Information processing apparatus, input control program, and input control method

A display unit (20) displays an object. A detection unit (21) detects a touch operation on the display unit. A change unit (42) widens a display space of the object while keeping a display size of the object when range selection of the object displayed on the display unit is performed through the touch operation.

FIG.4

IN TERMINAL INCLUDING INPUT APPARATUS USING TOUCH PANEL, WHEN SELECTING RANGE OF TEXT, SPACE BETWEEN EACH CHARACTER OF TEXT DISPLAYED ON SCREEN IS WIDENED.

IN MOBILE TERMINAL INCLUDING INPUT APPARATUS USING TOUCH PANEL, WHEN SELECTING RANGE OF TEXT, SPACE BETWEEN EACH CHARACTER OF TEXT DISPLAYED ON SCREEN IS WIDENED.
The embodiments discussed herein are related to an information processing apparatus, an input control program, and an input control method.

In recent years, an information processing apparatus with a touch panel has been widely used. Examples of such an information processing apparatus include a smartphone and a tablet terminal.

In this type of information processing apparatus, a range of an object displayed on a screen is selected through a touch operation. For example, in the information processing apparatus, a text is displayed on the screen as the object. To select a range of the text, a start position and an end position for range selection are selected through the touch operation.

Meanwhile, in the information processing apparatus, a size of the displayed object is optimized so that a user can view the object easily. For example, the information processing apparatus displays the text with a character size suitable for viewing by a user.

However, in the information processing apparatus, even if a user attempts to select the range of the displayed object through a touch operation, the apparatus may recognize a position different from that intended by the user, and thus, the user has sometimes difficulty in selecting the range.

Accordingly, it is an object in one aspect of an embodiment of the invention to provide an information processing apparatus, an input control program, and an input control method capable of improving the operability during range selection.

According to an aspect of an embodiment, an information processing apparatus includes: a display unit that displays an object; a detection unit that detects a touch operation on the display unit; and a change unit that widens a display space of the object while keeping a display size of the object when range selection of the object displayed on the display unit is performed through a touch operation.

Configuration of information processing apparatus

A functional configuration of an information processing apparatus 10 according to the present embodiment is described. FIG. 1 is a block diagram illustrating the functional configuration of the information processing apparatus. The information processing apparatus 10 enables, through a touch operation, various manipulations including designation of the range selection of an object displayed on a screen. As the information processing apparatus 10, for example, in addition to mobile terminals such as smartphones and personal digital assistants (PDA), a personal computer and a tablet terminal with a touch panel may also be adopted. Incidentally, the present embodiment is described based on a presumption that the information processing apparatus 10 is a smartphone.

As illustrated in FIG. 1, the information processing apparatus 10 includes a display unit 20, a detection screen; FIG. 3 is a diagram illustrating one example of a display screen; FIG. 4 is a diagram illustrating one example of a change in the display screen; FIG. 5 is a flowchart illustrating one example of a procedure of set processes according to a first embodiment; FIG. 6 is a flowchart illustrating one example of a procedure of input control processes according to the first embodiment; FIG. 7 is a diagram illustrating one example of a change in a display screen; FIG. 8 is a flowchart illustrating one example of a procedure of input control processes according to a second embodiment; FIG. 9 is a flowchart illustrating one example of a procedure of input control processes according to a third embodiment; FIG. 10 is a diagram illustrating one example of a change in the display screen; FIG. 11 is a diagram illustrating one example of a change in the display screen; FIG. 12 is a diagram illustrating one example of a change in the display screen; and FIG. 13 is a diagram illustrating a computer that executes an input control program.
unit 21, a storage unit 22, and a control unit 23. Incidentally, the information processing apparatus 10 may include various functional units of a known mobile terminal and terminal device, in addition to the functional units illustrated in FIG. 1. For example, the information processing apparatus 10 may include a network interface that communicates through a network, an antenna, a carrier communication unit that communicates through a carrier network, and a global positioning system (GPS) receiver.

[0013] The display unit 20 is a device that displays various types of information. Examples of the display unit 20 include a liquid crystal display (LCD) and a cathode ray tube (CRT). The display unit 20 displays various objects on the screen. For example, the display unit 20 displays a text on the screen as the object. The displayed text may be manipulated in various ways through the touch operation.

