(19) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

(11) EP 2 767 578 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
03.02.2016 Bulletin 2016/05

(21) Application number: 13155770.4

(22) Date of filing: 19.02.2013

(54) Process and apparatus for the preparation of a cylinder oil
Verfahren und Vorrichtung zur Herstellung eines Zylinderöls
Procédé et appareil pour la préparation d'une huile de cylindre

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
20.08.2014 Bulletin 2014/34

(60) Divisional application:
15150892.6 / 2 886 632

(73) Proprietor: LUKOIL Marine Lubricants Germany GmbH
20095 Hamburg (DE)

(56) References cited:
EP-A-1 640 442
WO-A1-2011/042412
JP-A- H0 754 627
JP-A- S60 147 519

(51) Int Cl.:
C10M 175/00 (2006.01) C10M 177/00 (2006.01)
F01M 1/12 (2006.01) F01M 9/02 (2006.01)
C10N 30/12 (2006.01) C10N 40/26 (2006.01)
F01M 11/04 (2006.01)

(72) Inventors:
• Claußen, Stefan
2297 Hamburg (DE)
• Thiedeitz, Jan
22850 Norderstedt (DE)

(74) Representative: RGTH
Patentanwälte PartGmbH
Neuer Wall 10
20354 Hamburg (DE)
Description

Introduction

[0001] The present invention concerns a process for the production of a cylinder oil comprising the steps:

- providing a used oil,
- providing a fresh cylinder oil, and
- blending the used oil with the fresh cylinder oil,

wherein the used oil has a lower TBN value than the fresh cylinder oil and wherein the cylinder oil and the fresh cylinder oil are all-loss cylinder oils for the use in crosshead diesel engines and comprise alkaline additives.

[0002] The invention further concerns a process for the operation of an internal combustion engine comprising the steps of:

- preparing a cylinder oil according to a process for the production of a cylinder oil as described herein, and
- using the cylinder oil in the internal combustion engine.

[0003] Also part of the present invention is an apparatus for the preparation of a cylinder oil, comprising

- a blending means for blending used oil and fresh cylinder oil,
- an internal combustion engine comprising at least one cylinder
- at least one compartment of the internal combustion engine comprising used oil or at least one storage compartment comprising used oil, and
- at least one storage compartment for fresh cylinder oil, characterized in that the blending means is in flow communication with
- the at least one compartment of the internal combustion engine comprising used oil or the at least one storage compartment comprising used oil,
- the at least one storage compartment for fresh cylinder oil, and
- the at least one cylinder of the internal combustion engine,

wherein the internal combustion engine is a two-stroke crosshead engine, wherein the storage compartment for fresh cylinder oil comprises fresh cylinder oil and wherein the cylinder oil and the fresh cylinder oil are as defined herein.

[0004] A further aspect of the present invention is the use of used oil and fresh cylinder oil for the preparation of cylinder oil, wherein the cylinder oil and the fresh cylinder oil are as described herein.

[0005] The processes, apparatus and uses of the present invention are especially provided for the use with two-stroke crosshead engines installed on a ship.

Prior art

[0006] Cylinder oil is an oil usually used for the lubrication of cylinders in an internal combustion engine. It has various functions. Its main function is to provide lubrication between the cylinder and/or the piston ring and cylinder liner. Its purpose is therefore wear control. A further important function is to prevent corrosion of the material of the cylinder and the material of the liner or walls of the combustion chamber. The cylinder oil itself should be stable against thermal decomposition and it should have good antioxidant performance, good antifoam performance and good water demulsibility. Pressure performance is also important for cylinder oils.

[0007] Most of these properties of cylinder oils are controlled by additives. The kinematic viscosity is mainly controlled by the components of the oil itself. Hydrocarbons with long carbon chains and hydrocarbons with branched carbon chains tend to have higher kinematic viscosities. Corrosion prevention properties are induced into cylinder oils mainly by addition of basic organic compounds, such as amines or the like. Organic di-imines as described in GB 1,183,345 A are predominantly used in cylinder oils as additive to control the corrosion prevention properties. The basic additive neutralizes acids, e.g. sulfuric acid and other acids, that are formed during combustion in the combustion chamber from sulfur or sulfur containing compounds comprised in the fuel. Cylinder oil may comprise 0.1 % to 30 % by weight of these di-imines. A further example for suitable anti-wear and anti-corrosion performance enhancing additives are alkylamine-alkylphosphates as disclosed in US 2004/144355 A.

[0008] For some lubricant applications such as in lubricating cylinders in crosshead diesel engines that employ all-loss lubrication systems and combust heavy fuel oil with widely varying sulfur contents, the engine lubrication requirements
vary to such a large degree and with sufficient frequency that one lubricant formulation may not provide adequate performance over the full range of operating conditions. This inability can result in at least increased engine maintenance needs and more typically unnecessary expense as a result of repair costs, down time and excessive oil usage. Thus, there is a need for being able to vary the composition of a lubricant in response to an engine’s actual lubrication requirements. US 2004/144355 A suggests a system in which additives are added to a primary lubricant in order to adapt the anti-corrosion properties to the fuel and the engine conditions. The use of used oil is not disclosed.

WO-A-2011/042412 discloses a system for lubricating a two-stroke engine comprising: a two-stroke engine having a first inlet for a cylinder oil, and a second and third inlet for a system oil; a sump for system oil used in the engine, the sump having an inlet and an outlet, the outlet being connected to the second and third inlets of the engine; an oil reservoir having a first outlet connected to the first inlet of the engine, a second outlet connected to the inlet of the sump and a first inlet connected to the outlet of the sump; and a splitter connected to the outlet of the sump, the second and third inlets of the engine, and the first inlet of the oil reservoir.

