EUROPEAN PATENT SPECIFICATION

A light tube kit for a skylight

Lichtröhrenkit für ein Dachfenster

Kit de tube de lumière pour une lucarne

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

Priority: 15.03.2013 US 201313837229

Date of filing: 11.03.2014

Application number: 14158758.4

Date of filing: 11.03.2014

Date of publication and mention of the grant of the patent:
25.05.2016 Bulletin 2016/21

Date of publication of application:
17.09.2014 Bulletin 2014/38

Prior of: VKR Holding A/S
2970 Hørsholm (DK)

Inventors:
• Rimsky, Charles Joseph
 Greenwood, SC South Carolina SC29649 (US)
• Ronan, Joseph Jeffrey
 Greenwood, SC South Carolina SC29649 (US)
• RUHOFF, Alan John
 Greenwood, SC 29649 (US)

Representative: Awapatent A/S
Rigensgade 11
1316 Copenhagen K (DK)

References cited:
DE-U1-202005 009 483
US-B1- 6 321 493

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates generally to a sky-light light tube kit, and, more particularly, to a light tube kit for a skylight comprising a light tunnel configured from rolling a sheet upon itself and secured together with spring clips engaged through slots defined within the tube body.

A skylight includes a rooftop element through which sunlight enters the skylight structure, a diffuser at the building interior, and a channel between the rooftop element and diffuser to convey light from the first to the second.

One configuration of such a skylight is a tubular skylight, in which the channel is a tube, often of circular cross-section, which may have a reflective interior surface.

Some tubular skylights are provided with pre-assembled light tubes. However, provision of pre-assembled light tubes may be disadvantageous, in that they are bulky and therefore more expensive to transport. Furthermore, because of the thin metal with which they are often constructed, pre-assembled light tubes may be damaged during shipment or from handling.

Other designs of light tubes call for construction of the light tube on-site. Such designs are provided with the light tube initially as an unrolled sheet of material. At the installation site, the light tube is fabricated by rolling the sheet upon itself, overlapping two opposed edges, then installing screws through the overlapped edges. While offering certain advantages, such a design likewise suffers certain disadvantages. For example, it has been found that the force of feeding a screw through the rolled, overlapped sheet material is prone to deform the sheet material. Furthermore, this design can be assembled with the light tube inadvertently fixed at an improper diameter. Additionally, labor costs on-site are often the most expensive of those involved in building construction, but this design increases assembly time on-site and therefore increases labor costs.

DE 20 2005 009 483 U1 describes a component for forming a tubular connecting passage and comprising a plate element with a first and a second surface and a first and a second side edge which lie opposite one another. A set of first connecting slots is provided along the first edge, and a set of second connecting tabs is provided along the second edge. A second set of first connecting slots is provided along the first side edge and is spaced apart from the first set of connecting slots.

In response to the foregoing background, a new light tube kit for a skylight is provided. As revealed in the following description and the figures herein, this invention discovers an effective technology that simply but reliably provides for construction of a skylight tube that may be quickly constructed yet adjusted in-place to provide for a sound finished skylight system.

In accordance with certain aspects of certain embodiments of the present technology, a light tube kit for a skylight is provided that includes a light tunnel. The light tunnel is configured from a sheet member having a first edge and a second edge that is opposite the first edge. Third and fourth edges are disposed between the first and second edges. The sheet member is rolled upon itself such that the third edge overlaps the fourth edge. A first slot is defined through the sheet member proximate to the third edge and a second slot is defined through the sheet member proximate to the fourth edge. With the sheet member rolled upon itself such that the third edge overlaps the fourth edge, the first and second slots are aligned.

A spring clip is further provided. The spring clip has first and second hooks and a handle disposed between them. The first hook is disposed through the first and second slots and engaged therewith. The second hook is also disposed through the first and second slots and engaged therewith.

In particular embodiments, the first slot is par-

Summary of the Invention

Installation of a tubular skylight may proceed as follows. With new constructions, the building is first "weathered in," including installation of the exterior cover for the skylight at the building roof. Second, the interior ceiling is installed. It is only after those two steps are completed that a light tube itself is installed between the exterior cover and the interior ceiling. Similarly, in retrofitting a tubular skylight to an existing structure, the exterior cover would first be installed, then the interior diffuser would be installed in a room interior ceiling. Thereafter, a light tube would be configured between those two elements. In both instances, at least two challenges may be presented. First, precise placement of the diffuser relative to the exterior cover may be misjudged. Second, the precise length needed for the light tube between those two elements may be misjudged. In either circumstance, it would be desirable to have a light tube the components of which could provide side-to-side adjustment of the lower end relative to the upper end for those cases in which the diffusor has not been positioned exactly, relative to optimal placement with regard to the location of the exterior cover. Furthermore, it would be desirable to have a light tube that could be easily fabricated and assembled within the space, yet telescope upon itself so as to fully and completely span the distance between those two elements.
parallel to the third edge and the second slot is parallel to the fourth edge. A third slot is included, the third slot residing between the first slot and the third edge and being parallel to the first slot.

[0016] In certain embodiments, the first and second hooks open away from each other. In other embodiments, the first and second hooks open toward each other.