[0014] The detection unit 21 is a device that detects a touch operation on the display unit 20. Examples of the detection unit 21 include an input device such as a transmission type touch sensor provided on the display unit 20. The detection unit 21 detects the touch operation on the display unit 20 and outputs, to the control unit 23, information indicative of detected manipulation contents. Incidentally, although the example in FIG. 1 separates the display unit 20 and the detection unit 21 for illustrating the functional configuration, the information processing apparatus may be configured by a device such as the touch panel obtained by integrally providing the display unit 20 and the detection unit 21. Incidentally, the information processing apparatus 10 may include other input devices, such as a mouse, a keyboard, and various buttons.

[0015] The storage unit 22 is a storage device that stores various types of data. Examples of the storage unit 22 include a hard disk, a solid state drive (SSD), and an optical disc. Incidentally, the storage unit 22 may be a semiconductor memory, such as a random access memory (RAM), a flash memory, and a non-volatile static random access memory (NVSRAM), all of which allow rewriting data.

[0016] The storage unit 22 stores an operating system (OS) and various programs to be executed at the control unit 23. For example, the storage unit 22 stores various programs used for input control for the range selection. Further, the storage unit 22 stores various types of data used for executing the programs at the control unit 23. For example, the storage unit 22 stores data 30 and set data 31.

[0017] The display data 30 stores information on the object to be displayed on the screen. The present embodiment describes a case of storing text data as the object.

[0018] The set data 31 stores various types of set information. For example, the set data 31 stores information on whether a display space of the object is widened during the range selection of the object displayed on the screen.

[0019] The control unit 23 is a device that controls the information processing apparatus 10. As the control unit 23, an electronic circuit such as a central processing unit (CPU) and a micro processing unit (MPU), and an integrated circuit such as an application specific integrated circuit (ASIC) and a field programmable gate array (FPGA) may be adopted. The control unit 23 includes an internal memory for storing the program specifying a procedure of various processes and control data. The control unit 23 executes various processes using the memory. When various programs are run in the control unit 23, the control unit 23 functions as various process units. For example, the control unit 23 includes a set unit 40, a display control unit 41, and a change unit 42 as process units.

[0020] The set unit 40 is a process unit that makes various types of setting. For example, the set unit 40 sets whether the display space of the object is widened when the range selection of the object displayed on the display unit 20 is performed through the touch operation. Upon receiving a predetermined manipulation designating to make setting, the set unit 40 causes the display unit 20 to display a setting screen and allows a user to set, through the setting screen, whether the display space of the object is widened during the range selection. Then, the set unit 40 stores, in the set data 31, a selection result on the setting screen.

[0021] FIG. 2 is a diagram illustrating one example of the setting screen. A setting screen 60 includes a selection area 61 through which a user may select whether the display space of the object is widened during the range selection. If a user intends to widen the display space of the object during the range selection, the user selects the setting of widening the display space through the selection area 61. The example of FIG. 2 illustrates the selected setting of widening the display space of the object during the range selection.

[0022] Returning to FIG. 1, the display control unit 41 is the process unit that controls the display unit 20 to display various types of information. For example, the display control unit 41 controls the display unit 20 to display the object. As one example, upon receiving a predetermined manipulation designating the display of the display data 30, the display control unit 41 controls the display unit 20 to display a display screen. On the display screen, the text stored as the object in the display data 30 is displayed.

[0023] FIG. 3 is a diagram illustrating one example of the display screen. A display screen 70 includes a plurality of display areas. For example, the display screen 70 includes a status bar 71 and a desktop 72 as the display areas. The status bar 71 displays radio wave strength of the carrier network, a charging condition of a battery of the information processing apparatus 10, and clock time. The desktop 72 can display various types of information. In the example of FIG. 3, a text 73 is displayed on the desktop 72 as the object.
In the information processing apparatus 10, various manipulations are allowed by touching the display unit 20. For example, as editing of the text, the information processing apparatus 10 may select a range of the text for copying, cutting, and deleting. If a user intends to select a range of the text for copying, cutting, and deleting, the user performs a predetermined manipulation on the information processing apparatus 10, such as a long press of the desktop 72 of the display screen 70, for designating a start of the range selection.