JP-A-07-054627 discloses a process to enable oil purified by a purifier to be reused as cylinder oil by mixing the purified oil with cylinder oil (new oil) at a fixed regulation through a process of holding the sump tank level within a fixed range without directly supplying the new oil into the sump tank of system oil.

Cylinders usually have a larger amount of wear than other parts of the engine, have a higher temperature and the combustion process applies further harsh conditions on cylinder oil. Cylinder oil is therefore usually much more contaminated than oil in the rest of the engine (so-called system oil). In engines where the system oil is one and the same with cylinder oil or is in contact with the cylinder oil, the cylinders introduce the major amount of pollutants into the system oil. In large engines that can use several tens of thousands of liters of system oil, cylinder oil and system oil are therefore often separated in order to protect the system oil from pollution. In such system, the cylinder oil cannot be regenerated by mixing with the system oil. Its quality therefore deteriorates fast. In order to maintain a sufficient quality of the cylinder oil, it has to be exchanged often or it is used only in a once through operation in a so-called “all-loss” lubricating system. In all-loss systems, cost for system oil is reduced but costs for cylinder oil is still high. EP 1 640 442 B1 proposes a system where spend system oil of an engine is mixed with additives to produce cylinder oil. Such a system uses used oil to produce cylinder oil and therefore reduces costs and environmental concerns. While this system in general provides sufficient control of the corrosion properties of the produced cylinder oil and makes the use of usual cylinder oil redundant, it also has disadvantages. The cylinder oil produced by this method has a much lower kinematic viscosity and therefore inferior lubrication properties than usual cylinder oil. Hence, it has to be used in larger amount to provide the same lubrication properties. Thereby the effect of reduction of the oil consumption is diminished.

In addition, the additives used have a very high kinematic viscosity, often near 100 mm²/s at 100°C or above. Such liquids can only be moved by pumps if the liquids are kept warm. Therefore, tanks, pipes, blender and other equipment in contact with the additives need to be equipped with heaters. In cold climate, also tankers and the like that carry the additives to the ships or other installations in contact with the additives need to be equipped with heater or need to be well isolated. Therefore logistic is a major problem when using such additives for the on-site manufacture of cylinder oil. Beyond the logistics there is always the risk that local overheating that can easily occur and contributes to oxidation of the additives and will reduce significantly the quality of the additives and hence has an impact on the quality of the cylinder oil produced.

Problems to be solved

It is the objective of this invention to provide a system that reduces the amount of lubricants used in internal combustion engines, especially the amount of cylinder oil and/or system oil. At the same time, the present invention aims to provide a process and an apparatus that provides better control of the kinematic viscosity when producing cylinder oil from used oils. Improvement of wear and corrosion is a further objective of the present invention.

Description of the present invention

The present invention concerns a process for the production of a cylinder oil comprising the steps:

- providing a used oil,
- providing a fresh cylinder oil, and
- blending the used oil with the fresh cylinder oil,

wherein the used oil has a lower TBN value than the fresh cylinder oil.

This process allows the reuse of used oil as cylinder oil and therefore reduces cost and alleviates environmental concerns. It also provides at the same time partially recycled cylinder oil with a higher kinematic viscosity than the processes described in the prior art, i.e. a kinematic viscosity that is closer to the kinematic viscosity of usual cylinder
According to the present invention cylinder oil is oil that is designed for the use in the lubrication of a cylinder in an internal combustion engine. It comprises basic, i.e. alkaline, additives. The cylinder oil produced by the present invention is an oil designed for the use as an all-loss oil. It is also designed for the use in crosshead diesel engines and especially in two stroke crosshead diesel engines, especially those installed on marine vessels, such as ships. The engines may, however, also be installed in a stationary system. It is further preferred that the used oil comprises at least in part used system oil from at least one crosshead diesel engine that employs an all-loss lubrication system for the cylinders. It is however most preferred that the internal combustion engine is installed on a ship and that the process is performed on a ship. It is further preferred that the engine is a crosshead diesel engine that employs an all-loss lubrication system for the cylinders.

In the context of the present invention the wording "fresh cylinder oil" denotes a cylinder oil that has no content of unprocessed used oil. It may, however, contain recycled oil that has been processed in a factory, i.e. recycling oil. Examples are usual commercially available cylinder oils. Preferably, the cylinder oils used in this invention have a high TBN value and a high viscosity. Especially useful is NAVIGO 100 MCL™ with a kinematic viscosity of 20 mm²/s at 100 °C and a TBN value of 100 (available from LUKOIL Marine Lubricants Ltd., Hamburg, Germany), which is the only commercially available cylinder oil with a TBN value of 100 or above.

In the context of the present invention, the wording "used oil" denotes an oil that has been used for lubrication of any kind or for other purposes or comprises such oil. It may have been used as such or it may contain oils that have been used. Especially preferred is the use of waste oil that is otherwise disposed of.

One factor to be considered for the lubrication properties of cylinder oil is the kinematic viscosity. If the kinematic viscosity of the cylinder oil is too low, the oil film on the cylinder liner may not be continuous and the cylinder or the piston ring may come in direct contact with the cylinder liner leading to increased wear. A further important factor for avoiding corrosive wear is the alkalinity reserve in the oil film left on the cylinder surface. When the piston moves down the cylinder surface is exposed to the aggressive atmosphere that causes the corrosive wear. The oil film thickness left on the cylinder surface depends on the kinematic viscosity of the cylinder oil. The thinner the cylinder oil the lower the oil film thickness and the alkalinity reserve of the oil film covering the cylinder surface, as less oil comprises less basic compounds per surface area, leading to higher level of corrosive wear. If the kinematic viscosity is too high, friction is too high, leading to loss of performance of the engine and in combination with a surplus in the alkalinity reserve it can form additional deposits on the upper piston land and on the back of the piston ring leading to higher wear levels or scuffing.