[0017] In some embodiments, the first hook resides in a first position relative to the second hook and is movable to a second position relative to the second hook, at such second position the first hook being biased toward the first position.

[0018] In particular embodiments, a slot is included that is proximate to the first edge. Likewise, for certain embodiments, the spring clip handle resides outboard of the light tunnel.

[0019] The invention further concerns a use of a light tube kit for a skylight according to the invention in a skylight comprising a rooftop element, a diffuser and a light tube between the rooftop element and diffuser to convey light from the rooftop element to the diffuser.

[0020] The invention further concerns a use of a light tube kit for a skylight according to the invention for installation of a tubular skylight in a new construction or in an existing building.

[0021] The invention further concerns a method for installation of a tubular skylight in a building comprising the steps of:

- installing an exterior cover for the skylight at a roof of the building,
- installing an interior diffusor in an interior ceiling of the building, and
- installing a light tube kit for a skylight according to the invention between the exterior cover and the interior diffusor.

[0022] The preceding description sets forth certain features of the present invention so that the detailed description below may be better understood and so that the contributions of this invention may be better appreciated. Additional advantages of the invention will be set forth in part in the detailed description below, and in part, may be obvious from the detailed description or may be learned by practicing the invention. The advantages of the invention will be realized by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description as well as the following detailed description are only examples and are merely explanatory, not restrictive of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] The details of the present technology, both as to its structure and operation, can be better understood with reference to the accompanying figures. It should be noted that these figures are not necessarily to scale in all instances.

Fig. 1 is a perspective view of an embodiment of a spring clip in accordance with certain aspects of the present invention;
Fig. 2 is a front elevation view of an embodiment of a spring clip in accordance with certain aspects of the present invention;
Fig. 3 is a right side elevation view of an embodiment of a spring clip in accordance with certain aspects of the present invention;
Fig. 4 is a bottom view of an embodiment of a spring clip in accordance with certain aspects of the present invention;
Fig. 5 is a perspective view of an embodiment of a spring clip in accordance with certain aspects of the present invention;
Fig. 6 is a bottom view of an embodiment of a spring clip in accordance with certain aspects of the present invention;
Fig. 7 is a plan view of an embodiment of a sheet member for a light tunnel in accordance with certain aspects of the present invention;
Fig. 8 is an enlarged perspective view of an embodiment of slots in a light tube kit for a skylight, taken at A in Fig. 7;
Fig. 9 is a perspective view of an embodiment of a light tunnel in accordance with certain aspects of the present invention;
Fig. 10 is a perspective view of an embodiment of a light tube kit for a skylight in accordance with certain aspects of the present invention;
Fig. 11 is an enlarged perspective view of an embodiment of a spring clip in a light tube kit for a skylight, taken at B in Fig. 10; and
Fig. 12 is an enlarged perspective view of an embodiment of a spring clip in a light tube kit for a skylight, taken at C in Fig. 10.
DETAILED DESCRIPTION

[0025] Selected combinations of aspects of the disclosed technology correspond to a plurality of different embodiments of the present invention. It should be noted that each of the exemplary embodiments presented and discussed herein should not insinuate limitations of the present subject matter. Features illustrated or described as part of one embodiment may be used in combination with aspects of another embodiment, to yield yet further embodiments. Certain features may be interchanged with similar devices or features not expressly mentioned, which perform the same or similar function. It is to be understood that this invention is not limited to the specific devices and methods disclosed herein unless otherwise specified. It is to be understood also that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.

[0026] A light tube kit 20 for a skylight is provided. Kit 20 includes a spring clip 30 and light tube 70.

[0027] Spring clip 30 includes a handle 40 that terminates at one end at a first stem 50 and, at the other end, at a second stem 60. Stem 50 connects handle 40 to a first hook 51 and stem 60 connects handle 40 to a second hook 61. In certain embodiments, first hook 51 includes a first shank 52, first elbow 53, and first tip 54 and second hook 61 includes a second shank 62, a second elbow 63, and a second tip 64. First hook 51 and second hook 61 may open away from each other or may open toward each other.

[0028] For installation with a light tube 70, first hook 51 and second hook 61 may be urged toward each other relative to handle 40 (if hook 51 and second hook 61 open away from each other) or urged away from each other relative to handle 40 (if hook 51 and second hook 61 open toward each other). In some embodiments, advantageously first hook 51 resides in a first position relative to second hook 61 and is movable to a second position relative to second hook 61 at which first hook 51 is biased toward the first position.

[0029] Light tube 70 may be fabricated from a sheet member. The sheet member may be of any suitable material, for example, metal. In certain embodiments, it may be desirable that at least one surface of the sheet member, that surface which will be the interior surface of light tube 70 when assembled, be coated or treated so as to be reflective of visible light.

[0030] Light tube 70 includes plural edge slots. Furthermore, in some embodiments light tube 70 includes upper end slots 81 and, in particular embodiments, includes lower end slots 82.

[0031] The sheet member for light tube 70 has a first edge 83, second edge 84, third edge 85, and fourth edge 86. The use of edge slots may be of several designs in a light tube 70.