The change unit 42 is a process unit that changes, during the range selection, the display space of the object displayed on the display unit 20. Upon receiving the predetermined manipulation designating a start of the range selection, the change unit 42 refers to the set data 31 and determines whether a user has selected the setting of widening the display space of the object during the range selection. If the user has selected the setting of widening the display space, the change unit 42 widens the display space of the object while keeping a display size of the object displayed on the display unit 20.

For example, the change unit 42 widens the space between each character of the text while keeping a character size of the text displayed on the display unit 20. As one example, the change unit 42 changes the setting of the space between each character, such as a property of the space between each character of the text, so that the space between each character of the text displayed on the display unit 20 is changed to a predetermined space. The predetermined space may be one obtained by a test and the like and stored in the set data 31. In the test, for example, the display unit 20 is made to display the object such as the text to allow a user to select the range, thereby obtaining the space improving the operability during the range selection while suppressing degradation of visibility of the object. Alternatively, the predetermined space may be, for example, an arrangement space between each key of a software keyboard of the information processing apparatus 10. For example, in the information processing apparatus 10, if a software keyboard having a QWERTY keyboard layout is displayed for an input, the predetermined space may be an arrangement space between each key of the software keyboard having the QWERTY keyboard layout. Incidentally, the change unit 42 may add space between each character of the text to widen the space between each character of the text displayed on the display unit 20. Further, if a value of the display space of the object displayed on the display unit 20 is equal to or less than a predetermined value, the change unit 42 may widen the display space. This predetermined value may be, for example, the value of the above-described predetermined space, and also may be a specific value equal to or less than the value of the predetermined space. Such specific value may lead to a difficulty in selecting the range.

FIG. 4 is a diagram illustrating one example of a change in the display screen. In the example of FIG. 4, as illustrated in a text 83 on a display screen 82 on the right, the space between each character of a text 81 displayed on a display screen 80 on the left is widened with a character size maintained. Further, on the display screen 82 on the right, a start cursor 85 indicative of a start position of a selected range 84 and an end cursor 86 indicative of an end position of the selected range 84 are illustrated.

When the range selection ends, the change unit 42 returns the display space of the object displayed on the display unit 20 to the original space. More specifically, upon receiving the manipulation designating an end of the range selection, the change unit 42 returns the display space of the object displayed on the display unit 20 to the original space. For example, if the change unit 42 has changed the setting for the space between each character to change the space between each character of the text, the setting for the space between each character is returned to the original setting of when the range selection has been started. Further, if the space is added to change the space between each character of the text, the change unit 42 deletes the added space.

As described above, in the information processing apparatus 10 according to the present embodiment, the space between each character of the text is widened when the range selection of the text is performed through the touch operation by a user. This reduces the possibility that the information processing apparatus 10 may recognize positions, which are different from those intended by a user, as the start position and the end position. Therefore, the operability during the range selection may be improved.

Flow of processes

Next, the flow of various processes of the information processing apparatus 10 according to the present embodiment is described. First, with respect to the information processing apparatus 10 according to the present embodiment, a description is made for the flow of processes for setting whether the display space of the object is widened during the range selection. FIG. 5 is a flowchart illustrating one example of a procedure of the set processes according to the first embodiment. These set processes are executed when the predetermined manipulation designating to make the setting is performed.

As illustrated in FIG. 5, the set unit 40 causes the display unit 20 to display the setting screen 60 (S10). The set unit 40 determines if the setting of whether the display space of the object is to be widened has been changed through the setting screen 60 (S11). For example, the set unit 40 determines whether the setting of the selection area 61 in the setting screen 60 has been changed. If the setting has been changed (S11 Yes), the set unit 40 stores, in the set data 31, a result of the setting whether to widen the display space of the object (S12), and then, the process proceeds to S13.

If the setting has not been changed (S11 No),
the set unit 40 determines whether the end of the setting has been designated (S13). If the end of the setting has been designated (S13 Yes), the process is ended. On the other hand, if the end of the setting has not been designated (S13 No), the process returns to the above S11.

