POLYCARBONATE AND METHOD FOR PREPARING SAME

The present disclosure provides a polycarbonate that includes repeat units represented by Formula 1, Formula 2 and Formula 3, respectively.

[Formula 1]

\[
\begin{array}{c}
\text{(R}_1\text{)}_a \\
O \\
\text{(R}_2\text{)}_b \\
O - \text{C} \\
\end{array}
\]

[Formula 2]

\[
\begin{array}{c}
\text{(R}_1\text{)}_a \\
O \\
\text{(R}_2\text{)}_b \\
O - \text{C} \\
\end{array}
\]

[Formula 3]

\[
\begin{array}{c}
\text{(O} \text{-CH}_2\text{)}_a \\
\text{Q} \\
\text{C} \\
\end{array}
\]

wherein, \(R_1 \) and \(R_2 \) are each independently substituted or unsubstituted \(C_1 \) to \(C_6 \) alkyl, a substituted or unsubstituted \(C_3 \) to \(C_6 \) cycloalkyl, a substituted or unsubstituted \(C_6 \) to \(C_12 \) aryl or halogen, and \(a \) and \(b \) are each independently an integer from 0 to 4, and \(Q \) is substituted or unsubstituted \(C_5 \) to \(C_{10} \) cycloalkyl.
The present invention relates to polycarbonate and a method of preparing the same. More specifically, the present invention relates to polycarbonate having excellent chemical resistance and impact resistance, and a method of preparing the same.

Polycarbonate is a thermoplastic material that has a heat deflection temperature of about 135°C or higher and can exhibit superior mechanical properties including impact resistance and excellent self-extinguishing properties, dimensional stability, heat resistance and transparency. Polycarbonate resins are widely used in various applications, such as exterior materials of electronic and electric products, automobile components, and the like.

However, despite excellent transparency and mechanical properties, polycarbonate has limitations in use for exterior materials. When a plastic material is used as an exterior material, the product is often coated to enhance the aesthetics thereof. In this case, a dye diluted with various organic solvents can be applied to the surface of a molded resin article and dried. The organic solvents used as diluents can penetrate into the polycarbonate, which can decrease transparency and mechanical strength. Thus, in order to use polycarbonate in products frequently exposed to various organic solvents in the course of use, it is important for the polycarbonate to have resistance against these organic solvents. Various methods are suggested to improve chemical resistance of polycarbonate resins.

KR Patent Publication No. 2007-0071446, KR Patent Publication No. 2009-0026359 and KR Patent Publication No. 2010-0022376 disclose methods of improving chemical resistance of polycarbonate resins by blending with other resins having chemical resistance. However, while these methods can slightly improve chemical resistance, they can decrease impact resistance. In order to improve impact resistance reduced due to blending, an impact modifier can be used. The impact modifier, however, can significantly decrease transparency of the resin.

JP 05-339390 and US Patent No. 5,401,826 disclose methods of improving chemical resistance by preparing copolymerized polycarbonate in which a material having chemical resistance is introduced into a conventional polycarbonate resin.

An example of the copolymerized material is 4,4'-biphenol, which is copolymerized with a polycarbonate resin to improve chemical resistance. However, although 4,4'-biphenol can improve chemical resistance, it also can reduce impact resistance, thereby deteriorating advantages of the polycarbonate. In particular, as the amount of 4,4'-biphenol used increases, fluidity drastically decreases, causing deterioration in moldability.

It is an aspect of the present invention to provide a polycarbonate having excellent chemical resistance and fluidity without deterioration in impact resistance, and a method of preparing the same.

The above-mentioned aspects and other aspects may be accomplished by the present invention as explained below.

One aspect of the present invention relates to a polycarbonate. The polycarbonate includes repeat units represented by Formula 1, Formula 2, and Formula 3, respectively:
(wherein, R₁ and R₂ are each independently substituted or unsubstituted C₁ to C₆ alkyl, substituted or unsubstituted C₃ to C₆ cycloalkyl, substituted or unsubstituted C₆ to C₁₂ aryl or halogen, and a and b are each independently an integer from 0 to 4);

[Formula 2]

(wherein, R₁ and R₂ are each independently substituted or unsubstituted C₁ to C₆ alkyl, substituted or unsubstituted C₃ to C₆ cycloalkyl, substituted or unsubstituted C₆ to C₁₂ aryl or halogen, and a and b are each independently an integer from 0 to 4); and

[Formula 3]

(wherein, Q is substituted or unsubstituted C₅ to C₁₀ cycloalkyl, and a and b are each independently an integer from 0 to 4).

[0011] In one embodiment, the polycarbonate may have a mole ratio of Formula 1 (M₁), Formula 2 (M₂) and Formula 3 (M₃) of about 30 to 90 mol%: 5 to 30 mol%: 5 to 40 mol%.

[0012] In another embodiment, the polycarbonate may have a mole ratio of Formula 1 (M₁), Formula 2 (M₂) and Formula 3 (M₃) of about 75 to 90 mol%: 5 to 15 mol%: 5 to 15 mol%.