[0032] For example, a first edge slot 80b resides, singly, proximate to third edge 85 and a second edge slot 80d resides, singly, proximate to fourth edge 86. A light tube 70 of such a design may be fabricated by rolling the sheet member upon itself so that third edge 85 overlaps fourth edge 86. First edge slot 80b is thereby aligned with second edge slot 80d. Once aligned, a spring clip 30 is used to secure third edge 85 with fourth edge 86, thereby creating a light tube 70. More particularly, a spring clip 30 with first and second hooks 51, 61 opening away from each other is interfitted into aligned edge slots 80b, 80d such that first hook 51 and second hook 61 engage through edge slots 80b, 80d. Specifically, first hook 51 wraps around one end of aligned edge slots 80b, 80d such that first shank 52 resides outboard of edge slots 80b, 80d and first tip 54 resides inboard of edge slots 80b, 80d; similarly, second hook 61 wraps around the other end of aligned edge slots 80b, 80d such that second shank 62 resides outboard of edge slots 80b, 80d and second tip 64 resides inboard of edge slots 80b, 80d; third edge 85 thereby being secured with fourth edge 86, creating a light tube 70.

[0033] A second design of edge slots may be used in a light tube 70, in alternative to or in conjunction with the design described in the preceding paragraph. With such second design, a first pair of edge slots 80aa, 80ab resides proximate to third edge 85 and a second pair of edge slots 80ca, 80cb resides proximate to fourth edge 86. Edge slot pair 80aa, 80ab includes a first edge slot 80aa parallel to a second edge slot 80ab, edge slots 80aa, 80ab residing approximately equidistant from third edge 85 (with the ends of edge slots 80aa, 80ab closest to each other understood to be the respective medial ends and the opposite ends understood to be the respective distal ends). Likewise, edge slot pair 80ca, 80cb includes a first edge slot 80ca parallel to a second edge slot 80cb, edge slots 80ca, 80cb residing approximately equidistant from fourth edge 86. A light tube 70 of such a design may be fabricated by rolling the sheet member upon itself so that third edge 85 overlaps fourth edge 86. Edge slot 80aa is thereby aligned with edge slot 80ca and edge slot 80ab is thereby aligned with edge slot 80bc. Once so aligned, a spring clip 30 is interfitted into aligned edge slots 80aa, 80ca and 80ab, 80cb. For example, with a spring clip 30 in which first hook 51 and second hook 61 open away from each other, first hook 51 wraps around the distal ends of aligned edge slots 80aa, 80ca such that first shank 52 resides outboard of edge slots 80ca, 80aa and first tip 54 resides inboard of edge slots 80ca, 80aa; similarly, second hook 61 wraps around the distal ends of aligned edge slots 80cb, 80ab and second tip 64 resides inboard of edge slots 80cb, 80ab; third edge 85 thereby being secured with fourth edge 86, creating a light tube 70. Alternatively, with a spring clip 30 in which first hook 51 and second hook 61 open toward each other, first hook 51 wraps around the medial ends of aligned edge slots 80ca, 80aa such that first shank 52 resides outboard of edge slots 80ca, 80aa and first tip 54 resides inboard of edge slots 80ca, 80aa; similarly, second hook 61 wraps around the medial
ends of aligned edge slots 80cb, 80ab such that second shank 62 resides outboard of edge slots 80cb, 80ab and second tip 64 reside inboard of edge slots 80cb, 80ab; third edge 85 thereby being secured with fourth edge 86, creating a light tube 70.

[0034] The light tube kit 20 may be further configured for telescoping a light tube 70a into a second light tube 70b. Such a configuration may be achieved as follows. Edge slots are dimensioned such that they are wider than hooks 51, 61 of spring clip 30. In one embodiment, for example, edge slots may be 3 - 4 millimeters in width whereas hooks 51, 61 may be less than two millimeters in width. So configured, the overlap of third edge 85 with fourth edge 86 may be adjusted by moving third edge 85 relative to fourth edge 86, even with spring clip 30 installed, such that light tube 70 becomes slightly tapered or frusto-conical. Such dimensioning and such latitude allows for a light tube 70 to achieve a nominal diameter, yet allows small adjustment of such diameter as circumstances may require. By adjustment of the overlap of third edge 85 with fourth edge 86, as allowed by the relative dimensioning of a slot and hooks 51, 61, light tube 70 may be tapered so as to allow one end of a light tube 70a to be inserted into another end of a second light tube 70b. Further, by including one or more slots along a first edge 83 and/or second edge 84 of each light tube 70a, 70b, once telescoped together light tubes 70a, 70b may be secured by use of a spring clip 30 interfitted between overlapping edge slots, for example, 81c, 82c, of light tubes 70a, 70b respectively.