[0033] Next, with respect to the information processing apparatus 10 according to the present embodiment, a description is made for a flow of input control processes for controlling an input by a user for the range selection. FIG. 6 is a flowchart illustrating one example of a procedure of input control processes according to the first embodiment. The input control processes are executed when the predetermined manipulation designating a start of the range selection is performed.

[0034] As illustrated in FIG. 6, the change unit 42 refers to the set data 31 and determines whether the setting of widening the display space of the object during the range selection is valid (S20). If the setting of widening the display space is invalid (S20 No), the process is ended.

[0035] On the other hand, if the setting of widening the display space is valid (S20 Yes), the change unit 42 widens the space between each character of the text and causes the start cursor and the end cursor to be displayed while keeping the character size of the text displayed on the display unit 20 (S21). For example, the change unit 42 changes the space between each character of the text to that set in the set data 31.

[0036] A user changes positions of the start cursor and the end cursor to make the range selection.

[0037] The change unit 42 determines whether the range selection has been ended (S22). For example, upon receiving the manipulation designating the end of the range selection, the change unit 42 determines that the range selection has been ended. If the range selection has not been ended (S22 No), the process returns to S22 to wait for the end of the range selection. On the other hand, if the range selection has been ended (S22 Yes), the change unit 42 returns the space between each character of the text displayed on the display unit 20 to the original space (S23) to end the process.

Effects

[0038] As has been described, the information processing apparatus 10 according to the present embodiment widens the space between each character of the text while keeping the display size of the text, when the range selection of the text displayed on the display unit 20 is performed through the touch operation. Accordingly, the operability of the information processing apparatus 10 during the range selection may be improved.

[b] Second Embodiment

[0039] Next, a second embodiment is described. Since a configuration of an information processing apparatus 10 according to the second embodiment is almost the same as that of the information processing apparatus 10 according to the first embodiment illustrated in FIG. 1, different parts are mainly described.

[0040] Upon receiving a predetermined manipulation designating a start of range selection, a change unit 42 refers to set data 31 and determines whether a user has set to widen a display space of the object during the range selection. If the user has selected setting of widening the display space, the change unit 42 waits for designation of a start position for the range selection. When the start position for the range selection is designated, the change unit 42 widens the display space of the object while keeping a display size of the object, from a position a predetermined length before the designated start position. For example, while keeping a character size of a text displayed on the display unit 20, the change unit 42 widens the space between each character of the text from a position five characters before the designated start position.

[0041] FIG. 7 is a diagram illustrating one example of a change in a display screen. In an example of FIG. 7, a position 92 as a start position for the range selection is designated through a touch operation in a text 91 displayed on a display screen 90 on the left. In this case, as illustrated in a display screen 93 on the right, the space between each character of a text 94 is widened from a position 95 five characters before a character position corresponding to the position 92.

[0042] In this manner, the information processing apparatus 10 according to the present embodiment widens the space between each character of the text from the position a predetermined length before the start position for the range selection. Accordingly, in the information processing apparatus 10, the space between each character of the text part before the position, which is the predetermined length before the start position, remains the same and the space between each character viewed by a user may be maintained. Therefore, the degradation of the visibility of the text for the user may be suppressed.

Further, the information processing apparatus 10 widens the space between each character of the text, from the position the predetermined length before the start position for the range selection. Therefore, the operability during the range selection may be improved.

Flow of processes

[0043] FIG. 8 is a flowchart illustrating one example of a procedure of input control processes according to the second embodiment. Note that identical symbols used in FIG. 6 are given to the processes which are identical to the input control processes according to the first embodiment illustrated in FIG. 6 to omit the duplicate description. Thus, different processes are mainly described.

[0044] If setting of widening the display space is valid
(S20 Yes), the change unit 42 determines whether a user has designated the start position for the range selection (S30). For example, after receiving the predetermined manipulation designating the start of the range selection, the change unit 42 regards the first touched position on the display screen as the start position for the range selection, and thus, waits for detection of the touch operation on the display screen.