For the purposes of the present invention all values of the kinematic viscosity are measured according to DIN 51562/2. Accordingly, all values of kinematic viscosity stated herein are kinematic viscosities at 100 °C as described in DIN 51562/2.

The cylinder oil of the present invention preferably has a kinematic viscosity of 14 mm²/s or more at 100 °C, preferably of 15 mm²/s or more at 100 °C, even more preferably of 16 mm²/s or more at 100 °C and most preferably of 17 mm²/s or more at 100 °C. The fresh cylinder oil of the present invention preferably has a kinematic viscosity of 16 mm²/s or more at 100 °C, preferably 18 mm²/s or more at 100 °C and most preferably of 19 mm²/s or more at 100 °C. The kinematic viscosity of the cylinder oil of the present invention preferably has a kinematic viscosity in a range of from 16 to 24 mm²/s at 100 °C, more preferably in a range of from 16 to 22 mm²/s at 100 °C and most preferably in a range of from 19 to 21 mm²/s at 100 °C. The used oil of the present invention preferably has a kinematic viscosity in the range of from 18 to 22 mm²/s, more preferably of from 19 to 21 mm²/s.

The TBN value of the cylinder oil produced by any of the processes of the present invention preferably has a kinematic viscosity in the range of from 16 to 24 mm²/s at 100 °C, more preferably of 18 to 22 mm²/s at 100 °C and most preferably in a range of from 19 to 21 mm²/s at 100 °C. The used oil of the process of the present invention may have a kinematic viscosity of up to 25 mm²/s. The used oil of the process of the present invention preferably has a kinematic viscosity in the range of from 7 to 15 mm²/s, more preferably of from 8 to 13 mm²/s, even more preferably of from 9 to 12.5 mm²/s and most preferably of from 10 to 12.5 mm²/s. Preferred is a process as described herein, wherein the used oil has a lower kinematic viscosity than the cylinder oil.

One parameter determining the corrosion prevention properties of cylinder oils is the TBN value (also BN value or neutralization number). TBN is an abbreviation of "Total Base Number", which defines the chemical equivalent of KOH in milligrams to the amount of an acid necessary to neutralize the total base components included in 1 gram of a sample. For the purposes described herein the TBN values are determined as described in ASTM D 2896.

The TBN value of the cylinder oil produced by any of the processes of the present invention is preferably adapted to the sulfur content of the fuel used in the internal combustion engine according to known methods in the art. Background art in regard to this method is for examples disclosed in US 2004/144355 A and references cited therein. The cylinder oil produced by any of the processes described herein typically has a TBN value of 10 or more, preferably 30 or more, more preferably of 50 or more and most preferably of 60 or more. The used oil has typically a TBN value of 50 or less, more typically of 30 or less and usually of 15 or less. Preferably, the fresh cylinder oil used in this invention has a high TBN value and a high viscosity. Typically, the fresh cylinder oil used in the process of the present invention as described herein has a TBN value of 10 or more, preferably of 50 or more, more preferably of 80 or more, even more preferably of 90 or more and most preferably of 100 or more.
Blending of the used oil and the fresh cylinder oil may be effected by any means known to the person skilled in the art to blend oils, preferably by blending in a static mixing duct, blending pipe or in-line blending unit. Useful static mixers that can be used for the present invention are for example described in US 8,147,124. Alternatively, batch blending in a separate tank equipped with an agitator is also possible.

Preferred is further a process as described herein, wherein the used oil comprises one or more oils selected from the group consisting of used hydraulic fluids, used gear oils, used system oils, used trunk piston engine oils, used turbine oils, used heavy duty diesel oils, used compressor oils and mixtures thereof. Preferably, the used oil comprises used system oil. More preferably, the used oil consists of used system oil.

The cylinder oil produced by any of the processes described herein comprises typically at least 2 % of used oil, preferably at least 5 % of used oil, and more preferably at least 10 % of used oil. It is even more preferred that the cylinder oil produced by any of the methods described herein comprises at least 20 % of used oil and most preferred at least 30 % of used oil. The cylinder oil produced by any of the processes described herein may comprise at most 40 % of used oil or at least 50 % of used oil. Preferably, the cylinder oil produced by any of the processes described herein comprises at most 80 % of used oil, more preferably at most 50 % of used oil, even more preferably at most 40 % of used oil and most preferred at most 30 % of used oil. The amount of used oil in the cylinder oil produced by any of the processes described herein is preferably in a range of from 10 % to 50 %, more preferably of from 20 % to 40 %.

The cylinder oil produced by any of the processes described herein comprises typically at least 1 % of fresh cylinder oil, preferably at least 5 % of fresh cylinder oil and more preferably at least 10 % of fresh cylinder oil. The cylinder oil produced by any of the processes described herein may comprise at most 80 % fresh cylinder oil or at least 50 % used oil. Preferably, the cylinder oil produced by any of the processes described herein comprises at most 80 % fresh cylinder oil, more preferably at most 60 % fresh cylinder oil, even more preferably at most 40 % fresh cylinder oil and most preferred at most 35 % fresh cylinder oil. In the cylinder oil produced by any of the processes described herein, preferably the amount of used oil is at least 1 % and/or the amount of fresh cylinder oil is at least 1 %. More preferably the amount of used oil is at least 1 % and/or the amount of fresh cylinder oil at least 5 %. Even more preferably, the amount of used oil is at least 10 % and/or the amount of fresh cylinder oil at least 10 %. Most preferably, the amount of used oil is at least 10 % and/or the amount of fresh cylinder oil at least 10 %. All amounts of used oil and fresh cylinder oil in the cylinder oil given herein are stated in percent by weight, based on the total amount of the cylinder oil produced in the process described herein, unless otherwise noted.