[0035] Alternatively, or additionally, light tube kit 20 may be configured for telescoping a light tube 70a into a second light tube 70b with different designs of edge slots. A first edge slot 80b3 may be included proximate to third edge 85. A second edge slot 80b2 may be included between first edge slot 80b3 and third edge 85 and generally parallel to first edge slot 80b3. For some applications, additional edge slots, for example edge slot 80b1, may be included between second edge slot 80b2 and third edge 85. A light tube 70 of such a design may be fabricated by rolling the sheet member upon itself so that third edge 85 overlaps fourth edge 86. Edge slot 80b3 may thereby be aligned with edge slot 80d to fabricate a light tube 70 of a particular diameter, or edge slot 80b2 may thereby be aligned with edge slot 80d to fabricate a light tube 70 of a larger diameter (or edge slot 80b1 may thereby be aligned with edge slot 80d to fabricate a light tube 70 of a still larger diameter); once aligned, a spring clip 30 may be used to secure third edge 85 with fourth edge 86, thereby creating a light tube 70. Light tube 70 may thereby be selectively cylindrical or conical, depending upon user choice for a given application.

[0036] A further design of edge slots may be used in a light tube 70, in alternative to or in conjunction with the designs previously described. Particularly, a first pair of edge slots 80ae, 80af may reside proximate to third edge 85. Edge slot pair 80ae, 80af may include edge slot 80ae parallel to edge slot 80af, edge slots 80ae, 80af residing approximately equidistant from third edge 85. A second pair of edge slots 80ca, 80cb may reside proximate to fourth edge 86. Edge slot pair 80ca, 80cb may include edge slot 80ca parallel to edge slot 80cb, edge slots 80ca, 80cb residing approximately equidistant from fourth edge 86. A third pair of edge slots, 80ac, 80ad may be included between first pair of edge slots 80ae, 80af and third edge 85 and generally parallel to first pair of edge slots 80ae, 80af. For some applications, additional pairs of edge slots, for example edge slots 80aa, 80ab, may be included between third pair of edge slots, 80ac, 80ad and third edge 85. A light tube 70 of such a design may be fabricated by rolling the sheet member upon itself so that third edge 85 overlaps fourth edge 86. Edge slots 80ae, 80af may thereby be aligned with edge slots 80ca, 80cb, respectively, to fabricate a light tube 70 of a larger diameter (or edge slots 80aa, 80ab may thereby be aligned with edge slots 80a, 80cb, respectively, to fabricate a light tube 70 of a still larger diameter); once aligned, a spring clip 30 may be used to secure third edge 85 with fourth edge 86, thereby creating a light tube 70. Light tube 70 may thereby be selectively cylindrical or conical, depending upon user choice for a given application.

[0037] Figs. 1, 2, 3, and 4 illustrate one embodiment of a spring clip 30. A handle 40 is provided that terminates at a first stem 50 and a second stem 60. Stem 50 connects handle 40 to first hook 51 and stem 60 connects handle 40 to second hook 61. Handle 40 in Figs. 1 and 2 is of a particular curvilinear shape that allows for hook 51 and hook 61 to be urged toward each other for installation of spring clip 30 into a slot of a light tube 70; once so installed, spring clip 30 may be released and hooks 51, 61 will attempt to return to their original respective positions, thereby engaging in a slot of the light tube 70. The particular curvilinear geometry of the handle 40 illustrated in Figs. 1 - 4 is not by limitation; any geometry that would allow hooks 51, 61 to be interfitted into a slot of the light tube 70 and engage therethrough may be utilized. It will be observed in Figs. 1, 2, 3, and 4 that hook 51 includes a first shank 52, first elbow 53, and first tip 54. Similarly, hook 61 includes a second shank 62, second elbow 63, and second tip 64.

[0038] It will be further observed in Fig. 2 that, from a front elevation view, hooks 51, 61 reside in a single plane in some embodiments. Such a configuration may aid in the installation of a spring clip 30 into a slot of the light tube 70. It will be still further observed in Fig. 4 that, from a bottom view, first tip 54 and second tip 64 are non-parallel and instead splay, a configuration that, for certain applications, may aid in the installation of a spring clip 30 into a slot of the light tube 70.

[0039] Figs. 5 and 6 illustrate another embodiment of a spring clip 30'. A handle 40' terminates at a first stem 50' and at a second stem 60'. Stem 50' connects handle 40' to first hook 51' and stem 60' connects handle 40' to
second hook 61'. Hook 51' and hook 61' open toward each other and may be urged away from each other for installation of spring clip 30' into a pair of slots, for example 80ca, 80cb; once so installed, spring clip 30' may be released and hooks 51', 61' will attempt to return to their original respected positions, thereby engaging in pair of slots, for example 80ca, 80cb. It will be observed in Figs. 5 and 6 that hook 51' includes a first shank 52', first elbow 53', and first tip 54'. Similarly, hook 61' includes a second shank 62', second elbow 63', and second tip 64'.

Spring clip 30 or 30' may be made of metal, plastic, or other resilient material that would allow, first, for hooks 51, 61 or 51', 61' to be urged toward one another for installation into a slot of the light tube 70a and thereafter, upon release, return to an engaged position with such slot.

The subject invention further teaches that, with some applications, it may be desirable for one of first hook 51 or second hook 61 to move relative to handle 40 as the first hook 51 and second hook 61 are urged together or apart from each other for installation into a slot of the light tube 70, or in a pair of slots, for example 80ca, 80cb, as the case may be, while the other of first hook 51 or second hook 61 does not move relative to handle 40. An example of a design providing such alternative is depicted in Fig. 5, which includes relief 65 along second stem 60'. Relief 65 may be an indentation, notch, collar, or other feature that allows second hook 61' to move relative to handle 40' as the first hook 51' and second hook 61' are urged together or apart while first hook 51' does not move relative to handle 40'.