[0013] In a further embodiment, the polycarbonate may have a mole ratio of Formula 1 (M₁), Formula 2 (M₂) and Formula 3 (M₃) of about 30 to 80 mol%: 10 to 30 mol%: 10 to 40 mol%.

[0014] In one embodiment, the polycarbonate may have a mole ratio of Formula 1 (M₁), Formula 2 (M₂) and Formula 3 (M₃) which satisfies the following conditions:

\[
M₁ > M₂ + M₃ \\
M₂ ≤ M₃
\]

(wherein, M₁ is a mole ratio of Formula 1, M₂ is a mole ratio of Formula 2 and M₃ is a mole ratio of Formula 3).

[0015] In one embodiment, the polycarbonate may have a glass transition temperature of about 135 to about 160°C, an index of refraction of about 1.58 to about 1.59 and a notched IZOD impact strength of about 65 to about 95 kg·cm/cm, as measured on a 1/8" thick specimen at room temperature according to ASTM D256.

[0016] In another embodiment, the polycarbonate may have a notched IZOD impact strength of about 55 to about 85 kg·cm/cm, as measured on a 1/8" thick specimen at -30°C according to ASTM D542.

[0017] The polycarbonate may include a sulfonic acid compound represented by Formula 4:
Another aspect of the present invention relates to a method of preparing polycarbonate. The method includes transesterification of diols represented by Formula 1-1, Formula 2-1 and Formula 3-1 with diaryl carbonate:

(wherein, R1 and R2 are each independently substituted or unsubstituted C1 to C6 alkyl, substituted or unsubstituted C3 to C6 cycloalkyl, substituted or unsubstituted C6 to C12 aryl or halogen, and a and b are each independently an integer from 0 to 4); and

(wherein, Q is substituted or unsubstituted C5 to C10 cycloalkyl, and a and b are each independently an integer from 0 to 4).

In one embodiment, a mole ratio of Formula 1-1, Formula 2-1 and Formula 3-1 may be about 30 to 90 mol%; 5 to 30 mol%: 5 to 40 mol%.

Advantageous Effects

The present invention provides a polycarbonate having excellent chemical resistance, fluidity, transparency, room-temperature/low-temperature impact strength and heat resistance without deterioration in impact resistance, and a method of preparing the same.

Best Mode

Polycarbonate according to exemplary embodiments of the invention can be prepared by transesterification of
diols represented by Formula 1-1, Formula 2-1 and Formula 3-1 with diaryl carbonate.

[Formula 1-1]

\[
\text{HO} \begin{array}{c}
\text{(R}_1\text{)}_a \\
\text{(R}_2\text{)}_b
\end{array} \text{OH}
\]

(wherein, R\text{\textsubscript{1}} and R\text{\textsubscript{2}} are each independently substituted or unsubstituted C\text{\textsubscript{1}} to C\text{\textsubscript{6}} alkyl, substituted or unsubstituted C\text{\textsubscript{3}} to C\text{\textsubscript{6}} cycloalkyl, substituted or unsubstituted C\text{\textsubscript{6}} to C\text{\textsubscript{12}} aryl or halogen atom, and \(a\) and \(b\) are each independently an integer from 0 to 4).

[Formula 2-1]

\[
\text{HO} \begin{array}{c}
\text{(R}_1\text{)}_a \\
\text{(R}_2\text{)}_b
\end{array} \text{OH}
\]

(wherein, R\text{\textsubscript{1}} and R\text{\textsubscript{2}} are each independently substituted or unsubstituted C\text{\textsubscript{1}} to C\text{\textsubscript{6}} alkyl, substituted or unsubstituted C\text{\textsubscript{3}} to C\text{\textsubscript{6}} cycloalkyl, substituted or unsubstituted C\text{\textsubscript{6}} to C\text{\textsubscript{12}} aryl or halogen, and \(a\) and \(b\) are each independently an integer from 0 to 4).

[Formula 3-1]

\[
\text{HO} \begin{array}{c}
\text{(CH}_2\text{)}_a \text{Q} \\
\text{(CH}_2\text{)}_b \text{OH}
\end{array}
\]

(wherein, Q is substituted or unsubstituted C\text{\textsubscript{5}} to C\text{\textsubscript{10}} cycloalkyl, and \(a\) and \(b\) are each independently an integer from 0 to 4).

[0022] Examples of Formula 1-1 may include 2,2-bis-(4-hydroxyphenyl)-propane, 2,2-bis-(3,5-dimethyl-4-hydroxyphenyl)-propane, 2,2-bis-(3,5-dimethyl-4-hydroxyphenyl)-propane and the like. Specifically, 2,2-bis-(4-hydroxyphenyl)-propane, also referred to as bisphenol A, may be used.