Also preferred is a process as described herein, especially as described herein as preferred, wherein the used oil is obtained from an apparatus on a ship. Ships use oil in various apparatus in large amounts. Disposal of the used oil is costly. Costs of disposal may therefore be avoided if the used oil can be reused as cylinder oil. Further preferred is a process as described herein, wherein the process is performed on a ship. Disposal of used oil is only possible in harbors and cost for storage facilities can be avoided if the used oil is directly consumed as cylinder oil without transport to a factory or the like, where cylinder oil could be produced from the used oil.

A further aspect of the present invention is a process for the operation of an internal combustion engine comprising the steps of:

- preparing a cylinder oil according to any of the embodiments of the process for the production of a cylinder oil as described above, and
- using the cylinder oil in the internal combustion engine.

Especially preferred is such a process where the internal combustion engine is a two-stroke crosshead engine.

Further preferred is such a process, wherein

- the internal combustion engine is a two-stroke crosshead engine,
- the cylinder oil is used as an all-loss cylinder oil, and
- the used oil comprises used system oil of the two-stroke crosshead engine. In such a process, the used system oil of the two-stroke crosshead engine may be used completely for the preparation of the cylinder oil according to the process of the present invention and costs for storage and disposal can be saved. The cylinder oil produced in such a process can be exactly adjusted for the TBN values needed for the fuel used and the viscosity of the cylinder oil produced is close to that of fresh cylinder oil. Further preferred are any of the processes for the operation of an internal combustion engine as described herein, wherein the two-stroke crosshead engine is installed on a ship.

Preferred is also any one of the processes for the operation of an internal combustion engine as described herein, wherein

- the used oil is derived from at least one engine compartment or at least one storage compartment,
- the used oil is blended with the fresh cylinder oil by means of a blending means, and
the cylinder oil is delivered to at least one cylinder of the internal combustion engine.

The used oil, the fresh cylinder oil and the cylinder oil of this process may be of any kind as described herein. In such a process the usual equipment used with an internal combustion engine, e.g. the oil sump and the cylinders are preferably connected to the blending means. Conventional internal combustion engines can therefore easily be retrofitted with this system without large expenses and with minimal additional equipment, i.e. piping, a blender and maybe pumps.

Further preferred is any one of the processes for the operation of an internal combustion engine as described herein, wherein the amount of used oil and cylinder oil blended is determined by the TBN value desired for the cylinder oil, the TBN value of the used oil and the TBN value of the fresh cylinder oil. This allows production of cylinder oil with an exactly determined TBN value and therefore its adjustment to the fuel used.

A further aspect of the present invention is an apparatus for the preparation of a cylinder oil, comprising

- a blending means 5 for blending used oil and fresh cylinder oil,
- an internal combustion engine 1 comprising at least one cylinder
- at least one compartment 2 of the internal combustion engine 1 that comprises used oil or at least one storage compartment comprising used oil, and
- at least one storage compartment for fresh cylinder oil 6,
- the at least one compartment 2 of the internal combustion engine 1 that comprises used oil or the at least one storage compartment comprising used oil,
- the at least one storage compartment for fresh cylinder oil 6, and
- at least one cylinder of the internal combustion engine 1,

wherein the internal combustion engine 1 is a two-stroke crosshead engine, wherein the storage compartment for fresh cylinder oil 6 comprises fresh cylinder oil and wherein the cylinder oil and the fresh cylinder oil are as defined herein.

A storage compartment for fresh cylinder oil is any storage compartment that can hold cylinder oil. Again, this apparatus makes full use of the equipment usually installed at an internal combustion engine that uses cylinder oil, for example, the oil sump or a compartment of the internal combustion engine and the storage tank for the fresh cylinder oil. Only a blending means, piping and possibly pumps have to be installed to prepare a usual installation for the operation of an internal combustion engine for the use with the process as described herein. The piping and tanks usually need no additional heating or equipment of any other kind.

Further preferred is an apparatus as described herein, comprising additionally

- a pump for the transport of used oil to the blending means,
- a pump for the transport of the fresh cylinder oil to the blending means, and
- at least one storage compartment for the prepared cylinder oil.

Also preferred is an apparatus as described herein, wherein the used oil comprises used system oil of the internal combustion engine. As described above, for the equivalent process, this apparatus allows the optimal use of the used system oil and the production of a cylinder oil that has exactly the required TBN-value and a kinematic viscosity that is closer to the desired value than that of the processes of the prior art.

The apparatus according to the present invention may comprise additionally a system oil tank, which is connected by piping to the blending means. This allows the use of fresh system oil instead of or in addition to the used system oil.

A further aspect of the present invention is a ship comprising an apparatus as described herein.

A further aspect of the present invention is the use of used oil and fresh cylinder oil for the preparation of cylinder oil. The used oil and the fresh cylinder oil of the inventive use as well as the cylinder oil that results from the inventive use are as defined herein.