Fig. 7 depicts a sheet member for construction a light tube 70. The sheet member of light tube 70 includes a first edge 83, second edge 84, third edge 85, and fourth edge 86. In the embodiment depicted in Fig. 7, plural edge slots 80a, 80b, 80c, and 80d are illustrated. Further, plural upper end slots 81a, 81b, 81c, and 81d are illustrated. Still further, plural lower end slots 82a, 82b, 82c, and 82d are illustrated.

Fig. 8 depicts two embodiments of edge slot design, showing edge slot pairs 80aa, 80ab and 80ac, 80ad and 80ae, 80af together with edge slots 80b1, 80b2, 80b3.

Fig. 9 illustrates a light tube 70 partially-assembled from the sheet member depicted in Fig. 7. As depicted in Fig. 8, light tube 70 has been fabricated by rolling the sheet member upon itself so that third edge 85 overlaps fourth edge 86. Edge slots 80ca and 80cb have been aligned with edge slots 80aa, 80ab, or edge slots 80ac, 80ad, or edge slots 80ae, 80af (not shown). Further, edge slot 80d has been aligned with edge slot 80b1, 80b2, or 80b3 (not shown). For illustration, the first edge 83, along with upper end slots 81a, b, and lower end slot 82a, are depicted.

Fig. 10 depicts an embodiment of a completed light tube kit 20 for a skylight. In the embodiment shown, light tube 70a has been fabricated by rolling a sheet member upon itself and secured with spring clips 30a, b. First edge 83a of light tube 70a is shown. Similarly, a second light tube 70b has been similarly fabricated; first edge 83b of light tube 70b is illustrated. In the kit depicted in Fig. 7, second edge (not shown) of light tube 70a has been inserted within light tube 70b beyond first edge 83b of light tube 70b. Light tubes 70a, 70b have then been secured together by use of spring clip 30i engaged in an upper edge slot. In similar fashion, light tube 70b has been inserted within light tube 70c and light tube 70c has been inserted within light tube 70d. The edge slot design alternatives described above, and/or the relative sizing of spring clip 30 to the dimensions of a slot, allow light tube 70a, 70b, 70c, and 70d to be adjusted such that they are slightly tapered and thereby can be telescoped one into another. Further, considering the relative dimensioning of spring clips 30, 30j, and 30k, light tubes 70a, 70b, 70c, and 70d may be laterally adjusted relative to another, such that first edge 83a of light tube 70a is not aligned directly with second edge 84d of light tube 70d; such side-to-side adjustment of the position of first edge 83a relative to second edge 84d would allow for more complete and sound connection between an upper skylight cover and a lower skylight diffuser that had not been positioned as aligned exactly with one another.

Fig. 11 depicts a spring clip 30 engaged with an upper slot 81 and a lower slot (not visible). For installation, stem 50 and stem 60 have been urged toward one another, along with their respective hooks 51 and 61 with hooks 51, 61 then inserted through the upper slot 81 and the lower slot. Spring clip 30 was then released, with hooks 51, 61 engaged in the upper and lower slots. It will be seen that Fig. 8 depicts elbows 53, 63 residing against the distal edges of upper slot 81.

Fig. 12 depicts a spring clip 30' engaged with an upper slot pair 80ca, 80cb. For installation, stem 50' and stem 60' have been urged away from one another, along with their respective hooks 51' and 61' with hooks 51', 61' then inserted through slot 80ca and slot 80cb, respectively. Spring clip 30' was then released, with hooks 51', 61' engaged in slots 80ca, 80cb. It will be seen that Fig. 8 depicts shanks 52', 62' residing against the medial edges of slots 80ca, 80cb.

From this disclosure, a new light tube kit for a skylight is provided. The kit provides for installation of a tubular skylight either in new construction or into an existing building. Even in those circumstances in which the exterior cover and interior diffusor have already been installed, with the light tube to be fitted last, the present invention provides a light tube kit that may be quickly constructed and yet adjusted in-place to provide for a sound finished skylight system. The system allows for a measure of side-to-side adjustment of the lower end relative to the upper end for those cases in which the interior diffusor has not been positioned exactly relative to the exterior cover. Further, the kit provides a light tube that is easily fabricated and assembled, yet can telescope upon itself so as to fully and completely span the distance between the upper cover and the lower diffusor.
The embodiments of the present invention described above are not exhaustive nor do they limit the invention to the precise forms disclosed. Rather, the described embodiments are chosen so that others skilled in the art to which this invention pertains may appreciate and understand the principles and practice of the present invention. The scope of the present invention fully encompasses other embodiments that may become obvious to those skilled in the art and is, accordingly, to be limited by nothing more than the appended claims.

For instance, in accordance with yet additional aspects of other embodiments of the present technology, a skylight tunnel kit is provided. The kit includes a quadrilateral sheet that defines first and second slots there-through proximate to its perimeter. The sheet may be rolled upon itself to form a tube body, such that the first and second slots are aligned.