[0045] If the start position for the range selection has not been designated (S30 No), the process repeats S30 to wait for the designation of the start position. On the other hand, if the start position for the range selection has been designated (S30 Yes), while keeping the character size of the text, the change unit 42 widens the space between each character of the text from the position the predetermined length before the designated start position (S31).

Effects

[0046] As described above, the information processing apparatus 10 according to the present embodiment widens the space between each character of the text, from the position the predetermined length before the start position for the range selection. Accordingly, the information processing apparatus 10 according to the present embodiment may adjust the space between each character of the text to the set value stored in the set data 31. Accordingly, in selecting the range hereinafter, the apparatus changes the value of the space between each character of the text to the set value stored in the set data 31. Accordingly, in selecting the range hereinafter, the information processing apparatus 10 may display the space between each character of the text allowing a user an easy manipulation.

Third Embodiment

[0047] Next, a third embodiment is described. Since a configuration of an information processing apparatus 10 according to the third embodiment is substantially the same as that of the information processing apparatus 10 according to the first embodiment illustrated in FIG. 1 and that of the information processing apparatus 10 according to the second embodiment, different parts are mainly described.

[0048] After widening a display space of an object for range selection, if selection of a start position or an end position is repeated, a change unit 42 widens the display space of the object according to the number of repetitions. For example, after widening a space between each character of the object, every given number of times the selection of the start position or the end position is continuously repeated, the change unit 42 widens the display space of the object by a predetermined value incrementally. As one example, every three times the start cursor or the end cursor is continuously touched, the change unit 42 widens the space between each character of the text by the predetermined value incrementally.

[0049] The change unit 42 stores, in set data 31, a set value of the changed space between each character of the text. Then, hereinafter, during the range selection of the text, the change unit 42 changes a value of the space between each character of the text to the set value stored in the set data 31.

[0050] In this manner, if the selection of the start position or the end position is repeated during the range selection, the information processing apparatus 10 according to the present embodiment widens the space between each character of the text according to the number of repetitions. Accordingly, the information processing apparatus 10 may adjust the space between each character of the text to a space allowing a user an easy manipulation.

Further, the information processing apparatus 10 according to the present embodiment stores, in the set data 31, the set value of the changed space between each character of the text, in selecting the range hereinafter, the apparatus changes the value of the space between each character of the text to the set value stored in the set data 31. Accordingly, in selecting the range hereinafter, the information processing apparatus 10 may display the space between each character of the text allowing a user an easy manipulation.

Flow of processes

[0052] FIG. 9 is a flowchart illustrating one example of a procedure of input control processes according to the third embodiment. Incidentally, since identical symbols used in FIG. 8 are given to the processes identical to the input control processes according to the second embodiment illustrated in FIG. 8 to omit the duplicate description, different processes are mainly described.

[0053] If the range selection has not been ended (S22 No), the change unit 42 determines whether the selection of the start position or the end position has been continuously repeated a predetermined number of times (S40). If the selection has not been continuously repeated the predetermined number of times (S40 No), the process returns to the above S22.

[0054] On the other hand, if the selection has been continuously repeated the predetermined number of times (S40 Yes), the change unit 42 widens the space between each character of the text by a predetermined value (S41), and the process returns to the above S22.

[0055] Further, if the range selection has been ended (S22 Yes), the change unit 42 stores, in the set data 31, the set value of the space between each character of the text (S42).

Effects

[0056] As has been described, if the selection of the start position or the end position has been repeated during the range selection, the information processing apparatus 10 according to the present embodiment widens the space between each character of the text according to the number of repetitions. Accordingly, the information processing apparatus 10 may adjust the space between each character of the text to a space allowing a user an easy manipulation.

[0057] Further, the information processing apparatus
Fourth Embodiment

Descriptions have been made for the embodiments of the disclosed apparatuses, but the disclosed techniques may be carried out in various different embodiments in addition to the above described embodiments. Other embodiments included in the present invention are described below.

For example, in the above embodiments, the descriptions have been made for widening the space between each character of the text, but the disclosed apparatuses are not limited thereto. For example, the change unit 42 may widen the space between each word of the text. That is, the change unit 42 may morphologically and syntactically analyze the text displayed on the display unit 20 to determine a separation part between each word of the text and may widen the space between each word.