The processes, apparatus and uses of the present invention are especially provided for the use with reciprocating internal combustion engines and most preferably with two-stroke crosshead engines. Most preferably, the engines are installed on a ship.

Brief description of the drawing:

Figure 1: Figure 1 describes an example for an apparatus of the present invention.
Figure 2: Figure 2 describes another example for an apparatus of the present invention.
Figure 3: The graph of Figure 3 shows the TBN value as a function of the amount of system oil in the cylinder oil prepared according to the present invention (Graph B) and according to the method described in EP 1 640 442 B1 (Graph A).

Detailed description of the drawings:

[0044] Figure 1 shows an internal combustion engine 1 with an oil sump 2, which is connected via piping 3 with blending means 5. It further shows a fresh cylinder oil storage tank 6 connected via piping 7 with the blending means 5. The blending means is further connected via piping 9 to the cylinder oil injection openings in the cylinder 10 of internal combustion engine 1. Piping 3, 7 and 9 each comprise a valve 4 and piping 9 further comprises a pump 8. The valves 4 and the pump 8 are connected to a controller 11.

[0045] In usual operation mode, the TBN value of the cylinder oil produced by the blending means 5 and flowing into piping 9 is measured by an instrument known in the art (not shown) and an electrical signal is submitted to the controller 11. The controller uses the signal to determine the amount of system oil from the oil sump 2 and the amount of fresh cylinder oil from the fresh cylinder oil storage tank 6 that are needed to produce the cylinder oil with the TBN value required. The controller 11 controls the valves 4 and the pump 8 in order to provide the correct amount of cylinder oil with the correct TBN value to the oil injection openings in the cylinder 10 of internal combustion engine 1. For the case that a cylinder oil with very high TBN value is required for the operation of the internal combustion engine 1, controller 11 can be programmed such that 100 % fresh cylinder oil is provided to the cylinder oil injection openings in the cylinder 10 of internal combustion engine 1.

[0046] Figure 2 depicts a similar embodiment of the present invention as figure 1. The embodiment of Figure 2 has additionally a system oil tank 12, which is connected by piping 14, which comprises a further valve 4 to the blending means 5. This allows the use of fresh system oil instead or in addition to the used system oil from oil sump 2. The apparatus may also be fitted with additional piping and valves that would allow the controller 11 to replenish the system oil used or removed from oil sump 2. Figure 2 further shows a cylinder oil tank 13 that can be used to buffer cylinder oil production and use.

Example:

[0047] The following example will show the advantages of the present invention in view of the prior art for a typical example of a cylinder oil. Table 1 shows for the commercially relevant TBN values 40 to 100 the amount of system oil that must be blended with the additives or with fresh cylinder oil, respectively, to arrive at the desired TBN value. Column 3 of table 1 concerning the additives is calculated in accordance with the system known from EP 1 640 442 B1. As fresh cylinder oil, NAVIGO MCL-100™ (available from LUKOIL Marine Lubricants Ltd., Hamburg, Germany) with a kinematic viscosity of 20 mm²/s at 100 °C and a TBN value of 100 has been used. As system oil a commercially available system oil with a TBN value of 6 and a kinematic viscosity of 11,5 mm²/s at 100 °C has been used (i.e. NAVIGO 6 SO). As additive, a commercially available additive (i.e. Chevron OLOA 49805) with a TBN value of 320 and an apparent kinematic viscosity of 39 has been used. The measured kinematic viscosity of the additives is 101 mm²/s at 100 °C. However, the additives are non-Newtonian fluids and the flow properties differ from those of Newtonian fluids when diluted with oils. In mixtures with system oil, the additive behaves as if it has a kinematic viscosity of 39 mm²/s at 100 °C. The later value is therefore used for the calculation of the kinematic viscosity of the resulting cylinder oil.

[0048] The TBN value of the resulting cylinder oil is the weighted mean average values of the TBN values of the system oil and the fresh cylinder oil used. The values of the amount of system oil necessary to reach the desired TBN value has been calculated accordingly.

Table 1:

<table>
<thead>
<tr>
<th>TBN</th>
<th>Fresh cylinder oil Weight percent system oil in the mixture</th>
<th>Additives Weight percent system oil in the mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>63.83%</td>
<td>89.17%</td>
</tr>
<tr>
<td>50</td>
<td>53.19%</td>
<td>85.99%</td>
</tr>
<tr>
<td>60</td>
<td>42.55%</td>
<td>82.80%</td>
</tr>
<tr>
<td>70</td>
<td>31.91%</td>
<td>79.62%</td>
</tr>
<tr>
<td>80</td>
<td>21.28%</td>
<td>76.43%</td>
</tr>
</tbody>
</table>
Figure 3 shows the same data as Table 1 as in the form of graphs, i.e. the TBN value as a function of the amount of system oil in the resulting cylinder oil. As can be seen, for any of the commercially useful TBN values, an amount of at least 70% system oil is necessary to arrive at the desired TBN value, if the cylinder oil is produced according to the prior art (Graph A). In contrast, according to the present invention (Graph B), an amount of 0% to about 64% system oil is necessary. For a MAN B&W two-stroke crosshead engine with a bore of 80 cm, when using a heavy fuel oil (HFO) with a sulfur content of 3% by weight, a cylinder oil with a TBN value of 70 and a kinematic viscosity of 17 is recommended at a feed rate of 0.6 g/kWh. For the desired TBN value of 70, about 30% cylinder oil is necessary according to the present invention and about 80% according to the prior art. For such an engine, the manufacturer recommends the continued renewal of a certain amount of system oil used in the engine in order to replenish the system oil and to remove used system oil. The use of about 30% of system oil in the cylinder oil would be in accordance with the amount of used system oil that needs to be withdrawn from the engine continuously. Therefore, the process according to the present invention uses about the same amount of used system oil that accumulates in the same time from the oil exchange in the engine. In contrast, the process according to EP 1 640 442 B1 uses more than twice that amount, resulting in the use of system oil that is almost unused, thereby resulting in waste.