A spring clip may be provided, having first and second hooks. This spring clip may be interfitted with the aligned slots by engaging the first hook through the first and second slots to secure the first and second slots together.

In specific embodiments, the first and second hooks open away from each other. In other embodiments, the first and second hooks open toward each other.

In certain embodiments, the first hook resides in a first position relative to the second hook and be movable to a second position relative to the second hook, at such second position the first hook being biased toward the first position.

In particular embodiments, the handle resides outboard of the light tunnel.

In accordance with still further aspects of other embodiments of the present technology, a skylight tunnel combination is provided. The combination includes first and second rectangular sheets, each rectangular sheet having two edge slots and one end slot defined there-through. Each rectangular sheet may be rolled upon itself such that the two edge slots align. A first spring clip may be provided, the first spring clip having first and second hooks, the first hook being disposed through the two aligned edge slots and engaged therewith. Further, the first rectangular sheet may be telescoped into the second rectangular sheet such that the end slot defined through the first rectangular sheet aligns with the end slot defined through the second rectangular sheet. A second spring clip may be provided, the second spring clip having first and second hooks, the first hook disposed through the end slot defined through the first rectangular sheet and the end slot defined through the second rectangular sheet, and engaged therewith.

In particular embodiments, the first hook resides in a first position relative to the second hook and be movable to a second position relative to the second hook, at such second position the first hook being biased toward the first position. In some embodiments, the first and second hooks of the spring clips open away from each other and, in other embodiments, the first and second hooks open toward each other; examples of each embodiment may be used in a single skylight tunnel kit.

Claims

1. A light tube kit (20) for a skylight comprising:

 - a light tunnel (70), the light tunnel (70) being configured from a sheet member having a first edge (83) and a second edge (84) opposite the first edge (83), with opposed third (85) and fourth (86) edges disposed between the first (83) and second (84) edges, the sheet member being rolled upon itself such that the third edge (85) overlaps the fourth edge (86);
 - a first (80b) defined through the sheet member proximate to the third edge (85) and a second slot (80d) defined through the sheet member proximate to the fourth edge (86), the first (80b) and second (80d) slots being aligned;
 - a spring clip (30, 30'), the spring clip (30, 30') having first (51, 51') and second (61, 61') hooks and a handle (40, 40') disposed therebetween; and
 - the first hook (51, 51') being disposed through the first and second slots (80b, 80d) and engaged therewith.

2. The light tube kit for a skylight of Claim 1, wherein the second hook (61, 61') is disposed through the first and second slots (80b, 80d) and engaged therewith.

3. The light tube kit for a skylight of Claim 1, wherein the first slot is parallel to the third edge and the second slot is parallel to the fourth edge.

4. The light tube kit for a skylight of Claim 1, further including a third slot (80b2) residing between the first slot and the third edge and being parallel to the first slot.

5. The light tube kit for a skylight of Claim 1, further including a third slot (80a) parallel to the first slot (80b) and residing equidistant from the third edge (85) with the first slot and a fourth slot (80c) parallel to the second slot (80d) and residing equidistant from the fourth edge (86) with the second slot.

6. The light tube kit for a skylight of Claim 5, in which the second hook (61, 61') is disposed through the third and fourth slots (80a, 80c) and engaged therewith.

7. The light tube kit for a skylight of Claim 1, wherein the first and second hooks are open away from each other and, in other embodiments, the first and second hooks open toward each other; examples of each embodiment may be used in a single skylight tunnel kit.
8. The light tube kit for a skylight of Claim 1, wherein the first and second hooks are open toward each other.

9. The light tube kit for a skylight of Claim 1, wherein the first hook resides in a first position relative to the second hook, the first hook being movable to a second position relative to the second hook at which the first hook is biased toward the first position.

10. The light tube kit for a skylight of Claim 1, further including a slot (81a, 81b, 81c, 81d) proximate to the first edge.

11. The light tube kit for a skylight of Claim 1, wherein the handle resides outboard of the light tunnel.

12. Use of a light tube kit (20) for a skylight according to any one of claims 1 to 11 in a skylight comprising a rooftop element, a diffusor and a light tube between the rooftop element and diffuser to convey light from the rooftop element to the diffusor.

13. Use of a light tube kit (20) for a skylight according to any one of claims 1 to 11 for installation of a tubular skylight in a new construction or in an existing building.

14. Method for installation of a tubular skylight in a building comprising the steps of:

 installing an exterior cover for the skylight at a roof of the building,
 installing an interior diffusor in an interior ceiling of the building, and
 installing a light tube kit (20) for a skylight according to any one of claims 1 to 11 between the exterior cover and the interior diffusor.

15. A skylight comprising a rooftop element through which sunlight enters the skylight, a diffusor at a building interior, and a light tube kit (20) for a skylight according to any one of claims 1 to 11 between the rooftop element and the diffusor to convey light from the rooftop element to the diffusor.