FIG. 10 is a diagram illustrating one example of a change in a display screen. In the example of FIG. 10, as an illustrated text 103 on a display screen 102 on the right, the space between each word of a text 101 displayed on a display screen 100 on the left is widened. In selecting the range of the text 103, a user usually selects, as a range, a combination of separated words making sentence sense. Accordingly, the information processing apparatus 10 widens the space between each word to improve the operability during the range selection.

Further, in the above embodiments, although the descriptions have been made for widening the space between each character of the text, the disclosed apparatuses are not limited thereto. For example, the space between each line of the text may be widened.

FIG. 11 is a diagram illustrating one example of a change in a display screen. For example, upon receiving a predetermined manipulation designating a start of the range selection of a text 111 on a display screen 110 on the left, the change unit 42 widens the space between each character and the space between each line while keeping the character size as illustrated in a text 113 on a display screen 112 on the right. Accordingly, even if the space between each line of the displayed text is narrow, the information processing apparatus 10 is less likely to recognize a position of an unintended line as a position of an intended line.

Further, in the above embodiments, the descriptions have been made for widening the display space of the text displayed as the object on the display unit 20, but the disclosed apparatuses are not limited thereto. For example, regarding an icon or a thumbnail as the object, the change unit 42 may widen the display space of the icon or the thumbnail while keeping the display size of the icon or the thumbnail during the range selection of the icon or the thumbnail.

FIG. 12 is a diagram illustrating one example of a change in a display screen. The example of FIG. 12 illustrates a plurality of images 121 of the icon or the thumbnail on a display screen 120 on the left. For example, when an image 121a is selected on the display screen 120 at the left side, in a display screen 122 on the right, the change unit 42 widens the display space between the images 121 from after an image 121b which is one image before the image 121a. Accordingly, even when selecting the range of the plurality of images of the displayed icon or thumbnail, the information processing apparatus 10 may improve the operability during the range selection.

Each element of each apparatus illustrated in the diagrams is functional and conceptual, and each element is not necessarily physically configured as illustrated in the diagram. In other words, specific dispersion/integration of each apparatus is not limited to the aspect illustrated in the diagram, and all apparatuses or a part thereof may be functionally or physically dispersed/integrated in any unit according to a load and a use condition of each apparatus. For example, the processes such as the set unit 40, the display control unit 41, and the change unit 42 in the information processing apparatus 10 may be appropriately dispersed/integrated in any unit according to a load and a use condition of each apparatus. Furthermore, all or any one part of each process function of each process unit is realized using a CPU and a program to be analyzed and executed by the CPU, or may be realized as hardware with a wired logic.

Input control program

Further, pre-prepared programs may be executed in a computer system including a personal computer and a workstation to realize the various processes described in the above embodiments. Then, description is made below for one example of a computer system for executing a program having the same function as each unit in the above embodiments. FIG. 13 is a diagram illustrating a computer for executing an input control program.

As illustrated in FIG. 13, a computer 300 includes a central processing unit (CPU) 310, a hard disk drive (HDD) 320, and a random access memory (RAM) 340. The units 300 to 340 are connected with each other through a bus 400.

The HDD 320 pre-stores an input control program 320a exerting functions similar to those of the set unit 40, the display control unit 41, and the change unit 42 included in the information processing apparatus 10.
above. Incidentally, the input control program 320a may be appropriately separated.

Further, the HDD 320 stores various types of information. For example, the HDD 320 stores the OS and various types of data used for input control for the range selection.

Furthermore, the CPU 310 reads the input control program 320a from the HDD 320 for executing the program, whereby the program acts similarly to each process unit in the embodiments. That is, the input control program 320a acts similarly to the set unit 40, the display control unit 41, and the change unit 42.

Incidentally, the HDD 320 does not necessarily store the above-described input control program 320a from the start.

For example, the program is stored in a "portable physical medium" such as a flexible disk (FD), a CD-ROM, a DVD disc, a magnetic optical disk, and an IC card to be inserted into the computer 300. Then, the program may be read from the medium and executed by the computer 300.