As discussed, for the above-mentioned engine, a heavy fuel oil comprising 3% by weight sulfur, a TBN value of 70 and a viscosity of 17 are recommended. From the amount of system oil and fresh cylinder oil in the resulting cylinder oil and the viscosity data of the system oil and the fresh cylinder oil, the kinematic viscosity of the resulting cylinder oil can be calculated according to the equation of Ubbelohde-Walther (see DIN 51563). For the mixtures with a TBN value of 70, the viscosities are significantly lower than the recommended viscosity, namely 14.3 mm²/s at 100°C for a mixture of system oil and additives and 16.6 mm²/s at 100°C for a mixture of system oil with fresh cylinder oil. As can be seen, the cylinder oil produced according to the present invention has a kinematic viscosity that is almost identical to the target viscosity, i.e. 16.6 mm²/s at 100°C as compared to the desired 17 mm²/s at 100°C. In contrast, the kinematic viscosity of the cylinder oil produced according to the prior art has a viscosity that is much lower than the target viscosity, i.e. 14.3 mm²/s at 100°C as compared to 17 mm²/s at 100°C.

As discussed above, because the viscosity of the oil film is too low for the cylinder oil prepared according to the prior art, the oil film on the cylinder liner may not be continuous and the cylinder or the piston ring may come in direct contact with the cylinder liner leading to increased wear. Furthermore, as a consequence of the low oil film thickness the alkalinity reserve of the oil film covering the liner surface is too low, as less oil comprises less base compounds per surface area (which leads to a reduced alkalinity reserve), leading to a higher level of corrosive wear. This also results in a reduced alkalinity reserve. As a consequence, the feed rate for the cylinder oil has to be higher for the cylinder oil prepared according to the prior art. The present invention therefore reduces wear, corrosion and the amount of cylinder oil used and is therefore advantageous in the operation of internal combustion engines over the prior art.

List of Reference Numerals

1 internal combustion engine
2 oil sump
3 piping
4 valve
5 blending means
6 fresh cylinder oil storage tank
7 piping
8 pump
9 piping
10 cylinder of internal combustion engine
11 controller
Claims

1. Process for the production of a cylinder oil comprising the steps:
 - providing a used oil,
 - providing a fresh cylinder oil, and
 - blending the used oil with the fresh cylinder oil,
 wherein the used oil has a lower TBN value than the fresh cylinder oil and wherein the cylinder oil and the fresh cylinder oil are all-loss cylinder oils for the use in crosshead diesel engines and comprise alkaline additives.

2. Process according to claim 1, wherein the cylinder oil produced comprises at least 1 % by weight used oil, based on the total amount of cylinder oil produced and/or at least 1 % by weight of fresh cylinder oil, based on the total amount of cylinder oil produced.

3. Process according to claim 1 or claim 2, wherein the cylinder oil produced comprises at least 10 % by weight used oil, based on the total amount of cylinder oil produced and/or at least 10 % by weight of fresh cylinder oil, based on the total amount of cylinder oil produced.

4. Process according to claim 1, 2 or 3, wherein the used oil has a lower kinematic viscosity than the cylinder oil.

5. Process according to any one of the preceding claims, wherein the used oil comprises one or more oils selected from the group consisting of used hydraulic fluids, used gear oils, used system oils, used trunk piston engine oils, used turbine oils, used heavy duty diesel oils, used compressor oils and mixtures thereof.

6. Process according to any one of the preceding claims, wherein the process is performed on a marine vessel.

7. Process for the operation of an internal combustion engine comprising the steps of:
 - preparing a cylinder oil according to any one of the preceding claims, and
 - using the cylinder oil in the internal combustion engine.

8. Process according to claim 7, wherein
 - the internal combustion engine is a two-stroke crosshead engine,
 - the cylinder oil is used as an all-loss cylinder oil, and
 - the used oil comprises used system oil of the two-stroke crosshead engine.

9. Process according to claim 7 or 8, wherein
 - the used oil is derived from at least one engine compartment or at least one storage compartment,
 - the used oil is blended with the fresh cylinder oil by means of a blending means, and
 - the cylinder oil is delivered to at least one cylinder of the internal combustion engine.

10. Process according to any one of the preceding claims, wherein the amount of used oil and fresh cylinder oil blended is determined by the TBN value desired for the cylinder oil, the TBN value of the used oil and the TBN value of the fresh cylinder oil.

11. Process according to any one of the preceding claims, wherein the fresh cylinder oil has a TBN value of 10 or more, preferably of 50 or more, more preferably of 80 or more, even more preferably of 90 or more and most preferably of 100 or more.

12. Apparatus for the preparation of a cylinder oil, comprising
- a blending means 5 for blending used oil and fresh cylinder oil,
- an internal combustion engine 1 comprising at least one cylinder 10
- at least one compartment 2 of the internal combustion engine 1 that comprises used oil or at least one storage compartment comprising used oil, and
- at least one storage compartment for fresh cylinder oil 6,
characterized in that the blending means 5 is in flow communication with
- the at least one compartment 2 of the internal combustion engine 1 that comprises used oil or the at least one storage compartment comprising used oil,
- the at least one storage compartment for fresh cylinder oil 6, and
- the at least one cylinder of the internal combustion engine 1,
wherein the internal combustion engine 1 is a two-stroke crosshead engine, wherein the storage compartment for fresh cylinder oil 6 comprises fresh cylinder oil and wherein the cylinder oil and the fresh cylinder oil are as defined as in any of claims 1 to 5.