[0023] Examples of Formula 2-1 may include 4,4'-biphenol, 2,2'-dimethyl-4,4'-biphenyldiol, 3,3-dimethyl-4,4-dihydroxybiphenyl, 2,2',6,6'-tetramethyl-4,4'-biphenol and the like. Specifically, 4,4'-biphenol may be used.

[0024] Examples of Formula 3-1 may include 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanediethanol, 1,3-cyclohexanediethanol, 1,4-cyclohexanediethanol, 1,2-cycloheptanediol, 1,3-cycloheptanediol, 1,4-cycloheptanediol, 1,2-cyclooctanediol, 1,3-cyclooctanediol, 1,4-cyclooctanediol and the like. Specifically, 1,4-cyclohexanediethanol may be used.

[0025] In one embodiment, a mole ratio of Formula 1-1, Formula 2-1 and Formula 3-1 may be about 30 to 90 mol%: 5 to 30 mol%: 5 to 40 mol%. When the mole ratio of the diols of Formula 1-1, Formula 2-1 and Formula 3-1 is within this range, the polycarbonate may have a balance of physical properties including impact strength, chemical resistance and fluidity.

[0026] Examples of the diaryl carbonate may include diphenyl carbonate, ditoly carbonate, bis(chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis(diphenyl) carbonate, diethyl carbonate, dimethyl carbonate, dibutyl carbonate, dicyclopentyl carbonate and the like, without being limited thereto. These diaryl carbonates may be used alone or as mixtures. Among these, diphenyl carbonate is preferable.

[0027] In one embodiment, the diols in Formula 1-1, Formula 2-1 and Formula 3-1 may be added in a mole ratio of about 0.6 to about 1.0, preferably about 0.7 to about 0.9 to the diaryl carbonate. When the diols of Formula 1-1, Formula 2-1 and Formula 3-1 are added in a mole ratio within this range, excellent mechanical strength can be obtained.

[0028] In one embodiment, transesterification may be performed at about 150 to about 300°C, preferably about 160 to about 280°C, and more preferably about 190 to about 260°C under reduced pressure conditions. When the temperature is within this range, reaction rate can be appropriate and side reactions can decrease.

[0029] Further, transesterification may be performed under reduced pressure conditions at about 100 Torr or less, for example about 75 Torr or less, preferably about 30 Torr or less, and more preferably about 1 Torr or less for at least
about 10 minutes or more, preferably about 15 minutes to about 24 hours, and more preferably about 15 minutes to about 12 hours. When the pressure and time are within these ranges, the reaction rate can be appropriate and side reactions can decrease.

[0030] In one embodiment, the reaction can be performed at a temperature of about 160 to about 260°C for about 2 to about 9 hours, to prepare a polycarbonate resin.

[0031] Transesterification may be performed in the presence of alkali and alkaline earth metals as a catalyst. Examples of the alkali and alkaline earth metals may include LiOH, NaOH and KOH, without being limited thereto. These metals may be used alone or as mixtures. The amount of the catalyst may be determined based on the amount of the aromatic dihydroxy compound. In one embodiment, the catalyst may be present in an amount of about \(1 \times 10^{-8}\) mol to about 1 \(\times 10^{-3}\) mol based on 1 mol of the aromatic dihydroxy compound. When the catalyst is used in an amount within this range, sufficient reactivity can be obtained and generation of byproducts due to side reactions can be minimized, which can improve heat stability and color stability.

[0032] A sulfonic acid ester compound represented by Formula 4 or a mixture therewith may be added to the polycarbonate produced by the above reaction, which can remove remaining activity of the catalyst.

\[
\begin{align*}
\text{[Formula 4]} \\
\text{(wherein, R9 is substituted or unsubstituted C1 to C20 alkyl, R10 is substituted or unsubstituted C11 to C20 alkenylene, and n is an integer from 0 to 5).}
\end{align*}
\]

[0033] Examples of the sulfonic acid ester compound of Formula 4 may include dodecyl p-toluenesulfonate, octadecyl p-toluenesulfonate, dodecyl dodecylbenzenesulfonate, octadecyl octadecylbenzenesulfonate and the like.

[0034] In one embodiment, the sulfonic acid ester compound may be present in an amount of about 0.0001 to about 0.001 parts by weight, preferably about 0.0003 to about 0.0008 parts by weight based on 100 parts by weight of the monomer. When the sulfonic acid ester compound is present in an amount within this range, excellent heat stability and hydrolysis resistance can be obtained.

[0035] In one embodiment, a final polycarbonate may be prepared by in-situ reaction wherein the sulfonic acid ester compound is directly added to the polycarbonate obtained from the reaction. Alternatively, the polycarbonate obtained from transesterification and the sulfonic acid ester compound may be mixed in an extrusion process. In this embodiment, the polycarbonate produced by the reaction can be transferred to an extruder and the sulfonic acid ester compound can be added to the extruder, followed by extruding the mixture into pellets.