Alternatively, the program is stored in "another computer (or server)” connected to the computer 300 through a public line, the Internet, a LAN, and a WAN. Then, the program may be read from the computer or the server and executed by the computer 300.

According to an aspect of the present invention, the operability during the range selection may be improved.

Claims

1. An information processing apparatus comprising:
 a display unit (20) that displays an object;
 a detection unit (21) that detects a touch operation on the display unit; and
 a change unit (42) that widens a display space of the object while keeping a display size of the object when range selection of the object displayed on the display unit is performed through a touch operation.

2. The information processing apparatus according to claim 1, wherein
 the display unit displays a text as the object, and
 the change unit widens a space between each character of the text while keeping a character size of the text during range selection of the text.

3. The information processing apparatus according to claim 2, wherein
 the change unit widens the space between each character of the text or a space between each word of the text.

4. The information processing apparatus according to claim 2 or 3, wherein
 the change unit widens a space between each line of the text.

5. The information processing apparatus according to claim 1, wherein
 the display unit displays an icon or a thumbnail as the object, and
 the change unit widens a display space of the icon or the thumbnail while keeping a display size of the icon or the thumbnail during range selection of the icon or the thumbnail.

6. The information processing apparatus according to any one of claims 1 to 5, wherein
 the change unit widens the display space when a value of the display space of the object displayed on the display unit is equal to or less than a predetermined value.

7. The information processing apparatus according to any one of claims 1 to 6, wherein
 the change unit widens the display space of the object from a position a predetermined length before a start position for the range selection.

8. The information processing apparatus according to any one of claims 1 to 7, wherein
 when selection of the start position or an end position is repeated during the range selection, the change unit widens the display space of the object according to the number of repetitions.

9. The information processing apparatus according to claim 7, further comprising:
 a storage unit (22) that stores a set value of the display space changed by the change unit,
 wherein the change unit changes the display space of the object displayed on the display unit on which a touch operation is performed through a touch operation.

10. A computer-readable recording medium having stored therein an input control program for causing a computer to execute a process, the process comprising:
 displaying an object on a display unit widening a display space of the object while keeping a display size of the object during range selection of the object displayed on the display unit on which a touch operation is performed.

11. An input control method comprising:
 displaying an object on a display unit widening a display space of the object while keeping a display size of the object during range selection of the object displayed on the display unit on which a touch operation is performed.
selection of the object displayed on the display unit on which a touch operation is performed.
FIG. 1

INFORMATION PROCESSING APPARATUS

DISPLAY UNIT

CONTROL UNIT

SET UNIT

DISPLAY CONTROL UNIT

CHANGE UNIT

STORAGE UNIT

DISPLAY DATA

SET DATA
FIG. 2

SETTING SCREEN

WIDEN DISPLAY SPACE
IN TERMINAL INCLUDING INPUT APPARATUS USING TOUCH PANEL, WHEN SELECTING RANGE OF TEXT, SPACE BETWEEN EACH CHARACTER OF TEXT DISPLAYED ON SCREEN IS WIDENED.

IN MOBILE TERMINAL INCLUDING INPUT APPARATUS USING TOUCH PANEL, WHEN SELECTING RANGE OF TEXT, SPACE BETWEEN EACH CHARACTER OF TEXT DISPLAYED ON SCREEN IS WIDENED.
IN TERMINAL INCLUDING INPUT APPARATUS USING TOUCH PANEL, WHEN SELECTING RANGE OF TEXT, SPACE BETWEEN EACH CHARACTER OF TEXT DISPLAYED ON SCREEN IS WIDENED.

IN MOBILE TERMINAL INCLUDING INPUT APPARATUS USING TOUCH PANEL, WHEN SELECTING RANGE OF TEXT, SPACE BETWEEN EACH CHARACTER OF TEXT DISPLAYED ON SCREEN IS WIDENED.
FIG. 5

START

DISPLAY SET SCREEN

HAS SETTING BEEN CHANGED?

STORE SET RESULT

HAS SETTING ENDED?

END
FIG. 6

START

HAS RANGE SELECTION ENDED?

NO

RETURN DISPLAY SPACE TO ORIGINAL SPACE

END

IS SETTING OF WIDENING DISPLAY SPACE VALID?