13. Apparatus according to claim 12, comprising additionally
- a pump for the transport of used oil to the blending means 5,
- a pump for the transport of the fresh cylinder oil to the blending means 5, and
- at least one storage compartment 13 for the prepared cylinder oil.

14. Ship comprising an apparatus according to any one of claims 12 or 13.

15. Use of used oil and fresh cylinder oil for the preparation of cylinder oil, wherein the cylinder oil and the fresh cylinder oil are as defined as in any of claims 1 to 5.

Patentansprüche

1. Verfahren zur Herstellung eines Zylinderöls, umfassend die Schritte:
- Bereitstellen von gebrauchtem Öl,
- Bereitstellen von frischem Zylinderöl und
- Mischen des gebrauchten Öls mit dem frischen Zylinderöl, wobei das gebrauchte Öl einen geringeren TBN Wert als das frische Zylinderöl aufweist und wobei das Zylinderöl und das frische Zylinderöl "All-loss" Zylinderöle zur Verwendung in Kreuzkopf-Dieselmotoren sind und alkalische Additive umfassen.

2. Verfahren gemäß Anspruch 1, wobei das erzeugte Zylinderöl mindestens 1 Gewichtsprozent gebrauchtes Öl, bezogen auf die Gesamtmenge des erzeugten Zylinderöls und / oder mindestens 1 Gewichtsprozent frisches Zylinderöl, bezogen auf die Gesamtmengen des erzeugten Zylinderöls umfasst.

4. Verfahren gemäß Anspruch 1, 2 oder 3, wobei das gebrauchte Öl eine niedrigere kinematische Viskosität als das Zylinderöl aufweist.

5. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das gebrauchte Öl ein oder mehrere Öle aus der Gruppe bestehend aus gebrauchten Hydraulikflüssigkeiten, gebrauchten Getriebeölen, gebrauchten Systemölen, gebrauchten Tauchkolbenmotorölen, gebrauchten Turbinenölen, gebrauchten Schwerlast-Dieselölen, gebrauchten Kompressorölen und Mischungen davon umfasst.

6. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Verfahren auf einem Seeschiff durchgeführt wird.

7. Verfahren zum Betrieb eines Verbrennungsmotors, umfassend die Schritte:
- Aufbereitung eines Zylinderöls gemäß einem der vorhergehenden Ansprüche, und
- Verwendung des Zylinderöls in dem Verbrennungsmotor.

8. Verfahren gemäß Anspruch 7, wobei
- der Verbrennungsmotor ein Zweitaktkreuzkopfmotor ist,
- das Zylinderöl als All-loss Zylinderöl verwendet wird, und
- das gebrauchte Öl gebrauchtes Systemöl aus dem Zweitaktkreuzkopfmotor umfasst.

9. Verfahren gemäß Anspruch 7 oder 8, wobei
- das gebrauchte aus mindestens einer Motorkammer oder mindestens einer Staukammer abgeleitet wird
- das gebrauchte Öl mit dem frischen Zylinderöl mittels einer Mischeinrichtung vermischt wird, und
- das Zylinderöl mindestens einem Zylinder des Verbrennungsmotors zugeführt wird.

11. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das frische Zylinderöl einen TBN-Wert von 10 oder höher, bevorzugt 50 oder höher, bevorzugter 80 oder höher, noch bevorzugter 90 oder höher, am meisten bevorzugt 100 oder höher aufweist.

12. Vorrichtung zur Aufbereitung von Zylinderöl, umfassend
- eine Mischeinrichtung 5 zum Mischen von gebrauchtem Öl und frischem Zylinderöl,
- einen Verbrennungsmotor 1 umfassend mindestens einen Zylinder 10
- mindestens eine Kammer 2 des Verbrennungsmotors 1, die gebrauchtes Öl beinhaltet oder mindestens einer Staukammer, die gebrauchtes Öl beinhaltet, und
- mindestens eine Staukammer für frisches Zylinderöl 6,
 dadurch gekennzeichnet, dass
 - der mindestens einen Kammer 2 des Verbrennungsmotors 1, die gebrauchtes Öl beinhaltet oder der mindestens eine Staukammer, die gebrauchtes Öl beinhaltet,
 - dem mindestens Zylinder des Verbrennungsmotors 1, wobei der Verbrennungsmotor 1 ein Zweitaktkreuzkopfmotor ist, wobei die Staukammer für frisches Zylinderöl 6 frisches Zylinderöl umfasst und wobei das Zylinderöl und das frische Zylinderöl wie in einem der Ansprüche 1 bis 5 definiert sind.

13. Vorrichtung nach Anspruch 12, umfassend zusätzlich
- eine Pumpe zum Transport von gebrauchtem Öl zu der Mischeinrichtung 5,
- eine Pumpe für den Transport von frischem Zylinderöl zu der Mischeinrichtung 5, und
- mindestens eine Staukammer 13 für das aufbereitete Zylinderöl.

14. Schiff, das eine Vorrichtung gemäß einem der Ansprüche 12 oder 13 umfasst.

15. Verwendung von gebrauchtem Öl und frischem Zylinderöl für die Aufbereitung von Zylinderöl, wobei das Zylinderöl und das frische Zylinderöl wie in einem der Ansprüche 1 bis 5 definiert ist.