[0036] When adding the sulfonic acid ester compound, general additives may be added together and extruded. The additives may include flame retardants, antimicrobial agents, release agents, heat stabilizers, antioxidants, light stabilizers, compatibilizers, dyes, inorganic additives, fillers, plasticizers, impact modifiers, admixtures, coloring agents, stabilizers, lubricants, antistatic agents, pigments, weatherproofing agents, and UV blocks, without being limited thereto. These additives may be used alone or in combination of two or more thereof.

[0037] The polycarbonate thus prepared can include repeat units represented by Formula 1, Formula 2 and Formula 3, respectively:

\[
\begin{align*}
\text{[Formula 1]} \\
\text{(wherein, R1 and R2 are each independently substituted or unsubstituted C1 to C6 alkyl, substituted or unsubstituted C3 to C6 cycloalkyl, substituted or unsubstituted C6 to C12 aryl or halogen, and a and b are each independently an integer from 0 to 4).}
\end{align*}
\]
EP 2 762 516 A1

[Formula 2]

(wherein, R₁ and R₂ are each independently substituted or unsubstituted C₁ to C₆ alkyl, substituted or unsubstituted C₃ to C₆ cycloalkyl, substituted or unsubstituted C₆ to C₁₂ aryl or halogen, and a and b are each independently an integer from 0 to 4).

[Formula 3]

(wherein, Q is substituted or unsubstituted C₅ to C₁₀ cycloalkyl, and a and b are each independently an integer from 0 to 4).

[0038] In one embodiment, the polycarbonate may have a mole ratio of Formula 1 (M₁), Formula 2 (M₂) and Formula 3 (M₃) of M₁: M₂: M₃ = about 30 to 90 mol%: 5 to 30 mol%: 5 to 40 mol%.

[0039] In another embodiment, the polycarbonate may have a mole ratio of Formula 1 (M₁), Formula 2 (M₂) and Formula 3 (M₃) of M₁: M₂: M₃ = about 75 to 90 mol%: 5 to 15 mol%: 5 to 15 mol%. When the polycarbonate includes a mole ratio of the units of Formula 1 (M₁), Formula 2 (M₂) and Formula 3 (M₃) within this range, the polycarbonate can exhibit excellent fluidity, impact strength and chemical resistance, and particularly can obtain superior heat resistance and impact strength at room temperature. Further, the polycarbonate may secure a low index of refraction, thereby obtaining excellent compatibility with other resins when mixed therewith. In exemplary embodiments, the polycarbonate may have a glass transition temperature of 135 to 160°C, an index of refraction of about 1.58 to about 1.59 and a notched IZOD impact strength of about 65 to about 95 kg·cm/cm, as measured on a 1/8" thick specimen at room temperature according to ASTM D256.

[0040] In a further embodiment, the polycarbonate may have a mole ratio of Formula 1 (M₁), Formula 2 (M₂) and Formula 3 (M₃) of M₁: M₂: M₃ = about 30 to 80 mol%: 10 to 30 mol%: 10 to 40 mol%. When the polycarbonate includes a mole ratio of the units of Formula 1 (M₁), Formula 2 (M₂) and Formula 3 (M₃) within this range, the polycarbonate can exhibit excellent fluidity, impact strength and chemical resistance, and particularly can obtain superior practical fluidity, impact strength at low temperature and chemical resistance. In exemplary embodiments, the polycarbonate may have a notched IZOD impact strength of about 55 to about 85 kg·cm/cm, as measured on a 1/8" thick specimen at -30°C according to ASTM D542.

[0041] In one embodiment, the polycarbonate may have a mole ratio of Formula 1 (M₁), Formula 2 (M₂) and Formula 3 (M₃) which satisfies the following conditions:

\[M₁ ≥ M₂ \]
\[M₂ ≤ M₃ \]

(wherein M₁ is a mole ratio of Formula 1, M₂ is a mole ratio of Formula 2 and M₃ is a mole ratio of Formula 3).

[0042] M₁ > M₂ is preferable, and M₁ > M₂ + M₃ is more preferable. In this case, heat resistance and impact strength at room temperature can be particularly excellent.

[0043] The mole ratio of M₂ to M₃ may be about 1:1 to 1:2. When the mole ratio of M₂ to M₃ is within this range, excellent chemical resistance can be obtained.

[0044] The polycarbonate resin prepared according to the present invention can have excellent chemical resistance, fluidity and impact strength, and thus may be used in various products. For example, the polycarbonate resin may be used for automobiles, machine parts, electric and electronic components, office machines including a computer or miscellaneous goods. In particular, the polycarbonate resin may be employed not only for housings of electric and electronic products, such as TVs, computers, printers, washing machines, cassette players, stereos, cellular phones, game consoles and toys, but for humidifiers, steam vacuum cleaners, steam irons, and the like.

[0045] The polycarbonate resin may be formed into a product using suitable molding techniques, for example, extrusion
molding, injection molding, vacuum molding, casting molding, blow molding and calendar molding. These methods are
generally known to a person having ordinary knowledge in the art.

