitsuyo Shinan Koho 1996-2012</td>
<td>2-4</td>
</tr>
</tbody>
</table>

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 3-82197 A (Sanyo Electric Co., Ltd.), 08 April 1991 (08.04.1991), page 3, upper left column, line 6 to page 5, upper right column, line 7; page 7, upper right column, line 14; fig. 3 to 9, 18 to 22 (Family: none)</td>
<td>1, 5, 6</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Special categories of cited documents:

- A document defining the general state of the art which is not considered to be of particular relevance
- E earlier application or patent but published on or after the international filing date
- L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- O document referring to an oral disclosure, use, exhibition or other means of publication prior to the international filing date but later than the priority date claimed
- P document published prior to the international filing date but later than the priority date claimed
- T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- X' document member of the same patent family

Date of the actual completion of the international search
13 February, 2012 (13.02.12)

Date of mailing of the international search report
21 February, 2012 (21.02.12)

Name and mailing address of the ISA/ Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 63-123683 A (Mitsubishi Electric Corp.), 27 May 1988 (27.05.1988),</td>
<td>1-6</td>
</tr>
<tr>
<td></td>
<td>entire text; fig. 1 to 6 (Family: none)</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (July 2009)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 4546857 B [0002] [0003]