Revendications

1. Procédé de production d’une huile pour cylindres comprenant les étapes de :
- fourniture d’une huile usagée,
- fourniture d’une huile pour cylindres fraîche, et
- mélange de l’huile usagée avec l’huile pour cylindres fraîche,
EP 2 767 578 B1

dans lequel l'huile usagée a une valeur TBN plus faible que l'huile pour cylindres fraîche et dans lequel l'huile pour cylindres et l'huile pour cylindres fraîche sont des huiles pour cylindres perdues pour utilisation dans des moteurs diesel à crosse et comprennent des additifs alcalins.

2. Procédé selon la revendication 1, dans lequel l'huile pour cylindres produite comprend au moins 1 % en poids d'huile usagée, sur la base de la quantité totale d'huile pour cylindres produite et/ou au moins 1 % en poids d'huile pour cylindres fraîche, sur la base de la quantité totale d'huile pour cylindres produite.

3. Procédé selon la revendication 1 ou la revendication 2, dans lequel l'huile pour cylindres produite comprend au moins 10 % en poids d'huile usagée, sur la base de la quantité totale d'huile pour cylindres produite et/ou au moins 10% en poids d'huile pour cylindres fraîche, sur la base de la quantité totale d'huile pour cylindres produite.

4. Procédé selon la revendication 1, 2 ou 3, dans lequel l'huile usagée a une viscosité cinématique plus faible que l'huile pour cylindres.

5. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'huile usagée comprend une ou plusieurs huiles choisies dans le groupe constitué de fluides hydrauliques usagés, des huiles d'engrenages usagées, des huiles système usagées, des huiles de moteur à piston fourreau usagées, des huiles de turbine usagées, des huiles de diesel lourd usagées, des huiles de compresseur usagées et des mélanges de ceux-ci.

6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le procédé est conduit sur un navire marin.

7. Procédé de fonctionnement d'un moteur à combustion interne comprenant les étapes de :
 - préparation d'une huile pour cylindres selon l'une quelconque des revendications précédentes, et
 - utilisation de l'huile pour cylindres dans le moteur à combustion interne.

8. Procédé selon la revendication 7, dans lequel
 - le moteur à combustion interne est un moteur à crosse à deux temps,
 - l'huile pour cylindres est utilisée en tant qu'huile pour cylindres perdue, et
 - l'huile usagée comprend une huile système usagée du moteur à crosse à deux temps.

9. Procédé selon la revendication 7 ou 8, dans lequel
 - l'huile usagée est obtenue à partir d'au moins un compartiment de moteur ou au moins un compartiment de stockage,
 - l'huile usagée est mélangée avec l'huile pour cylindres fraîche au moyen d'un moyen de mélange, et
 - l'huile pour cylindres est délivrée à au moins un cylindre du moteur à combustion interne.

10. Procédé selon l'une quelconque des revendications précédentes, dans lequel la quantité d'huile usagée et d'huile pour cylindres fraîche ou l'huile pour cylindres fraîche mélangée est déterminée par la valeur TBN souhaitée pour l'huile pour cylindres, la valeur TBN de l'huile usagée et la valeur TBN de l'huile pour cylindres fraîche.

11. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'huile pour cylindres fraîche a une valeur TBN de 10 ou plus, de préférence de 50 ou plus, plus préférablement de 80 ou plus, encore plus préférablement de 90 ou plus et de manière préférée entre toutes de 100 ou plus.

12. Appareil pour la préparation d'une huile pour cylindres, comprenant
 - un moyen de mélange 5 pour mélanger l'huile usagée et l'huile pour cylindres fraîche, un moteur à combustion interne 1 comprenant au moins un cylindre 10
 - au moins un compartiment 2 du moteur à combustion interne 1 qui comprend de l'huile usagée ou au moins un compartiment de stockage comprenant de l'huile usagée, et
 - au moins un compartiment de stockage pour l'huile pour cylindres fraîche 6, caractérisé en ce que le moyen de mélange 5 est en communication fluidique avec
 - l'au moins un compartiment 2 du moteur à combustion interne 1 qui comprend de l'huile usagée ou l'au moins
un compartiment de stockage comprenant de l'huile usagée,
- l'au moins un compartiment de stockage pour l'huile pour cylindres fraîche 6, et
- l'au moins un cylindre du moteur à combustion interne 1,
dans lequel le moteur à combustion interne 1 est un moteur à crosse à deux temps, dans lequel le compartiment
de stockage pour l'huile pour cylindres fraîche 6 comprend de l'huile pour cylindres fraîche et dans lequel l'huile
pour cylindres et l'huile pour cylindres fraîche sont telles que définies dans l'une quelconque des revendications
1 à 5.

13. Appareil selon la revendication 12, comprenant en outre

- une pompe pour le transport d'huile usagée vers le moyen de mélange 5,
- une pompe pour le transport de l'huile pour cylindres fraîche vers le moyen de mélange 5, et
- au moins un compartiment de stockage 13 pour l'huile pour cylindres préparée.

15. Utilisation d'huile usagée et d'huile pour cylindres fraîche pour la préparation d'huile pour cylindres, caractérisée
en ce que l'huile pour cylindres et l'huile pour cylindres fraîche sont telles que définies dans l'une quelconque des
revendications 1 à 5.
Fig. 1
Fig. 3
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• GB 1183345 A [0007]
• US 2004144355 A [0007] [0008] [0023]
• WO 2011042412 A [0009]
• JP 7054627 A [0010]
• EP 1640442 B1 [0011] [0043] [0047] [0049]
• US 8147124 B [0024]