The present invention will be explained in more detail with reference to the following examples. These examples
are provided for illustrative purposes only and are not to be in any way construed as limiting the present invention.

[Mode for Invention]

Example 1

4.05 kg of 2,2-bis(4-hydroxyphenyl)propane (bisphenol A or BPA), 0.19 kg of 4,4'-biphenyl (BP), 0.14 kg of
1,4-cyclohexanediol (CHDM), 4.35 kg of diphenyl carbonate and 150 ppb of KOH (based on 1 mol of bisphenol
A) are sequentially added to a reactor, and oxygen in the reactor is removed using nitrogen. The reactor is heated to
160°C and then to 190°C, at which temperature the reaction is performed for 6 hours. After 6 hours, the reactor is heated
to 210°C and maintained at 100 Torr for 1 hour. The reactor is heated to 260°C and maintained at 20 Torr for 1 hour,
and then is decompressed to 0.5 Torr and maintained for 1 hour. Then, 0.0005 phr of dodecyl p-toluene sulfonate, 0.03
phr of octadecyl 3-(3,5-di-tert-4-hydroxyphenyl)propionate and 0.05 phr of tris(2,4-di-tert-butylphenyl)phosphate are
added to the melt polymer and mixed to form uniform mixture for about 10 minutes.

Example 2

3.83 kg of 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 0.19 kg of 4,4'-biphenyl, 0.28 kg of 1,4-cyclohexanediol (CHDM), 4.35 kg of diphenyl carbonate and 150 ppb of KOH (based on 1 mol of bisphenol A) are sequentially
added to a reactor, and oxygen in the reactor is removed using nitrogen. Then, polymerization is performed in the same
manner as in Example 1.

Example 3

3.60 kg of 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 0.37 kg of 4,4'-biphenyl, 0.28 kg of 1,4-cyclohexanediol (CHDM), 4.35 kg of diphenyl carbonate and 150 ppb of KOH (based on 1 mol of bisphenol A) are sequentially
added to a reactor, and oxygen in the reactor is removed using nitrogen. Then, polymerization is performed in the same
manner as in Example 1.

Example 4

3.15 kg of 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 0.37 kg of 4,4'-biphenyl, 0.57 kg of 1,4-cyclohexanediol (CHDM), 4.35 kg of diphenyl carbonate and 150 ppb of KOH (based on 1 mol of bisphenol A) are sequentially
added to a reactor, and oxygen in the reactor is removed using nitrogen. Then, polymerization is performed in the same
manner as in Example 1.

Example 5

2.25 kg of 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 0.74 kg of 4,4'-biphenyl, 0.85 kg of 1,4-cyclohexanediol (CHDM), 4.35 kg of diphenyl carbonate and 150 ppb of KOH (based on 1 mol of bisphenol A) are sequentially
added to a reactor, and oxygen in the reactor is removed using nitrogen. Then, polymerization is performed in the same
manner as in Example 1.

Example 6

1.35 kg of 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 1.11 kg of 4,4'-biphenyl, 0.85 kg of 1,4-cyclohexanediol (CHDM), 1.13 kg of diphenyl carbonate and 150 ppb of KOH (based on 1 mol of bisphenol A) are sequentially
added to a reactor, and oxygen in the reactor is removed using nitrogen. Then, polymerization is performed in the same
manner as in Example 1.

Comparative Example 1

4.5 kg of 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 4.35 kg of diphenyl carbonate and 100 ppb of KOH
(based on 1 mol of bisphenol A) are sequentially added to a reactor, and oxygen in the reactor is removed using nitrogen.
The reactor is heated to 160°C and then to 190°C, at which temperature the reaction is performed for 6 hours. After 6
hours, the reactor is heated to 220°C and maintained at 70 Torr for 1 hour. The reactor is heated to 260°C and maintained at 20 Torr for 1 hour, and then is decompressed to 0.5 Torr and maintained for 1 hour. Then, 0.0005 phr of dodecyl p-toluene sulfonate, 0.03 phr of octadecyl 3-(3,5-di-tert-4-hydroxyphenyl)propionate and 0.05 phr of tris(2,4-di-tert-butyl-phenyl)phosphate are added to the melt polymer and mixed to form a uniform mixture for about 10 minutes.

Comparative Example 2

[0054] 3.83 kg of 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 0.56 kg of 4,4‘-biphenyl, 4.35 kg of diphenyl carbonate and 100 ppb of KOH (based on 1 mol of bisphenol A) are sequentially added to a reactor, and oxygen in the reactor is removed using nitrogen. Then, polymerization is performed in the same manner as in Comparative Example 1.

Comparative Example 3

[0055] 3.15 kg of 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 1.11 kg of 4,4‘-biphenyl, 4.35 kg of diphenyl carbonate and 150 ppb of KOH (based on 1 mol of bisphenol A) are sequentially added to a reactor, and oxygen in the reactor is removed using nitrogen. Then, polymerization is performed in the same manner as in Comparative Example 1.