Patentansprüche

1. Lichtröhrenbausatz (20) für ein Oberlicht, umfassend:

 einen Lichttunnel (70), wobei der Lichttunnel (70) aus einem flächigen Element aufgebaut ist, das eine erste Kante (83) und eine zweite Kante (84) gegenüberliegend zu der ersten Kante (83) aufweist, wobei gegenüberliegende dritte (85) und vierte (86) Kanten zwischen der ersten (83) und der zweiten (84) Kante angeordnet sind, wobei das flächige Element auf sich selbst gerollt ist, so dass die dritte Kante (85) die vierte Kante (86) überlappt, einen ersten Schlitz (80b), der durch das flächige Element in der Nähe der dritten Kante (85) ausgebildet ist, und einen zweiten Schlitz (80d), der durch das flächige Element nahe der vierten Kante (86) ausgebildet ist, wobei der erste (80b) und der zweite (80d) Schlitz ausgerichtet sind, einen Federbügel (30, 30'), wobei der Federbügel (30, 30') erste (51, 51') und zweite (61, 61') Haken und einen Griff (40, 40') aufweist, der dazwischen angeordnet ist, und wobei der erste Haken (51, 51') durch den ersten und zweiten Schlitz (80b, 80d) angeordnet und damit in Eingriff ist.

2. Lichtröhrenbausatz für ein Oberlicht nach Anspruch 1, wobei der erste Haken (51, 51') durch den ersten und zweiten Schlitz (80b, 80d) angeordnet und damit in Eingriff ist.

3. Lichtröhrenbausatz für ein Oberlicht nach Anspruch 1, wobei der erste Schlitz parallel zu der dritten Kante und der zweite Schlitz parallel zu der vierten Kante ist.

4. Lichtröhrenbausatz für ein Oberlicht nach Anspruch 1, ferner mit einem dritten Schlitz (80b2), der zwischen dem ersten Schlitz und der dritten Kante liegt und parallel zu dem ersten Schlitz ist.

5. Lichtröhrenbausatz für ein Oberlicht nach Anspruch 5, in dem der zweite Haken (61, 61') durch den dritten und vierten Schlitz (80a, 80c) angeordnet und damit in Eingriff ist.

6. Lichtröhrenbausatz für ein Oberlicht nach Anspruch 5, in dem der zweiten Haken (61, 61') und der dritten Schlitz (80b), der parallel zu dem ersten Schlitz (80b) ist und äquidistant zu der dritten Kante (85) mit dem ersten Schlitz liegt, und einem vierten Schlitz (80c), der parallel zu dem zweiten Schlitz (80d) ist und äquidistant zu der vierten Kante (86) mit dem zweiten Schlitz liegt.

7. Lichtröhrenbausatz für ein Oberlicht nach Anspruch 5, ferner mit einem dritten Schlitz (80b2), der parallel zu dem ersten Schlitz (80b) ist und äquidistant zu der dritten Kante (85) mit dem ersten Schlitz liegt.

8. Lichtröhrenbausatz für ein Oberlicht nach Anspruch 5, ferner mit einem dritten Schlitz (80b2), der parallel zu dem ersten Schlitz (80b) ist und äquidistant zu der dritten Kante (85) mit dem ersten Schlitz liegt.

9. Lichtröhrenbausatz für ein Oberlicht nach Anspruch 1, wobei die ersten und zweiten Haken weg voneinander geöffnet sind.

10. Lichtröhrenbausatz für ein Oberlicht nach Anspruch 1, wobei die ersten und zweiten Haken zueinander offen sind.

11. Lichtröhrenbausatz für ein Oberlicht nach Anspruch 1, wobei die ersten und zweiten Schlitz (80b, 80d) angeordnet und damit in Eingriff ist.
1. wobei der erste Haken in einer ersten Position relativ zu dem zweiten Haken liegt, wobei der erste Haken in eine zweite Position relativ zu dem zweiten Haken beweglich ist, in der der erste Haken hin zu der ersten Position vorgespannt ist.

10. Lichtröhrtenbausatz für ein Oberlicht nach Anspruch 1, ferner mit einem Schlitz (81a, 81b, 81c, 81d) nahe der ersten Kante.

11. Lichtröhrtenbausatz für ein Oberlicht nach Anspruch 1, wobei der Griff außerhalb des Lichttunnels liegt.

12. Verwendung eines Lichtröhrtenbausatzes (20) für ein Oberlicht nach einem der Ansprüche 1 bis 11, in einem Oberlicht, das ein Dachelement, einen Diffusor und eine Lichtröhre zwischen dem Dachelement und dem Diffusor aufweist, um Licht von dem Dachelement zu dem Diffusor zu führen.

13. Verwendung eines Lichtröhrtenbausatzes (20) für ein Oberlicht nach einem der Ansprüche 1 bis 11 zur Installation eines röhrenförmigen Oberlichts in einem Neubau oder einem existierenden Gebäude.

14. Verfahren zur Installation eines röhrenförmigen Oberlichts in einem Gebäude, umfassend die folgenden Schritte:

 Installieren einer äußeren Abdeckung für das Oberlicht an einem Dach des Gebäudes,
 Installieren eines inneren Diffusors an einer inneren Decke des Gebäudes und
 Installieren eines Lichtröhrtenbausatzes (20) für ein Oberlicht nach einem der Ansprüche 1 bis 11 zwischen der äußeren Abdeckung und dem inneren Diffusor.