NO

START

WIDEN DISPLAY SPACE

YES

YES

S23

S22

S21

S20

NO

YES
FIG. 7

IN TERMINAL INCLUDING INPUT APPARATUS USING TOUCH PANEL, WHEN SELECTING RANGE OF TEXT, SPACE BETWEEN EACH CHARACTER OF TEXT DISPLAYED ON SCREEN IS WIDENED.

IN MOBILE TERMINAL INCLUDING INPUT APPARATUS USING TOUCH PANEL, WHEN SELECTING RANGE OF TEXT, SPACE BETWEEN EACH CHARACTER OF TEXT DISPLAYED ON SCREEN IS WIDENED.
FIG. 8

START

IS SETTING OF WIDENING DISPLAY SPACE VALID?

NO

HAS START POSITION BEEN DESIGNATED?

YES

WIDEN DISPLAY SPACE FROM POSITION PREDETERMINED LENGTH BEFORE DESIGNATED POSITION

NO

HAS RANGE SELECTION ENDED?

YES

RETURN DISPLAY SPACE TO ORIGINAL SPACE

END
FIG. 9

START

IS SETTING OF WIDENING DISPLAY SPACE VALID?

YES

HAS START POSITION BEEN DESIGNATED?

NO

S30

WIDEN DISPLAY SPACE FROM POSITION PREDETERMINED LENGTH BEFORE DESIGNATED POSITION

Y

HAS RANGE SELECTION ENDED?

NO

S22

HAS SELECTION OF START POSITION OR END POSITION BEEN CONTINUOUSLY REPEATED PREDETERMINED NUMBER OF TIMES?

NO

S40

STORE DISPLAY SPACE

YES

S23

RETURN DISPLAY SPACE TO ORIGINAL SPACE

NO

S41

WIDEN DISPLAY SPACE BY PREDETERMINED VALUE

YES

END
FIG. 10

IN TERMINAL INCLUDING INPUT APPARATUS USING TOUCH PANEL, WHEN SELECTING RANGE OF TEXT, SPACE BETWEEN EACH CHARACTER OF TEXT DISPLAYED ON SCREEN IS WIDENED.

IN MOBILE TERMINAL INCLUDING INPUT APPARATUS USING TOUCH PANEL, WHEN SELECTING RANGE OF TEXT, SPACE BETWEEN EACH CHARACTER OF TEXT DISPLAYED ON SCREEN IS WIDENED.
FIG. 11

IN TERMINAL INCLUDING INPUT APPARATUS USING TOUCH PANEL, WHEN SELECTING RANGE OF TEXT, SPACE BETWEEN EACH CHARACTER OF TEXT DISPLAYED ON SCREEN IS WIDENED.

IN MOBILE TERMINAL INCLUDING INPUT APPARATUS USING TOUCH PANEL, WHEN SELECTING RANGE OF TEXT, SPACE BETWEEN EACH CHARACTER OF TEXT DISPLAYED ON SCREEN IS WIDENED.
FIG. 13

COMPUTER

RAM

CPU

HDD

INPUT CONTROL PROGRAMS
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
</table>
* column 1, lines 7-9
* column 3, lines 42-45
* column 4, lines 2-10
* column 5, lines 56-57
* column 8, lines 28-30
* column 9, lines 21-29
* figures 1,9,10 | 1,5,6,9-11 | INV.
G06F3/0488
G06F3/0484 |
* column 1, lines 5-8
* column 1, line 57 - column 2, line 1
* column 6, lines 1-5,51-53
* column 16, lines 26-44
* figure 1 | 1-4,7,8,10,11 | |
* the whole document | 1-11 | |

The present search report has been drawn up for all claims.

Place of search: Munich
Date of completion of the search: 17 July 2014
Examiner: Guitarte Pérez, J
ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 14 16 5169

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 17-07-2014.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KR 2012082102 A</td>
<td>23-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012182237 A1</td>
<td>19-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 201315359 A1</td>
<td>16-12-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013002719 A1</td>
<td>03-01-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013001157 A1</td>
<td>03-01-2013</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 2002251241 A [0004]