Comparative Example 4

[0056] 4.05 kg of 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 0.28 kg of 4,4‘-biphenyl, 4.35 kg of diphenyl carbonate and 150 ppb of KOH (based on 1 mol of bisphenol A) are sequentially added to a reactor, and oxygen in the reactor is removed using nitrogen. Then, polymerization is performed in the same manner as in Example 1.

Comparative Example 5

[0057] 3.15 kg of 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 0.85 kg of 1,4-cyclohexanedimethanol, 4.35 kg of diphenyl carbonate and 150 ppb of KOH (based on 1 mol of bisphenol A) are sequentially added to a reactor, and oxygen in the reactor is removed using nitrogen. Then, polymerization is performed in the same manner as in Example 1.

The polycarbonate resins prepared in the Examples and Comparative Examples are extruded using a biaxial extruder (L/D = 36, φ = 32) at 270°C and formed into pellets using a pelletizer. Physical properties of the prepared pellets are evaluated as follows and results are shown in Table 2.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Examples</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Comparative Examples</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BPA (mol%)</td>
<td>90</td>
<td>85</td>
<td>80</td>
<td>70</td>
<td>50</td>
<td>30</td>
<td>100</td>
<td>85</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>BP (mol%)</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td></td>
<td>15</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>CHDM (mol%)</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Antioxidant (phr)</td>
<td>0.03</td>
</tr>
<tr>
<td>Phosphorus heat stabilizer (phr)</td>
<td>0.05</td>
</tr>
</tbody>
</table>

[0058] The polycarbonate resins prepared in the Examples and Comparative Examples are extruded using a biaxial extruder (L/D = 36, φ = 32) at 270°C and formed into pellets using a pelletizer. Physical properties of the prepared pellets are evaluated as follows and results are shown in Table 2.

Evaluation methods of physical properties

(1) Melt index (MI, g/10 min)

[0059] Melt index is measured at 250°C and a load of 10 kg using a flow index tester (Model No: F-WO1, manufactured by Toyoseiki).

(2) Glass transition temperature (°C)

[0060] Glass transition temperature is measured at a temperature increase rate of 10°C per minute using DSC (Model No.: Q100, TA Instruments)
(3) Index of refraction

[0061] An index of refraction is measured according to ASTM D257.

(4) Practical fluidity (cm)

[0062] A practically flowing distance (cm) of the pellets in a 2 mm-thick spiral mold at 290°C and a mold temperature of 80°C is measured using an injection machine (DHC 120WD, 120 ton, Dongshin en-Tech Co., Ltd.).

(5) Impact strength at room temperature (kg·cm/cm)

[0063] The prepared pellets are formed into a 1/8" IZOD specimen at a molding temperature of 270°C and a mold temperature of 70°C using an injection machine (DHC 120WD, 120 ton, Dongshin en-Tech Co., Ltd.), followed by evaluation according to ASTM D256 (1/8", notched).

(6) Impact strength at low temperature (kg·cm/cm)

[0064] Impact strength at low temperature is measured on a 1/8" IZOD specimen at -30°C according to ASTM D542.

(7) Chemical resistance

[0065] * Chemical resistance to alcohols: A tensile specimen in accordance with ASTM D638 is prepared via injection molding, after which a 2.1 % strain is applied to the specimen according to ASTM D543 for evaluating Environmental Stress Crack Resistance and methanol and isopropyl alcohol are dropped thereto. After 10 minutes, cracks generated on a curved part were observed. (○: No Crack, ♦: Fine cracks, Δ: Many cracks, X: Haze of cracks)

[0066] * Transmittance after depositing in coating solution: A 2.5 mm flat specimen is deposited in a coating thinner (main ingredients: methyl isobutyl ketone, cyclohexanone, 2-ethoxyethanol) for a polycarbonate resin for 2 minutes and dried at 80°C for 30 minutes, followed by measurement of visible transmittance (%) using a hazemeter (GmbH 4725, BYK-Gardner)
<table>
<thead>
<tr>
<th>Examples</th>
<th>Comparative Examples</th>
<th>MI</th>
<th>Tg(°C)</th>
<th>Index of refraction</th>
<th>Practical fluidity (cm)</th>
<th>Impact strength at room temperature (1/8")</th>
<th>Impact strength at room temperature (-30°) (1/8")</th>
<th>Chemical resistance</th>
<th>Alcohols</th>
<th>Chemical resistant after depositing in coating solution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>30</td>
<td>148</td>
<td>1.585</td>
<td>28.7</td>
<td>69</td>
<td>14</td>
<td>○</td>
<td>X</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>30</td>
<td>142</td>
<td>1.588</td>
<td>30.5</td>
<td>70</td>
<td>36</td>
<td>○</td>
<td>©</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>30</td>
<td>125</td>
<td>1.598</td>
<td>29.5</td>
<td>72</td>
<td>68</td>
<td>○</td>
<td>©</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>30</td>
<td>112</td>
<td>1.600</td>
<td>36.5</td>
<td>68</td>
<td>66</td>
<td>X</td>
<td>©</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>30</td>
<td>110</td>
<td>1.604</td>
<td>39.0</td>
<td>73</td>
<td>63</td>
<td>©</td>
<td>©</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>30</td>
<td>112</td>
<td>1.594</td>
<td>41.2</td>
<td>73</td>
<td>63</td>
<td>©</td>
<td>©</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>30</td>
<td>115</td>
<td>1.592</td>
<td>28.5</td>
<td>52</td>
<td>41</td>
<td>©</td>
<td>©</td>
<td>88</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>30</td>
<td>117</td>
<td>1.596</td>
<td>22</td>
<td>41</td>
<td>39</td>
<td>©</td>
<td>©</td>
<td>88</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>30</td>
<td>119</td>
<td>1.590</td>
<td>30.5</td>
<td>41</td>
<td>39</td>
<td>©</td>
<td>©</td>
<td>88</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>30</td>
<td>121</td>
<td>1.595</td>
<td>35.0</td>
<td>50</td>
<td>41</td>
<td>©</td>
<td>©</td>
<td>88</td>
</tr>
</tbody>
</table>