15. Oberlicht mit einem Dachelement, durch das Sonnenlicht in das Oberlicht eindringt, einem Diffusor an einem Gebäudeinneren und einem Lichtröhrtenbausatz (20) für ein Oberlicht nach einem der Ansprüche 1 bis 11 zwischen dem Dachelement und dem Oberlicht, um Licht von dem Dachelement zu dem Diffusor zu führen.

Revendications

1. Kit de tube de lumière (20) destiné à un lanterneau, comportant :

 un tunnel de lumière (70), le tunnel de lumière (70) étant configuré à partir d’un élément en plaque présentant un premier bord (83) et un deuxième bord (84) opposé au premier bord (83), un troisième (85) et un quatrième (86) bords opposés étant disposés entre le premier (83) et le deuxième (84) bords, l’élément en plaque étant enroulé sur lui-même de telle façon que le troisième bord (85) recouvre le quatrième (86) bord ;
 une première fente (80b) étant définie à travers l’élément en plaque à proximité du troisième bord (85) et une deuxième fente (80d) étant définie à travers l’élément en plaque à proximité du quatrième bord (86), la première (80b) et la deuxième (80d) fentes étant alignées;
 une pince à ressort (30, 30’), la pince à ressort (30, 30’) présentant un premier (51, 51’) et un deuxième (61, 61’) crochets et une poignée (40, 40’) étant disposée entre eux ; et
 le premier crochet (51, 51’) étant disposé à travers la première et la deuxième fentes (80b, 80d) et engagé avec elles.

2. Kit de tube de lumière destiné à un lanterneau selon la revendication 1, dans lequel le deuxième crochet (61, 61’) est disposé à travers les première et deuxième fentes (80b, 80d) et engagé avec elles.

3. Kit de tube de lumière destiné à un lanterneau selon la revendication 1, dans lequel la première fente est parallèle au troisième bord et la deuxième fente est parallèle au quatrième bord.

4. Kit de tube de lumière destiné à un lanterneau selon la revendication 1, comportant, de plus, une troisième fente (80b2) se situant entre la première fente et le troisième bord et qui est parallèle à la première fente.

5. Kit de tube de lumière destiné à un lanterneau selon la revendication 1, comportant, de plus, une troisième fente (80a) parallèle à la première fente (80b) et se trouvant à égale distance à partir du troisième bord (85) de la première fente et d’une quatrième fente (80c) parallèle à la deuxième fente (80d) et se trouvant à égale distance à partir du quatrième bord (86) de la deuxième fente.

6. Kit de tube de lumière destiné à un lanterneau selon la revendication 5, dans lequel le deuxième crochet (61, 61’) est disposé à travers les troisième et quatre fentes (80a, 80c) et engagé avec elles.

7. Kit de tube de lumière destiné à un lanterneau selon la revendication 1, dans lequel le premier et le deuxième crochets sont ouverts à l’écart l’un de l’autre.

8. Kit de tube de lumière destiné à un lanterneau selon la revendication 1, dans lequel le premier et le deuxième crochets sont ouverts l’un vers l’autre.

9. Kit de tube de lumière destiné à un lanterneau selon
la revendication 1, dans lequel le premier crochet se trouve dans une première position par rapport au deuxième crochet, le premier crochet pouvant se déplacer vers une deuxième position par rapport au deuxième crochet au niveau de laquelle le premier crochet est rappelé vers la première position.

10. Kit de tube de lumière destiné à un lanterneau selon la revendication 1, comportant, de plus, une fente (81a, 81b, 81c, 81d) à proximité du premier bord.

11. Kit de tube de lumière destiné à un lanterneau selon la revendication 1, dans lequel la poignée se trouve sur l’extérieur du tunnel de lumière.

12. Utilisation d’un kit de tube de lumière (20) destiné à un lanterneau selon l’une quelconque des revendications 1 à 11 dans un lanterneau comprenant un élément de toiture, un diffuseur et un tube de lumière entre l’élément de toiture et le diffuseur afin d’acheminer la lumière depuis l’élément de toiture jusqu’au diffuseur.

13. Utilisation d’un kit de tube de lumière (20) destiné à un lanterneau selon l’une quelconque des revendications 1 à 11 en vue d’une installation d’un lanterneau tubulaire dans une construction neuve ou dans un bâtiment existant.

14. Procédé d’installation d’un lanterneau tubulaire dans un immeuble comportant les étapes comprenant le fait de :

installant une couverture extérieure destinée à le lanterneau au niveau du toit de l’immeuble,
installer un diffuseur intérieur dans un plafond intérieur de l’immeuble, et
installer un kit de tube de lumière (20) destiné à un lanterneau selon l’une quelconque des revendications 1 à 11 entre la couverture extérieure et le diffuseur intérieur.

15. Lanterneau comportant un élément de toiture à travers lequel la lumière du jour entre dans le lanterneau, un diffuseur au niveau de l’intérieur de l’immeuble, et un kit de tube de lumière (20) destiné à un lanterneau selon l’une quelconque des revendications 1 à 11 entre l’élément de toiture et le diffuseur afin d’acheminer la lumière depuis l’élément de toiture jusqu’au diffuseur.
Fig. 10

Fig. 11

Fig. 12
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- DE 202005009483 U1 [0007]