Table 2
During testing, the melt indices (MI) of the polycarbonates according to Examples 1 to 6 and Comparative Examples 1 to 3 are adjusted to 30 g/10 min. The polycarbonates according to Comparative Examples 4 and 5 have unmeasurably high MIs at 250°C and a load of 10 kg. The polycarbonates according to Examples 1 to 6 have excellent fluidity, impact strength at room temperature and low temperature, chemical resistance and transmittance. However, the polycarbonate using BPA only according to Comparative Example 1 exhibits significantly reduced chemical resistance, and the polycarbonates not employing an alicyclic diol according to Comparative Examples 2 and 3 have lowered impact strength at room temperature and practical fluidity. The polycarbonates not using BP according to Comparative Examples 4 and 5 have excellent practical fluidity but exhibit reduced impact strength at room temperature and low temperature. In particular, the polycarbonate according to Comparative Example 4 has deteriorated chemical resistance as well.

Although some embodiments have been disclosed herein, it should be understood that these embodiments are provided by way of illustration only, and that various modifications, changes, and alterations can be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention should be limited only by the accompanying claims and equivalents thereof.

Claims

1. Polycarbonate comprising repeat units represented by Formula 1, Formula 2 and Formula 3, respectively:

 [Formula 1]
 \[
 \text{O} - \text{R}_1 - \text{C} - \text{O} - \text{R}_2 - \text{O}
 \]

 (wherein, \(R_1\) and \(R_2\) are each independently substituted or unsubstituted C1 to C6 alkyl, substituted or unsubstituted C3 to C6 cycloalkyl, substituted or unsubstituted C6 to C12 aryl or halogen, and \(a\) and \(b\) are each independently an integer from 0 to 4);

 [Formula 2]
 \[
 \text{O} - \text{R}_1 - \text{C} - \text{O} - \text{R}_2 - \text{O}
 \]

 (wherein, \(R_1\) and \(R_2\) are each independently substituted or unsubstituted C1 to C6 alkyl, a substituted or unsubstituted C3 to C6 cycloalkyl, a substituted or unsubstituted C6 to C12 aryl or halogen, and \(a\) and \(b\) are each independently an integer from 0 to 4); and

 [Formula 3]
 \[
 \text{O} - \text{CH}_2 - \text{Q} - \text{CH}_2 - \text{O} - \text{C}
 \]

 (wherein, \(Q\) is substituted or unsubstituted C5 to C10 cycloalkyl, and \(a\) and \(b\) are each independently an integer from 0 to 4).

2. The polycarbonate of claim 1, wherein the polycarbonate has a mole ratio of Formula 1 (M1), Formula 2 (M2) and Formula 3 (M3) of about 30 to 90 mol%: 5 to 30 mol%: 5 to 40 mol%.
3. The polycarbonate of claim 1, wherein the polycarbonate has a mole ratio of Formula 1 (M1), Formula 2 (M2) and Formula 3 (M3) of about 75 to 90 mol%: 5 to 15 mol%: 5 to 15 mol%.

4. The polycarbonate of claim 1, wherein the polycarbonate has a mole ratio of Formula 1 (M1), Formula 2 (M2) and Formula 3 (M3) of about 30 to 80 mol%: 10 to 30 mol%: 10 to 40 mol%.

5. The polycarbonate of claim 1, wherein the polycarbonate has a mole ratio of Formula 1 (M1), Formula 2 (M2) and Formula 3 (M3) which satisfies conditions as follows:

 \[M1 > M2 + M3 \]
 \[M2 \leq M3 \]

 (wherein, M1 is a mole ratio of Formula 1, M2 is a mole ratio of Formula 2 and M3 is a mole ratio of Formula 3).

6. The polycarbonate of claim 3, wherein the polycarbonate has a glass transition temperature of about 135 to about 160°C, an index of refraction of about 1.58 to about 1.59 and a notched IZOD impact strength of about 65 to about 95 kg·cm/cm, as measured on a 1/8” thick specimen at room temperature according to ASTM D256.

7. The polycarbonate of claim 4, wherein the polycarbonate has a notched IZOD impact strength of about 55 to about 85 kg·cm/cm, as measured on a 1/8” thick specimen at -30°C according to ASTM D542.

8. The polycarbonate of claim 1, wherein the polycarbonate comprises a sulfonic acid compound represented by Formula 4:

 \[\text{[Formula 4]} \]

 (wherein, R9 is substituted or unsubstituted C1 to C20 alkyl, R10 is substituted or unsubstituted C11 to C20 alkenylene, and n is an integer from 0 to 5).

9. A method of preparing polycarbonate comprising transesterification of diols represented by Formula 1-1, Formula 2-1 and Formula 3-1 with diaryl carbonate:

 \[\text{[Formula 1-1]} \]

 (wherein, R₁ and R₂ are each independently substituted or unsubstituted C1 to C6 alkyl, substituted or unsubstituted C3 to C6 cycloalkyl, substituted or unsubstituted C6 to C12 aryl or halogen, and a and b are each independently an integer from 0 to 4);
(wherein, \(R_1\) and \(R_2\) are each independently substituted or unsubstituted C1 to C6 alkyl, substituted or unsubstituted C3 to C6 cycloalkyl, substituted or unsubstituted C6 to C12 aryl or halogen, and \(a\) and \(b\) are each independently an integer from 0 to 4); and

\[
\text{[Formula 2-1]}
\]

\[
\text{HO-} \begin{array}{c} \begin{array}{c} \text{(R}_1\text{)}_a \\ \text{(R}_2\text{)}_b \end{array} \end{array} \text{-OH}
\]

(wherein, \(Q\) is substituted or unsubstituted C5 to C10 cycloalkyl, and \(a\) and \(b\) are each independently an integer from 0 to 4).

10. The method of claim 9, wherein a mole ratio of Formula 1-1, Formula 2-1 and Formula 3-1 is about 30 to 90 mol%: 5 to 30 mol%: 5 to 40 mol%.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
C08G 64/00(2006.01)i, C08G 64/04(2006.01)i, C08G 64/30(2006.01)i, C08L 69/00(2006.01)i
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C08G 64/00; G02B 1/04; C08G 64/06; C08G 64/16; G03G 5/05

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Japanese Utility models and applications for Utility models: IPC as above
Korean Utility models and applications for Utility models: IPC as above

Electronic database consulted during the international search (name of data base and, where practical, search terms used)
E-KOMPASS (KIPO internal) & Keywords: polycarbonate, bisphenol, biphenyl, cyclohexanemethanol, copolymerization

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2002-226570 A (TEJIN CHEM LTD) 14 August 2002 See claim 1 and paragraph [0052].</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>JP 11-349657 A (MITSUBISHI GAS CHEM CO INC) 21 December 1999 See claim 1 and paragraph [0026].</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>JP 07-199488 A (KONICA CORP) 04 August 1995 See claim 1.</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>JP 2003-090901 A (TEJIN CHEM LTD) 28 March 2003 See claim 1.</td>
<td>1-10</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☒ See patent family annex.

Date of the actual completion of the international search
23 OCTOBER 2012 (23.10.2012)

Date of mailing of the international search report
29 OCTOBER 2012 (29.10.2012)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seocho-ro, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer
Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 2002-228570 A</td>
<td>14.08.2002</td>
<td>CN 1277127 A0</td>
<td>27.09.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1388805 A0</td>
<td>01.01.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1302785 B1</td>
<td>27.08.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04-665950 B2</td>
<td>18.11.2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04-665953 B2</td>
<td>18.11.2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002-090501 A</td>
<td>27.03.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002-233299 A</td>
<td>16.08.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002-299912 A</td>
<td>09.10.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003-0055200 A1</td>
<td>20.03.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6780865 B2</td>
<td>24.06.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 02-04992 A1</td>
<td>17.01.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1999-33937 B2</td>
<td>13.06.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1238346 A0</td>
<td>15.12.1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1240751 C0</td>
<td>08.02.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0964016 A2</td>
<td>15.12.1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0964016 A3</td>
<td>06.11.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 03-959572 B2</td>
<td>15.08.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002-0013445 A1</td>
<td>31.01.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6359103 B1</td>
<td>19.03.2002</td>
</tr>
<tr>
<td>JP 07-199488 A</td>
<td>04.08.1995</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04-568462 B2</td>
<td>13.08.2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003-090917 A</td>
<td>28.03.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4568462 B2</td>
<td>27.10.2010</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- KR 20070071446 [0004]
- KR 20090026359 [0004]
- KR 20100022376 [0004]
- JP 5339390 A [0005]
- US 5401826 A [0005]